WorldWideScience

Sample records for resolving groundwater evolution

  1. Groundwater evolution of the granite area, Korea

    International Nuclear Information System (INIS)

    Kim, C.S.; Bae, D.S.; Koh, Y.K.; Kim, K.S.; Kim, G.Y.

    2001-01-01

    The geochemistry and environmental isotopes of groundwater in the Cretaceous granite of the Yeongcheon area has been investigated. The hydrochemistry of groundwater belongs to the Ca-HCO 3 type. The oxygen-18 and deuterium data are clustered along the meteoric water line, indicating that the groundwater is of meteoric water origin. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing rapidly along fractured zones. Based on the mass balance and reaction simulation approaches using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, the low-temperature hydrogeochemical evolution of groundwater in the area has been modeled. The results of geochemical simulation show that the concentrations of Ca, Na and HCO 3 and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg and K first increase with the dissolution of reactant minerals, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, i. e. the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: hematite > gibbsite > kaolinite > montmorillonite > illitic material > microcline. The results of reaction simulation agree well with the observed water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters. (author)

  2. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  3. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  4. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  5. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  6. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  7. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    binary. We have carried out orbital phase resolved spectroscopy to mea- ... agreement with a simple model of a spherically symmetric stellar wind from the .... has a set of Narrow Field Instruments (NFI) comprising one Low Energy Concen-.

  8. Chemical evolution of deep groundwaters in granites, information acquired from natural systems

    International Nuclear Information System (INIS)

    Toulhoat, P.; Beaucaire, C.; Ouzounian, G.

    1993-01-01

    A research program has been carried out for five years, concerning a major aspect of deep radioactive waste disposals: groundwaters in the host-rock. The following items have been examined: the exact composition of confined waters, excluding those which are found in highly conductive (even deep) fractures; evolution path from surface waters to confined waters; possible influence of the repository on the composition of groundwaters; possible influence of groundwaters on the elements which could escape the repository (major elements, trace elements, radioactive elements). The following methodology is used: groundwater sampling and analysis, identification of the major phenomena controlling element concentration in groundwaters, modelling, modelling validation. (author). 11 refs., 4 figs., 3 tabs

  9. Geochemical evolution of groundwater in southern Bengal Basin ...

    Indian Academy of Sciences (India)

    due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater ... function of the interaction between groundwater and mineral grains of the ... groundwater quality is essential to understand the .... Lead. 0.05. 5. 0.08772. Cadmium. 0.01. 5. 0.08772. ∑wi = 57 ∑Wi = 1.000. *For each ...

  10. Phylogenomics resolves the timing and pattern of insect evolution.

    Science.gov (United States)

    Misof, Bernhard; Liu, Shanlin; Meusemann, Karen; Peters, Ralph S; Donath, Alexander; Mayer, Christoph; Frandsen, Paul B; Ware, Jessica; Flouri, Tomáš; Beutel, Rolf G; Niehuis, Oliver; Petersen, Malte; Izquierdo-Carrasco, Fernando; Wappler, Torsten; Rust, Jes; Aberer, Andre J; Aspöck, Ulrike; Aspöck, Horst; Bartel, Daniela; Blanke, Alexander; Berger, Simon; Böhm, Alexander; Buckley, Thomas R; Calcott, Brett; Chen, Junqing; Friedrich, Frank; Fukui, Makiko; Fujita, Mari; Greve, Carola; Grobe, Peter; Gu, Shengchang; Huang, Ying; Jermiin, Lars S; Kawahara, Akito Y; Krogmann, Lars; Kubiak, Martin; Lanfear, Robert; Letsch, Harald; Li, Yiyuan; Li, Zhenyu; Li, Jiguang; Lu, Haorong; Machida, Ryuichiro; Mashimo, Yuta; Kapli, Pashalia; McKenna, Duane D; Meng, Guanliang; Nakagaki, Yasutaka; Navarrete-Heredia, José Luis; Ott, Michael; Ou, Yanxiang; Pass, Günther; Podsiadlowski, Lars; Pohl, Hans; von Reumont, Björn M; Schütte, Kai; Sekiya, Kaoru; Shimizu, Shota; Slipinski, Adam; Stamatakis, Alexandros; Song, Wenhui; Su, Xu; Szucsich, Nikolaus U; Tan, Meihua; Tan, Xuemei; Tang, Min; Tang, Jingbo; Timelthaler, Gerald; Tomizuka, Shigekazu; Trautwein, Michelle; Tong, Xiaoli; Uchifune, Toshiki; Walzl, Manfred G; Wiegmann, Brian M; Wilbrandt, Jeanne; Wipfler, Benjamin; Wong, Thomas K F; Wu, Qiong; Wu, Gengxiong; Xie, Yinlong; Yang, Shenzhou; Yang, Qing; Yeates, David K; Yoshizawa, Kazunori; Zhang, Qing; Zhang, Rui; Zhang, Wenwei; Zhang, Yunhui; Zhao, Jing; Zhou, Chengran; Zhou, Lili; Ziesmann, Tanja; Zou, Shijie; Li, Yingrui; Xu, Xun; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jun; Kjer, Karl M; Zhou, Xin

    2014-11-07

    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects. Copyright © 2014, American Association for the Advancement of Science.

  11. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  12. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons

    International Nuclear Information System (INIS)

    Atekwana, Eliot A.; Seeger, Eric J.

    2015-01-01

    The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ"1"3C_D_I_C) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO_3"−-rich, SO_4"2"−-rich and Cl"−-rich. The HCO_3"−-rich groundwater is undergoing closed system carbonate evolution from soil CO_2_(_g_) and weathering of aquifer carbonates. The SO_4"2"−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl"−-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ"1"3C_D_I_C of the HCO_3"−-rich groundwater was controlled by nearly equal contribution of carbon from soil CO_2_(_g_) and the aquifer carbonates, such that the δ"1"3C of carbon added to the groundwater was −11.6‰. In the SO_4"2"−-rich groundwater, gypsum induced dedolomitization increased the "1"3C such that the δ"1"3C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl"−-rich groundwater, common ion induced precipitation of calcite depleted the "1"3C such that the δ"1"3C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution. - Highlights: • We studied carbonate and δ"1"3C evolution in groundwater contaminated by produced water brine. • Multiple processes affect the carbonate and δ"1"3C evolution of the groundwater. • The processes are carbonate weathering, dedolomitization and common ion induce calcite precipitation. • The δ"1"3C added to DIC was −11.6‰ for weathering, −9.4‰ for dedolomitization

  13. Evolution of the groundwater chemistry around a nuclear waste repository

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tasker, P.W.; Tweed, C.J.

    1987-12-01

    Some of the necessary techniques to construct a research model of the evolution of the groundwater under the influence of the backfill material in a nuclear waste repository are developed. These involve various extensions to the coupled ionic migration and chemical equilibria code, CHEQMATE. These extensions have been used in the first stages of a model of the chemical environment within the host rock. In this preliminary model we have considered a concrete backfill material embedded in a clay geology. However, the model is sufficiently flexible that other backfill materials and host rocks may be considered if a good thermodynamical description is available. The preliminary results from the model suggest that over timescales of about a thousand years the natural buffering action of the clay against changes in pH has a significant effect on the scale of perturbation by the ingress of highly alkaline porewater. It seems likely therefore that this type of modelling will have considerable relevance to the safety assessment models. (author)

  14. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  15. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Seifu; Travi, Yves; Alemayehu, Tamiru; Ayenew, Tenalem

    2005-01-01

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO 3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO 3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ 18 O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ 18 O groundwaters. Altitudinal depletion of δ 18 O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude

  16. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Seifu [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France) and Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)]. E-mail: seifu.kebede@univ-avignon.fr; Travi, Yves [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France); Alemayehu, Tamiru [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Ayenew, Tenalem [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2005-09-15

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO{sub 2} influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO {sub 3} type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO {sub 3} type waters. Despite the high altitude (mean altitude {approx}2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in {delta} {sup 18}O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted {delta} {sup 18}O groundwaters. Altitudinal depletion of {delta} {sup 18}O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.

  17. The evolution of groundwater rights and groundwater management in New Mexico and the western United States

    Science.gov (United States)

    DuMars, Charles T.; Minier, Jeffrie D.

    Historically, rights in water originated as public property and only later became individualized rights to utilize the public resource, in a manner consistent with the public welfare needs of society, but protected by principles of property law. Five basic regulatory systems for rights in groundwater in the United States have evolved to date. The problems raised by the hydrologic differences between groundwater hydraulically connected to stream systems and groundwater in non-replenished aquifers have been resolved to some extent by a couple of leading court cases. Numerical modeling and other technical methodologies have also evolved to evaluate the scientific issues raised by the different hydrologic conditions, but these are not immune from criticism. The current role of aquifers is evolving into that of storage facilities for recycled water, and their utilization in this manner may be expanded even further in the future. The policy implications of the choices relating to joint management of ground and surface water cannot be overstated. As this paper demonstrates, proactive administration of future groundwater depletions that affect stream systems is essential to the ultimate ability to plan for exploitation, management and utilization of water resources in a rational way that coordinates present and future demand with the reality of scarcity of supply. The examples utilized in this paper demonstrate the need for capacity building, not just to develop good measurement techniques, or to train talented lawyers and judges to write good laws, but also for practical professional water managers to keep the process on a rational course, avoiding limitless exploitation of the resource as well as conservative protectionism that forever precludes its use. Historiquement, les droits d'eau étaient à l'origine un bien public; ils sont devenus plus tard des droits individualisés pour utiliser la ressource publique conformément aux besoins de salut public de la soci

  18. Preliminary analysis for model development of groundwater evolution in Horonobe area

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Yui, Mikazu

    2003-03-01

    The preliminary analysis for model development of groundwater evolution in Horonobe area was performed with data at D-1, HDB-1 and HDB-2 bore hole where hydrogen / oxygen isotope concentration, mineral property in sedimentary rock and physico-chemical parameters (pH, Eh and ionic concentrations) were measured. As a result of analysis for hydrogen and oxygen isotope concentration, saline water in marine sediment was diluted by the mixing with shallow groundwater and diffusion. And as a result of analysis for a concentration of bicarbonate from the difference of pH values measured between in-situ and under air, the estimated in-situ concentration of bicarbonate differs from that measured under air. And minerals which were assumed to be equilibrium with groundwater were selected by thermodynamic calculation. This report presents the results of preliminary analysis for groundwater evolution by using data derived from D-1, HDB-1 and HDB-2 boring research. In order to establish the model which interprets the groundwater evolution as a next step, data which satisfy the representative in-situ property of groundwater chemistry in Horonobe area are needed. Reliable measurements for physico-chemical parameter and property of minerals in sedimentary rock in dominant layer and at the variety of depth are also needed. (author)

  19. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    Science.gov (United States)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  20. hydrochemical evolution of groundwater in jimeta- yola area ...

    African Journals Online (AJOL)

    DJFLEX

    development of groundwater resources for water supply ... water business has led to the proliferation of shallow ... Areas liable to flooding ...... by salinization process of the aquifer which act ..... Malaysia. Environmental Geology 56(8): 1721-. 1732. Barcelona, M. J., Gibb, J. P., Helfrich, .... World Health Organization, 1993.

  1. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  2. Status of geochemical modeling of groundwater evolution at the Tono in-situ tests site, Japan

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu; Arthur, R.C.

    1999-12-01

    Hydrochemical investigation of Tertiary sedimentary rocks at JNC's Tono in-situ tests site indicate the groundwaters are: meteoric in origin, chemically reducing at depths greater than a few tens of meters in the sedimentary rock, relatively old [carbon-14 ages of groundwaters collected from the lower part of the sedimentary sequence range from 13,000 to 15,000 years BP (before present)]. Ca-Na-HCO 3 type solutions near the surface, changing to Na-HCO 3 type groundwaters with increasing depth. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest it is possible to interpret approximately the 'real' groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted: CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 bar, minerals in the rock zone that control the solubility of respective elements in the groundwater include; chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties (e.g., the actual mineralogy of 'plagioclase', 'clay' and 'zeolite') are needed to improve the model. Alternative conceptual models of key reactions may also be necessary. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvements of model considering ion-exchange reactions are needed in future, however. (author)

  3. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  4. Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China); Shaanxi Key Laboratory of Comprehensive Utilization of Tailing Resources, Shangluo University, Shaanxi (China); Deng, Hailin, E-mail: hailin.deng@gmail.com [CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913 (Australia); Zheng, Chunmiao [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China); School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen (China); Department of Geological Science, University of Alabama, Tuscaloosa, AL (United States); Cao, Guoliang [Institute of Water Sciences and College of Engineering, Peking University, Beijing (China)

    2016-02-01

    Uncontrolled leakage from mine tailing ponds can pose a serious environmental threat. Groundwater quality in a semi-arid region with extensive worries about the leakage from one of world's largest tailing ponds is studied herein through an integrated hydrogeochemical analysis and multivariate statistical analysis. Results show that elevated concentrations of NO{sub 2}{sup −}, B, Mn, NH{sub 4}{sup +}, F{sup −}, and SO{sub 4}{sup 2−} in groundwater were probably caused by leakage from the tailing pond and transported with the regional groundwater flow towards downstream Yellow River. While NO{sub 2}{sup −} contamination is only limited to areas close to the pond, high B concentrations persist within the contaminated plume originating from the tailing pond. Our current study shows that there is no geochemical evidence for U and Th contamination in groundwater due to leakage from the Bayan Obo tailing pond. Combining effects which includes regional variations, pond leaking and downstream mixing, mineral precipitation and dissolution, redox processes, ion exchange processes and agricultural activities, controlled groundwater hydrogeochemical signatures in the studied area. This study demonstrate that an increase in knowledge of evolution of groundwater quality by integrating field hydrochemical data and multivariate statistical analysis will help understand major water–rock interactions and provide a scientific basis for protection and rational utilization of groundwater resources in this and other tailing-impacted areas. - Highlights: • Combining hydrogeochemical methods and multivariate statistical analysis. • First reporting geochemical processes in aquifers nearby Bayan Obo REE tailing pond. • No geochemical evidence for uranium and thorium contamination in shallow groundwater.

  5. QA issues for site hydrochemical data used for groundwater evolution models

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D. [Quintessa Ltd., Nottingham (United Kingdom); Miller, B. [QuantiSci Ltd., Melton Mowbray (United Kingdom); Sasamoto, Hiroshi; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    1999-06-01

    Groundwater data used for modelling site or repository evolution need to be assessed for their quality and whether they are 'fit for purpose', prior to utilization. This report discuss factors and issues which impinge upon the quality of such data. It is recommended that geochemical modelleres: are aware of how groundwater samples were collected, whether during drilling, during hydraulic testing, or thereafter, by in-situ measurement, pumped from boreholes, or by pressurised sampler; are aware of what procedures (if any) were used to 'correct' samples for drill fluid contamination and what errors were associated with those methods; are aware of whether samples were subject to de-pressurisation during sampling, and whether geochemical modelling techniques were applied to correct the compositions of samples for that process; request different measures of redox activity (e.g., electrode measurements of Eh, concentrations of different redox-sensitive aqueous species) to be applied to key groundwater samples to investigate the extent of redox equilibrium; are aware of how groundwater samples were filtered and preserved for off-site analysis; ensure that adequate methods of groundwater filtration (< 0.1 {mu}m) and chemical analysis are applied to ensure accurate and reproducible analyses for dissolved aluminum at low levels of concentration (generally less than 0.2 mg/L); are aware of elemental errors and detection limits in chemical analysis of groundwater samples and assess the quality of groundwater analyses via ion exchange balances and via a comparison of measured and calculated values for total dissolved solids contents; ensure that detailed mineralogical analysis is carried out on rock samples from locations where key groundwater samples have been extracted. (author)

  6. QA issues for site hydrochemical data used for groundwater evolution models

    International Nuclear Information System (INIS)

    Savage, D.; Miller, B.; Sasamoto, Hiroshi; Yui, Mikazu

    1999-06-01

    Groundwater data used for modelling site or repository evolution need to be assessed for their quality and whether they are 'fit for purpose', prior to utilization. This report discuss factors and issues which impinge upon the quality of such data. It is recommended that geochemical modelleres: are aware of how groundwater samples were collected, whether during drilling, during hydraulic testing, or thereafter, by in-situ measurement, pumped from boreholes, or by pressurised sampler; are aware of what procedures (if any) were used to 'correct' samples for drill fluid contamination and what errors were associated with those methods; are aware of whether samples were subject to de-pressurisation during sampling, and whether geochemical modelling techniques were applied to correct the compositions of samples for that process; request different measures of redox activity (e.g., electrode measurements of Eh, concentrations of different redox-sensitive aqueous species) to be applied to key groundwater samples to investigate the extent of redox equilibrium; are aware of how groundwater samples were filtered and preserved for off-site analysis; ensure that adequate methods of groundwater filtration (< 0.1 μm) and chemical analysis are applied to ensure accurate and reproducible analyses for dissolved aluminum at low levels of concentration (generally less than 0.2 mg/L); are aware of elemental errors and detection limits in chemical analysis of groundwater samples and assess the quality of groundwater analyses via ion exchange balances and via a comparison of measured and calculated values for total dissolved solids contents; ensure that detailed mineralogical analysis is carried out on rock samples from locations where key groundwater samples have been extracted. (author)

  7. Study on Law of Groundwater Evolution under Natural and Artificial Forcing with Case study of Haihe River Basin

    Science.gov (United States)

    You, Jinjun; Gan, Hong; Wang, Lin; Bi, Xue; Du, Sisi

    2010-05-01

    The evolution of groundwater is one of the key problems of water cycle study. It is a result of joint effect of natural condition and human activities, but until now the driving forces of groundwater system evolution were not fully understood due to the complexity of groundwater system structures and the uncertainty of affecting factors. Geology, precipitation and human activity are the main factors affecting the groundwater system evolution and interact each other, but the influence of such three factors on groundwater system are not clarified clearly on a macroscopic scale. The precipitation changes the volume of water recharge and the groundwater pumping effect the discharge of groundwater. Another important factor influencing balance of groundwater storage is the underlaying that affects the renewablility of groundwater. The underlaying is decided mainly by geological attributes but also influenced by human activited. The macroscopic environment of groundwater evolves under the natural and anthropic factors. This paper study the general law of groundwater evolution among the factors based on the case study in Haihe River Basin, a typical area with dramatic groundwater change under natural precipitation attenuation and gradually increase of water suuply. Haihe River Basin is located in north-China, covers an area of 320,041 km2 with over 40% plain areas. The plain area of Haihe Basin is densely populated with many large and medium-sized cities, including metropolis of Beijing and Tianjin, and concentrated irrigated areas, playing important roles in China's economy and food production. It is the unique basin where groundwater occupies majority of total water supply in China. Long-term groundwater over-exploitation causes a series of ecological and environmental problems that threats the sustainable development. In this paper, the historical process of groundwater balance in Haihe Basin is divided into three phases by decrease of rainfall and increase of water

  8. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Luukkonen, A.; Ruotsalainen, P.; Leino-Forsman, H.; Vuorinen, U.

    1999-05-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (63 altogether) obtained from precipitation, Baltic Sea, soil layer, shallow wells in the bedrock, and eight deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and fracture calcite and their isotopic measurements were also utilised. The data covers the bedrock at Olkiluoto to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and mixing of palaeo water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Olkiluoto reveals the complex nature of hydrogeochemical evolution at the site. Changes in

  9. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (63 altogether) obtained from precipitation, Baltic Sea, soil layer, shallow wells in the bedrock, and eight deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and fracture calcite and their isotopic measurements were also utilised. The data covers the bedrock at Olkiluoto to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and mixing of palaeo water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Olkiluoto reveals the complex nature of hydrogeochemical evolution at the site. Changes in

  10. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  11. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    Science.gov (United States)

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  12. Geochemical modelling of groundwater evolution and residence time at the Kivetty site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1998-12-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the bedrock at Kivetty has been created and the significance of chemical reactions along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on groundwater samples (38 altogether) obtained from the soil layer, shallow wells in the bedrock, and five deep multi-packered boreholes (KRI-KR5) in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Kivetty to a depth of 850m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and C-14 age calculations of groundwater was given a mass-balance approach (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The hydrogeochemistry of Kivetty is characterised by evolution from low-saline-carbonate-rich recharge water towards Na-Ca-Cl-type water. The salinity remains low. The most important changes in the chemistry of the

  13. Geochemical modelling of groundwater evolution and residence time at the Kivetty site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Luukkonen, A.; Ruotsalainen, P.; Leino-Forsman, H.; Vuorinen, U.

    1998-12-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the bedrock at Kivetty has been created and the significance of chemical reactions along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on groundwater samples (38 altogether) obtained from the soil layer, shallow wells in the bedrock, and five deep multi-packered boreholes (KRI-KR5) in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Kivetty to a depth of 850m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and C-14 age calculations of groundwater was given a mass-balance approach (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The hydrogeochemistry of Kivetty is characterised by evolution from low-saline-carbonate-rich recharge water towards Na-Ca-Cl-type water. The salinity remains low. The most important changes in the chemistry of the

  14. Geochemical modelling of groundwater evolution and residence time at the Haestholmen site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino- Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    2001-01-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the geological final disposal of radioactive waste. The performance of technical barriers and migration of possibly released radionuclides depend on the geochemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions that control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors that control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Haestholmen has been created and the significance of geochemical reactions and groundwater mixing along different flow paths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (64 altogether) obtained from precipitation, the Baltic Sea, the soil layer, shallow wells in the bedrock, and 14 deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Haestholmen to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used to evaluate evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution ({delta}{sup 13}C and {delta}{sup 34}S) and mixing of palaeo-water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Haestholmen suggest that changes in external conditions, such as glaciation

  15. Evaluation of the long-term evolution of the groundwater system in the Mizunami area, Japan

    International Nuclear Information System (INIS)

    Mizuno, Takashi; Milodowski, Antoni E.; Iwatsuki, Teruki

    2011-01-01

    This study aimed to develop a methodology for assessing the evolution of the long-term groundwater system, using fracture-filling calcite. Fracture-filling calcite mineralization in deep (to ca. 1000 m) granitic rocks in Mizunami area, Japan, was studied. Four generations (I to IV) of calcite precipitation can be differentiated based on their paragenetic relationships, morphological and isotopic characteristics. Carbon and oxygen isotopic ratios suggest that the Calcite I is of hydrothermal origin. On the other hand, Calcite II, IV and III were precipitated from freshwater and marine water, respectively. The Mizunami Group strata (Tertiary), which overly the basement Toki granite (Cretaceous), were initially deposited in a lacustrine environment but later became marine. Lacustrine conditions were re-established during the deposition of the upper Seto Group (Quaternary). It is suggested that both of deposition of the marine upper part of the Mizunami Group and the precipitation of Calcite III were possibly related to the same transgression event. This was followed by the precipitation of Calcite IV during subsequent fresh water flushing of the earlier marine groundwater. In summary, integrated morphological, mineralogical, microchemical and isotopic analysis of multilayered calcite fracture mineralization provides valuable information to evaluate the long-term evolution of groundwater system. (author)

  16. Hydrochemical Characteristics and Evolution Laws of Drinking Groundwater in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Peiyue

    2011-01-01

    Full Text Available The purpose of the paper is to identify the chemical characteristics of drinking groundwater and its distribution patterns in Pengyang County and to discover the hydrochemical evolution laws of groundwater. The temporal and spatial variation of groundwater hydrochemical characteristics and evolution laws were comprehensively and systematically studied based on the understanding of the geological, hydrogeological, meteorological and hydrological conditions. Many analytical methods such as descriptive statistics, geostatistical analysis, ionic ratio coefficient method and correlation analysis were adopted based on the underground water quality analysis data. Study results showed that variation coefficients of chemical parameters of pore water in unconsolidated rocks were relatively high which indicated that water chemical compositions are vulnerable to topography, meteorology, hydrology and human activities. TDS variation was in accordance with the changes in Ca2+, Mg2+ and SO42- concentration. Hydrochemical type varied from HCO3•SO4-Na•Ca•Mg type and HCO3•SO4-Ca•Mg type at the upper reaches towards gradually to HCO3-Na type at the lower reaches. Ionic ratio coefficient analysis showed that the hydrodynamic conditions of the pore water in loose rocks were better than that of pore-fissure water in clastic rocks and groundwater was non-marine deposited water. Its formation effects include the weathering leaching effects of the formation containing rock salt, water-rock interaction and cation exchange reaction. Hydrochemical characteristics were mainly controlled by geological and hydrogeological conditions. Correlation analysis showed that the dissolution of rock salt and sodium sulfate salt as well as calcite precipitation occurred in pore water and in pore-crack water in clastic rocks the dissolution of albite, K-feldspar and the precipitation of dolomite were also important effects.

  17. Arsenic release and geochemical evolution of groundwater in an alluvial aquitard, West Bengal, India.

    Science.gov (United States)

    Desbarats, A. J.; Pal, T.; Mukherjee, P. K.; Beckie, R. D.

    2017-12-01

    According to the World Health Organization, contamination of groundwater by geogenic arsenic (As) represents the largest mass poisoning in history. At a field site in West Bengal, India, the source of As affecting a shallow aquifer was traced to silty sediments filling an abandoned river meander. Along with As-bearing phases, these sediments also contain 0.46 % organic carbon. The release of As within the channel fill is investigated using a geochemical mass balance model supported by detailed field observations of aqueous chemistry, sequential extraction analyses of sediment chemistry, and analyses of sediment mineralogy. The model explores the evolution of groundwater chemistry along a flow path extending from its recharge point in an abandoned channel pond, through the channel-fill sequence, to the underlying aquifer. Variations in groundwater composition within the host sediments are explained in terms of mineral weathering driven by organic carbon decay. The model yields reaction coefficients expressing amounts of minerals (and gases) reacting or precipitating along the flow path. Arsenic and phosphorus cycles appear closely linked as these species are hosted by goethite, Fe-rich chlorite, and vivianite. Arsenic is released through the rapid reductive dissolution of goethite and the slower weathering of chlorite. Concomitantly, some As is sequestered in precipitating vivianite. These competing processes reach equilibrium deeper in the channel-fill sequence as groundwater As concentrations stabilize. Using groundwater residence time in channel fill obtained from a numerical flow model and the calculated reaction coefficients, rates of organic carbon oxidation, goethite dissolution, and net As release are estimated at 1.15 mmol C L-1 a-1, 0.18 mmol L-1 a-1, and 4.57 10-4 mmol L-1 a-1, respectively. Fine-grained yet slightly permeable deposits such as channel-fill silts containing reactive organic carbon and As-bearing goethite and phyllosilicates are localized

  18. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Directory of Open Access Journals (Sweden)

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  19. Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt

    Science.gov (United States)

    El-Sayed, Salah Abdelwahab; Morsy, Samah M.; Zakaria, Khalid M.

    2018-06-01

    This study addresses the topic of recharge sources and evolution of groundwater in the Atfih area situated in the northeastern part of the Nile Valley, Egypt. Inventory of water wells and collection of groundwater and surface water samples have been achieved. Water samples are analyzed for major ions according to the American Society for Testing and Materials and for the environmental isotopes analysis (oxygen-18 and deuterium) by using a Triple Liquid Isotopic Water Analyzer (Los Gatos). The groundwater is available from the Quaternary aquifer formed mainly of graded sand and gravel interbedded with clay lenses. The hydrogeologic, hydrogeochemical and isotopic investigations indicate the hydrodynamic nature of the aquifer, where different flow paths, recharge sources and evolution mechanisms are distinguished. The directions of groundwater flow are from E, W and S directions suggesting the contribution from Nile River, the Eocene aquifer and the Nile basin, respectively. The groundwater altitudes range from 13 m (MSL) to 44 m (MSL). The hydraulic gradient varies between 0.025 and 0.0015. The groundwater is alkaline (pH > 7) and has salinity ranging from fresh to brackish water (TDS between 528 mg/l and 6070 mg/l). The observed wide range in the ionic composition and water types reflects the effect of different environmental and geological conditions through which the water has flowed. The isotopic compositions of groundwater samples vary between -14.13‰ and +23.56 for δD and between - 2.91‰ and +3.10 for δ18O. The isotopic data indicates that the Quaternary aquifer receive recharge from different sources including the Recent Nile water, surplus irrigation water, old Nile water before the construction of Aswan High Dam, surface runoff of local rains and Eocene aquifer. Evaporation, water rock interaction and mixing between different types of waters are the main processes in the groundwater evolution. Major suggestions are presented to develop the aquifer

  20. Uranium Isotopes as a Tracer of Groundwater Evolution in the Complexe Terminal Aquifer of Southern Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Ammar, F. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia); Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Chkir, N.; Zouari, K. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia)

    2013-07-15

    The Complexe Terminal (CT) aquifer system is the main water supply for remote areas of southern Tunisia. Its exploitation has resulted in significant draw-down of the water table. The CT aquifer is a multilayered aquifer lodged in Miocene sand deposits, Senonian limestones and Turonian carbonates. Little is known about the relationships and exchanges between the different layers. Here, uranium isotopic measurements carried out in groundwater samples from the CT aquifer are presented in order to constrain models for mixing of water masses, water-rock interaction and groundwater flow. Analyses were performed using a VG54 (TIMS) at the CEREGE. Results indicate a range in {sup 238}U concentration and {sup 234}U/{sup 238}U activity ratios of 1.5 to 8 ppb and 1.1 to 3.2 respectively. Together with major and trace analyses, uranium isotopic compositions provide important insights into the factors controlling the chemical evolution of groundwater and shows very distinct patterns between carbonate and sandstone layers. (author)

  1. Geochemical evolution of groundwater in the Western Delta region of River Godavari, Andhra Pradesh, India

    Science.gov (United States)

    Nageswara Rao, P. V.; Appa Rao, S.; Subba Rao, N.

    2017-05-01

    The present study on geochemical evolution of groundwater is taken up to assess the controlling processes of water chemistry in the Western Delta region of the River Godavari (Andhra Pradesh), which is one of the major rice-producing centers in India. The study region is underlain by coarse sand with black clay (buried channels), black silty clay of recent origin (floodplain) and gray/white fine sand of modern beach sediment of marine source (coastal zone), including brown silty clay with fine sand (paleo-beach ridges). Groundwater is mostly brackish and very hard. It is characterized by Na+ > Mg2+ > Ca2+:HCO3 - > Cl- > SO4 2- > NO3 -, Na+ > Mg2+ > Ca2+:Cl- > HCO3 - > SO4 2-, and Mg2+ > Na+ > Ca2+ > or Cl- > or > SO4 2- facies. The ionic relations (Ca2+ + Mg2+:HCO3 -, Ca2+ + Mg2+:SO4 2- + HCO3 -, Na+ + K+:TC, Na+ + K+:Cl- + SO4 2-, HCO3 -:TC, HCO3 -:Ca2+ + Mg2+, Na+:Cl- and Na+:Ca2+) indicate that the rock weathering, mineral dissolution, evaporation and ion exchange are the processes to control the aquifer chemistry. Anthropogenic and marine sources are also the supplementary factors for brackish water quality. These observations are further supported by Gibbs mechanisms that control the water chemistry. Thus, the study suggests that the initial quality of groundwater of geogenic origin has been subsequently modified by the influences of anthropogenic and marine sources.

  2. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Geochemical evolution of groundwater in carbonate aquifers of southern Latium region, central Italy

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2013-03-01

    Full Text Available Spring and well water samples, from carbonate aquifers of Latium region, have been characterized to determine the hydrochemical processes governing the evolution of the groundwater. Most of the spring samples, issuing from Lepini, Ausoni and Aurunci Mts., are characterized as alkaline earth HCO3 waters, however, some samples show a composition of Cl--SO4 -- alkaline earth waters. Groundwater samples from Pontina Plain shows three different hydrochemical facies: alkaline earth HCO3 type, Cl-- SO4 -- alkaline earth type and Cl--SO4 -- alkaline type waters. Geochemical modeling and saturation index computation of the sampled waters show an interaction with calcareous and calcareous-dolomitic lithologies. Most of the springs and wells was kinetically saturated with respect to calcite and dolomite, and all the samples were below the equilibrium state with gypsum. This indicates that the groundwater has capacity to dissolve the gypsum along the flow paths. The electrical conductivity and Cl- concentrations of the sampled waters show a positive trend with the decrease in the distance from the coast, highlighting seawater intrusion in the coastal area. According to hydrochemistry results and geochemical modeling, the dominant factors in controlling the hydrochemical characteristics of groundwater are: (i water rock interaction with calcareous and calcareous-dolomitic lithologies; (ii seawater intrusion in the coastal area; (iii dissolution and/or precipitation of carbonate and (i.e. dolomite and calcite evaporate minerals (gypsum determined by saturation indexes; (iv mineral weathering process; (the high Mg/Ca ratio due to the weathering of Mg-rich dolomite.

  4. Assessment of Long-Term Evolution of Groundwater Hydrochemical Characteristics Using Multiple Approaches: A Case Study in Cangzhou, Northern China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-03-01

    Full Text Available Water shortage is severe in the North China Plain (NCP. In addition to a deficiency of water resources, deterioration of groundwater quality should be of great concern. In this study, hydrogeological analysis was conducted in combination with principal component analysis, correlation analysis and the co-kriging method to identify factors controlling the content of major ions and total dissolved solids (TDS in areal shallow and deep groundwater and to assess groundwater evolution in Cangzhou, China. The results suggested that groundwater quality degradation occurred and developed in the study area, as indicated by increasing concentrations of major ions, TDS and hardness in both shallow and deep groundwater. In shallow groundwater, whose hydrochemical water types changed from HCO3–Ca.Na.Mg and HCO3.Cl–Na in the west (Zone II to Cl.SO4–Na and Cl–Na in the east (Zone III. Areas with TDS concentrations between 1500 and 2000 mg/L occupied 79.76% of the total in the 1980s, while areas with a TDS concentration ranging from 2500 to 3000 mg/L comprised 59.11% of the total in the 2010s. In deep groundwater, the area with TDS over 1000 mg/L expanded from 5366.39 km2 in the 1960s to 7183.52 km2 in the 2010s. Natural processes (water-rock interactions and anthropogenic activities (groundwater exploitation were the dominant factors controlling the major ions’ content in local groundwater. Dissolution of dolomite, calcite, feldspar and gypsum were the primary sources of major ions in groundwater, and the ion exchange reaction had a strong effect on the cation content, especially for deep groundwater.

  5. Socio-hydrologic perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    Science.gov (United States)

    Han, S.; Tian, F.; Liu, Y.

    2017-12-01

    This study presents a historical analysis from socio-hydrologic perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain. The history of the "pendulum swing" for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to the balance). The system evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced the community sensitivity of humans toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural condition to groundwater exploiting. The drought from 1997 to 2002 resulted a pulse in further groundwater abstraction and dramatic aquifer deterioration, and the community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system is returning the balance through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restorations of groundwater environment would be implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid the irreversible change of the system.

  6. Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    Science.gov (United States)

    Han, Songjun; Tian, Fuqiang; Liu, Ye; Duan, Xianhui

    2017-07-01

    This paper presents a historical analysis from socio-hydrological perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain (NCP). The history of the pendulum swing for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to equilibrium). The system's evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion, and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced community sensitivity toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural conditions to groundwater exploiting. The drought from 1997 to 2002 resulted in a surge in further groundwater abstraction and dramatic aquifer deterioration, and community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system returns to equilibrium through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restoration of groundwater environment was implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid irreversible change in the system.

  7. The evolution of redox conditions and groundwater geochemistry in recharge-discharge environments on the Canadian Shield

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1996-10-01

    Groundwater composition evolves along flow paths from recharge to discharge in response to interactions with bedrock and fracture-filling minerals, and dissolution of soluble (Cl-rich) salts in the rock matrix. The groundwater redox potential changes from oxidizing to reducing conditions due, initially, to rapid consumption of dissolved oxygen by organics in the upper ∼100 m of bedrock and, subsequently, interaction with Fe (II)-containing minerals. Measured Eh values of groundwaters at depth in the granitic Lac du Bonnet batholith indicate that biotite and chlorite control groundwater redox potential. This is supported by other geochemical characteristics such as absence of CH 4 , H 2 S, H 2 , NO 3 , low concentrations of Fe (II), and abundance of SO 4 . Further evidence of evolution of redox conditions is given by variations in U concentration ranging from up to 1000 μg/L in dilute near-surface waters to <1 μg/L in some deep, saline groundwaters. Groundwaters at about 400 m depth in a recharge area on the Lac du Bonnet batholith contain significantly more U than groundwaters further along the flow path or near surface in discharge areas. Uranium concentration is found to be a useful and sensitive indicator of redox conditions. (author)

  8. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    Science.gov (United States)

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  9. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  10. Hydrochemical investigation and status of geochemical modeling of groundwater evolution at the Kamaishi in-situ tests site, Japan

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.

    1999-07-01

    The results of hydrochemical investigations of groundwaters in the Kurihashi granodiorite at JNC's Kamaishi in-situ tests site indicate that these solutions are: meteoric in origin, chemically reducing (at depths greater than a few hundreds meters), relatively young [residence times in the Kurihashi granodiorite generally less than about 40 years, but groundwaters older than several thousand years BP (before present) are also indicated by preliminary carbon-14 dating of samples obtained from the KH-1 borehole], Ca-HCO 3 type solutions near the surface, changing to Na-HCO 3 type groundwaters with increasing depth. The evolution of groundwater compositions in the Kurihashi granodiorite is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest it is possible to interpret approximately the 'real' groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) in the Kurihashi granodiorite if the following assumptions are adopted: CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -2 bar, minerals in the rock zone that control the solubility of respective elements in the groundwater include; chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), microcline (K) and pyrite (Eh and sulfate). Discussions with international experts suggest a systematic approach utilizing reaction-path models of irreversible water-rock interactions in open systems may be needed to more realistically model groundwater evolution at the Kamaishi test site. Detailed information characterizing certain site properties (e.g., fracture mineralogy) may be required to adequately constrain such models, however. (author)

  11. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    Science.gov (United States)

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant

  12. Measuring evolution of a photon in an interferometer with spectrally resolved modes

    Czech Academy of Sciences Publication Activity Database

    Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Javůrek, D.; Lemr, K.; Michálek, Václav; Soubusta, Jan

    2016-01-01

    Roč. 94, č. 5 (2016), 1-6, č. článku 052106. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : Mach-Zehnder interferometer * spectrally resolved modes * photon Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  13. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    Science.gov (United States)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  14. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  15. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  16. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.

    Science.gov (United States)

    Liu, Fei; Song, Xianfang; Yang, Lihu; Han, Dongmei; Zhang, Yinghua; Ma, Ying; Bu, Hongmei

    2015-12-15

    Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of

  17. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  18. Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution.

    Science.gov (United States)

    Sanger, Thomas J; Gredler, Marissa L; Cohn, Martin J

    2015-10-01

    The breadth of anatomical and functional diversity among amniote external genitalia has led to uncertainty about the evolutionary origins of the phallus. In several lineages, including the tuatara, Sphenodon punctatus, adults lack an intromittent phallus, raising the possibility that the amniote ancestor lacked external genitalia and reproduced using cloacal apposition. Accordingly, a phallus may have evolved multiple times in amniotes. However, similarities in development across amniote external genitalia suggest that the phallus may have a single evolutionary origin. To resolve the evolutionary history of amniote genitalia, we performed three-dimensional reconstruction of Victorian era tuatara embryos to look for embryological evidence of external genital initiation. Despite the absence of an intromittent phallus in adult tuataras, our observations show that tuatara embryos develop genital anlagen. This illustrates that there is a conserved developmental stage of external genital development among all amniotes and suggests a single evolutionary origin of amniote external genitalia. © 2015 The Author(s).

  19. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  20. Evolution of pH in a radwaste repository: leaching of modified cements and reactions with groundwater

    International Nuclear Information System (INIS)

    Atkinson, A.; Guppy, R.M.

    1988-01-01

    Cementitious materials in radioactive waste repositories establish high pH which brings many benefits. The pH will change with time as the chemical constituents responsible for it are leached away. This has been simulated in the laboratory for a Sulphate Resisting Portland Cement (SRPC), a slag-modified cement composed of 90% Blast Furnace Slag (BFS) and 10% Ordinary Portland Cement (OPC) and an ash-modified cement containing 90% Pulverized Fuel Ash (PFA) and 10% OPC. They have been leached in demineralised water and a synthetic groundwater typical of a clay environment. Leachate analyses for a variety of elements showed that the leachate was not usually in equilibrium with any of the solid phases. Nevertheless the experimental evolution of pH was not too different from that predicted by assuming equilibrium and the predictions offer a means of estimating a lower bound for pH as it evolves in a real repository. The experiments with synthetic groundwater showed that the dominant effect influencing pH was precipitation of CaCO 3 from bicarbonates in the groundwater resulting in a reduction in both pH and buffer capacity. The ash-modified cement has particularly poor pH-buffering performance which is exacerbated in the groundwater. (author)

  1. Brahmaputra river basin groundwater: Solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings

    Directory of Open Access Journals (Sweden)

    Swati Verma

    2015-09-01

    New hydrological insights for the region: Most groundwater solutes of RCD and YA terrains were derived from both silicate weathering and carbonate dissolution, while silicate weathering process dominates the solute contribution in OA groundwater. Groundwater samples from all terrains are postoxic with mean pe values between Fe(III and As(V–As(III reductive transition. While, reductive dissolution of (Fe–MnOOH is the dominant mechanism of As mobilization in RCD and YA aquifers, As in OA and PD aquifers could be mobilized by combined effect of pH dependent sorption and competitive ion exchange. The present study focuses on the major ion chemistry as well as the chemistry of the redox sensitive solutes of the groundwater in different geomorphic settings and their links to arsenic mobilization in groundwater.

  2. Factors controlling the evolution of groundwater dynamics and chemistry in the Senegal River Delta

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Gning

    2017-04-01

    New hydrological insights for the region: Results show that groundwater far away from rivers and outside irrigated plots has evolved from marine water to brines under the influence of evapotranspiration. Near rivers, salinity of groundwater is lower than seawater and groundwater mineralization seems to evolve in the direction of softening through cationic exchanges related to permanent contact with fresh water. Despite large volumes of water used for rice cultivation, groundwater does not show any real softening trend in the cultivated parcels. Results show that the mechanisms that contribute to repel salt water from the sediments correspond to a lateral flush near permanent surface water streams and not to vertical drainage and dilution with rainfall or irrigation water. It is however difficult to estimate the time required to come back to more favorable conditions of groundwater salinity.

  3. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    Science.gov (United States)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however

  4. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  5. Topographic Evolution of the Sierra Nevada Resolved by Inversion of Low-Temperature Thermochronology

    Science.gov (United States)

    McPhillips, D. F.; Brandon, M. T.

    2011-12-01

    At present, there are two competing ideas for the topographic evolution of the Sierra Nevada Range. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic signature of local relief and the stable isotopic evidence of a topographic rain shadow support this hypothesis. However, a suite of geomorphic observations suggests that the Sierra gained a large fraction of its present elevation as recently as the Pliocene. This recent surface uplift could have been driven by convective removal of in the lower part of the lithosphere and/or by changes in dynamic topography associated with deep subduction of the Farallon plate. Here we present the first comprehensive analysis of low-temperature thermochronology in the Sierra Nevada, which provides a definitive solution, which indicates that both ideas are likely correct. Our analysis is distinguished by three new factors: The first is that we allow for separate evolutions for the local relief and the long-wavelength topography. Second, we use Al-in-Hb paleobarometry to constrain the initial depth of emplacement for the Sierra Nevada plutons. Third, our analysis is tied to a sea-level reference by using the paleo-bathymetric record of the Great Valley basin, where it on-laps the Sierra Nevada batholith. According to our analysis, westward tilting of the Sierra accounts for 2 km of uplift since 20 Ma. Topographic relief increased by a factor of 2. These findings suggest that the Sierra Nevada lost elevation through most of the Tertiary but regained much of its initial elevation following the onset of surface uplift in the Miocene.

  6. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China

    Science.gov (United States)

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.

  7. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  8. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  9. Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic Region.

    Directory of Open Access Journals (Sweden)

    Vera Hoffmann

    Full Text Available In the context of molecularly-dated phylogenies, inferences informed by ancestral habitat reconstruction can yield valuable insights into the origins of biomes, palaeoenvironments and landforms. In this paper, we use dated phylogenies of 12 plant clades from the Cape Floristic Region (CFR in southern Africa to test hypotheses of Neogene climatic and geomorphic evolution. Our combined dataset for the CFR strengthens and refines previous palaeoenvironmental reconstructions based on a sparse, mostly offshore fossil record. Our reconstructions show remarkable consistency across all 12 clades with regard to both the types of environments identified as ancestral, and the timing of shifts to alternative conditions. They reveal that Early Miocene land surfaces of the CFR were wetter than at present and were dominated by quartzitic substrata. These conditions continue to characterize the higher-elevation settings of the Cape Fold Belt, where they have fostered the persistence of ancient fynbos lineages. The Middle Miocene (13-17 Ma saw the development of perennial to weakly-seasonal arid conditions, with the strongly seasonal rainfall regime of the west coast arising ~6.5-8 Ma. Although the Late Miocene may have seen some exposure of the underlying shale substrata, the present-day substrate diversity of the CFR lowlands was shaped by Pliocene-Pleistocene events. Particularly important was renewed erosion, following the post-African II uplift episode, and the reworking of sediments on the coastal platform as a consequence of marine transgressions and tectonic uplift. These changes facilitated adaptive radiations in some, but not all, lineages studied.

  10. The origin and evolution of safe-yield policies in the Kansas groundwater management districts

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    The management of groundwater resources in Kansas continues to evolve. Declines in the High Plains aquifer led to the establishment of groundwater management districts in the mid-1970s and reduced streamflows prompted the enactment of minimum desirable streamflow standards in the mid-1980s. Nonetheless, groundwater levels and streamflows continued to decline, although at reduced rates compared to premid-1980s rates. As a result, "safe-yield" policies were revised to take into account natural groundwater discharge in the form of stream baseflow. These policies, although a step in the right direction, are deficient in several ways. In addition to the need for more accurate recharge data, pumping-induced streamflow depletion, natural stream losses, and groundwater evapotranspiration need to be accounted for in the revised safe-yield policies. Furthermore, the choice of the 90% flow-duration statistic as a measure of baseflow needs to be reevaluated, as it significantly underestimates mean baseflow estimated from baseflow separation computer programs; moreover, baseflow estimation needs to be refined and validated. ?? 2000 International Association for Mathematical Geology.

  11. Investigation of the geochemical evolution of groundwater under agricultural land: A case study in northeastern Mexico

    Science.gov (United States)

    Ledesma-Ruiz, Rogelio; Pastén-Zapata, Ernesto; Parra, Roberto; Harter, Thomas; Mahlknecht, Jürgen

    2015-02-01

    Zona Citrícola is an important area for Mexico due to its citriculture activity. Situated in a sub-humid to humid climate adjacent to the Sierra Madre Oriental, this valley hosts an aquifer system that represents sequences of shales, marls, conglomerates, and alluvial deposits. Groundwater flows from mountainous recharge areas to the basin-fill deposits and provides base flows to supply drinking water to the adjacent metropolitan area of Monterrey. Recent studies examining the groundwater quality of the study area urge the mitigation of groundwater pollution. The objective of this study was to characterize the physical and chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. Correlation was used to identify associations among various geochemical constituents. Factor analysis was applied to identify the water's chemical characteristics that were responsible for generating most of the variability within the dataset. Hierarchical cluster analysis was employed in combination with a post-hoc analysis of variance to partition the water samples into hydrochemical water groups: recharge waters (Ca-HCO3), transition zone waters (Ca-HCO3-SO4 to Ca-SO4-HCO3) and discharge waters (Ca-SO4). Inverse geochemical models of these groups were developed and constrained using PHREEQC to elucidate the chemical reactions controlling the water's chemistry between an initial (recharge) and final water. The primary reactions contributing to salinity were the following: (1) water-rock interactions, including the weathering of evaporitic rocks and dedolomitization; (2) dissolution of soil gas carbon dioxide; and (3) input from animal/human wastewater and manure in combination with by denitrification processes. Contributions from silicate weathering to salinity ranged from less important to insignificant. The findings suggest that it may not be cost-effective to regulate manure application to mitigate groundwater pollution.

  12. Evolution of Uranium Isotopic Compositions of the Groundwater and Rock in a Sandy-Clayey Aquifer

    Directory of Open Access Journals (Sweden)

    Alexander I. Malov

    2017-11-01

    Full Text Available Uranium isotopes have been used as mechanistic or time scale tracers of natural processes. This paper describes the occurrence and redistribution of U in the Vendian aquifer of a paleo-valley in NW Russia. Forty-four rock samples were collected from nine boreholes with depths up to 160 m, and 25 groundwater samples were collected from 23 boreholes with depths up to 300 m. The U, Fe concentration, and 234U/238U activity ratio were determined in the samples. Estimations were made of the 14C and 234U-238U residence time of groundwater in the aquifer. It has been established that the processes of chemical weathering of Vendian deposits led to the formation of a strong oxidation zone, developed above 250 m.b.s.l. The inverse correlation between the concentrations of uranium and iron is a result of removal of U from paleo-valley slopes in oxidizing conditions, accumulation of U at the bottom of the paleo-valley in reducing conditions, and accumulation of Fe on the slopes and removal from the bottom of the paleo-valley. Almost all U on the slopes has been replaced by a newly formed hydrogenic U with a higher 234U/238U activity ratio. After, dissolution and desorption of hydrogenic U occurred from the slopes during periods with no glaciations and marine transgressions. Elevated concentrations of U are preserved in reduced lenses at the paleo-valley bottom. In these areas, the most dangerous aspect is the flow of groundwater from the underlying horizons, since during the operation of water supply wells it can lead to the creation of local zones of oxidizing conditions in the perforated screens zone and the transition of uranium into solution. For groundwater under oxidizing conditions, an increase in the concentration of uranium is characteristic of an increase in the residence time (age of water in the aquifer. Also, the 234U/238U activity ratio increases with increasing radioactivity of groundwater. Therefore, the most rational approach is to use

  13. Carbon isotope systematics of the Cambrian–Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of groundwater

    International Nuclear Information System (INIS)

    Raidla, Valle; Kirsimäe, Kalle; Vaikmäe, Rein; Kaup, Enn; Martma, Tõnu

    2012-01-01

    Groundwater in the Cambrian–Vendian aquifer system has a strongly depleted stable isotope composition (δ 18 O values of about −22‰) and a low radiocarbon concentration, which suggests that the water is of glacial origin from the last Ice Age. The aim of this paper was to elucidate the timing of infiltration of glacial waters and to understand the geochemical evolution of this groundwater. The composition of the dissolved inorganic C (DIC) in Cambrian–Vendian groundwater is influenced by complex reactions and isotope exchange processes between water, organic materials and rock matrix. The δ 13 C composition of dissolved inorganic C in Cambrian–Vendian water also indicates a bacterial modification of the isotope system. The corrected radiocarbon ages of groundwater are between 14,000 and 27,000 radiocarbon years, which is coeval with the advance of the Weichselian Glacier in the area.

  14. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  15. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqin [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Tang, Changyuan, E-mail: cytang@faculty.chiba-u.jp [Faculty of Horticulture, Chiba University, Matsudo-City 271-8510 (Japan); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Wang, Qinxue [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); Zhang, Yinghua [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yuan, Ruiqiang [College of Environment and Resources, Shanxi University (China)

    2014-06-01

    Sewage leakage has become an important source of groundwater recharge in urban areas. Large linear wastewater ponds that lack anti-seepage measures can act as river channels that cause the deterioration of groundwater quality. This study investigated the groundwater recharge by leakage of the Tanghe Wastewater Reservoir, which is the largest industrial wastewater channel on the North China Plain. Additionally, water quality evolution was investigated using a combination of multivariate statistical methods, multi-tracers and geochemical methods. Stable isotopes of hydrogen and oxygen indicated high levels of wastewater evaporation. Based on the assumption that the wastewater was under an open system and fully mixed, an evaporation model was established to estimate the evaporation of the wastewater based on isotope enrichments of the Rayleigh distillation theory using the average isotope values for dry and rainy seasons. Using an average evaporation loss of 26.5% for the input wastewater, the estimated recharge fraction of wastewater leakage and irrigation was 73.5% of the total input of wastewater. The lateral regional groundwater inflow was considered to be another recharge source. Combing the two end-members mix model and cluster analysis revealed that the mixture percentage of the wastewater decreased from the Highly Affected Zone (76%) to the Transition Zone (5%). Ion exchange and redox reaction were the dominant geochemical processes when wastewater entered the aquifer. Carbonate precipitation was also a major process affecting evolution of groundwater quality along groundwater flow paths. - Highlights: • An unlined wastewater reservoir caused the deterioration of groundwater quality. • An evaporation fraction was estimated by Rayleigh distillation theory of isotopes. • 73.5% of wastewater recharge to groundwater by leakage and irrigation infiltration. • The region influenced by wastewater was divided into four subzones. • Mixing, ion exchange, and

  16. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    Science.gov (United States)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  17. Unraveling the controls on biogeomorphic succession: the influence of groundwater, soil and geomorphic setting on bio-geomorphic channel evolution

    Science.gov (United States)

    Bätz, Nico; Verrecchia, Eric P.; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of biogeomorphic succession. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through biogeomorphic succession, that may determine the long-term geomorphic and biogeomorphic evolution of the river. Research has addressed how changes in disturbance frequency affect river channel pattern, but much less has been done to understand what influences the rate of biogeomorphic succession and how it affects river morphodynamics. This study explores the complex pattern of ambient conditions in braided river systems driving the rate of biogeomorphic succession. In particular, we focus on the interplay between groundwater access, soil formation, disturbance frequency and geomorphic setting, in defining what drives vegetation succession rates and its long-term implications on channel pattern evolution. We studied these feedbacks in a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Results show that, at the beginning of the succession, humification plays a negative role on local ambient conditions necessary for sprouting. Successful vegetation establishment is then related positively to humification, but also to higher disturbance rates. The third biogeomorphic phase, with the highest feedbacks on river morphology, appears to be mainly driven by groundwater access, which in turn defines the rates of humification in this gravelly environment. This in turn defines the decadal morphological response of the channel after a reduction in disturbance frequency over

  18. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators

    International Nuclear Information System (INIS)

    Edmunds, W.M.; Guendouz, A.H.; Mamou, A.; Moulla, A.; Shand, P.; Zouari, K.

    2003-01-01

    The geochemical processes taking place along an 800 km flow line in the non-carbonate Continental Intercalaire aquifer (CI) aquifer in North Africa are described using chemical (major and trace element) and isotopic indicators. The aquifer is hydraulically continuous from the Atlas Mountains in Algeria to the Chotts of Tunisia and the geochemical evidence corroborates this. The highest discharge temperature is 73 deg. C but silica geothermometry indicates a maximum temperature of 94 deg. C at depth. Chloride concentrations increase from 200 to 800 mg l -1 and the Br/Cl ratios confirm the dissolution of non-marine evaporites or interstitial waters as the main source of salinity. Fluoride concentrations are low and are likely to be derived from rainfall, recording oscillations in source. Radiocarbon ages, except near outcrop, are at or near detection limits and the δ 18 O and δ 2 H values indicate a cooler recharge regime with rainfall having lower primary evaporation than today. This is shown by the fact that mean isotope ratios of CI waters are around 3 per mille lighter than the present-day weighted mean value for rain. Major ion ratios and most trace elements indicate that despite the complex structure and stratigraphy, uniform evolution with continuous water-rock interaction takes place along the flow lines, which are only disturbed near the Tunisian Chotts by groundwater converging from additional flow lines. The ageing of the water can also be followed by the smooth increase in several indicator elements such as Li, K and Mn which are least affected by solubility controls. Similarly the influence of marine facies in the Tunisian sector may be recognised by the changing Mg/Ca and higher Br/Cl as well as trace element indicators. The groundwaters are oxidising up to 300 km from outcrop (dissolved O 2 has persisted for at least 20 ka) and within this zone the concentrations of several elements forming oxy-anions, such as U and Cr, increase and NO 3 remains

  19. Geochemical modelling study on the age and evolution of the groundwater at the Romuvaara site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P; Vuorinen, U; Leino-Forsman, H [Technical Research Centre of Finland, Espoo (Finland); Snellman, M [Imatran Voima Oy, Helsinki (Finland)

    1996-09-01

    The objective of the study was to interpret the processes and factors which control the hydrogeochemistry (e.g. pH and redox conditions) in the radioactive waste disposal environment. A model of the hydrogeochemical evolution and the chemical flowpaths in different parts of the bedrock at the Romuvaara (in Finland) site has been created. The significance of chemical reactions along different flowpaths is calculated. Furthermore, the consistency of the hydrogeochemical model and the hydrogeological model is examined. (107 refs.).

  20. Geochemical modelling study on the age and evolution of the groundwater at the Romuvaara site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Vuorinen, U.; Leino-Forsman, H.; Snellman, M.

    1996-09-01

    The objective of the study was to interpret the processes and factors which control the hydrogeochemistry (e.g. pH and redox conditions) in the radioactive waste disposal environment. A model of the hydrogeochemical evolution and the chemical flowpaths in different parts of the bedrock at the Romuvaara (in Finland) site has been created. The significance of chemical reactions along different flowpaths is calculated. Furthermore, the consistency of the hydrogeochemical model and the hydrogeological model is examined. (107 refs.)

  1. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand

    Science.gov (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.

    2000-09-01

    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  2. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N. An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1. The average mass concentrations of PM1 (NR-PM1+black carbon were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m−3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF, the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA, cooking (COA, biomass burning OA (BBOA and coal combustion OA (CCOA, and secondary component oxygenated OA (OOA. OOA, which can be split into more-oxidized (MO-OOA and less-oxidized OOA (LO-OOA, accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA contributed about 60–80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations

  3. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Science.gov (United States)

    Hu, Wei; Hu, Min; Hu, Wei-Wei; Zheng, Jing; Chen, Chen; Wu, Yusheng; Guo, Song

    2017-08-01

    A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1). The average mass concentrations of PM1 (NR-PM1+black carbon) were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m-3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA) was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium) accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF), the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA), cooking (COA), biomass burning OA (BBOA) and coal combustion OA (CCOA), and secondary component oxygenated OA (OOA). OOA, which can be split into more-oxidized (MO-OOA) and less-oxidized OOA (LO-OOA), accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA) contributed about 60-80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations. It was indicated by the good correlations

  4. Hydrogeochemical evolution and C isotope study of groundwaters from 'Mina Fe' U deposit (Salamanca, Spain): implications for processes in radwaste disposal

    International Nuclear Information System (INIS)

    Villar, L. Perez del; Garralon, A.; Delgado, A.; Reyes, E.; Cozar, J.S.; Gomez, P.; Nunez, R.; Sanchez, L.; Raya, J.

    2005-01-01

    Within the framework of the ENRESA natural analogue programme, the U ore deposit of 'Mina Fe', western Spain, has been studied as a natural analogue of radioactive spent fuel behaviour after burial, in spite of being an extremely perturbed geological environment due to mining activities. The main objectives of this project are to determine the hydrogeochemical evolution of the system and identify the main water/rock interaction processes that control the physicochemical variables (pH and Eh) of groundwaters, including the role-played by the organic matter.The hydrogeochemical results from 3 consecutive groundwater sampling campaigns, separated by a phase of restoration works, indicate that the groundwater of the site shows an evolutionary trend from Ca-SO42- acid oxidising waters towards alkaline-reducing waters, though their evolution with respect to the alkaline and alkaline-earth elements is not clear. The SO42--acid waters are the result of the oxidation processes affecting the primary sulphide-rich U mineralisation, while the alkaline-reducing waters result from the buffer capacity of carbonates from fracture filling materials, as the δ 13 C values of DIC demonstrate. The reducing character of these waters mainly results from the microbiologically mediated partial oxidation of the abundant organic matter existing in the clayey walls of the major faults at the site, since other dissolved inorganic redox pairs are insufficient to explain the in situ measured redox potential. Thus, the high content in DOC of these waters is also explained, since the soil at the site is poorly developed. DOC, DIC or both can be responsible for the high U concentration measured in these groundwaters, in spite of its reducing character.The restoration works performed in the exploitation quarry have also restored the aforementioned evolutionary trend, which was the normal evolution of groundwater in the site before mining. Finally, the results are discussed in terms of the

  5. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  6. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing

    Directory of Open Access Journals (Sweden)

    Kumar Deepak

    2015-12-01

    Full Text Available Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE, Non Dominated Sorting Genetic Algorithm (NSGA II and Simulated Annealing (SA. It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

  7. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    Science.gov (United States)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  8. The evolution of groundwater flow and mass transport in Canadian shield flow domains: a methodology for numerical simulation

    International Nuclear Information System (INIS)

    Sykes, J.F.; Sudicky, E.A.; Normani, S.D.; Park, Y.J.; Cornaton, F.; McLaren, R.G.

    2007-01-01

    The Deep Geologic Repository Technology Programme (DGRTP) of Ontario Power Generation (OPG) is developing numerous approaches and methodologies for integrated and multidisciplinary site characterisation. A principal element involves the use and further development of state-of-the-art numerical simulators, and immersive visualisation technologies, while fully honouring multi-disciplinary litho-structural, hydrogeologic, paleo-hydrogeologic, geophysical, hydrogeochemical and geomechanical field data. Paleo-climate reconstructions provide surface boundary conditions for numerical models of the subsurface, furthering the understanding of groundwater flow in deep geologic systems and quantifying the effects of glaciation and deglaciation events. The use of geo-statistically plausible fracture networks conditioned on surface lineaments within the numerical models results in more physically representative and realistic characterizations of the repository site. Finally, immersive three-dimensional visualisation technology is used to query, investigate, explore and understand both the raw data, and simulation results in a spatially and temporally consistent framework. This environment allows multi-disciplinary teams of geoscience professionals to explore each other's work and can significantly enhance understanding and knowledge, thereby creating stronger linkages between the geo-scientific disciplines. The use of more physically representative and realistic conceptual models, coupled with immersive visualisation, contributes to an overall integrated approach to site characterisation, instilling further confidence in the understanding of flow system evolution. (authors)

  9. Groundwater flows in Meuse/Haute-Marne aquifer system and the importance of the evolution of the geomorphology over the next million of years

    International Nuclear Information System (INIS)

    Holmen, J.; Benabderrahmane, H.; Brulhet, J.

    2012-01-01

    Document available in extended abstract form only. A clay-stone formation of Callovo-Oxfordian age is found throughout the multilayered sedimentary fill of the Paris Basin. It is considered as a potential host rock for France's high and intermediate-level long-lived radioactive waste. The Callovo-Oxfordian layer is located between an overlying limestone of Oxfordian age and an underlying limestone of Dogger age.. The Meuse/Haute-Marne sector area is located in the East of France, the area includes the Bure investigation site and a domain referred to as the 'transposition zone' selected as a suitable location for France's high- and intermediate-level long-lived radioactive waste The objective of the study was to estimate how the groundwater flow in the Meuse/Haute- Marne aquifer system will change because of the geomorphologic evolution over the next 1 million of years. The future groundwater flows and the future evolution of the vertical hydraulic gradient in the transposition zone are of importance in the performance assessment and the safety analysis of a future repository for radioactive waste. The study is based on numerical modelling and the established model covers the whole of the Paris basin. The studied time period corresponds to 1 million years into the future. The initial geometry of geological layers as well as the conductivity and the porosity of the layers are input data to model, and defined by the single-continuum multi-scale hydrogeological model of the Paris Basin and the Meuse/Haute-Marne Sector area as developed by Andra. A description of the transient geomorphologic evolution was used as input data to the groundwater flow modelling. The description include: (i) The deformation of the geological layers as a result of a non-symmetric tectonic uplift of the Paris basin and (ii) The movement of the topography because of mechanical erosion along valleys, chemical erosion along plateaus and sedimentation along valleys. The modelling of the

  10. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: Implications for the origin and migration of iodine during basin evolution

    Science.gov (United States)

    Togo, Yoko S.; Takahashi, Yoshio; Amano, Yuki; Matsuzaki, Hiroyuki; Suzuki, Yohey; Terada, Yasuko; Muramatsu, Yasuyuki; Ito, Kazumasa; Iwatsuki, Teruki

    2016-10-01

    This paper reports the concentration, speciation and isotope ratio (129I/127I) of iodine from both groundwater and host rocks in the Horonobe area, northern Hokkaido, Japan, to clarify the origin and migration of iodine in sedimentary rocks. Cretaceous to Quaternary sedimentary rocks deposited nearly horizontally in Tenpoku Basin and in the Horonobe area were uplifted above sea level during active tectonics to form folds and faults in the Quaternary. Samples were collected from the Pliocene Koetoi and late Miocene Wakkanai formations (Fms), which include diatomaceous and siliceous mudstones. The iodine concentration in groundwater, up to 270 μmol/L, is significantly higher than that of seawater, with the iodine enrichment factor relative to seawater reaching 800-1500. The iodine concentration in the rocks decreases from the Koetoi to Wakkanai Fms, suggesting that iodine was released into the water from the rocks of deeper formations. The iodine concentration in the rocks is sufficiently high for forming iodine-rich groundwater as found in this area. X-ray absorption near edge structure (XANES) analysis shows that iodine exists as organic iodine and iodide (I-) in host rocks, whereas it exists mainly as I- in groundwater. The isotope ratio is nearly constant for iodine in the groundwater, at [0.11-0.23] × 10-12, and it is higher for iodine in rocks, at [0.29-1.1] × 10-12, giving iodine ages of 42-60 Ma and 7-38 Ma, respectively. Some iodine in groundwater must have originated from Paleogene and even late Cretaceous Fms, which are also considered as possible sources of oil and gas, in view of the old iodine ages of the groundwater. The iodine ages of the rocks are older than the depositional ages, implying that the rocks adsorbed some iodine from groundwater, which was sourced from greater depths. The iodine concentration in groundwater decreases with decreasing chlorine concentration due to mixing of iodine-rich connate water and meteoric water. A likely scenario

  11. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  12. Molecular evolution of GB virus B hepatitis virus during acute resolving and persistent infections in experimentally infected tamarins

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Faulk, Kristina N

    2010-01-01

    (-3) substitutions per site year(-1) during weeks 1-52 and 53-104, respectively. Thus, there was a significant decrease in evolution over time, as found for hepatitis C virus. The rate of non-synonymous substitution per non-synonymous site compared with that of synonymous substitution per synonymous site decreased...

  13. Isotopic and chemical composition of groundwater in the Bolivian Altiplano, present space evolution records hydrologic conditions since 11,000 Yr

    International Nuclear Information System (INIS)

    Coudrain, A.; Talbi, A.; Loubet, M.; Gallaire, R.; Jusserand, C.; Ramirez, E.; Ledoux, E.

    1999-01-01

    The phreatic aquifer of the central Altiplano shows a Cl concentration that increases from 0.5 meq l -1 upstream to 150 meq l -1 downstream. The main outflow process from the aquifer is the upward flow E into the unsaturated zone associated to evaporation close to soil surface. A relation has been established for any arid zone areas on the base of isotopic profiles: E (mm yr -1 ) = 63 Z -1.5 where Z (m) is the water table depth under soil surface. The aquifer under study may have acquired its high chlorine content during last lacustrine phase (Tauca, 12 ka BP). Arguments for this hypothesis are: (i) maximum level of the lake (3780 m) higher than present soil elevation in the area, (ii) same order of salinity in the paleolake and in the more saline groundwater, (iii) weak molar ratio of Li/Cl in saline groundwater and in the Tauca, (iv) modelling of Cl transport over 11,000 years consistent with observed spatial evolution of Cl in groundwater. To this scenario, might be superimposed the assumption of a delay for the convective transfer of salt towards south by the coupled effects of accumulation of salt in the unsaturated zone by evaporation from the aquifer during thousand or so years, and of the subsequent return of this salt downwards to the aquifer during some short rainy periods. The 87 Sr/ 86 Sr, major and trace element compositions of surface and groundwater support this proposed scenario. (author)

  14. Temporal-Spatial Evolution of Groundwater Nitrogen Pollution Over Seven Years in a Highly Urbanized City in the Southern China.

    Science.gov (United States)

    He, Xiaorui; Qian, Jiazhong; Liu, Zufa; Lu, Yuehan; Ma, Lei; Zhao, Weidong; Kang, Bo

    2017-12-01

    Understanding the temporospatial variation in nitrogen pollution in groundwater and the associated controlling factors is important to establish management practices that ensure sustainable use of groundwater. In this study, we analyzed inorganic nitrogen content (nitrate, nitrite, and ammonium) in 1164 groundwater samples from shallow, middle-deep, and deep aquifers in Zhanjiang, a highly urbanized city in the southern China. Our data span a range of 7 years from 2005 to 2011. Results show that shallow aquifers had been heavily contaminated by nitrate and ammonium. Temporal patterns show that N contamination levels remained high and relatively stable over time in urban areas. This stability and high concentration is hypothesized as a result of uncontrolled, illicit sewer discharges from nearby business facilities. Groundwater in urban land and farmland displays systematic differences in geochemical characteristics. Collectively, our findings demonstrate the importance of continuously monitoring groundwater quality and strictly regulating sewage discharges in Zhanjiang.

  15. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  16. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  17. Structural evolution in the isothermal crystallization process of the molten nylon 10/10 traced by time-resolved infrared spectral measurements and synchrotron SAXS/WAXD measurements

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Nishiyama, Asami; Tsuji, Sawako; Hashida, Tomoko; Hanesaka, Makoto; Takeda, Shinichi; Weiyu, Cao; Reddy, Kummetha Raghunatha; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki; Ito, Kazuki

    2009-01-01

    The structural evolution in the isothermal crystallization process of nylon 10/10 from the melt has been clarified concretely on the basis of the time-resolved infrared spectral measurement as well as the synchrotron wide-angle and small-angle X-ray scattering measurements. Immediately after the temperature jump from the melt to the crystallization point, the isolated domains consisting of the hydrogen-bonded random coils were formed in the melt, as revealed by Guinier plot of SAXS data and the infrared spectral data. With the passage of time these domains approached each other with stronger correlation as analyzed by Debye-Bueche equation. These domains transformed finally to the stacked crystalline lamellae, in which the conformationally-regularized methylene segments of the CO sides were connected each other by stronger intermolecular hydrogen bonds to form the crystal lattice.

  18. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D.; Lowry, Gregory V.

    2017-01-01

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H_2 evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10"−"4 L hr"−"1 m"−"2) and hydrogen evolution rate constant (1.4 nanomol L hr"−"1 m"−"2) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H_2 evolution was explained by differences in pH and E_h at each nZVI mass loading; PCE reactivity increased when solution E_h decreased, and the H_2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  19. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708 (Korea, Republic of); Leitch, Megan [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Naknakorn, Bhanuphong [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Tilton, Robert D. [Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States)

    2017-01-15

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H{sub 2} evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10{sup −4} L hr{sup −1} m{sup −2}) and hydrogen evolution rate constant (1.4 nanomol L hr{sup −1} m{sup −2}) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H{sub 2} evolution was explained by differences in pH and E{sub h} at each nZVI mass loading; PCE reactivity increased when solution E{sub h} decreased, and the H{sub 2} evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  20. Plasma density evolution in plasma opening switch obtained by a time-resolved sensitive He-Ne interferometer

    Science.gov (United States)

    Chen, Lin; Ren, Jing; Guo, Fan; Zhou, LiangJi; Li, Ye; He, An; Jiang, Wei

    2014-03-01

    To understand the formation process of vacuum gap in coaxial microsecond conduction time plasma opening switch (POS), we have made measurements of the line-integrated plasma density during switch operation using a time-resolved sensitive He-Ne interferometer. The conduction current and conduction time in experiments are about 120 kA and 1 μs, respectively. As a result, more than 85% of conduction current has been transferred to an inductive load with rise time of 130 ns. The radial dependence of the density is measured by changing the radial location of the line-of-sight for shots with the same nominal POS parameters. During the conduction phase, the line-integrated plasma density in POS increases at all radial locations over the gun-only case by further ionization of material injected from the guns. The current conduction is observed to cause a radial redistribution of the switch plasma. A vacuum gap forms rapidly in the plasma at 5.5 mm from the center conductor, which is consistent with the location where magnetic pressure is the largest, allowing current to be transferred from the POS to the load.

  1. Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions

    International Nuclear Information System (INIS)

    Zhu, Qing; Harris, Michael T.; Taylor, Lynne S.

    2011-01-01

    Simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) was employed to elucidate the physical state and location of various small molecule drugs blended with polyethylene glycol (PEG), as well as the time dependent microstructural evolution of the systems. Samples were prepared by comelting physical mixtures of the drug and PEG, followed by solidification at 25 C. The model drugs selected encompassed a wide variety of physicochemical properties in terms of crystallization tendency and potential for interaction with PEG. It was observed that compounds which crystallized rapidly and had weak interactions with PEG tended to be excluded from the interlamellar region of the PEG matrix. In contrast, drugs which had favorable interactions with PEG were incorporated into the interlamellar regions of the polymer up until the point at which the drug crystallized whereby phase separation occurred. These factors are likely to impact the effectiveness of drug/PEG systems as drug delivery systems.

  2. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence

    Directory of Open Access Journals (Sweden)

    Yue Song

    2018-06-01

    Full Text Available An aluminum gallium indium arsenic (AlGaInAs material system is indispensable as the active layer of diode lasers emitting at 1310 or 1550 nm, which are used in optical fiber communications. However, the course of the high-temperature instability of a quantum well structure, which is closely related to the diffusion of indium atoms, is still not clear due to the system’s complexity. The diffusion process of indium atoms was simulated by thermal treatment, and the changes in the optical and structural properties of an AlGaInAs quantum well are investigated in this paper. Compressive strained Al0.07Ga0.22In0.71As quantum wells were treated at 170 °C with different heat durations. A significant decrement of photoluminescence decay time was observed on the quantum well of a sample that was annealed after 4 h. The microscopic cathodoluminescent (CL spectra of these quantum wells were measured by scanning electron microscope-cathodoluminescence (SEM-CL. The thermal treatment effect on quantum wells was characterized via CL emission peak wavelength and energy density distribution, which were obtained by spatially resolved cathodoluminescence. The defect area was clearly observed in the Al0.07Ga0.22In0.71As quantum wells layer after thermal treatment. CL emissions from the defect core have higher emission energy than those from the defect-free regions. The defect core distribution, which was associated with indium segregation gradient distribution, showed asymmetric character.

  3. Origin and evolution of groundwater in the semi-arid Kerdous Inlier in the Western Anti-Atlas, Morocco

    Science.gov (United States)

    Heiß, Laura; Bouchaou, Lhoussaine; Reichert, Barbara

    2018-03-01

    In the Kerdous Inlier, groundwater is the only source of drinking and irrigation water and sustainable management requires an understanding of the hydrogeological setting. In the lower Ait Mansour study site, the main aquifer is represented by a karstified and fractured sequence of Infra and Lower Cambrian carbonates. In the Ameln study site, fractured Neoproterozoic quartzites of the Jebel Lkest build the main aquifer. Isotopic signatures of groundwater indicated direct groundwater recharge in both study sites. In the Ait Mansour study site, isotopic composition implied recharge at high altitudes and groundwater flow in the SE direction. Two major flow paths were identified in the Ameln study site: a shallow and rapid movement until spring discharge at the hill slopes and another deeper one into the Ameln Valley. Hydrochemical facies at both study sites were of Ca-Mg-HCO3 type and derived from dolomite and plagioclase weathering. Increased NO3-, SO4^{2-}, and Cl- concentrations in groundwater indicated an anthropogenic influence.

  4. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater

    Science.gov (United States)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon

    2016-04-01

    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  5. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2013-04-01

    Full Text Available Characteristics of the chemical and optical properties of aerosols in urban Shanghai and their relationship were studied over a three-day period in October 2011. A suite of real-time instruments, including an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, a Monitor for AeRosols and GAses (MARGA, a Cavity Ring Down Spectrometer (CRDS, a nephelometer and a Scanning Mobility Particle Sizer (SMPS, was employed to follow the quick changes of the aerosol properties within the 72 h sampling period. The origin of the air mass arriving in Shanghai during this period shifted from the East China Sea to the northwest area of China, offering a unique opportunity to observe the evolution of aerosols influenced by regional transport from the most polluted areas in China. According to the meteorological conditions and temporal characterizations of the chemical and optical properties, the sampling period was divided into three periods. During Period 1 (00:00–23:00 LT, 13 October, the aerosols in urban Shanghai were mainly fresh and the single scattering albedo varied negatively with the emission of elemental carbon, indicating that local sources dominated. Period 2 (23:00 LT on 13 October to 10:00 LT on 15 October was impacted by regionally transported pollutants and had the highest particulate matter (PM mass loading and the lowest particle acidity, characterized by large fractions of aged particles and high secondary ion (nitrate, sulfate and ammonium mass concentrations. Comparison between ATOFMS particle acidity and quantitative particle acidity by MARGA indicated the significance of semi-quantitative calculation in ATOFMS. Two sub-periods were identified in Period 2 based on the scattering efficiency of PM1 mass. Period 3 (from 10:00 LT on 15 October to 00:00 LT on 16 October had a low PM1/PM10 ratio and a new particle formation event. The comparison of these sub-periods highlights the influence of particle mixing state on aerosol optical properties

  6. Rapid decadal evolution in the groundwater arsenic content of Kolkata, India and its correlation with the practices of her dwellers.

    Science.gov (United States)

    Malakar, Arindam; Islam, Samirul; Ali, Md Ashif; Ray, Sugata

    2016-10-01

    Increasing arsenic contamination in the groundwater is one of the biggest environmental challenges that the Bengal delta is facing today. Groundwater is still the main source of water for a large number of population in this region and therefore, significant presence of toxic arsenic has a direct consequence on human lives here. Moreover, arsenic also enters into the food chain through the consumed agricultural products grown in this area. Therefore, acquiring knowledge about the ever-changing map of arsenic contamination and employing adequate protective measures are of utmost importance. Here, we present a comprehensive municipal ward-wise map of the arsenic content of the shallow groundwater table of Kolkata-the most important and highly population dense city of the delta. Comparison with previously available data reveals a rapid change and the grim situation for the city. Our study suggests that it should be an immediate task of the administration to extend treated water service to the whole population of the city for direct consumption, and artificial recharge and maximum rainwater replenishment need to be taken up with utmost urgency to avoid intrusion of toxicity in biological food chains via agricultural products. We hope our study would drive the city planners to reconsider the existing urbanization and development plans of all the cities, placed over arsenic-contaminated groundwater aquifers.

  7. Evaluation of the impact of water harvesting techniques on the evolution of piezometric head of Ain El Bidha groundwater in Kairouan at the Central part of Tunisia

    Science.gov (United States)

    Mechergui, M. Mohamed; Henda Saoudi, Mme

    2016-04-01

    This study aims to assess the impact of water harvesting constructed hydraulic structures (big and small dams, terraces, seuils for recharge…) on the evolution of piezometric head of Ain El Beidha groundwater table. The measurements of depth of water table, taken at the end of rain season and at the end of irrigation season, in many piezometers and monitoring wells, for a long period of observation before and after implementation of all the hydraulic structures, were used with the cumulative rain to the highest water table to diagnostic the effect of natural recharge and constructed hydraulic structures. According to the analysis of curves illustrating the evolution of piezometric head and rainfall over time, it was shown that despite the fact that the same amount of rain fall on the total area in the limits of Ain El Beidha groundwater table, the piezometers respond differently. This is because there are many sources of recharge and many factors affecting the recharge. First of all, the aquifer is divided in four compartments (the calcareous formation of Djebel El Houyareb, the plio-quaternary formation, the Miocene formation: Baglia and Saouaf). All those respond differently to the recharge by their capacity of infiltration and their hydrodynamic characteristics. The recharge of the groundwater table was increased by the implementation of small soil and water conservation structures, artificial lakes, El Haouareb Dam, run off in the natural Oued bads and seuils for recharge installed in the bads of oueds. The different piezometric drown maps were used to determine the flow direction and hydraulic gradient in order to identify the recharge areas, while tracking maps for three equal piezometric heads 210 m 300 m and 370 m established over different years made it possible to assess the impact of hydraulic structures, namely the effect of SWC and Ben Zitoun Lake. To illustrate the impact of El Houareb dam on the groundwater, the piezometric maps and local values

  8. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  9. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  10. A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: The Ledo-Paniselian Aquifer, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, P.C., E-mail: petra.blaser@petraconsult.com [Petraconsult buero fuer angewandte geologie dipl. geol. petra c. blaser, Bergstrasse 269, CH 8707 Uetikon am See (Switzerland); Coetsiers, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Aeschbach-Hertig, W. [Institut fuer Umweltphysik, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Kipfer, R. [Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, CH-8092 Zurich (Switzerland); Van Camp, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Loosli, H.H. [Department of Climate and Environmental Physics, University of Bern, CH 3012 Bern (Switzerland); Walraevens, K. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium)

    2010-03-15

    The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO{sub 2} and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO{sub 2}, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated {delta}{sup 13}C with measured {delta}{sup 13}C. The {sup 14}C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the {delta}{sup 13}C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO{sub 2} and temperature) is thus producing

  11. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  12. Using dissolved gases to observe the evolution of groundwater age in a mountain watershed over a period of thirteen years

    Science.gov (United States)

    Manning, Andrew H.

    2011-01-01

    Baseflows in snowmelt-dominated mountain streams are critical for sustaining ecosystems and water resources during periods of greatest demand. Future climate predictions for mountainous areas throughout much of the western U.S. include increasing temperatures, declining snowpacks, and earlier snowmelt periods. The degree to and rate at which these changes will affect baseflows in mountain streams remains unknown, largely because baseflows are groundwater-fed and the relationship between climate and groundwater recharge/discharge rates in mountain watersheds is uncertain. We use groundwater age determinations from multiple dissolved gas tracers (CFCs, SF6, and 3H/3He) to track changes in groundwater age over a period of thirteen years in the Sagehen Creek watershed, Sierra Nevada Mountains, CA. Data were collected from springs and wells in 2009 and 2010 and combined with those obtained in prior studies from 1997 to 2003. Apparent ages range from 0 to >60 years. Comparison between variations in age and variations in snow water equivalent (SWE) and mean annual air temperature reveals the degree of correlation between these climate variables and recharge rate. Further, comparison of apparent ages from individual springs obtained at different times and using different tracers helps constrain the age distribution in the sampled waters. The age data are generally more consistent with an exponential age distribution than with piston-flow. However, many samples, even those with relatively old mean ages, must have a disproportionately large very young fraction that responds directly to annual SWE variations. These findings have important implications for how future baseflows may respond to decreasing SWE.

  13. Investigation of the evolution of atmospheric particles with integration of the stochastic particle-resolved model partmc-mosaic and atmospheric measurements

    Science.gov (United States)

    Tian, Jian

    With the recently-developed particle-resolved model PartMC-MOSAIC, the mixing state and other physico-chemical properties of individual aerosol particles can be tracked as the particles undergo aerosol aging processes. However, existing PartMC-MOSAIC applications have mainly been based on idealized scenarios, and a link to real atmospheric measurement has not yet been established. In this thesis, we extend the capability of PartMC-MOSAIC and apply the model framework to three distinct scenarios with different environmental conditions to investigate the physical and chemical aging of aerosols in those environments. The first study is to investigate the evolution of particle mixing state and cloud condensation nuclei (CCN) activation properties in a ship plume. Comparisons of our results with observations from the QUANTIFY Study in 2007 in the English channel and the Gulf of Biscay showed that the model was able to reproduce the observed evolution of total number concentration and the vanishing of the nucleation mode consisting of sulfate particles. Further process analysis revealed that during the first hour after emission, dilution reduced the total number concentration by four orders of magnitude, while coagulation reduced it by an additional order of magnitude. Neglecting coagulation resulted in an overprediction of more than one order of magnitude in the number concentration of particles smaller than 40 nm at a plume age of 100 s. Coagulation also significantly altered the mixing state of the particles, leading to a continuum of internal mixtures of sulfate and black carbon. The impact of condensation on CCN concentrations depended on the supersaturation threshold at which CCN activity was evaluated. Nucleation was observed to have a limited impact on the CCN concentration in the ship plume we studied, but was sensitive to formation rates of secondary aerosol. For the second study we adapted PartMC to represent the aerosol evolution in an aerosol chamber, with

  14. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    Science.gov (United States)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  15. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    Science.gov (United States)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  16. Environmental tracers as indicators of groundwater flow and evolution in a fractured rock aquifer, Clare Valley, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Cook, P.G.; Herczeg, A.L.; Simmons, C.T.

    1999-01-01

    Environmental tracers, chemistry and hydraulic data have been used to develop a conceptual model for groundwater flow in a fractured rock aquifer, at Clare, South Australia. In the upper 36 m there is relatively high horizontal flow, closely spaced fractures and large apertures. Below 36 m, horizontal flow rates are less and apertures become smaller. A sub horizontal fracture at 36 m separates the upper system from flow systems below. There is minimum vertical connection of groundwater above and below 36 m as indicated by low hydraulic conductivity and a steep 14 C concentration gradient. The observed linear trends in chemistry and isotope data are a result of mixing between old saline water and relatively younger fresh water. Greater mixing has occurred in the upper 36 m, with the amount of mixing diminishing with depth. We propose that this mixing is a recent process that has been triggered as a result of increased recharge to the system since the clearing of native vegetation approximately 100 years ago. Increased recharge of lower salinity water has resulted in the establishment of concentration gradients between the matrix and the fractures. This has resulted in diffusion of relatively immobile water in the matrix into relatively fast moving water in the fractures. Greater flushing has occurred in the upper 36 m due greater fracture density and larger apertures and higher horizontal flow rates. (author)

  17. Evolution of patterns of regional groundwater flow in southeastern New Mexico: Response to post-Pleistocene changes in climate

    International Nuclear Information System (INIS)

    Corbet, T.F.

    1994-01-01

    The Waste Isolation Pilot Plant (WIPP) is a potential repository for transuranic wastes generated by defense programs of the US Department of Energy. The repository site is located 42 km east of the city of Carlsbad, New Mexico in a thick, Permian-age deposit of bedded salt. One consideration in evaluating the performance of the repository is that a future society might inadvertently penetrate the repository with one or more drill holes. Given certain circumstances, these holes could provide a pathway for contaminated brine to move upward into relatively permeable strata located above the bedded salt. There is concern that flowing groundwater could then transport radionuclides laterally to the sub-surface portion of the accessible environment, currently defined by the disposal regulations as the region more than 5 kilometers from the radioactive waste. The simulations presented here are part of a numerical modeling study of the possible impact that a change in climate over the next 10,000 years could have on the pattern of groundwater flow and, consequently, on the migration of radionuclides in strata overlying the repository

  18. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content.

    Science.gov (United States)

    Hamon, Perla; Grover, Corrinne E; Davis, Aaron P; Rakotomalala, Jean-Jacques; Raharimalala, Nathalie E; Albert, Victor A; Sreenath, Hosahalli L; Stoffelen, Piet; Mitchell, Sharon E; Couturon, Emmanuel; Hamon, Serge; de Kochko, Alexandre; Crouzillat, Dominique; Rigoreau, Michel; Sumirat, Ucu; Akaffou, Sélastique; Guyot, Romain

    2017-04-01

    A comprehensive and meaningful phylogenetic hypothesis for the commercially important coffee genus (Coffea) has long been a key objective for coffee researchers. For molecular studies, progress has been limited by low levels of sequence divergence, leading to insufficient topological resolution and statistical support in phylogenetic trees, particularly for the major lineages and for the numerous species occurring in Madagascar. We report here the first almost fully resolved, broadly sampled phylogenetic hypothesis for coffee, the result of combining genotyping-by-sequencing (GBS) technology with a newly developed, lab-based workflow to integrate short read next-generation sequencing for low numbers of additional samples. Biogeographic patterns indicate either Africa or Asia (or possibly the Arabian Peninsula) as the most likely ancestral locality for the origin of the coffee genus, with independent radiations across Africa, Asia, and the Western Indian Ocean Islands (including Madagascar and Mauritius). The evolution of caffeine, an important trait for commerce and society, was evaluated in light of our phylogeny. High and consistent caffeine content is found only in species from the equatorial, fully humid environments of West and Central Africa, possibly as an adaptive response to increased levels of pest predation. Moderate caffeine production, however, evolved at least one additional time recently (between 2 and 4Mya) in a Madagascan lineage, which suggests that either the biosynthetic pathway was already in place during the early evolutionary history of coffee, or that caffeine synthesis within the genus is subject to convergent evolution, as is also the case for caffeine synthesis in coffee versus tea and chocolate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    Science.gov (United States)

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  20. A conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Québec, Canada

    International Nuclear Information System (INIS)

    Montcoudiol, N.; Molson, J.; Lemieux, J.-M.; Cloutier, V.

    2015-01-01

    Highlights: • Geochemical and isotope data help constrain the 2D conceptual flow model. • Stable isotopes indicate recharge occurring under conditions similar to current climate. • Mixing was found between younger ( 3 H) and older ( 14 C and 4 He) groundwater. • Mixing occurred under natural flow conditions and/or was induced during sampling. • The new conceptual model shows dominant local and intermediate flow systems. - Abstract: A conceptual model was developed for a hydrogeological flow system in the southern Outaouais Region, Quebec, Canada, where the local population relies heavily on groundwater pumped from shallow overburden aquifers and from deeper fractured crystalline bedrock. The model is based on the interpretation of aqueous inorganic geochemical data from 14 wells along a cross-section following the general flow direction, of which 9 were also analysed for isotopes (δ 18 O, δ 2 H, 3 H, δ 13 C, 14 C) and 4 for noble gases (He, Ne, Ar, Xe, Kr). Three major water types were identified: (1) Ca–HCO 3 in the unconfined aquifer as a result of silicate (Ca-feldspar) weathering, (2) Na–Cl as a remnant of the post-glacial Champlain Sea in stagnant confined zones of the aquifer, and (3) Na–HCO 3 , resulting from freshening of the confined aquifer due to Ca–Na cation exchange. Chemical data also allowed the identification of significant mixing zones. Isotope and noble gas data confirm the hypothesis of remnant water from the Champlain Sea and also support the hypothesis of mixing processes between a young tritium-rich component with an older component containing high 4 He concentrations. It is still unclear if the mixing occurs under natural flow conditions or if it is induced by pumping during the sampling, most wells being open boreholes in the bedrock. It is clear, however, that the hydrogeochemical system is dynamic and still evolving from induced changes since the last glaciation. As a next step, the conceptual model will serve as a

  1. Seasonal Variations of High Time-Resolved Chemical Compositions, Sources and Evolution for Atmospheric Submicron Aerosols in the Megacity of Beijing

    Science.gov (United States)

    Hu, Min; Hu, Wei; Hu, Weiwei; Zheng, Jing; Guo, Song; Wu, Yusheng; Lu, Sihua; Zeng, Limin

    2016-04-01

    This study aims to investigate aerosol secondary formation and aging process in the megacity of Beijing. Seasonal intensive campaigns were conducted from March 2012 to March 2013 at an urban site located at the campus of Peking University (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other relevant instrumentations for gaseous and particulate pollutants were deployed. The average submicron aerosol (PM1) mass concentrations were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7 and 81.7 ± 72.4 μg m-3 in spring, summer, autumn and winter, respectively. Organic matter was the most abundant component, accounting for 31%, 33%, 44% and 36% in PM1 correspondingly, followed by sulfate and nitrate. Distinct seasonal and diurnal patterns of the components of PM1 tracking primary sources (e.g., BC and HOA) and secondary formation (e.g., sulfate, nitrate, ammonium, LV-OOA and SV-OOA) were significantly influenced by primary emissions and mesoscale meteorology. Combining positive matrix factorization (PMF) analysis with the mass spectrometry of organics measured by AMS, the contributions of primary and secondary sources to submicron organic aerosols (OA) were apportioned. In spring and summer, the primary sources were hydrocarbon-like OA (HOA) and cooking OA (COA), and the secondary components were low volatility (LV-OOA) and semi-volatile oxygenated OA (SV-OOA). In winter biomass burning OA (BBOA) was also resolved. In autumn, four factors were resolved, that is, OOA, HOA, COA and BBOA. In general, OOA (sum of LV-OOA and SV-OOA) was important in OA in four seasons, accounting for about 63%, 70%, 47% and 50%, respectively. SV-OOA dominated OA in summer (44%) due to the fresh secondary formation from strong photochemical oxidations; whereas, LV-OOA was dominant in OA in winter (33%), maybe because the transported air masses were more aged in heavily polluted days. The POA (sum of HOA, COA and BBOA) in OA was dominant in

  2. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  3. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Integrated groundwater data management

    Science.gov (United States)

    Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.

  5. Recent flow regime and sedimentological evolution of a fluvial system as the main factors controlling spatial distribution of arsenic in groundwater (Red River, Vietnam)

    DEFF Research Database (Denmark)

    Kazmierczak, J.; Larsen, F.; Jakobsen, R.

    2016-01-01

    sediments was partially eroded during the Holocene and covered by sand and clay deposited in fluvial environments. Sedimentary processes lead to the development of two flow systems. Shallow groundwater discharges either to the local surface water bodies or, in the areas where low permeable sediments...... isolating Pleistocene and Holocene aquifers were eroded, to the deep groundwater flow system discharging to Red River. Previously reported pattern of arsenic groundwater concentrations decreasing with an increasing sediment age is modified by the observed flow regime. Connection of the younger and older...... river channels resulted in a transport of high arsenic concentrations towards the Pleistocene aquifer, where low arsenic concentrations were expected....

  6. Low-copy nuclear gene and McGISH resolves polyploid history of Eleusine coracana and morphological character evolution in Eleusine

    OpenAIRE

    LIU, Qing; JIANG, Bin; WEN, Jun; PETERSON, Paul Michael

    2014-01-01

    Eleusine coracana (L.) Gaertn. (finger millet) is the third most important cereal crop in semiarid regions of the world, but the degree of relatedness of finger millet with other species in the genus is unverified. The study of morphological character evolution in Eleusine Gaertn. has lagged behind due to lack of relevant research. Polyploidy history of finger millet was analyzed using waxy sequences together with multicolor genomic in situ hybridization (McGISH). In the waxy phylogenetic tre...

  7. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India)

    International Nuclear Information System (INIS)

    Mukherjee, Abhijit; Bhattacharya, Prosun; Shi, Fei; Fryar, Alan E.; Mukherjee, Arun B.; Xie, Zheng M.; Jacks, Gunnar; Bundschuh, Jochen

    2009-01-01

    Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca-Na-HCO 3 -Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca-HCO 3 -dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).

  8. Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cristoforetti, G., E-mail: gabriele.cristoforetti@cnr.i [National Institute of Optics, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy); Lorenzetti, G.; Legnaioli, S.; Palleschi, V. [Institute of Chemistry of Organometallic Compounds, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy)

    2010-09-15

    The amount and the spatial distribution of air atoms and ions in a laser-induced plasma in ambient air provide important information about the formation of the plasma and its successive evolution history. For this reason, in the present work, the air mixing in a laser-induced plasma in air at atmospheric pressure and its influence on its thermodynamic evolution were studied. Information about spatial distributions of atoms and ions from Al, N and O were achieved by Abel-inverted spectra in the plume. The occurrence of LTE in the plume was also assessed by the utilization of theoretical criteria, and by the analysis of experimental spectra. Aluminium atoms and ions were found to be in LTE, while nitrogen and oxygen were not because of their longer times of relaxation toward equilibrium. Nitrogen was found to be over-ionized with respect to Saha-Eggert equilibrium, indicating that the plasma is recombining. Experimental observations suggest that the concentration of air species in the plasma is larger than that of aluminium, even in the region closer to the target, where the aluminium lines are stronger. In the front part of the plume only emission lines from air species were observed. The results suggest that a Laser-Supported Detonation (LSD) regime occurs during the trailing part of the laser pulse, resulting in the strong inclusion into the plasma of air elements. In this scenario, also the thermodynamic history of the plume is affected by the predominance of air species.

  9. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  10. The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole

    Energy Technology Data Exchange (ETDEWEB)

    Witzel, G.; Sitarski, B. N.; Ghez, A. M.; Morris, M. R.; Hees, A.; Do, T.; Naoz, S.; Boehle, A.; Martinez, G.; Chappell, S.; Meyer, L.; Yelda, S.; Becklin, E. E. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Lu, J. R. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schödel, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Matthews, K., E-mail: witzel@astro.ucla.edu [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-09-20

    We present new adaptive optics (AO) imaging and spectroscopic measurements of Galactic center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially resolved object interacting with a supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003–2014) and are comparatively close to the black hole ( a {sub min} ∼ 200–300 au) on very eccentric orbits ( e {sub G1} ∼ 0.99; e {sub G2} ∼ 0.96). While G2 has been tracked before and during periapsis passage ( T {sub 0} ∼ 2014.2), G1 has been followed since soon after emerging from periapsis ( T {sub 0} ∼ 2001.3). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1's orbital trajectory appears to be in the same plane as that of G2 but with a significantly different argument of periapsis (Δ ω = 21° ± 4°). This suggests that G1 is an independent object and not part of a gas stream containing G2, as has been proposed. Furthermore, we show for the first time that (1) G1 is extended in the epochs closest to periapsis along the direction of orbital motion, and (2) it becomes significantly smaller over time (450 au in 2004 to less than 170 au in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with an SMBH. G1's existence 14 yr after periapsis, along with its compactness in epochs further from the time of periapsis, suggest that this source is stellar in nature.

  11. Isotope characteristics of groundwater in Beishan area

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lu Chuanhe

    2004-01-01

    Using the isotope techniques, the authors studied the origin, evolution and circulation of the groundwater in the potential site of China's high-level waste repository. The results indicate that both deep groundwater and shallow groundwater are mainly recharged by modern and local precipitation, and the deep groundwater in the site area is of meteoric origin. The shallow groundwater is mainly recharged by modern and local precipitation, and the deep groundwater originates from regional precipitation at higher elevation, or might be derived from the precipitation during the geological period of lower temperature. It is also known from the study that the deep underground is a system of very low-permeability where the groundwater flow rates are very low. (author)

  12. A synopsis of climate change effects on groundwater recharge

    Science.gov (United States)

    Smerdon, Brian D.

    2017-12-01

    Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.

  13. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  14. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  15. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  16. Isotope-geochemical studies on fractions of dissolved organic carbon (DOC) for determining the origin and evolution of DOC for purposes of groundwater dating

    International Nuclear Information System (INIS)

    Geyer, S.

    1994-01-01

    The laboratory work consisted in developing and testing methods of extraction and enrichment of individual high-purity DOC fractions (fulvic acids, humic acids, and low-molecular substances) with the aim of preparing large quantities of groundwaters (> 1000 l) with low DOC concentrations so as to obtain sufficient sampling material. Chemical characterisation of DOC consisted in an analysis of humic and fulvic acids with regard to element composition (C, H, N, O, S) and inorganic trace elements. Isotopic characterization of the DOC fractions consisted in determining 14 C, 13 C, and 2 H levels. For the first time δ 34 S and δ 15 N relations in humic and fulvic acids dissolved in groundwater were determined. (orig./DG) [de

  17. Mass transport by groundwater

    International Nuclear Information System (INIS)

    Ledoux, E.; Goblet, P.; Jamet, Ph.; De Marsily, G.; Des Orres, P.E.; Lewi, J.

    1991-01-01

    The first analyses of the safety of radioactive waste disposal published in 1970s were mostly of a generic type using the models of radionuclide migration in the geosphere. These simply constructed models gave way to more sophisticated techniques in order to represent better the complexity and diversity of geological media. In this article, it is attempted to review the various concepts used to quantify radionuclide migration and the evolution of their incorporation into the models. First, it was examined how the type of discontinuity occurring in geological media affects the choice of a representative model. The principle of transport in the subsurface was reviewed, and the effect that coupled processes exert to groundwater flow and mass migration was discussed. The processes that act directly to cause groundwater flow were distinguished. The method of validating such models by comparing the results with the geochemical systems in nature was explained. (K.I.)

  18. Isotope study of groundwater in Beishan area, Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Yang Tianxiao

    2004-01-01

    Using the isotope techniques, the groundwater origin, evolution and circulation in the potential site of China's high-level waste repository are studied. The results indicate that both shallow groundwaters are and deep groundwaters in the site area are of meteoric origin. The shallow groundwaters are mainly recharged by modern and local precipitation, and the deep groundwaters are originated from regional history period with lower temperature. Through the study we can also understand that the deep underground is a very low-permeability system where the groundwater flow-rates are very low. (author)

  19. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  20. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  1. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)

    International Nuclear Information System (INIS)

    Kohfahl, Claus; Sprenger, Christoph; Herrera, Jose Benavente; Meyer, Hanno; Chacon, Franzisca Fernandez; Pekdeger, Asaf

    2008-01-01

    The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies (δ 18 O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2-3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due to

  2. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Kohfahl, Claus [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)], E-mail: kohfahl@zedat.fu-berlin.de; Sprenger, Christoph [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany); Herrera, Jose Benavente [Instituto del Agua de la Universidad de Granada, Ramon y Cajal, 4, 18071 Granada (Spain); Meyer, Hanno [Isotope Laboratory of the Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A 43, 14473 Potsdam (Germany); Chacon, Franzisca Fernandez [Dpto. Hidrogeologia y Aguas Subterraneas, Instituto Geologico y Minero de Espana, Oficina de Proyectos, Urb. Alcazar del Genil 4, Edificio Zulema bajo, 18006 Granada (Spain); Pekdeger, Asaf [Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstr. 74-100, D-12249 Berlin (Germany)

    2008-04-15

    The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies ({delta}{sup 18}O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2-3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due

  3. Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area

    Science.gov (United States)

    Kang, B.; Lin, X.

    2017-12-01

    Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water

  4. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  5. Simulating the Evolution of Fluid Underpressures in the Great Plains, by Incorporation of Tectonic Uplift and Tilting, with a Groundwater Flow Model

    Directory of Open Access Journals (Sweden)

    Amjad M. J. Umari

    2018-01-01

    Full Text Available Underpressures (subhydrostatic heads in the Paleozoic units underlying the Great Plains of North America are a consequence of Cenozoic uplift of the area. Based on tectonostratigraphic data, we have developed a cumulative uplift history with superimposed periods of deposition and erosion for the Great Plains for the period from 40 Ma to the present. Uplift, deposition, and erosion on an 800 km geologic cross-section extending from northeast Colorado to eastern Kansas is represented in nine time-stepped geohydrologic models. Sequential solution of the two-dimensional diffusion equation reveals the evolution of hydraulic head and underpressure in a changing structural environment after 40 Ma, culminating in an approximate match with the measured present-day values. The modeled and measured hydraulic head values indicate that underpressures increase to the west. The 2 to 0 Ma model indicates that the present-day hydraulic head values of the Paleozoic units have not reached steady state. This result is significant because it indicates that present-day hydraulic heads are not at equilibrium, and underpressures will increase in the future. The pattern uncovered by the series of nine MODFLOW models is of increased underpressures with time. Overall, the models indicate that tectonic uplift explains the development of underpressures in the Great Plains.

  6. Summary report on groundwater chemistry

    International Nuclear Information System (INIS)

    Lampen, P.; Snellman, M.

    1993-07-01

    The preliminary site investigations for radioactive waste disposal (in Finland) carried out by Teollisuuden Voima Oy (TVO) during the period 1987 to 1992 yielded data on hydrogeochemistry from a total 337 water samples. The main objective of the groundwater chemistry studies was to characterize groundwaters at the investigation sites and, specifically, to create a concept for the mean residence times and evolution of groundwater by means of isotopic analyses. Moreover, the studies yielded input data for geochemical modelling and the performance assessment. Samples were taken from deep boreholes (with a depth of 500 to 1000 m), percussion-drilled boreholes (depth approx. 200 m), flushing-water wells (approx. 100 m) and multi-level pietzometers (approx. 100 m) used in the hydrological tests. The water used for drilling the deep boreholes was taken from local flushing-water wells, whose water was also analyzed in detail. The flushing water used in drilling was marked with two tracers, iodine and uranine, analyzed with two different methods. For reference purposes, samples were also taken from surficial and groundwaters over a large area surrounding the investigation site. Precipitation over a period of at least one year was collected at all the five investigation sites and the samples were analyzed in great detail, particularly with regard to isotopes. Similarly, snow profile samples representing precipitation during the entire winter was taken from each site at least once

  7. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  8. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  9. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  10. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    groundwaters, and also by stable isotopes and uranium isotopes in secondary minerals. Information on timing of water and solute movements is important because it indicates any correlation with the timing of external events that might have perturbed and destabilised the groundwater system in the past, and allows a timescale to be estimated for the persistence of stable conditions. Data from a number of published site investigation projects and research programmes are reviewed to illustrate the patterns of geochemical data and the relationships between them, and how these are interpreted in terms of hydrodynamic stability. Data from Aespoe and Stripa and from exploratory boreholes at Finnsjoen and other sites in Sweden are compiled and discussed. Preliminary data from SKB's ongoing site investigations at Simpevarp/Laxemar and Forsmark are not considered in detail but their general similarities with Aespoe and Finnsjoen/SFR respectively are introduced into the discussion of geochemical evidence for groundwater stability in inland and coastal areas. Relevant data from Finnish sites including Olkiluoto, from the Whiteshell URL area in Canada, from Sellafield in the UK, and from the Tono area and URL in Japan are also summarised in appendices and discussed because they add further insights into the interpretation of geochemical indicators for a range of geological environments. The compiled data provide only limited scope for comparison of groundwater evolution and stability between inland and coastal areas in Sweden, because of the patchiness of representative data especially from early site studies. The external changes that might have perturbed stable groundwater conditions in the past are glaciation (i.e. melt water, mechanical loading/unloading and permafrost) and varying sea water infiltration at coastal sites due to changes in palaeo-Baltic and isostatic conditions. The present distributions of palaeo-Baltic sea water in groundwaters at coastal sites vary, reflecting local

  11. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    groundwaters, and also by stable isotopes and uranium isotopes in secondary minerals. Information on timing of water and solute movements is important because it indicates any correlation with the timing of external events that might have perturbed and destabilised the groundwater system in the past, and allows a timescale to be estimated for the persistence of stable conditions. Data from a number of published site investigation projects and research programmes are reviewed to illustrate the patterns of geochemical data and the relationships between them, and how these are interpreted in terms of hydrodynamic stability. Data from Aespoe and Stripa and from exploratory boreholes at Finnsjoen and other sites in Sweden are compiled and discussed. Preliminary data from SKB's ongoing site investigations at Simpevarp/Laxemar and Forsmark are not considered in detail but their general similarities with Aespoe and Finnsjoen/SFR respectively are introduced into the discussion of geochemical evidence for groundwater stability in inland and coastal areas. Relevant data from Finnish sites including Olkiluoto, from the Whiteshell URL area in Canada, from Sellafield in the UK, and from the Tono area and URL in Japan are also summarised in appendices and discussed because they add further insights into the interpretation of geochemical indicators for a range of geological environments. The compiled data provide only limited scope for comparison of groundwater evolution and stability between inland and coastal areas in Sweden, because of the patchiness of representative data especially from early site studies. The external changes that might have perturbed stable groundwater conditions in the past are glaciation (i.e. melt water, mechanical loading/unloading and permafrost) and varying sea water infiltration at coastal sites due to changes in palaeo-Baltic and isostatic conditions. The present distributions of palaeo-Baltic sea water in groundwaters at coastal sites vary, reflecting

  12. Temporal changes in groundwater quality of the Saloum coastal aquifer

    Directory of Open Access Journals (Sweden)

    Ndeye Maguette Dieng

    2017-02-01

    High variation in rainfall between the 2 reference years (2003 and 2012 also changes chemical patterns in the groundwater. Chemical evolution of the groundwater is geographically observed and is due to a combination of dilution by recharge, anthropic contamination and seawater intrusion. The results of environmental isotopes (δ18O, δ2H compared with the local meteoric line indicate that the groundwater has been affected by evaporation processes before and during infiltration. The results also clearly indicate mixing with saltwater and an evolution towards relative freshening between 2003 and 2012 in some wells near the Saloum River.

  13. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  14. Operation: Inherent Resolve

    DEFF Research Database (Denmark)

    Cramer-Larsen, Lars

    2015-01-01

    Kapitlet giver læseren indsigt i den internationale koalitions engagement mod IS igennem Operaton Inherent Resolve; herunder koalitionens strategi i forhold til IS strategi, ligesom det belyser kampagnens legalitet og folkeretlige grundlag, ligesom det giver et bud på overvejelser om kampagnens...

  15. Hydrochemical evolution of groundwater in Jimetayola area ...

    African Journals Online (AJOL)

    Analytical results of thirty-seven water samples revealed that pH of the water samples ranged from acidic to alkaline throughout the sampling period. EC and TDS mean values were higher in the dry season in shallow aquifer and low in deep aquifer in the rainy season. This is an indication of the addition of leachable salts ...

  16. Groundwater circulation and hydrogeochemical evolution in ...

    Indian Academy of Sciences (India)

    water and interaction with minerals and sediments ... naturally recharged by lateral flow in the edge of ... K. Na. Ca. Mg. Cl. SO. 4. HCO. 3. NO. 3 δ. 18. O δ. D. (TU). (pMC). Alluvial. F a n. R1 ..... state (SI>0) with respect to calcite, aragonite and.

  17. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  18. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  19. Modelling of the effect of a sea-level rise and land subsidence on the evolution of the groundwater density in the subsoil of the northern part of the Netherlands

    NARCIS (Netherlands)

    Meij, J.L. van der; Minnema, B.

    1999-01-01

    The Province of Friesland is conducting a study on possible future changes in the surface water and groundwater systems of Friesland. The aim of the study is to assess what changes might be caused by land subsidence and a rise in sea level - focusing in particular on the salinization of the surface

  20. 34S and 18O in dissolved sulfate as tracers of hydrogeochemical evolution of the Triassic carbonate aquifer exposed to intense groundwater exploitation (Olkusz-Zawiercie region, southern Poland)

    International Nuclear Information System (INIS)

    Samborska, Katarzyna; Halas, Stanislaw

    2010-01-01

    Research highlights: → Groundwater table rebound in aquifer containing sulfide ore. → Degradation of water quality causes by the significant increase in sulfate concentrations. → Isotopic examinations of sulfate and sulfate concentrations along flow path. → Sulfate concentrations as a result of binary mixing of sources (sulfide and evaporate). → Changes in isotopic composition of sulfide in extended vadose zone. - Abstract: The objective of this study was to determine the sources of SO 4 2- in groundwater of the Olkusz-Zawiercie Major Groundwater Body. The quality of groundwater was relatively good in the past, but fluctuations of the water table level have caused degradation of water quality. Variations in the water table level and the formation of the depression cone have resulted from both groundwater withdrawal and Zn-Pb mine dewatering. As a result within the extended vadose zone of the aquifer, weathering of pyrite and accompanying sulfides has taken place. Since 1992 the water table has risen and this process has been associated with an increase in concentrations of SO 4 2- , Ca and Mg. At the same time, the pH has decreased and periodically high Fe concentrations have been detected. High concentrations of Mg and Sr have been observed and, since gypsum layers are known to be present, a de-dolomitisation process has been hypothesized. The PHREEQC program for Windows was used to estimate saturation indices for calcite, dolomite, gypsum and epsomite. Isotopic data for SO 4 2- dissolved in the groundwater and archival data on isotopic composition of ore sulfides were used to solve the isotope balance equation and to estimate the fraction of dissolved SO 4 2- that originated from pyrite oxidation and gypsum dissolution. The results have shown that dissolution of pyrite oxidation products has a significant influence on chemical composition of groundwater, especially in the southern part of the cone of depression. By solving the additional, combined mass

  1. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  2. Evolution of the Olkiluoto site. Palaeohydrogeochemical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J. (ed.) [Conterra AB, Stockholm (Sweden); Pitkaenen, P.; Koskinen, L.; and others

    2014-05-15

    Over the past 20 years a considerable amount of work has been carried out to establish a palaeohydrogeological understanding of the Olkiluoto site and surrounding area, and to integrate this knowledge into the hydrogeochemical and hydrogeological descriptive and modelling programmes. This has involved not only a wide range of well established disciplines such as geology, hydrogeology and hydrochemistry, but also the extraction and determination of rock matrix porewaters by out-diffusion, a relatively new approach in crystalline rock. This required a sophisticated laboratory based input, not only to extract and analyse the porewaters, but also to take into consideration any effects associated to, for example, connected physical porosity and/or geochemical porosity in the rock matrix. In general, there is a good integrated understanding of the Olkiluoto site in terms of the geology, mineralogy, hydrology, hydrochemistry and the overall palaeohydrogeochemical model. The Olkiluoto site has had a complex geological and environmental history from Precambrian to the Quaternary as shown by fluid inclusions in quartz grains and fracture calcites. The Quaternary time period has been dominated by a large climatic variation of cold glacial cycles with temperate interglacials and sea-level changes, all of which have contributed to the hydrogeochemical evolution at the Olkiluoto site. All data indicate that infiltration of aerobic water has systematically been limited to few metres depth in the bedrock at Olkiluoto. Today at about the -300 m elevation level, there exists a distinct change in groundwater chemistry and mean residence time including a redox divide supported by a significant reduction in both the intensity and transmissivity of the water connected fracture networks. These indicate that long term stability (over the time span of glacial cycles) and sufficient buffering capacity of the water-rock system against aerobic infiltration, has dominated continuously until

  3. Evolution of the Olkiluoto site. Palaeohydrogeochemical considerations

    International Nuclear Information System (INIS)

    Smellie, J.; Pitkaenen, P.; Koskinen, L.

    2014-05-01

    Over the past 20 years a considerable amount of work has been carried out to establish a palaeohydrogeological understanding of the Olkiluoto site and surrounding area, and to integrate this knowledge into the hydrogeochemical and hydrogeological descriptive and modelling programmes. This has involved not only a wide range of well established disciplines such as geology, hydrogeology and hydrochemistry, but also the extraction and determination of rock matrix porewaters by out-diffusion, a relatively new approach in crystalline rock. This required a sophisticated laboratory based input, not only to extract and analyse the porewaters, but also to take into consideration any effects associated to, for example, connected physical porosity and/or geochemical porosity in the rock matrix. In general, there is a good integrated understanding of the Olkiluoto site in terms of the geology, mineralogy, hydrology, hydrochemistry and the overall palaeohydrogeochemical model. The Olkiluoto site has had a complex geological and environmental history from Precambrian to the Quaternary as shown by fluid inclusions in quartz grains and fracture calcites. The Quaternary time period has been dominated by a large climatic variation of cold glacial cycles with temperate interglacials and sea-level changes, all of which have contributed to the hydrogeochemical evolution at the Olkiluoto site. All data indicate that infiltration of aerobic water has systematically been limited to few metres depth in the bedrock at Olkiluoto. Today at about the -300 m elevation level, there exists a distinct change in groundwater chemistry and mean residence time including a redox divide supported by a significant reduction in both the intensity and transmissivity of the water connected fracture networks. These indicate that long term stability (over the time span of glacial cycles) and sufficient buffering capacity of the water-rock system against aerobic infiltration, has dominated continuously until

  4. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  6. Highly resolving computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions.

  7. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  8. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  9. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  10. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  11. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  12. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  13. WFIRST: Resolving the Milky Way Galaxy

    Science.gov (United States)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason

    2018-01-01

    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  14. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  15. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  16. Hydrogeochemical Investigation of Recharge Pathways to Intermediate and Regional Groundwater in Canon de Valle and Technical Area 16, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-14

    In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathways in a mountain front system. Inverse mass balance modeling, which accounts for mass fluxes between solid phases and solution, is used to contrive sets of quantitative reactions that explain chemical variability of water between sampling points. Model results are used, together with chloride mass balance estimation, to evaluate subsurface mixing scenarios generated by further modeling. Final model simulations estimate contributions of mountain block and local recharge to various contaminated zones.

  17. CHARACTERIZATION OF GROUNDWATER HYDROCHEMISTRY ...

    African Journals Online (AJOL)

    Osondu

    2013-03-01

    Mar 1, 2013 ... It was concluded that water quality of the study area is unsuitable for irrigation ... Key words: Assessment, characterization, Groundwater quality, .... The in-situ measurement was ..... framework of the aquifer in and around East.

  18. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  19. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  20. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions and RaCl 2 is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs

  1. Natural radionuclides in groundwaters

    International Nuclear Information System (INIS)

    Laul, J.C.

    1992-01-01

    The 234 U and 230 Th radionuclides are highly retarded by factors of 10 4 to 10 5 in basalt groundwater (Hanford) and briny groundwaters from Texas, and geothermal brine form the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na + and Cl - ions, and RaCl 2 is soluble in brines. 210 Pb is soluble in SSGF brine, probably as a chloride complex. The 234 U/ 230 Th ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. (author) 19 refs.; 3 figs

  2. Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat

    Science.gov (United States)

    Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline

    2017-09-01

    The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.

  3. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  4. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  5. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  6. Groundwater characterisation and modelling: problems, facts and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [INTERA KB, Sollentuna (Sweden)

    1999-12-01

    For the last 10 years, the Aespoe Hard Rock Laboratory (HRL) in Sweden has been the main test site for the development of suitable methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of new groundwater sampling and modelling techniques. The natural condition of the groundwater is easily disturbed by drilling and sampling. The effects from borehole activities which may bias the real character of the groundwater have been identified. The development of new sampling techniques has improved the representativeness of the groundwater samples. In addition, methods to judge the representativeness better have been developed. For modelling of the Aespoe site, standard groundwater modelling codes based on thermodynamic laws have been applied. The many limitations of existing geochemical models used at the Aespoe site and the need to decode the complex groundwater information in terms of origin, mixing and reactions at site scale necessitated the development of a new modelling tool. This new modelling concept was named M3. In M3 modelling the assumption is that the groundwater chemistry is a result of mixing as well as water/rock reactions. The M3 model compares the groundwater compositions from a site. The similarities and differences of the groundwater compositions are used to quantify the contribution from mixing and reactions on the measured data. In order to construct a reliable model the major components, stable isotopes and tritium are used. Initially, the method quantifies the contribution from the flow system. Subsequently, contributions from reactions are calculated. The model differs from many other standard models which primarily use reactions rather than mixing to determine the groundwater evolution. The M3 code has been used for the following type of modelling: calculate the mixing portions at Aespoe, quantify the contribution from inorganic and organic reactions such as biogenic decomposition and sulphate

  7. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Sotic, A.; Dasic, M.; Vukcevic, G.; Vasiljevic, Lj.; Nikolic, S.

    2002-01-01

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  8. Basin F Subregional Groundwater Model

    National Research Council Canada - National Science Library

    Mazion, Edward

    2001-01-01

    The groundwater flow system at Rocky Mountain Arsenal (RMA) is complex. To evaluate proposed remedial alternatives, interaction of the local groundwater flow system with the present contamination control systems must be understood...

  9. Groundwater chemical changes at SFR in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Gurban, Ioana [3DTerra (Sweden)

    2003-01-01

    The examination of the groundwater sampled at the SFR tunnel system indicated that the groundwater consist mainly of a Na-Cl to Na-Ca-Cl type of water. Most of the samples fall within the Cl range of 2500-5500 mg/l having a neutral pH (6.6-7.7 units). The water is reducing and despite the fact that the tunnel acts like a hydraulic sink constantly withdrawing water out from the rock into the tunnel the groundwater changes are moderate with time. Most of the sampling points in the SFR tunnel system are located under the Sea and M3 calculations indicated that most of the sampling points have a change of water types from an older marine water type affected by glacial melt water to an more modern marine water type such as Baltic Sea water which has been modified by possibly microbial sulphate reduction and ion exchange. Mass balance calculations indicated that the waters seem to be in equilibrium with the fracture filling mineral such as calcite. The quality of the aluminium data made the modelling with the major rock forming aluminium silicates such as feldspars and clay minerals uncertain and was therefore not reported. The conclusion is that the groundwater evolution and patterns at SFR are a result of many factors such as: 1. the changes in hydrogeology related to glaciation/deglaciation and land uplift, 2. repeated Sea/lake water regressions/transgressions 3. the closeness to Baltic Sea resulting in relative small hydrogeological driving forces which could preserve old water types from being flushed out, 4. organic or inorganic alteration of the groundwater caused by microbial processes or in situ water/rock interactions 5. tunnel construction which changed the flow system The modelled present-day groundwater conditions of the SFR site consist of a mixture in varying degrees of different water types. The data indicate that all the groundwater at SFR is strongly affected by Sea water of different origin and ages. The meteoric (0- 1000 B.P) portion is located close

  10. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  11. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  12. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  13. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  14. Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang; Qiao, Xiaojuan

    2017-12-01

    Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2- and Cl-, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.

  15. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  16. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  17. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  18. Automated Groundwater Screening

    International Nuclear Information System (INIS)

    Taylor, Glenn A.; Collard, Leonard B.

    2005-01-01

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application

  19. Controlling groundwater over abstraction

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2017-01-01

    The control of groundwater over abstraction is a vexing problem worldwide. Jordan is one of the countries facing severe water scarcity which has implemented a wide range of measures and policies over the past 20 years. While the gap between formal legal and policy frameworks and local practices on

  20. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  1. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  2. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  3. Hydrogeochemical investigations of groundwater in Ziarat valley, Baluchistan

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Rafiq, M.

    2010-03-01

    Present study was undertaken in Ziarat Valley, Baluchistan to investigate recent trends of groundwater chemistry (geochemical facies, geochemical evolution) and assess the groundwater quality for drinking and irrigation purposes. For this purpose samples of groundwater (open wells, tube wells, karezes, springs) were periodically collected from different locations and analyzed for dissolved chemical constituents such as sodium, potassium, magnesium, calcium, carbonate, bicarbonate, chloride and sulphate. The data indicated that concentrations of sodium, potassium, calcium and magnesium vary from 5 to 113,0.3 to 3,18 to 62 and 27 to 85 mg/l respectively. Values of anions i. e. bicarbonate, chloride and sulphate lie in the range of 184 to 418, 14 to 77 and 8 to 318 mg/l respectively. Hydrogeochemical facies revealed that groundwater in the study area belongs to Mg-HCO/sub 3/ type at 72% surveyed locations. Dissolution and calcite precipitation were found to be the main processes controlling the groundwater chemistry. Chemical quality was assessed for drinking use by comparing with WHO, Indian and proposed national standards, and for irrigation use using empirical indices such as SAR and RSC. The results show that groundwater is quite suitable for irrigation and drinking purposes. (author)

  4. Internet Portal For A Distributed Management of Groundwater

    Science.gov (United States)

    Meissner, U. F.; Rueppel, U.; Gutzke, T.; Seewald, G.; Petersen, M.

    The management of groundwater resources for the supply of German cities and sub- urban areas has become a matter of public interest during the last years. Negative headlines in the Rhein-Main-Area dealt with cracks in buildings as well as damaged woodlands and inundated agriculture areas as an effect of varying groundwater levels. Usually a holistic management of groundwater resources is not existent because of the complexity of the geological system, the large number of involved groups and their divergent interests and a lack of essential information. The development of a network- based information system for an efficient groundwater management was the target of the project: ?Grundwasser-Online?[1]. The management of groundwater resources has to take into account various hydro- geological, climatic, water-economical, chemical and biological interrelations [2]. Thus, the traditional approaches in information retrieval, which are characterised by a high personnel and time expenditure, are not sufficient. Furthermore, the efficient control of the groundwater cultivation requires a direct communication between the different water supply companies, the consultant engineers, the scientists, the govern- mental agencies and the public, by using computer networks. The presented groundwater information system consists of different components, especially for the collection, storage, evaluation and visualisation of groundwater- relevant information. Network-based technologies are used [3]. For the collection of time-dependant groundwater-relevant information, modern technologies of Mobile Computing have been analysed in order to provide an integrated approach in the man- agement of large groundwater systems. The aggregated information is stored within a distributed geo-scientific database system which enables a direct integration of simu- lation programs for the evaluation of interactions in groundwater systems. Thus, even a prognosis for the evolution of groundwater states

  5. Spatial patterns and temporal dynamics of global scale climate-groundwater interactions

    Science.gov (United States)

    Cuthbert, M. O.; Gleeson, T. P.; Moosdorf, N.; Schneider, A. C.; Hartmann, J.; Befus, K. M.; Lehner, B.

    2017-12-01

    The interactions between groundwater and climate are important to resolve in both space and time as they influence mass and energy transfers at Earth's land surface. Despite the significance of these processes, little is known about the spatio-temporal distribution of such interactions globally, and many large-scale climate, hydrological and land surface models oversimplify groundwater or exclude it completely. In this study we bring together diverse global geomatic data sets to map spatial patterns in the sensitivity and degree of connectedness between the water table and the land surface, and use the output from a global groundwater model to assess the locations where the lateral import or export of groundwater is significant. We also quantify the groundwater response time, the characteristic time for groundwater systems to respond to a change in boundary conditions, and map its distribution globally to assess the likely dynamics of groundwater's interaction with climate. We find that more than half of the global land surface significantly exports or imports groundwater laterally. Nearly 40% of Earth's landmass has water tables that are strongly coupled to topography with water tables shallow enough to enable a bi-directional exchange of moisture with the climate system. However, only a small proportion (around 12%) of such regions have groundwater response times of 100 years or less and have groundwater fluxes that would significantly respond to rapid environmental changes over this timescale. We last explore fundamental relationships between aridity, groundwater response times and groundwater turnover times. Our results have wide ranging implications for understanding and modelling changes in Earth's water and energy balance and for informing robust future water management and security decisions.

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Groundwater discharge mapping by thermal infra-red imagery

    International Nuclear Information System (INIS)

    Brereton, N.R.

    1984-02-01

    An area around Altnabreac in northern Scotland has been studied as part of the UK programme of research into the feasibility of disposal of radioactive waste into geological formations. An essential prerequisite to being able to predict the behaviour, migratory pathways and travel times of radionuclides emanating from a waste repository is an understanding of the regional and near surface groundwater flow systems and groundwater geochemical evolution. The groundwater system at depth has been studied by means of boreholes but an understanding of the shallow groundwater flow, and its interaction with groundwater upwelling from depth, can be gained from studies of the spatial distribution and geochemistry of surface springs and discharges. A survey was carried out using the thermal infra-red linescan technique with the objective of locating all significant spring discharges over the study area. The terrain around Altnabreac is largely covered by superficial deposits which overlie weathered granite. The survey was carried out from a height of 275m at a spatial resolution of about 0.5m. About 280 line Km were covered but allowing for overlap between adjacent flight lines and some repeat coverage, the actual area surveyed was 68 sq Km. The most striking aspect of the results is the wide distribution of groundwater discharges in the Altnabreac area. An analysis of the data identified three general categories of spring and many of these springs were subsequently visited for verification and to allow samples to be collected for chemical analysis. The results from this survey indicates that the groundwater table is strongly influenced by local topography and that the majority of the spring discharges represent near surface recent groundwaters circulating within the superficial deposits and weathered granite

  10. Modeling of groundwater using the isotopic technique in the sedimentary aquifer of the Mahafaly basin, southwestern Madagascar

    International Nuclear Information System (INIS)

    Fareze, L.H.

    2016-01-01

    The Mahafaly sedimentary basin, southwest of Madagascar belongs to the region where the water resources management problem, such as high groundwater mineralization and dry wells lingers. In this research work, hydrochemistry and isotopes techniques are used to assess the groundwater characteristics, to determine the groundwater origin and to understand their geochemical evolution. The development of an hydrological model using Modflow software contribute to control the groundwater flow and predict the dissolved particles evolution and travel time according to their flow direction. Dissolution of halite, calcite and gypsum and cation exchange are the main sources of the groundwater mineralization in the study area. The groundwater isotopic composition indicates that the groundwaters are directly recharged by local precipitation, having a mean time of 25 years. A mixture of groundwater and Onilahy river water occurs in adjacent aquifers, of which residence time is about 60 years. A mixture of recent and old groundwaters by the upwelling of the deep waters is observed in the southern aquifer of Isalo, confirmed by the tritium concentration value, which is lower than 0,5UT. The model established indicates a high groundwater flow rate from the recharge area, located in Betioky hill. This is due to a steep slope with a hydraulic conductivity of about 10 -5 m.s -1 , although other flow directions have been identified. The model predicts a decrease of the hydraulic head during the last decades. [fr

  11. Evolutionary analysis of groundwater flow: Application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Bawoyobie, Patrick; Sakyi, Patrick; Fynn, Obed Fiifi

    2018-02-01

    An evolutionary trend has been postulated through the analysis of hydrochemical data of a crystalline rock aquifer system in the Densu Basin, Southern Ghana. Hydrochemcial data from 63 groundwater samples, taken from two main groundwater outlets (Boreholes and hand dug wells) were used to postulate an evolutionary theory for the basin. Sequential factor and hierarchical cluster analysis were used to disintegrate the data into three factors and five clusters (spatial associations). These were used to characterize the controls on groundwater hydrochemistry and its evolution in the terrain. The dissolution of soluble salts and cation exchange processes are the dominant processes controlling groundwater hydrochemistry in the terrain. The trend of evolution of this set of processes follows the pattern of groundwater flow predicted by a calibrated transient groundwater model in the area. The data suggest that anthropogenic activities represent the second most important process in the hydrochemistry. Silicate mineral weathering is the third most important set of processes. Groundwater associations resulting from Q-mode hierarchical cluster analysis indicate an evolutionary pattern consistent with the general groundwater flow pattern in the basin. These key findings are at variance with results of previous investigations and indicate that when carefully done, groundwater hydrochemical data can be very useful for conceptualizing groundwater flow in basins.

  12. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  13. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  14. Resolving Ethical Issues at School

    Science.gov (United States)

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  15. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  16. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    elevated W in sulfidic waters of the Carrizo aquifer. We propose that the substantially lower W concentrations in Aquia groundwaters reflect the fact that these waters are suboxic and have not undergone sulfate reduction. Hence, the evolution of W concentrations in the Aquia aquifer is consistent with conservative behavior in these generally oxic to suboxic groundwaters. In summary, our data indicate that pH related adsorption/desorption reactions are the key factors controlling W concentrations in oxic and sub-oxic waters, whereas formation of thiotungstate complexes may be important in sulfidic/anoxic waters.

  17. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  18. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  19. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  20. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  1. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  2. Adsorptive Iron Removal from Groundwater

    OpenAIRE

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some of the aesthetic and operational problems associated with iron in water supplies. Iron removal from groundwater is, therefore, a major concern for water supply companies using groundwater sources....

  3. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  4. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  5. Assessment of groundwater salinization mechanisms in Santiago Island - Cabo Verde: An environmental isotopic approach

    International Nuclear Information System (INIS)

    Carreira, P.M.; Nunes, D.; Marques, J.M.; Pina, A.; Mota Gomes, A.; Almeida, E.; Goncalves, R.; Monteiro Santos, F.

    2007-01-01

    Two sampling campaigns were carried out at Santiago Island - Cabo Verde under the scope of an isotopic and geochemical research study. An evaluation of the groundwater systems was carried out through the application of environmental isotopes and geochemical data in order to answer questions such as: origin and mechanisms of groundwater recharge; relation between the hydrochemical evolution of the groundwater systems with the geological matrix (minerals dissolution) or mixture with seawater and aerosol marine influence; identification of seawater intrusion mechanisms and, determination of the apparent groundwater 'age'. The results obtained so far are not conclusive on the identification of the process responsible for the increase of salinity. In general, all the data obtained seems to indicate that the waters have the same isotopic history but different geochemical evolution, which depends on the weathering and permeability of the rocks. (author)

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  9. Lifetime monogamy and the evolution of eusociality

    DEFF Research Database (Denmark)

    Boomsma, Jacobus J

    2009-01-01

    and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window...... underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton's rule....

  10. Groundwater resources in Uruguay: Importance and present use

    International Nuclear Information System (INIS)

    Montano J; Gagliardi, S; Montano, M.

    2005-01-01

    Traditionally the use of the water resources in Uruguay was based on the exploitation of surface waters due to the great density of the hydrographic network. The intensive use of the groundwater resources began after 1950, mainly for supplying small towns the country, nowadays this practice covers the 70% of the country. Basically, this evolution was a consequence of the lower cost of the groundwater, its availability and good quality. Since 1980 the use of the groundwater has been intensified even more, mainly with the purpose of satisfying different demands like vegetable plantation irrigation either in the open air or in the entrance of cholera to the country during the 1990 decade trough a program for supplying water to small communities in the frontier area. In addition, it is marked out the use of thermal and flowing aquifers belonging to the Guarani Aquifer System as water suppliers for thermal spas and hotels in a reduced area, eventhough having a great hydric potencial whose exploitation yields one of the major foreing currency entrance because of regional tourism. Moreover, it can be stated that Uruguay do not present an important groundwater weath because of regional tourism. Moreover, it can be stated that Uruguay do not present an important groundwater weath because the 65% of its aquifers are fisurated and the others are pourous with diverse potentiality.

  11. Geochemical modelling of the groundwater at the Olkiluoto site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Snellman, M.; Leino-Forsman, H.; Vuorinen, U.

    1994-04-01

    A preliminary model for probable processes responsible for the evolution of the groundwater at the nuclear waste investigation site Olkiluoto (in Finland) is presented. The hydrological data was collected from boreholes drilled down to 1000-m depth into crystalline bedrock. Based on chemical, isotopic, petrographic and hydrological data as well as ion plots and speciation calculations with PHREEQE the thermodynamic controls on the water composition and trends constraining these processes are evaluated. In order to determine the reactions which can explain the changes along the flow path during the evolution of groundwater system and to determine to which extent these reactions take place, mass-balance calculations with the NETPATH program were used. Mass transfer calculations with the EQ6 program were used to test the feasibility of the model derived, to predict reaction paths and composition of equilibrium solutions for the redox reactions. (57 refs., 43 figs., 10 tabs.)

  12. A hydrochemical investigation using 36Cl/Cl in groundwaters

    International Nuclear Information System (INIS)

    Metcalfe, Richard

    2003-03-01

    residence time. An analysis of a groundwater sample from the lower sedimentary rocks is similar to analyses in the granite, in spite of the fact that wireline gamma data imply higher 36 Cl production in the lower Toki Lignite-bearing Formation. This may indicate upward movement of Cl from the granite. The wireline data from the MSB-boreholes suggest that there could be significant contrasts in in-situ 36 Cl production between different locations. This suggests the possibility that the 36 Cl data to be obtained for groundwater sampled from these boreholes, may be useful for evaluating groundwater flow. In MSB-2, the groundwater Cl appears to be well-mixed over the sampled interval, between 79 m to 176 m depth. In this borehole, the groundwater Cl cannot have equilibrated with the in-situ 36 Cl production above 120 m depth. Instead, the Cl probably originated at greater depths. If water containing Cl equilibrated with the mean in-situ neutron flux in the granite moved upwards into the lower sedimentary rocks in MSB-2, the water would subsequently need to remain stationary for several tens of thousands of years to produce observable spatial variations in 36 Cl/Cl ratios. Some of the groudwater sampling intervals are wide compared to the spatial scale of variability in in-situ production and therefore variations in natural 36 Cl/Cl may not be resolved. Future sampling should focus on obtaining groundwater samples from intervals smaller than the spatial scale over which in-situ 36 Cl production varies. A possible complimentary approach to sampling groundwaters would be to analyse 36 Cl in leachates and squeezed porewaters obtained from core samples. (author)

  13. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  14. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  15. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  16. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  17. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  18. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  19. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  20. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  1. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  2. The Resolved Stellar Population of Leo A

    Science.gov (United States)

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  3. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  4. Mediation for resolving family disputes

    Directory of Open Access Journals (Sweden)

    Kamenecka-Usova M.

    2016-01-01

    Full Text Available Nowadays the understanding of the institute of marriage and its importance in the society has changed. Marriage is no longer assumed to be a commitment for a lifetime. As the principle of equality has replaced hierarchy as the guiding principle of family law it gave more grounds for family disputes and it became socially acceptable to leave marriages that are intolerable or merely unfulfilling. The aim of this article is to suggest an alternative dispute resolution method-mediation as a worthy option for resolving family conflicts.

  5. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  20. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  1. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  2. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    further constrain the (often ambiguous) age interpretation inferred from environmental tracers. We apply the framework to age information (inferred from SF6 and tritium) and hydrochemistry observations from a groundwater system in the Wellington Region, New Zealand. We found that the strongest hydrochemistry-time relationships can be established for the concentration of silica, calcium, sodium and total dissolved solids. Mineral weathering kinetics inferred from these relationships agree with mineral weathering kinetics found in other groundwater environments. For 4 out of 9 sites, with previously ambiguous age interpretation, ambiguity can be resolved by using the established hydrochemistry-time relationships. There does not appear to be one hydrochemistry parameter which can constrain age information at all sites, but different parameters work at different sites. Further study is vital to better understand under what conditions hydrochemistry can be used as a complementary or alternative groundwater age tracer in various groundwater environments. Acknowledgements This study is part of a PhD supported by GNS Science as part of the Smart Aquifer Characterization program funded by the New Zealand Ministry for Science and Innovation (http://www.smart-project.info/).

  3. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  4. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  5. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  6. Calculation of groundwater travel time

    International Nuclear Information System (INIS)

    Arnett, R.C.; Sagar, B.; Baca, R.G.

    1984-12-01

    Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs

  7. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  8. Sources of groundwater contamination

    International Nuclear Information System (INIS)

    Assaf, H.; Al-Masri, M. S.

    2007-09-01

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  9. Deep groundwater chemistry

    International Nuclear Information System (INIS)

    Wikberg, P.; Axelsen, K.; Fredlund, F.

    1987-06-01

    Starting in 1977 and up till now a number of places in Sweden have been investigated in order to collect the necessary geological, hydrogeological and chemical data needed for safety analyses of repositories in deep bedrock systems. Only crystalline rock is considered and in many cases this has been gneisses of sedimentary origin but granites and gabbros are also represented. Core drilled holes have been made at nine sites. Up to 15 holes may be core drilled at one site, the deepest down to 1000 m. In addition to this a number of boreholes are percussion drilled at each site to depths of about 100 m. When possible drilling water is taken from percussion drilled holes. The first objective is to survey the hydraulic conditions. Core drilled boreholes and sections selected for sampling of deep groundwater are summarized. (orig./HP)

  10. Global scale groundwater flow model

    Science.gov (United States)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  11. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  12. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  13. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  14. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  15. Hydrogeochemical processes influencing groundwater quality within the Lower Pra Basin

    International Nuclear Information System (INIS)

    Tay, Collins

    2015-12-01

    Hydrogeochemical and social impact studies were carried out within the Lower Pra Basin where groundwater serves as a source of potable water supply to majority of the communities. The main objective of the study was to investigate the hydrogeochemical processes and the anthropogenic impact that influence groundwater as well as the perception of inhabitants about the impact of their socio-economic activities on the quality of groundwater and subsequently make recommendations towards proper management and development of groundwater resources within the basin. The methodology involved quarterly sampling of selected surface and groundwater sources between January 2011 and October 2012 for major ions, minor ions, stable isotopes of deuterium ( 2 H) and oxygen-18 ( 18 O) and trace metals analyses as well as administration of questionnaires designed to collect information on the socio-economic impact on the water resources within the basin. In all, a chemical data-base on three hundred and ninety seven (397) point sources was generated and three hundred (300) questionnaires were administered. The hydrochemical results show that, the major processes responsible for chemical evolution of groundwater include: silicate (SiO 4 ) 4- weathering, ion-exchange reactions, sea aerosol spray, the leaching of biotite, chlorite and actinolite. The groundwater is mildly acidic to neutral (pH 3.5 – 7.3) due principally to natural biogeochemical processes. Groundwater acidity studies show that, notwithstanding the moderately low pH, the groundwater still has the potential to neutralize acids due largely to the presence of silicates/aluminosilicates. Results of the Total Dissolved Solids (TDS) show that 98.6 % of groundwater is fresh (TDS < 500 mg/L). The relative abundance of cations and anions is in the order: Na + > Ca 2 + > Mg 2 + > K + and HCO 3 - > Cl - > SO 4 2- respectively. Stable isotopes results show that, the groundwater emanated primarily from meteoric origin with

  16. Current Status of Groundwater Monitoring Networks in Korea

    OpenAIRE

    Jin-Yong Lee; Kideok D. Kwon

    2016-01-01

    Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN), Groundwater Quality Monitoring Network (GQMN), Seawater Intrusion Monitoring Network (SIMN), Rural Groundwater Monitoring Network (RGMN), Subsidiary Groundwater Monitoring Network ...

  17. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Directory of Open Access Journals (Sweden)

    Heubl Günther

    2010-11-01

    Full Text Available Abstract Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a

  18. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Science.gov (United States)

    2010-01-01

    Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of

  19. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... of water in the oxidized zone of the aquifer nearly halved, following implementation of action plans to reduce N leaching from agriculture. However, due to denitrification by pyrite oxidation in the aquifer, a plume of sulfate-rich water migrates through the aquifer as a legacy of the historical NO3...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...

  20. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  1. Assessment of emerging groundwater contaminants

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Manamsa, Katya; Crane, Emily; White, Debbie

    2016-01-01

    Emerging contaminants in groundwater are important. These have been studied at a range of scales. An increasing range of compounds is being detected Urban areas show impact of sewage and industrial wastewater. Some ECs are probably no threat to drinking water at such µg/L concentrations, e.g. caffeine Others may prove to be in the future. There is little information on their impact on other groundwater receptors in the environment. We are still far from understanding which of these comp...

  2. Groundwater sampling in uranium reconnaissance

    International Nuclear Information System (INIS)

    Butz, T.R.

    1977-03-01

    The groundwater sampling program is based on the premise that ground water geochemistry reflects the chemical composition of, and geochemical processes active in the strata from which the sample is obtained. Pilot surveys have shown that wells are the best source of groundwater, although springs are sampled on occasion. The procedures followed in selecting a sampling site, the sampling itself, and the field measurements, as well as the site records made, are described

  3. Thermal footprints in groundwater of central European cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  4. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  5. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  6. Groundwater Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  7. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    Science.gov (United States)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  8. Identification of hydrogeochemical processes and pollution sources of groundwater nitrate in Leiming Basin of Hainan island, Southern China

    Science.gov (United States)

    Shaowen, Y.; Zhan, Y., , Dr; Li, Q.

    2017-12-01

    Identifying the evolution of groundwater quality is important for the control and management of groundwater resources. The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources and to evaluate the potential sources of groundwater nitrate in Leiming basin using chemical and isotopic methods. The majority of samples belong to Na-Cl water type and are followed by Ca-HCO3 and mixed Ca-Na-HCO3. The δ18O and δ2H values in groundwater indicate that the shallow fissure groundwater is mainly recharged by rainfall. The evaporated surface water is another significant origin of groundwater. The weathering and dissolution of different rocks and minerals, input of precipitation, evaporation, ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. NO- 3 concentration in the groundwater varies from 0.7 to 51.7 mg/L and high values are mainly occurred in the densely populated area. The combined use of isotopic values and hydrochemical data suggests that the NO- 3 load in Leiming basin is not only derived from agricultural activities but also from other sources such as waste water and atmospheric deposition. Fertilizer is considered as the major source of NO- 3 in the groundwater in Leiming basin.

  9. Evaluation of the Marine Intrusion in Havana Province Groundwater Using Hydrochemical and Isotopic Tools

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A. M.; Bombuse, D. L.; Estevez Alvarez, J. R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); others, and

    2013-07-15

    In the present paper the spatial distribution and temporal evolution of the saline intrusion in the most important aquifer of Havana province is presented. Results were obtained through the application of hydrochemical and isotopic tools. Studies were carried out within the framework of the IAEA Regional Project RLA/8/041. The survey was carried out in 2008 during the dry and rainy seasons. Sampling points were selected according to a monitoring network located along the north-south line following the main groundwater flow direction. Stable isotopes ({sup 2}H and {sup 18}O) were used to identify and characterize the groundwater origin and mixing processes. Changes in the chemical composition of groundwater were shown to be mainly controlled by the groundwater and seawater mixing process, followed by cation exchange reactions and a Ca-Mg precipitation process due to the strong influence of the costal wetland. A gradual decreasing of the spatial and temporal saline intrusion was observed. (author)

  10. Bikini Atoll groundwater development

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1985-01-01

    Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work

  11. Costs of groundwater contamination

    International Nuclear Information System (INIS)

    O'Neil, W.B.; Raucher, R.S.

    1990-01-01

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged

  12. Resolving the Circumgalactic Medium in the NEPHTHYS Simulations

    Science.gov (United States)

    Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun

    2018-01-01

    NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.

  13. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  14. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India

    Science.gov (United States)

    Subba Rao, N.

    2018-03-01

    Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.

  15. Anthropization of groundwater resources in the Mediterranean region: processes and challenges

    Science.gov (United States)

    Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem

    2017-09-01

    A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.

  16. Geology of groundwater occurrences of the Lower Cretaceus sandstone aquifer in East Central Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Saad Younes Ghoubachi

    2017-01-01

    Full Text Available The present study focused on investigating the impact of geological setting on the groundwater occurrences of the Lower Cretaceous sandstone aquifer (Malha. The Lower Cretaceous sandstone aquifer is subdivided into 3 units according to their lithological characters for the first time in this present work. The study area is dissected by normal faults with their downthrown sides due north direction. The groundwater flows from southeast recharge area (outcrop to the northwest direction with an average hydraulic gradient of 0.0035. The hydraulic parameters of the Lower Cretaceous sandstone aquifer were determined and evaluated through 7 pumping tests carried out on productive wells. The Lower Cretaceous aquifer in the study area is characterized by moderate to high potential. The calculated groundwater volume of the Lower Cretaceous aquifer (6300 km2 in the study area attains about 300 bcm, while the estimated recharge to the same aquifer reaches about 44,500 m3/day with an annual recharge of 16 mcm/year. Expended Durov diagram plot revealed that the groundwater has been evolved from Mg-SO4 and Mg-Cl dissolution area types that eventually reached a final stage of evolution represented by a Na-Cl water type. This diagram helps also in identifying groundwater flow direction. The groundwater salinity ranges from 1082 ppm (Shaira to 1719 ppm (Nakhl, in the direction of groundwater movement towards north.

  17. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data

    Directory of Open Access Journals (Sweden)

    D. Herckenrath

    2013-10-01

    Full Text Available Increasingly, ground-based and airborne geophysical data sets are used to inform groundwater models. Recent research focuses on establishing coupling relationships between geophysical and groundwater parameters. To fully exploit such information, this paper presents and compares different hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM and electrical resistivity tomography (ERT data. In a sequential hydrogeophysical inversion (SHI a groundwater model is calibrated with geophysical data by coupling groundwater model parameters with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI. In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical relationship and its accuracy. Simulations for a synthetic groundwater model and TDEM data showed improved estimates for groundwater model parameters that were coupled to relatively well-resolved geophysical parameters when employing a high-quality petrophysical relationship. Compared to a SHI these improvements were insignificant and geophysical parameter estimates became slightly worse. When employing a low-quality petrophysical relationship, groundwater model parameters improved less for both the SHI and JHI, where the SHI performed relatively better. When comparing a SHI and JHI for a real-world groundwater model and ERT data, differences in parameter estimates were small. For both cases investigated in this paper, the SHI seems favorable, taking into account parameter error, data fit and the complexity of implementing a JHI in combination with its larger computational burden.

  18. Resolvability of regional density structure

    Science.gov (United States)

    Plonka, A.; Fichtner, A.

    2016-12-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convectivemotion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravityprovide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling,making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assessif 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within thecrust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we performprincipal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish theextent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrainedindependently. Since the density imprint we observe is not exclusively linked to travel times and amplitudes of specific phases,we consider waveform differences between complete seismograms. We test the method using a known smooth model of the crust and seismograms with clear Love and Rayleigh waves, showing that - as expected - the first principal kernel maximizes sensitivity to SH and SV velocity structure, respectively, and that the leakage between S velocity, P velocity and density parameter spaces is minimal in the chosen setup. Next, we apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density

  19. Neural Networks Simulation of the Transport of Contaminants in Groundwater

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2009-12-01

    Full Text Available The performance assessment of an engineered solution for the disposal of radioactive wastes is based on mathematical models of the disposal system response to predefined accidental scenarios, within a probabilistic approach to account for the involved uncertainties. As the most significant potential pathway for the return of radionuclides to the biosphere is groundwater flow, intensive computational efforts are devoted to simulating the behaviour of the groundwater system surrounding the waste deposit, for different values of its hydrogeological parameters and for different evolution scenarios. In this paper, multilayered neural networks are trained to simulate the transport of contaminants in monodimensional and bidimensional aquifers. The results obtained in two case studies indicate that the approximation errors are within the uncertainties which characterize the input data.

  20. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D A [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1993-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  1. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1992-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  2. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  3. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  4. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  5. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.

    2011-01-01

    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...

  6. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  7. Groundwater response to heavy precipitation

    International Nuclear Information System (INIS)

    Waring, C.; Bradd, J.; Hankin, S.

    2003-05-01

    An investigation of the groundwater response to heavy rainfall at Lucas Heights Science and Technology Centre (LHSTC) is required under the conditions of Facility Licence F0001 for the ANSTO's Replacement Research Reactor. Groundwater continuous hydrograph monitoring has been used for this purpose. Hydrograph data from four boreholes are presented showing the rainfall recorded during the same period for comparison. The drought conditions have provided only limited cases where groundwater responded to a rainfall event. The characteristic response was local, caused by saturated soil contributing water directly to the borehole and the falling head as the water was redistributed into he aquifer in a few hours. Hydrograph data from borehole near the head of a gully showed that groundwater flow from the plateau to the gully produced a peak a fe days after the rainfall event and that the water level returned to its original level after about 10 days. The hydrograph data are consistent with an imperfect multi-layer groundwater flow regime, developed from earlier seismic and geophysical data, with decreasing rate of flow in each layer due to decreasing hydraulic conductivity with depth. The contrast in hydraulic conductivity between the thin permeable soil layer and the low permeable sandstone forms an effective barrier to vertical flow

  8. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  9. Hydrogeochemistry of deep groundwaters in the central part of the Fennoscandian Shields

    International Nuclear Information System (INIS)

    Blomqvist, R.

    1999-01-01

    Saline groundwaters are frequent in the central part of the Fennoscandian Shield. The results indicate large variations in groundwater chemistry and in the spatial distribution of saline groundwaters. The depths of the fresh/saline groundwater boundaries vary considerably but generally the boundary is located at 300-600 m. In some cases fresh bicarbonate groundwaters are encountered throughout the drill hole. More commonly, however, bicarbonate waters occur only as an upper layer, up to a few hundred metres in extent, overlying chloride waters of varying salinity. In coastal areas saline groundwaters are frequently found much closer to ground surface. Long-term water-rock interaction and incursions of present/ancient sea water are considered the main processes affecting the evolution of the saline groundwater bodies, while isolation from the surface-close hydrological cycle seems to be a prerequisite for the preservation of these waters. Ancient preferential leaching of low-Rb/Sr minerals (most likely plagioclase) and/or fluid inclusions are the main contribution for dissolved solids in water-rock interaction. The strontium isotope results imply that saline groundwaters in crystalline rocks do not evolve as isolated small pockets with a restricted volume of rock but may constitute more open systems in which lateral hydrogeochemical interaction extends over distances of at least hundreds of metres. One potential mechanism for formation of young calcites is related to glacial rebound where release of stress and increase in temperature in fractures make the groundwaters oversaturated with respect to calcite. Δ 18 depleted groundwaters have been observed from several sampling sites in Finland, indicative of glacial meltwater intrusion in the bedrock. As saline waters have been documented to have long residence times and are not associated with active meteoric water circulation, bedrock suites hosted by saline groundwaters could be considered as potential repository

  10. Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin

    Science.gov (United States)

    Huang, L.; Sabo, J. L.

    2017-12-01

    Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.

  11. 85Kr dating of groundwater

    International Nuclear Information System (INIS)

    Rozanski, K.; Florkowski, T.

    1978-01-01

    The possibility of 85 Kr dating of groundwater is being investigated. The method of gas extraction from 200 to 300 litres of water sample has been developed. The Argon and Krypton mixture, separated from the gas extracted from water, was counted in a 1.5 ml volume proportional counter. The amount of krypton gas in the counter was determined by mass spectrometry. A number of surface and groundwater samples were analyzed indicating an 85 Kr concentration ranging from present atmospheric content (river water) to zero values. 85 Kr 'blank value' was determined to be about 5 per cent of present 85 Kr atmospheric content. For groundwater samples, the mean residence time in the system was calculated assuming the exponential model and known 85 Kr input function. Further improvement of the method should bring higher yield of krypton separation and lower volume of water necessary for analysis. (orig.) [de

  12. Groundwater arsenic contamination throughout China.

    Science.gov (United States)

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  13. Geoelectrical mapping and groundwater contamination

    Science.gov (United States)

    Blum, Rainer

    Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.

  14. Hydrogeochemical analysis and quality evaluation of groundwater ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... Department of Geology and Exploration Geophysics, Ebonyi State University, P.M.B. 053, Abakaliki,. Ebonyi State .... classify the chemistry of groundwater in hard rock, ... Occurrence, movement and storage of groundwater.

  15. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    A proposed groundwater management framework for municipalities in South Africa. ... Hence, the Water Research Commission (WRC) has commissioned a project ... and available tools to achieve sustainable groundwater management reflect ...

  16. Hydrogeological characterization and assessment of groundwater ...

    Indian Academy of Sciences (India)

    In this perspective, assessment of groundwater quality in shallow aquifers in vicinity of the ... contributes about 60% of the total wastewater that gets discharged from ...... tern and effective groundwater management; Proc. Indian. Nat. Sci. Acad.

  17. Deciphering groundwater quality for irrigation and domestic

    Indian Academy of Sciences (India)

    Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II ... is important for groundwater planning and management in the study area. ... total hardness (TH), Piper's trilinear diagram and water quality index study.

  18. Planning for groundwater in South Africa

    CSIR Research Space (South Africa)

    Maherry, A

    2010-09-01

    Full Text Available Ecosystems that rely on groundwater as a water source have a natural and inherent resilience to climate change. Under natural conditions aquifers are stable water sources – in fact, ecosystems reliant on groundwater are literally the refuge...

  19. Spatial control of groundwater contamination, using principal

    Indian Academy of Sciences (India)

    Spatial control of groundwater contamination, using principal component analysis ... anthropogenic (agricultural activities and domestic wastewaters), and marine ... The PC scores reflect the change of groundwater quality of geogenic origin ...

  20. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants...

  1. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  2. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  3. Groundwater quality in the Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.

  4. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  5. Complexed iron removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Ojaste, H.; Sutt, J. [Tallinn Technical University, Tallinn (Estonia). Dept. of Environmental & Chemical Technology

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  6. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  7. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Zhiming; Liu Shufen; Li Ping

    2005-01-01

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  8. Groundwater circulation in deep carbonate regions

    Science.gov (United States)

    Szönyi-Mádl, Judit; Tóth, Ádám

    2016-04-01

    The operation of the subsurface part of the hydrologic cycle is hardly understood on basin scale due to the limitation in validated knowledge. Therefore the water balance approach is used with simplified numerical approaches during solving water related problems. The understanding of hierarchical nature of gravity-driven groundwater flow in near-surface and other driving forces in the deeper part of the lithosphere are often neglected. In this context thick and deep carbonate regions are especially less understood because the applicability of the gravity-driven regional groundwater flow (GDRGF) concept for such ranges formerly was debated. This is because karst studies are focused rather on the understanding of heterogeneity of karst systems. In contrary, this study found, on the basis of REV concept, that at regional scale not the local permeability values but its regional distribution is decisive. Firstly, according to the hydraulic diffusivity values it was stated that hydraulic connectivity is more effective in basinal carbonates compared to siliciclastics. Consequently, the efficient hydraulic responses for hydraulic head changes (due to water production or injection) in a carbonate system can give an indirect clue regarding hydraulic connectivity of the system rather than understanding the detailed permeability distribution. The concerns of the applicability of the GDRGF concept, therefore could be resolved. Subsequently, the concept of GDRGF can be used as a working hypothesis for understanding basinal hydraulics and geologic agency of flowing groundwater in thick carbonate ranges (Mádl-Szonyi and Tóth 2015). The hydrogeologically complex thick carbonate system of the Transdanubian Range (TR) Hungary was used as a study area to reveal the role of GDRGF at basin scale. Water level changes in the system, due to long-term mine dewatering exemplify the hydraulic continuity and compartmentalization of the system. Clustering of spring data, numerical flow and

  9. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    was then forward projected using predicted climate change from the ECHAM5/MPI-OM model for SRES high emission scenario A2. The resultant groundwater vulnerability map for South Africa indicates that groundwater across large parts of western South Africa, particularly along the west coast and Northern Cape regions, is extremely vulnerable to deterioration in both quality and quantity and this deterioration is most strongly linked to mean annual precipitation and potential evaporation. Accordingly, the west coast region of South Africa is now, and will remain in the future, the most vulnerable region to climate change in South Africa. Further investigation of the predicted evolution of climate, biodiversity and agricultural capacity in this region will be critical for developing sustainable groundwater management protocols. Gleeson, T., Befus, K.M., Jasechko, S., Luijendijk, E., and Bayani Cardenas, M., 2016. The global volume and distribution of modern groundwater. Nature Geosciences, 9, 161-167.

  10. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time

  11. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2018-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...

  12. Simulation–optimization model for groundwater contamination ...

    Indian Academy of Sciences (India)

    used techniques for groundwater remediation in which the contaminated groundwater is pumped ... ing the affected groundwater aquifer down to some drinking water standard. Several .... For simplicity, rectangular support domain is used in this study. Figure 1 ..... For PAT remediation system, decision variables include the.

  13. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    1996-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is

  14. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South. Africa. This is reflected in general ... Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorpo- rates all aspects of groundwater ...

  15. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    Science.gov (United States)

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  16. Chemical changes in groundwater and their reaction rates

    International Nuclear Information System (INIS)

    Talma, A.S.

    1981-01-01

    The evolution of the major ion concentrations of groundwater (Na, K, Ca, Mg, HCO 3 , SO 4 , Cl and NO 3 ) can be described as the consequence of a number of competing chemical reactions. With the aid of the naturally occuring radioactive and stable isotopes some of these reactions can be separated, identified and followed in space and time. In some field studies, especialy of artesian water, the rates of reactions can be estimated. A number of processes observed in South African sandstones aquifers are discussed and the variable reaction rates demonstrated. Reactions that can be identified include carbonate solution, chemical weathering, salt leaching, cation exchange and redox processes

  17. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Caliro, S. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy)]. E-mail: caliro@ov.ingv.it; Chiodini, G. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Avino, R. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Cardellini, C. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy); Frondini, F. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy)

    2005-06-15

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO{sub 2} groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO{sub 2} transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO{sub 2} emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO{sub 2} diffusely degassed from the crater area.

  18. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    International Nuclear Information System (INIS)

    Caliro, S.; Chiodini, G.; Avino, R.; Cardellini, C.; Frondini, F.

    2005-01-01

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO 2 groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO 2 transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO 2 emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO 2 diffusely degassed from the crater area

  19. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang

    2017-09-01

    Although many studies have investigated the recharge and evolution of groundwater in the Hexi Corridor, northwestern (NW) China, they describe individual sites such as Jinchang, Jiuquan, Dunhuang, and others. Considering the similarity of these sites, a systematic review of the entire Hexi Corridor is lacking. This paper compares and summarizes previous studies in the Hexi Corridor to provide a regional perspective of the isotopic characteristics and hydrochemical composition of groundwater. In unconfined aquifers, groundwater is recharged by snow and ice melt water from the Qilian Mountains; local precipitation can be neglected. Therefore, the groundwater belongs to a unique hydrological cycle model in the Hexi Corridor, referred to as snow and ice melt water-groundwater system. The dominant anion species changes from HCO3- in front of the mountains to SO42- in the middle basin and Cl- at the basin boundary along the groundwater flow direction, and TDS increases gradually owing to evaporation. A major hydrogeochemical process is the dissolution of minerals from the aquifer in the recharge area changing to cation exchange reactions in the discharge area. Confined groundwater was recharged mainly in the late Pleistocene and middle Holocene at colder temperatures than those of modern times; thus, it is non-renewable. In addition to dissolution, the hydrochemical composition of confined groundwater is also affected by cation exchange reactions. The hydrogeochemical categories of the confined groundwater are simple and stable. In the present study, a conceptual model is established on the basis of the analyses presented, which has important implications for water resource management in the Hexi Corridor. The inter-basin water allocation program should continue in order to achieve optimal utilization of water resources, but groundwater exploitation should be limited as much as possible. Additionally, on the basis of the review and integration of previous research, the

  20. A spring forward for hominin evolution in East Africa.

    Science.gov (United States)

    Cuthbert, Mark O; Ashley, Gail M

    2014-01-01

    Groundwater is essential to modern human survival during drought periods. There is also growing geological evidence of springs associated with stone tools and hominin fossils in the East African Rift System (EARS) during a critical period for hominin evolution (from 1.8 Ma). However it is not known how vulnerable these springs may have been to climate variability and whether groundwater availability may have played a part in human evolution. Recent interdisciplinary research at Olduvai Gorge, Tanzania, has documented climate fluctuations attributable to astronomic forcing and the presence of paleosprings directly associated with archaeological sites. Using palaeogeological reconstruction and groundwater modelling of the Olduvai Gorge paleo-catchment, we show how spring discharge was likely linked to East African climate variability of annual to Milankovitch cycle timescales. Under decadal to centennial timescales, spring flow would have been relatively invariant providing good water resource resilience through long droughts. For multi-millennial periods, modelled spring flows lag groundwater recharge by 100 s to 1000 years. The lag creates long buffer periods allowing hominins to adapt to new habitats as potable surface water from rivers or lakes became increasingly scarce. Localised groundwater systems are likely to have been widespread within the EARS providing refugia and intense competition during dry periods, thus being an important factor in natural selection and evolution, as well as a vital resource during hominin dispersal within and out of Africa.

  1. Lossless conditional schema evolution

    DEFF Research Database (Denmark)

    Jensen, Ole Guttorm; Böhlen, Michael

    2004-01-01

    is a precondition for a flexible semantics that allows to correctly answer general queries over evolving schemas. The key challenge is to handle attribute mismatches between the intended and recorded schema in a consistent way. We provide a parametric approach to resolve mismatches according to the needs......Conditional schema changes change the schema of the tuples that satisfy the change condition. When the schema of a relation changes some tuples may no longer fit the current schema. Handling the mismatch between the intended schema of tuples and the recorded schema of tuples is at the core...... of a DBMS that supports schema evolution. We propose to keep track of schema mismatches at the level of individual tuples, and prove that evolving schemas with conditional schema changes, in contrast to database systems relying on data migration, are lossless when the schema evolves. The lossless property...

  2. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  3. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  4. Adsorptive Iron Removal from Groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in drinking water is not harmful to human health, however it is undesirable because of the associated aesthetic and operational problems, namely: bad taste, colour, stains on laundry and plumbing fixtures, and aftergrowth in the

  5. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  6. COVARIANCE CORRECTION FOR ESTIMATING GROUNDWATER ...

    African Journals Online (AJOL)

    2015-01-15

    Jan 15, 2015 ... between zero and one, depending on location of the observation ..... [1] Alley W.M., Reilly T.E., Franke O.L., Sustainability of ground-water resources, U.S. ... Data assimilation: the ensemble Kalman filter, Springer, New York, ...

  7. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  8. HYDROGEOPHYSICAL EVALUATION OF THE GROUNDWATER ...

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Vertical Electrical Soundings (VES) and hydrogeological data were used to delineate the subsurface sequence and map the aquifer units with a view to evaluating the groundwater prospect of the central part of Ogun State,. Southwestern Nigeria. Thirty Schlumberger VES with maximum current electrode spacing (AB) of ...

  9. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  10. Modeling groundwater flow on MPPs

    International Nuclear Information System (INIS)

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

    1993-10-01

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code's scalability

  11. Hydrogeochemical and Isotopic Studies of Groundwater in the Central Region of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Ganyaglo, S. Y.; Osae, S.; Fianko, J.R., E-mail: sganyaglo@yahoo.co.uk [National Nuclear Research Institute, Ghana Atomic Energy Commission and School of Nuclear Allied Sciences, University of Ghana, Legon-Accra (Ghana); Gibrilla, A.; Bam, E. [National Nuclear Research Institute, Ghana Atomic Energy Commission, Legon-Accra (Ghana)

    2013-07-15

    The hydrogeochemical and isotopic evolution of groundwater in the Central Region of Ghana has been studied in order to examine how hydrogeochemical processes control the overall groundwater chemistry in the study area. Two major hydrochemical facies have been identified as the Na-Cl and NaHCO{sub 3} water types. The Na/Cl molar ratio indicates that silicate weathering is one of the major hydrogeochemical processes controlling groundwater water chemistry in the area. This is further confirmed by a plot of TDS against the Na/Na+Ca ratio. The Br/Cl ratio ranges from 0.00148 to 0.7087, suggesting minimal seawater intrusion in the area. Stable isotope values of the groundwater samples ({sup 18}O and {sup 2}H) are found around the global meteoric water line (GMWL), suggesting a direct infiltration of rainwater into the groundwater system. Elevated Cl- concentrations of the groundwater is probably due to sea spray and marine aerosols deposited on the top soil, though further studies are needed to determine the cause. (author)

  12. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    Science.gov (United States)

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  13. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1995-01-01

    Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository

  14. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  15. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  16. Groundwater movements around a repository

    International Nuclear Information System (INIS)

    Burgess, A.

    1977-10-01

    Based on regional models of groundwater flow, the regional hydraulic gradient at depth is equal to the regional topographic gradient. As a result, the equipotentials are near vertical. The permeability distribution with depth influences the groundwater flow patterns. A zone of sluggish flows, the quiescent zone is developed when the permeability decreases with depth. This feature is accentuated when horizontal anisotropy, with the horizontal permeability higher then the vertical permeability, is included. The presence of an inactive zone will be a prerequesite for a satisfactory repository site. The effect of an inclined discontinuity representing a singular geological feature such as a fault plane or shear zone has been modelled. The quiescent zone does not appear to be unduly disturbed by such a feature. However, meaningful quantitative predictions related to the flows in a typical singular feature cannot be made without more specific data on their hydraulic properties. Two dimensional analysis has been made for a site specific section of a candidate repository site at Forsmark, Sweden. The lateral extent of the model was defined by major tectonic features, assumed vertical. Potential gradients and pore velocities have been computed for a range of boundary conditions and assumed material properties. The potential gradients for the model with anisotropic permeability approach the average potential gradient between the boundaries. The result of this study of the initial groundwater conditions will be used as input data for the analyses of the thermomechanical perturbations of the groundwater regime. In the long term, the groundwater flow will return to the initial conditions. The residual effects of the repository on the flow will be discussed in part 2 of this report. (author)

  17. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    Science.gov (United States)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  18. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century

    Science.gov (United States)

    Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael

    2011-01-01

    Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347

  19. Transcriptome sequences resolve deep relationships of the grape family.

    Science.gov (United States)

    Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong

    2013-01-01

    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  20. Transcriptome sequences resolve deep relationships of the grape family.

    Directory of Open Access Journals (Sweden)

    Jun Wen

    Full Text Available Previous phylogenetic studies of the grape family (Vitaceae yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  1. How river rocks round: resolving the shape-size paradox.

    Directory of Open Access Journals (Sweden)

    Gabor Domokos

    Full Text Available River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.

  2. An IPSN research programme to resolve pending LOCA issues

    International Nuclear Information System (INIS)

    Mailliat, A.; Grandjean, C.; Clement, B.

    2001-01-01

    Studies performed in IPSN and elsewhere pointed out that high burnup may induce specific effects under LOCA conditions, especially those related with fuel relocation. Uncertainties exist regarding how much these effects might affect the late evolution of the accident transient and the associated safety issues. IPSN estimates that a better knowledge of specific phenomena is required in order to resolve the pending uncertainties related to LOCA criteria. IPSN is preparing the so called APRP-Irradie (High Burnup fuel LOCA) programme. One of the important aspect of this programme is in-pile experiments involving bundle geometries in the PHEBUS facility located at Cadarache, France. A feasibility study for such an experimental programme is underway and should provide soon, a finalized project including cost and schedule aspects. (authors)

  3. Groundwater Chemistry and Overpressure Evidences in Cerro Prieto Geothermal Field

    Directory of Open Access Journals (Sweden)

    Ivan Morales-Arredondo

    2017-01-01

    Full Text Available In order to understand the geological and hydrogeological processes influencing the hydrogeochemical behavior of the Cerro Prieto Geothermal Field (CP aquifer, Mexico, a characterization of the water samples collected from geothermal wells was carried out. Different hydrochemical diagrams were used to evaluate brine evolution of the aquifer. To determine pressure conditions at depth, a calculation was performed using hydrostatic and lithostatic properties from CP, considering geological characteristics of the study area, and theoretical information about some basin environments. Groundwater shows hydrogeochemical and geological evidences of the diagenetic evolution that indicate overpressure conditions. Some physical, chemical, textural, and mineralogical properties reported in the lithological column from CP are explained understanding the evolutionary process of the sedimentary material that composes the aquifer.

  4. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  5. Towards sustainable groundwater management in Karst aquifers in semi-arid environments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, H.; Banning, A.; Wohnlich, S.

    2017-12-01

    The Central West Bank (CWB) is characterized by karstified carbonate aquifers in the semiarid climate zone, where groundwater resources are frequently threatened by overexploitation and pollution. Despite often limited system knowledge, quantitative and qualitative factors such as groundwater recharge rate, aquifer parameters, flow and transport dynamics, anthropogenic impacts, and groundwater vulnerability need to be assessed. Therefore, sustainable groundwater use in the CWB is of critical importance. In the present study, we explore the scale of the groundwater problems in CWB as well as the possibility of sustainable management through different scenarios: 1) Managed aquifer recharge using a water balance model, stable isotopes (2H & 18O) and chloride mass balance, 2) Geochemical evolution and renewability of groundwater, and 3) Anthropogenic impacts. A total of 20 spring water samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), hardness, major-ion chemistry (Cl-, HCO3-, SO42-, Na+, K+, Ca2+ and Mg2+), trace elements (Li, Be, Al, Ba, Tl, Pb, Bi, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, Ag and Cd), microbiological data (total and fecal coliforms bacteria), and stable isotopes (2H & 18O). The results show a spatialized recharge rate, which ranges from 111-211 mm/year, representing 17-33 % of the long-term mean annual rainfall. The mean annual actual evapotranspiration was about 19-37 % of precipitation. The chemical composition of groundwater of the study area is strongly influenced by rock-water interaction, dissolution and deposition of carbonate and silicate minerals. Stable isotopes show that precipitation is the source of recharge to the groundwater system. All analyzed spring waters are suitable for irrigation but not for drinking purposes. This studýs results can serve as a basis for decision makers, and will lead to an increased understanding of the sustainable management of the Central West Bank

  6. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  7. Practical problems of groundwater model ages for groundwater protection studies

    International Nuclear Information System (INIS)

    Matthess, G.; Muennich, K.O.; Sonntag, C.

    1976-01-01

    Water authorities in the Federal Republic of Germany have established a system of protection zones for the protection of groundwater supplies from pollution. One zone (Zone II) is defined by an outer boundary from which the groundwater needs 50 days to flow to the well. 50 days is the period accepted for the elimination of pathogenic germs. However, within Zone II carbon-14 measurements of water may give model ages of several thousand years, which may lead to some confusion in the legal and practical aspects of this scheme. These model ages may result from uncertainties in the chemical model, or from mixing of waters of different ages, either within the aquifer or during extraction at the well. The paper discusses scientific aspects of the establishment of protection zones. Two processes affecting the model age determinations are examined in detail. First, the mechanism of diffusion transport downwards through porous, but impermeable, aquicludes is examined for stable trace substances and radioactive isotopes. Secondly, examples are given of model ages resulting from mixtures of new and old waters. It is recommended that such model ages should not be reported as 'ages' since they may be misinterpreted in groundwater protection applications. (author)

  8. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    International Nuclear Information System (INIS)

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems' ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL's groundwater problems

  9. Groundwater use in Pakistan: opportunities and limitations

    International Nuclear Information System (INIS)

    Bhutta, M.N.

    2005-01-01

    Groundwater potential in the Indus Basin is mainly due to recharge from irrigation system, rivers and rainfall. Its quality and quantity varies spatially and temporally. However, the potential is linked with the surface water supplies. Irrigated agriculture is the major user of groundwater. Annual recharge to groundwater in the basin is estimated as 68 MAF. But 50 percent of the area has marginal to hazardous groundwater quality. Existing annual groundwater pumpage is estimated as 45 MAF (55 BCM). More than 13 MAF mainly of groundwater is lost as non-beneficial ET losses. Groundwater contributes 35 percent of total agricultural water requirements in the country. Annual cropping intensities have increased from 70% to 150% due to groundwater use. Increase in crop yield due to groundwater use has been observed 150-200. percent. Total investment on private tube wells has been made more than Rs.25.0 billion. In the areas where farmers are depending more on groundwater. mining of groundwater has been observed. Population pressure, inadequate supply of canal water and development of cheap local tub well technology have encouraged farmers to invest in the groundwater development. Deterioration of groundwater has also been observed due to excessive exploitation. The available information about the private tube wells is insufficient for different areas. Although during the past decade the growth of tube wells was tremendous but was not reflected accordingly in the statistics. Monitoring of groundwater quality is not done systematically and adequately. It is very difficult to manage a resource for which adequate information is not available. The present scenario of groundwater use is not sustainable and therefore certain measures are needed to be taken. It is recommended to. have a systematic monitoring of groundwater. For the sustainable use of groundwater, it is recommended to manage the demand of water i.e. grow more crops with less water. To achieve high productivity of

  10. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  11. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  12. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  13. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  14. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  15. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  16. Characterizing the Resolved M6 Dwarf Twin LP 318-218AB

    Science.gov (United States)

    Moreno Hilario, Elizabeth; Burgasser, Adam J.; Bardalez Gagliuffi, Daniella; Tamiya, Tomoki

    2017-01-01

    The lowest-mass stars and brown dwarfs are among the most common objects in the Milky Way Galaxy, but theories of their formation and evolution remain poorly constrained. Binary systems are important for understanding the formation of these objects and for making direct orbit and mass measurements to validate evolutionary theories. We report the discovery of LP 318-218, a high proper motion late M dwarf, as a near equal-brightness binary system with a separation of 0.72 arcseconds. Resolved near-infrared spectroscopy confirms the components as nearly identical M6 twins. We using our resolved photometry and spectroscopy to estimate the distance, projected separation and tangential velocity of the system, and confirm common proper motion. We also perform atmosphere model fits to the resolved spectra to assess their physical properties. We place LP 318-218 in context with other widely-separated late M dwarf binaries.

  17. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  18. Evolution of sexual asymmetry

    Directory of Open Access Journals (Sweden)

    Hoekstra Rolf F

    2004-09-01

    Full Text Available Abstract Background The clear dominance of two-gender sex in recent species is a notorious puzzle of evolutionary theory. It has at least two layers: besides the most fundamental and challenging question why sex exists at all, the other part of the problem is equally perplexing but much less studied. Why do most sexual organisms use a binary mating system? Even if sex confers an evolutionary advantage (through whatever genetic mechanism, why does it manifest that advantage in two, and exactly two, genders (or mating types? Why not just one, and why not more than two? Results Assuming that sex carries an inherent fitness advantage over pure clonal multiplication, we attempt to give a feasible solution to the problem of the evolution of dimorphic sexual asymmetry as opposed to monomorphic symmetry by using a spatial (cellular automaton model and its non-spatial (mean-field approximation. Based on a comparison of the spatial model to the mean-field approximation we suggest that spatial population structure must have played a significant role in the evolution of mating types, due to the largely clonal (self-aggregated spatial distribution of gamete types, which is plausible in aquatic habitats for physical reasons, and appears to facilitate the evolution of a binary mating system. Conclusions Under broad ecological and genetic conditions the cellular automaton predicts selective removal from the population of supposedly primitive gametes that are able to mate with their own type, whereas the non-spatial model admits coexistence of the primitive type and the mating types. Thus we offer a basically ecological solution to a theoretical problem that earlier models based on random gamete encounters had failed to resolve.

  19. Leukemia and radium groundwater contamination

    International Nuclear Information System (INIS)

    Tracy, B.L.; Letourneau, E.G.

    1986-01-01

    In the August 2, 1985, issue of JAMMA, Lyman et al claim to have shown an association between leukemia incidence in Florida and radium in groundwater supplies. Although cautious in their conclusions, the authors imply that this excess in leukemia was in fact caused by radiation. The authors believe they have not presented a convincing argument for causation. The radiation doses at these levels of exposure could account for only a tiny fraction of the leukemia excess

  20. Emerging organic contaminants in groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2013-01-01

    Emerging organic contaminants (ECs) are compounds now being found in groundwater from agricultural, urban sources that were previously not detectable, or thought to be significant. ECs include pesticides and degradates, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as ‘life-style’ compounds such as caffeine and nicotine. ECs may have adverse effects on aquatic ecosystems and human health. Freq...

  1. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  2. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  3. Modeling groundwater flow and quality

    Science.gov (United States)

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  4. Groundwater management in northern Iraq

    Science.gov (United States)

    Stevanovic, Zoran; Iurkiewicz, Adrian

    2009-03-01

    Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.

  5. Report on the Workshop Resolved and Unresolved Stellar PopUlaTIoNs (RASPUTIN)

    Science.gov (United States)

    Bono, G.; Valenti, E.

    2014-12-01

    The workshop aimed at sharing and discussing observations and diagnostics, together with models and simulations, of the resolved and unresolved stellar populations in galaxies from the Milky Way to the distant Universe. Special attention was paid to recent results concerning galaxy formation and evolution, fostering the exchange of ideas and techniques in dealing with nearby stellar populations. There will be no published proceedings, but presentations are available for download from the workshop web page (www.eso.org/sci/meetings/2014/rasputin2014).

  6. Resolving Ethical Dilemmas in Financial Audit

    OpenAIRE

    Professor PhD Turlea Eugeniu; PhD Student Mocanu Mihaela

    2010-01-01

    Resolving ethical dilemmas is a difficult endeavor in any field and financial auditing makes no exception. Ethical dilemmas are complex situations which derive from a conflict and in which a decision among several alternatives is needed. Ethical dilemmas are common in the work of the financial auditor, whose mission is to serve the interests of the public at large, not those of the auditee’s managers who mandate him/her. The objective of the present paper is to offer support in resolving ethi...

  7. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain

    Science.gov (United States)

    Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz Hernández, José M.; Fernández Merodo, José A.; Marchamalo, Miguel; Martínez, Rubén

    2017-04-01

    Groundwater resources are under stress in many regions of the world and the future water supply for many populations, particularly in the driest places on Earth, is threatened. Future climatic conditions and population growth are expected to intensify the problem. Understanding the factors that control groundwater storage variation is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and estimate groundwater storage variations. Specifically, we use Persistent Scatterer Interferometry (PSI) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010 to build groundwater level maps and quantify groundwater storage variations. Our results reveal that groundwater storage loss occurred in two different periods, 1992-1999 and 2005-2010 and was mainly concentrated in a region of ∼200 km2. The presence of more compressible materials in that region combined with a long continuous water extraction can explain this volumetric deficit. This study illustrates how the combination of PSI and piezometric data can be used to detect small aquifers affected by groundwater storage loss helping to improve their sustainable management.

  8. Key policy choices in groundwater quality management

    International Nuclear Information System (INIS)

    Batie, S.S.; Diebel, P.L.

    1990-01-01

    The fundamental policy choice of who has the right to do what to whom is a pivotal issue of governance. Over the last few decades, the answer to that question has become more restrictive to those who own and use natural resources as inputs into production processes. Increasingly, the beneficiaries of new policy initiatives are those who desire higher protection of groundwater quality. With respect to groundwater management, policy design increasingly reflects such diverse interests as agriculturists, industrialists, homeowners, local government officials and state officials. Policy design is becoming complex, in part because of this diversity and in part because scientific uncertainty hampers informed policy design. No umbrella federal legislation exists for managing groundwater resources. EPA's role has been mainly an advisory one on groundwater issues. The difficulties and responsibilities of protecting groundwater thus remain with the states. For the near future, it is the states that will address key policy choices with respect to groundwater quality management issues

  9. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  10. Arsenic contaminated groundwater and its treatment options in Bangladesh.

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman

    2012-12-20

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  11. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2012-12-01

    Full Text Available Arsenic (As causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  12. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  13. Groundwater flow system stability in shield settings a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Jensen, M.R.; Goodwin, B.W.

    2004-01-01

    Within the Deep Geologic Repository Technology Program (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a Deep Geologic Repository for used nuclear fuel waste. A specific focus in this regard has been placed on constraining redox stability and groundwater flow system dynamics during the Pleistocene. Attempts are being made to achieve this through a coordinated multi-disciplinary approach intent on; i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions; boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility various geo-scientific data in supporting a repository safety case. Coordinated by the DGRTP, elements of this program include the development of a climate driven Laurentide ice-sheet model to constrain the understanding of time rate of change in boundary conditions most affecting the groundwater flow domain and its evolution. Further work has involved supporting WRA Paleo-hydrogeologic studies in which constrained thermodynamic analyses coupled with field studies to characterize the paragenesis of fracture infill mineralogy are providing evidence to premise understandings of possible depth of penetration by oxygenated glacial recharge. In parallel. numerical simulations have been undertaken to illustrate aspect of groundwater flow system stability and evolution in a Shield setting. Such simulations

  14. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    OpenAIRE

    Palas Roy; Naba Kumar Mondal; Biswajit Das; Kousik Das

    2013-01-01

    High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India) has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Mul...

  15. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  16. The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.; Sletten, R. S.

    2017-09-01

    Don Juan Pond (DJP), Antarctica, is one of the most unusual surface waters on Earth because of its CaCl2-rich composition. To investigate the evolution of pond waters during closed-basin evaporation and to understand the source of brines responsible for the chemistry of DJP, we apply a newly developed low-temperature aqueous model in the Na-K-Ca-Mg-Cl system to DJP. By modeling the closed-basin evaporation of DJP and comparing ionic ratios between DJP surface water, deep groundwater, shallow groundwater, and other surface chemistries in Wright Valley, we find that DJP is best explained by upwelling deep groundwater, as opposed to recent hypotheses proposing shallow groundwater sources. The early closed-basin evolution of brines in our model accurately predicts observed chemistries in DJP; however, late-stage closed-basin evaporation produces Mg-K-rich brines and salts that do not match the CaCl2-rich brine in DJP. Based on groundwater inflow rates to DJP, we estimate that even the most concentrated brines in DJP have undergone closed-basin evaporation for less than a year. To explain the observed lack of Mg2+ and K+ accumulation in DJP over time, and the surprisingly young age for the brines, we deduce that DJP is a localized upwelling from a regional groundwater flow-through system in which evaporated DJP brines are recycled back into the subsurface over yearly timescales. The existence of a regional groundwater flow system beneath DJP has implications for water and solute budgets in cold desert ecosystems, and may provide clues for the formation of groundwater and aqueous flows on Mars.

  17. Nudging Evolution?

    OpenAIRE

    Katharine N. Farrell; Andreas Thiel

    2013-01-01

    This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institut...

  18. Community Evolution

    OpenAIRE

    Saganowski, Stanisław; Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Havi...

  19. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  20. Groundwater environmental capacity and its evaluation index.

    Science.gov (United States)

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity.

  1. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  2. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  3. Groundwater Drought and Recovery: a Case Study from the United Kingdom

    Science.gov (United States)

    Peach, D.; McKenzie, A. A.; Bloomfield, J.

    2012-12-01

    An understanding of the processes leading to the onset, duration and end of hydrological droughts is necessary to help improve the management of stressed or scarce water resources during such periods. In particular, the role and use of groundwater during episodes of drought is crucially important, since groundwater can provide relatively resilient water supplies during early stages of drought but maybe highly susceptible to relatively persistent or sustained droughts. Nevertheless, groundwater is seldom considered in drought analyses, and compared with other types of hydrological drought there have been few studies to date. The few previous studies of groundwater droughts at catchment- and regional-scale have shown that catchment and aquifer characteristics exert a strong influence on the spatio-temporal development of groundwater droughts as water deficit propagates through the terrestrial water cycle. In this context, the relationships between hydrogeological heterogeneity, catchment engineering infrastructure (storage), and decisions related to water resource management during drought events all shape the evolution and consequences of groundwater droughts. Here we examine the evolution of a recent regionally significant two-year drought across the United Kingdom (UK) and use it to investigate these relationships. We identify the drivers, characterise the development and spatio-temporal extent of the groundwater drought. In particular, we focus on the unusually rapid end and recovery from drought during what would normally be a period of groundwater recession. The UK, and in particular southern England, relies extensively on groundwater for public water supply, agricultural and industrial use, as well as for sustaining river flows that are essential to ecosystem health. In normal years relatively consistent rainfall patterns prevail, recharging aquifers over winter when evapotranspiration is minimal. However, by March 2012 large parts of the southern UK had

  4. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  5. Characterization of noise sources in a rod-airfoil configuration by means of Time-Resolved Tomographic PIV

    NARCIS (Netherlands)

    Lorenzoni, V.; Violato, D.; Scarano, F.

    2010-01-01

    Time-resolved Tomographic PIV was used to characterize the flow around the leading edge of a NACA 0012 airfoil in rod-airfoil configuration at ReD = 3500. The volumetric approach at relatively high temporal resolution allows the measurement of the evolution of the 3D vortical structures constituting

  6. Spatially-resolved studies of charge-density-wave phase slip and dynamics in NbSe3

    International Nuclear Information System (INIS)

    Lemay, S.G.; Adelman, T.L.; Zaitsev-Zotov, S.V.; Thorne, R.E.

    1999-01-01

    We review our spatially and temporally resolved studies of charge-density-wave (CDW) phase slip and dynamics in NbSe 3 . Measurements of the steady-state CDW current, phase slip and strain profiles and their transient evolutions in response to a change in current direction provide a detailed picture of the interplay between elastic deformations and plasticity in this material. (orig.)

  7. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  8. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  9. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  10. The impacts of groundwater heat pumps on urban shallow ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-07-25

    Jul 25, 2011 ... In order to assess the impacts of groundwater heat pumps on urban shallow groundwater ... thermal transfer systems that use the ground water as a ... Abbreviations: GWHPs, Groundwater heat pumps; GHGs, ... Areas (Mm2).

  11. Groundwater Interim Measures Work Plan for the Former Chemical Plant

    Science.gov (United States)

    May 2012 Groundwater IMWP, revised per EPA's approval, focuses on the installation of a groundwater containment system to mitigate groundwater migration from the former plant. A prior 2002 work plan is included in its entirety in Appendix B.

  12. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  13. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects.

    Science.gov (United States)

    Custodio, Emilio; Andreu-Rodes, José Miguel; Aragón, Ramón; Estrela, Teodoro; Ferrer, Javier; García-Aróstegui, José Luis; Manzano, Marisol; Rodríguez-Hernández, Luis; Sahuquillo, Andrés; Del Villar, Alberto

    2016-07-15

    Intensive groundwater development is a common circumstance in semiarid and arid areas. Often abstraction exceeds recharge, thus continuously depleting reserves. There is groundwater mining when the recovery of aquifer reserves needs more than 50years. The MASE project has been carried out to compile what is known about Spain and specifically about the south-eastern Iberian Peninsula and the Canary Islands. The objective was the synthetic analysis of available data on the hydrological, economic, managerial, social, and ethical aspects of groundwater mining. Since the mid-20th century, intensive use of groundwater in south-eastern Spain allowed extending and securing the areas with traditional surface water irrigation of cash crops and their extension to former dry lands, taking advantage of good soils and climate. This fostered a huge economic and social development. Intensive agriculture is a main activity, although tourism plays currently an increasing economic role in the coasts. Many aquifers are relatively high yielding small carbonate units where the total groundwater level drawdown may currently exceed 300m. Groundwater storage depletion is estimated about 15km(3). This volume is close to the total contribution of the Tagus-Segura water transfer, but without large investments paid for with public funds. Seawater desalination complements urban supply and part of cash crop cultivation. Reclaimed urban waste water is used for irrigation. Groundwater mining produces benefits but associated to sometimes serious economic, administrative, legal and environmental problems. The use of an exhaustible vital resource raises ethical concerns. It cannot continue under the current legal conditions. A progressive change of water use paradigm is the way out, but this is not in the mind of most water managers and politicians. The positive and negative results observed in south-eastern Spain may help to analyse other areas under similar hydrogeological conditions in a less

  14. Groundwater Contamination by Uranium and Mercury at the Ridaura Aquifer (Girona, NE Spain

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2016-08-01

    Full Text Available Elevated concentrations of uranium and mercury have been detected in drinking water from public supply and agricultural wells in alluvial and granitic aquifers of the Ridaura basin located at Catalan Coastal Ranges (CCR. The samples showed high concentrations of U above the U.S. standards and the World Health Organization regulations which set a maximum value of 30 µg/L. Further, high mercury concentrations above the European Drinking Water Standards (1 μg/L were found. Spatial distribution of U in groundwater and geochemical evolution of groundwater suggest that U levels appear to be highest in granitic areas where groundwater has long residence times and a significant salinity. The presence of high U concentrations in alluvial groundwater samples could be associated with hydraulic connection through fractures between the alluvial system and deep granite system. According to this model, oxidizing groundwater moving through fractures in the leucocratic/biotitic granite containing anomalous U contents are the most likely to acquire high levels of U. The distribution of Hg showed concentrations above 1 μg/L in 10 alluvial samples, mainly located near the limit of alluvial aquifer with igneous rocks, which suggests a possible migration of Hg from granitic materials. Also, some samples showed Hg concentrations comprised between 0.9 and 1.5 μg/L, from wells located in agricultural areas.

  15. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  16. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    Science.gov (United States)

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  18. Geochemical modelling of Na-SO4 type groundwater at Palmottu using a mass balance approach

    International Nuclear Information System (INIS)

    Pitkaenen, P.

    1993-01-01

    The mass balance chemical modelling technique has been applied to the groundwaters at the Palmottu analogue study site (in southwestern Finland) for radioactive waste disposal. The geochemical modelling concentrates on the evolution of Na-SO 4 type groundwater, which is spatially connected to the uranium mineralization. The results calculated along an assumed flow path are consistent with available field data and thermodynamic constraints. The results show that essential production of sulphides is unrealistic in the prevailing conditions. The increasing concentrations of Na, SO 4 and Cl along the evolution trend seem to have the same source and they could originate mainly from the leakage of fluid inclusions. Some mixing of relict sea water is also possible

  19. Groundwater Withdrawals under Drought: Reconciling GRACE and Models in the United States High Plains Aquifer

    Science.gov (United States)

    Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.

    2017-12-01

    Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily

  20. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  1. RESOLVE: Bridge between early lunar ISRU and science objectives

    Science.gov (United States)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  2. Mass-balance modelling results of groundwater data collected at Olkiluoto over the period 2004-2007

    Energy Technology Data Exchange (ETDEWEB)

    Partamies, S. [VTT Technical Research Centre of Finland, Espoo (Finland); Pitkaenen, P.

    2014-02-15

    Olkiluoto has been selected as a repository site for final disposal of spent nuclear waste produced in Finland. An understanding of the hydrogeochemical groundwater conditions and their evolution is essential in evaluating the long-term safety of the repository. The performance of technical barriers and the migration of potentially released radionuclides depend on the chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions, which control chemical conditions in the groundwater. The objective of this study is to present mass-balance studies of the samples collected over the period 2004 - 2007. A total of 178 groundwater samples have been collected over this period (84 groundwater observation tubes, 88 from deep multipackered boreholes and 6 from the ONKALO) which provided a comprehensive dataset on dissolved chemical species and isotopes. The PHREEQC program was used in the mass-balance calculations in order to develop geochemical interpretations of water-rock interactions, isotope-chemical evolution and the mixing of palaeowater types. A model of the hydrogeochemical evolution in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flow paths calculated. The changes in hydrogeochemical interpretations and chemical and isotopic calculations indicate that pH seems to be dominantly controlled by thermodynamic equilibrium with calcite in fractures and there are indications that this process may also occur in the overburden layer. Oxic redox conditions, prevailing in recharging groundwater, change abruptly to sulphidic conditions close to the surface, generally in the overburden. The results from the mass-balance calculations correspond and support the earlier conceptions of groundwater mixing, the origin of salinity and the hydrogeochemical evolution. The fractions of glacial meltwater indicated in these

  3. Mass-balance modelling results of groundwater data collected at Olkiluoto over the period 2004-2007

    International Nuclear Information System (INIS)

    Partamies, S.; Pitkaenen, P.

    2014-02-01

    Olkiluoto has been selected as a repository site for final disposal of spent nuclear waste produced in Finland. An understanding of the hydrogeochemical groundwater conditions and their evolution is essential in evaluating the long-term safety of the repository. The performance of technical barriers and the migration of potentially released radionuclides depend on the chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions, which control chemical conditions in the groundwater. The objective of this study is to present mass-balance studies of the samples collected over the period 2004 - 2007. A total of 178 groundwater samples have been collected over this period (84 groundwater observation tubes, 88 from deep multipackered boreholes and 6 from the ONKALO) which provided a comprehensive dataset on dissolved chemical species and isotopes. The PHREEQC program was used in the mass-balance calculations in order to develop geochemical interpretations of water-rock interactions, isotope-chemical evolution and the mixing of palaeowater types. A model of the hydrogeochemical evolution in different parts of the crystalline bedrock at Olkiluoto has been created and the significance of chemical reactions and groundwater mixing along different flow paths calculated. The changes in hydrogeochemical interpretations and chemical and isotopic calculations indicate that pH seems to be dominantly controlled by thermodynamic equilibrium with calcite in fractures and there are indications that this process may also occur in the overburden layer. Oxic redox conditions, prevailing in recharging groundwater, change abruptly to sulphidic conditions close to the surface, generally in the overburden. The results from the mass-balance calculations correspond and support the earlier conceptions of groundwater mixing, the origin of salinity and the hydrogeochemical evolution. The fractions of glacial meltwater indicated in these

  4. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain

    International Nuclear Information System (INIS)

    Ledoux, E.; Gomez, E.; Monget, J.M.; Viavattene, C.; Viennot, P.; Ducharne, A.; Benoit, M.; Mignolet, C.; Schott, C.; Mary, B.

    2007-01-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  5. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, E. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France)]. E-mail: emmanuel.ledoux@ensmp.fr; Gomez, E. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Monget, J.M. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Viavattene, C. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Viennot, P. [Centre de Geosciences, ENSMP, UMR Sisyphe, Fontainebleau (France); Ducharne, A. [Laboratoire Sisyphe, CNRS/Universite Pierre et Marie Curie, Paris (France); Benoit, M. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Mignolet, C. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Schott, C. [INRA, Station de Recherche SAD, 662 avenue Louis Buffet, 88500 Mirecourt (France); Mary, B. [INRA, Unite d' Agronomie Laon-Reims-Mons, Laon (France)

    2007-04-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  6. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  7. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  8. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  9. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  10. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  11. Institutions in transitioning peri-urban communities: spatial differences in groundwater access

    Science.gov (United States)

    Gomes, Sharlene L.; Hermans, Leon M.

    2016-05-01

    Urbanization creates challenges for water management in an evolving socio-economic context. This is particularly relevant in transitioning peri-urban areas like Khulna, Bangladesh where competing demands have put pressure on local groundwater resources. Users are unable to sufficiently meet their needs through existing institutions. These institutions provide the rules for service provision and act as guidelines for actors to resolve their water related issues. However, the evolving peri-urban context can produce fragmented institutional arrangements. For example in Khulna, water supply is based on urban and rural boundaries that has created water access issues for peri-urban communities. This has motivated local actors to manage their groundwater needs in various ways. General institutional theories are well developed in literature, yet little is known about institutions in transitioning peri-urban areas. Institutions that fail to adapt to changing dynamics run the risk of becoming obsolete or counter-productive, hence the need for investigating institutional change mechanisms in this context. This paper examines peri-urban case studies from Khulna using the Institutional Analysis and Development framework to demonstrate how institutions have contributed to spatial differences in groundwater access with local actors investing in formal and informal institutional change as a means of accessing groundwater.

  12. Limits to the availability of groundwater in Africa

    Science.gov (United States)

    Edmunds, W. Mike

    2012-06-01

    salinity of 1-3 g l-1, locally as high as 7 g l-1 in the Tunisian Chotts (Edmunds et al 2003, Zammouri et al 2007), limiting water for irrigated agriculture. The volumes of non-saline and groundwater in the total storage therefore need to be considered as part of the storage. References Edmunds W M, Dodo A, Djoret D, Gasse F, Gaye C B, Goni I B, Travi Y, Zouari K and Zuppi G M 2004 Groundwater as an archive of climatic and environmental change. The PEP-III traverse Past Climate Variability through Europe and Africa (Developments in Palaeoenvironmental Research Series) ed R W Battarbee, F Gasse and C E Stickley (Dordrecht: Kluwer) pp 279-306 Edmunds W M, Guendouz A H, Mamou A, Moulla A S, Shand P and Zouari K 2003 Groundwater evolution in the Continental Intercalaire aquifer of Southern Algeria and Tunisia: trace element and isotopic indicators Appl. Geochem. 18 805-22 George R, McFarlane D and Nulsen R 1997 Salinity threatens the viability of agriculture and ecosystems in Western Australia Hydrogeol. J. 5 6-21 MacDonald A M, Bonsor H C, O'Dochartaigh B E and Taylor R G 2012 Quantitative maps of groundwater resources in Africa Environ. Res. Lett. 7 024009 Matete M and Hassan R 2005 Anecological economics framework for assessing environmental flows: the case of inter-basin water transfers in Lesotho Glob. Planet. Change 47 193-200 Pallas P 1980 Water resources of the Socialist People's Libyan Arab Jamahariya The Geology of Libya vol 2, ed M J Salem and M T Busrewil (London: Academic) pp 539-94 Pallas P and Salem O 2001 Water resources utilisation and management of the Socialist People's Arab Jamahiriya Regional Aquifer Systems in Arid Zones—Managing Non-Renewable Resources (IHP-V Technical Documents in Hydrology) (Paris: UNESCO) pp 147-72 Scanlon B R and Cook P G 2002 Preface: theme issue on groundwater recharge Hydrogeol. J. 10 3-4 and following papers Scanlon B R, Keese K E, Flint A L, Flint L E, Gaye C B, Edmunds W M and Simmers I 2006 Global synthesis of groundwater

  13. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  14. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  15. Origin of hexavalent chromium in groundwater

    DEFF Research Database (Denmark)

    Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.

    2017-01-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest w...

  16. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  17. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  18. Improving fresh groundwater supply - problems and solutions

    NARCIS (Netherlands)

    Oude Essink, Gualbert

    2001-01-01

    Many coastal regions in the world experience an intensive salt water intrusion in aquifers due to natural and anthropogenic causes. The salinisation of these groundwater systems can lead to a severe deterioration of the quality of existing fresh groundwater resources. In this paper, the

  19. Assessment and uncertainty analysis of groundwater risk.

    Science.gov (United States)

    Li, Fawen; Zhu, Jingzhao; Deng, Xiyuan; Zhao, Yong; Li, Shaofei

    2018-01-01

    Groundwater with relatively stable quantity and quality is commonly used by human being. However, as the over-mining of groundwater, problems such as groundwater funnel, land subsidence and salt water intrusion have emerged. In order to avoid further deterioration of hydrogeological problems in over-mining regions, it is necessary to conduct the assessment of groundwater risk. In this paper, risks of shallow and deep groundwater in the water intake area of the South-to-North Water Transfer Project in Tianjin, China, were evaluated. Firstly, two sets of four-level evaluation index system were constructed based on the different characteristics of shallow and deep groundwater. Secondly, based on the normalized factor values and the synthetic weights, the risk values of shallow and deep groundwater were calculated. Lastly, the uncertainty of groundwater risk assessment was analyzed by indicator kriging method. The results meet the decision maker's demand for risk information, and overcome previous risk assessment results expressed in the form of deterministic point estimations, which ignore the uncertainty of risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Local groundwater depression around a repository

    International Nuclear Information System (INIS)

    Thunvik, R.

    1978-01-01

    Local Groundwater Depression around a Repository. A two-dimensional flow analysis was made to study the effect on the groundwater table due to drainage of the storage tunnels during the construction resp. operation period. The net accretion to the phreatic surface was assumed evenly distributed in space and time. Numerical examples with equipotentials and consecutive positions of the phreatic surface are presented

  1. Hydrogeochemical Evolution of the Laxemar Site

    International Nuclear Information System (INIS)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Salas, Joaquin; Molinero, Jorge

    2010-11-01

    The chemical composition of groundwater in the rock volume surrounding a spent nuclear fuel repository is of importance to many variables that affect repository performance. One of the questions to be addressed is whether the chemical environment will remain favourable over time under the expected environmental evolution. Different groundwater compositions will prevail around the repository as a result of the different types of climate domains and their corresponding hydraulic conditions. The successions of temperate, periglacial and glacial climate domains will affect both the groundwaters' flow and composition around the repository. For a specific location, the evolution between climate domains will be gradual. For example, during a temperate domain, temperatures may slowly decrease such that periglacial conditions slowly develop within parts of the repository region. In SR-Site, the evaluation of geochemical effects is restricted to using separate specifications for the different climatic domains. During the initial temperate period after closure, the infiltration of meteoric waters, the displacement of the Baltic shoreline, and the changes in annual precipitation are the key processes controlling the evolution of the hydrogeology of the site. On the other hand, the groundwater chemistry for periods in which the repository is under permafrost or under an ice sheet (during periglacial and glacial conditions, respectively) is expected to change by the infiltration of glacial melt waters, and by the upconing of deep saline groundwaters. Immediately after the retreat of an ice sheet, isostatic depression will set the ground surface at the repository site below the Baltic Sea surface level for a period of time. In the reference evolution, the Laxemar site is expected to be flooded under a lake of glacial melt water and, then, under marine or brackish waters during a period of time from a few thousand years up to, perhaps, ten thousand years.These phenomena will

  2. Hydrogeochemical Evolution of the Laxemar Site

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B. (Univ. of Zaragoza (Spain)); Salas, Joaquin; Molinero, Jorge (Amphos 21, Barcelona (Spain))

    2010-11-15

    The chemical composition of groundwater in the rock volume surrounding a spent nuclear fuel repository is of importance to many variables that affect repository performance. One of the questions to be addressed is whether the chemical environment will remain favourable over time under the expected environmental evolution. Different groundwater compositions will prevail around the repository as a result of the different types of climate domains and their corresponding hydraulic conditions. The successions of temperate, periglacial and glacial climate domains will affect both the groundwaters' flow and composition around the repository. For a specific location, the evolution between climate domains will be gradual. For example, during a temperate domain, temperatures may slowly decrease such that periglacial conditions slowly develop within parts of the repository region. In SR-Site, the evaluation of geochemical effects is restricted to using separate specifications for the different climatic domains. During the initial temperate period after closure, the infiltration of meteoric waters, the displacement of the Baltic shoreline, and the changes in annual precipitation are the key processes controlling the evolution of the hydrogeology of the site. On the other hand, the groundwater chemistry for periods in which the repository is under permafrost or under an ice sheet (during periglacial and glacial conditions, respectively) is expected to change by the infiltration of glacial melt waters, and by the upconing of deep saline groundwaters. Immediately after the retreat of an ice sheet, isostatic depression will set the ground surface at the repository site below the Baltic Sea surface level for a period of time. In the reference evolution, the Laxemar site is expected to be flooded under a lake of glacial melt water and, then, under marine or brackish waters during a period of time from a few thousand years up to, perhaps, ten thousand years.These phenomena will

  3. Comparative study of urban development and groundwater condition in coastal areas of Buenos Aires, Argentina

    Science.gov (United States)

    Rodrigues Capítulo, Leandro; Carretero, Silvina C.; Kruse, Eduardo E.

    2017-08-01

    The geomorphological evolution of a sand-dune barrier in Buenos Aires, Argentina, is analyzed as a factor regulating the fresh groundwater reserves available. The impact of geomorphological evolution and the consequences for the social and economic development of two coastal areas are assessed. This is one of the most important tourist destinations in the country; for study purposes, it was divided into a northern sector and a southern sector. In the southern sector, the exploitable groundwater is associated with the Holocene and upper Pleistocene geomorphological evolution, which generated three interrelated aquifer units, constituting a system whose useful thickness reaches at least 45 m. In contrast, the northern sector is restricted to two Holocene aquifer units, whose total thickness is on the order of 12 m. The morphological characteristics and the occurrence of the largest fresh groundwater reserves in the southern sector are indicators of better conditions for economic growth, which is mainly reflected on the expansion of real estate ventures. The relationships of transmissivity vs area of real estate ventures (Arev), and total water consumption vs Arev, are indicators for the sustainable management of the water resources. The approach chosen may be used by decision makers in other regions to assess the feasibility of future tourism projects on the basis of the availability of water resources associated with geomorphological features.

  4. A high resolution global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  5. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  6. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  7. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  8. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....

  9. Spatial Isotopic Characterization of Slovak Groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P. P.; Sivo, A.; Breier, R.; Richtarikova, M. [Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava (Slovakia); Zenisova, Z. [Comenius University, Faculty of Natural Sciences, Bratislava (Slovakia); Aggarwal, P. K.; Araguas Araguas, L. [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria)

    2013-07-15

    Zitny ostrov (Rye Island) in the south west of Slovakia is the largest groundwater reservoir in Central Europe (about 10 Gm{sup 3}). Groundwater contamination with radionuclides, heavy metals and organic compounds from the Danube River and local industrial and agricultural activities has recently been of great concern. Geostatistical analysis of experimental isotope data has been carried out with the aim of better understanding groundwater dynamics. For this purpose, spatial variations in the distribution of water isotopes and radiocarbon in the groundwater of Zitny ostrov have been evaluated. Subsurface water profiles showed enriched {delta}{sup 18}O levels at around 20 m water depth, and depleted values below 30 m, which are similar to those observed in the Danube River. The core of the subsurface {sup 14}C profiles represents contemporary groundwater with {sup 14}C values above 80 pMc. (author)

  10. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  11. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DAEA cellulose to the groundwater to remove humic material, also removed the majority of organic species which absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the completed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (author)

  12. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DEAE cellulose to the groundwater to remove humic material, also removed the majority of organic species with absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the complexed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (orig.)

  13. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content

  14. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  15. 238U + n resolved resonance energies

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1978-01-01

    Neutron transmission measurements from 100 eV to 170 keV at 150 m through four 238 U samples are reported. The energy calibration is described, and the resultant 233 U resolved resonance energies are found to be intermediate between those from other workers. In addition, some energies for sharp resonances in 23 Na, 27 Al, 32 S, and 206 Pb are given

  16. Generalized Darcy–Oseen resolvent problem

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar; Ptashnyk, M.; Varnhorn, W.

    2016-01-01

    Roč. 39, č. 6 (2016), s. 1621-1630 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : Darcy-Oseen resolvent problem * semipermeable membrane * Brinkman-Darcy equations * fluid flow between free-fluid domains and porous media Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3872/abstract

  17. On marginally resolved objects in optical interferometry

    Science.gov (United States)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  18. Hydrogeological and hydrogeochemical investigations in boreholes - Final report of the phase I geochemical investigations of the Stripa groundwaters

    International Nuclear Information System (INIS)

    Nordstroem, D.K.; Carlsson, L.; Fontes, J.C.; Frits, P.; Moser, H.; Olsson, T.

    1985-07-01

    The hydrogeochemical investigations of Phase I of the Stripa Project (1980-1984) have been completed, and the results are presented in this final report. All chemical and isotopic data on the groundwaters from the beginning to the Stripa Project to the present (1977-84) are tabulated an used in the final interpretations. The background geology and hydrology is summarized and updated along with new analyses of the Stripa grantie. Water-rock interactions form a basic framework for the changes in major-element chemistry with depth, including carbonate geochemistry, the fluid-inclusion hypothesis, redox processes, and mineral precipitation. The irregular distribution of chloride suggests channelling is occurring and the effect of thermomechanical perturbations on the groundwater chemistry is documented. Stable and radioactive isotpes provide information of the origin and evolution of the groundwater itself and of several elments within the groundwater. Subsurface production of radionuclides is documented in these investigations, and a general picture of uranium transformations during weathering is presented. One of the primary conclusions reached in these studies is that different dissolved constituents will provide different residence times because they have different origins and different evolutionary histories that may or may not be related to the overall evolution of the groundwater itself. (author)

  19. Groundwater chemistry characterization using multi-criteria approach: The upper Samalá River basin (SW Guatemala)

    Science.gov (United States)

    Bucci, Arianna; Franchino, Elisa; De Luca, Domenico Antonio; Lasagna, Manuela; Malandrino, Mery; Bianco Prevot, Alessandra; Hernández Sac, Humberto Osvaldo; Coyoy, Israel Macario; Sac Escobar, Edwin Osvaldo; Hernández, Ardany

    2017-10-01

    Improving understanding on groundwater chemistry is a key priority for water supply from groundwater resources, especially in developing countries. A hydrochemical study was performed in an area of SW Guatemala (Samalà River basin), where water supply to population is groundwater-based and no systematic studies on its groundwater resources have been performed so far. Traditional hydrochemical analyses on major ions and some trace elements metals coupled with chemometric approach were performed, including principal component analysis and hierarchical clustering analysis. Results evidence that chemical differentiation is linked to the spatial distribution of sampled waters. The most common hydrochemical facies, bicarbonate calcium and magnesium, is linked to infiltration of meteoric waters in recharge areas represented by highlands surrounding Xela caldera, a wide plateau where most of population is concentrated. This trend undergoes chemical evolution in proximity of active volcanic complexes in the southern area, with enrichment in sulphate, chloride and magnesium. Chemical evolution also occurs towards the centre of Xela caldera due to slow circulation in aquifer and consequent sodium enrichment due to ion exchange with the porous medium. Water quality did not reveal severe concerns, even though some sources of contamination could be identified; in particular, agriculture and urban wastewater could be responsible for observed threshold exceedances in nitrate and lead. This integrated multi-approach to hydrochemical data interpretation yielded to the achievement of important information that poses the basis for future groundwater protection in an area where main water features were almost unknown.

  20. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  1. Automating Groundwater Sampling At Hanford, The Next Step

    International Nuclear Information System (INIS)

    Connell, C.W.; Conley, S.F.; Hildebrand, R.D.; Cunningham, D.E.

    2010-01-01

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very 'people intensive.' Approximately 1500 wells are sampled each year by field personnel or 'samplers.' These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  2. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    International Nuclear Information System (INIS)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David; Gylling, Bjoern; Marsic, Niko; Rhen, Ingvar

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  3. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  4. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  5. New Module to Simulate Groundwater-Surface Water Interactions in Small-Scale Alluvial Aquifer System.

    Science.gov (United States)

    Flores, L.

    2017-12-01

    Streamflow depletion can occur when groundwater pumping wells lower water table elevations adjacent to a nearby stream. Being able to accurately model the severity of this process is of critical importance in semi-arid regions where groundwater-surface water interactions affect water rights and the sustainability of water resource practices. The finite-difference flow model MODFLOW is currently the standard for estimating groundwater-surface water interactions in many regions in the western United States. However, certain limitations of the model persist when highly-resolved spatial scales are used to represent the stream-aquifer system, e.g. when the size of computational grid cells is much less than the river width. In this study, an external module is developed and linked with MODFLOW that (1) allows for multiple computational grid cells over the width of the river; (2) computes streamflow and stream stage along the length of the river using the one-dimensional (1D) steady (over a stress period) shallow water equations, which allows for more accurate stream stages when normal flow cannot be assumed or a rating curve is not available; and (3) incorporates a process for computing streamflow loss when an unsaturated zone develops under the streambed. Use of the module not only provides highly-resolved estimates of streamflow depletion, but also of streambed hydraulic conductivity. The new module is applied to the stream-aquifer alluvial system along the South Platte River south of Denver, Colorado, with results tested against field-measured groundwater levels, streamflow, and streamflow depletion.

  6. Microbial DNA; a possible tracer of groundwater

    Science.gov (United States)

    Sugiyama, Ayumi; Segawa, Takuya; Furuta, Tsuyumi; Nagaosa, Kazuyo; Tsujimura, Maki; Kato, Kenji

    2017-04-01

    Though chemical analysis of groundwater shows an averaged value of chemistry of the examined water which was blended by various water with different sources and routes in subsurface environment, microbial DNA analysis may suggest the place where they originated, which may give information of the source and transport routes of the water examined. A huge amount of groundwater is stored in lava layer with maximum depth of 300m in Mt. Fuji (3,776m asl ), the largest volcanic mountain in Japan. Although the density of prokaryotes was low in the examined groundwater of Mt. Fuji, thermophilic prokaryotes as Thermoanaerobacterales, Gaiellales and Thermoplasmatales were significantly detected. They are optimally adapted to the temperature higher than 40oC. This finding suggests that at least some of the source of the examined groundwater was subsurface environment with 600m deep or greater, based on a temperature gradient of 4oC/100m and temperature of spring water ranges from 10 to 15oC in the foot of Mt. Fuji. This depth is far below the lava layer. Thus, the groundwater is not simply originated from the lava layer. In addition to those findings, we observed a very fast response of groundwater just a couple of weeks after the heavy rainfall exceeding 2 or 300 mm/event in Mt. Fuji. The fast response was suggested by a sharp increase in bacterial abundance in spring water located at 700m in height in the west foot of Mt. Fuji, where the average recharge elevation of groundwater was estimated to be 1,500m - 1,700m (Kato et. al. EGU 2016). This increase was mainly provided by soil bacteria as Burkholderiales, which might be detached from soil by strengthened subsurface flow caused by heavy rainfall. This suggests that heavy rainfall promotes shallow subsurface flow contributing to the discharge in addition to the groundwater in the deep aquifer. Microbial DNA, thus could give information about the route of the examined groundwater, which was never elucidated by analysis of

  7. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  8. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  9. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    Science.gov (United States)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  10. Application of a modified conceptual rainfall-runoff model to simulation of groundwater level in an undefined watershed.

    Science.gov (United States)

    Hong, Nian; Hama, Takehide; Suenaga, Yuichi; Aqili, Sayed Waliullah; Huang, Xiaowu; Wei, Qiaoyan; Kawagoshi, Yasunori

    2016-01-15

    Groundwater level simulation models can help ensure the proper management and use of urban and rural water supply. In this paper, we propose a groundwater level tank model (GLTM) based on a conceptual rainfall-runoff model (tank model) to simulate fluctuations in groundwater level. The variables used in the simulations consist of daily rainfall and daily groundwater level, which were recorded between April 2011 and March 2015 at two representative observation wells in Kumamoto City, Japan. We determined the best-fit model parameters by root-mean-square error through use of the Shuffled Complex Evolution-University of Arizona algorithm on a simulated data set. Calibration and validation results were evaluated by their coefficients of determination, Nash-Sutcliffe efficiency coefficients, and root-mean-square error values. The GLTM provided accurate results in both the calibration and validation of fluctuations in groundwater level. The split sample test results indicate a good reliability. These results indicate that this model can provide a simple approach to the accurate simulation of groundwater levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Interaction of low pH cementitious concretes with groundwaters

    International Nuclear Information System (INIS)

    Garcia Calvo, Jose Luis; Alonso, Maria Cruz; Hidalgo, Ana; Fernandez Luco, Luis

    2012-01-01

    Some engineering construction concepts for high level radioactive waste underground repositories consider the use of a bentonite barrier in contact with cementitious materials with a pore fluid pH value inferior or equal to 11 (based on low-pH cements) to maintain the bentonite stability. The research on low-pH cementitious materials is mainly addressed from two different approaches, one with Calcium Silicate Cements (OPC, Ordinary Portland Cement based), the other with Calcium Aluminates Cements (CAC based). The use of these both types of cements (OPC based or CAC based) implies the use of high mineral additions contents in the binder that should significantly modify most of the concrete 'standard' properties. Taking into account the long life expected in this type of repositories, parameters related to the durability of the low-pH concretes must be analyzed. This work shows some recent studies that deal with the evaluation of the resistance of low-pH concretes to long term groundwater aggression. After a presentation of the accelerated leaching test (based on a percolation method), results are given for the characterization of the leaching solution evolution and the evaluation of the modifications generated in the solid phases. Results show that the low-pH concretes evaluated have good resistance against groundwater interaction, although an altered front can be observed from the surface in all the tested samples

  12. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  13. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches.

    Science.gov (United States)

    Liu, Pu; Hoth, Nils; Drebenstedt, Carsten; Sun, Yajun; Xu, Zhimin

    2017-12-01

    Groundwater is an important drinking water resource that requires protection in North China. Coal mining industry in the area may influence the water quality evolution. To provide primary characterization of the hydrogeochemical processes and paths that control the water quality evolution, a complex multi-layer groundwater system in a coal mining area is investigated. Multivariate statistical methods involving hierarchical cluster analysis (HCA) and principal component analysis (PCA) are applied, 6 zones and 3 new principal components are classified as major reaction zones and reaction factors. By integrating HCA and PCA with hydrogeochemical correlations analysis, potential phases, reactions and connections between various zones are presented. Carbonates minerals, gypsum, clay minerals as well as atmosphere gases - CO 2 , H 2 O and NH 3 are recognized as major reactants. Mixtures, evaporation, dissolution/precipitation of minerals and cation exchange are potential reactions. Inverse modeling is finally used, and it verifies the detailed processes and diverse paths. Consequently, 4 major paths are found controlling the variations of groundwater chemical properties. Shallow and deep groundwater is connected primarily by the flow of deep groundwater up through fractures and faults into the shallow aquifers. Mining does not impact the underlying aquifers that represent the most critical groundwater resource. But controls should be taken to block the mixing processes from highly polluted mine water. The paper highlights the complex hydrogeochemical evolution of a multi-layer groundwater system under mining impact, which could be applied to further groundwater quality management in the study area, as well as most of the other coalfields in North China. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  15. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  17. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  18. Review: Regional land subsidence accompanying groundwater extraction

    Science.gov (United States)

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  19. Environmental implementation plan: Chapter 7, Groundwater protection

    International Nuclear Information System (INIS)

    Wells, D.

    1994-01-01

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities

  20. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  1. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  2. Groundwater fluoride contamination: A reappraisal

    Directory of Open Access Journals (Sweden)

    Amlan Banerjee

    2015-03-01

    Full Text Available Dissolution of fluorite (CaF2 and/or fluorapatite (FAP [Ca5(PO43F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F− contamination. Here, one dimensional reactive–transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F− and CO32− and negative correlation between F− and Ca2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 106 orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock–water interaction time must be long and of order 106 years.

  3. Quantitative maps of groundwater resources in Africa

    International Nuclear Information System (INIS)

    MacDonald, A M; Bonsor, H C; Dochartaigh, B É Ó; Taylor, R G

    2012-01-01

    In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km 3 (0.36–1.75 million km 3 ). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s −1 ), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s −1 ) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level. (letter)

  4. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  5. Om religion og evolution

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2011-01-01

    for kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...

  6. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is