WorldWideScience

Sample records for resolvable temperature difference

  1. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  2. Methodology Plan for Minimum Resolvable Temperature Difference (MRTD) Testing of Aircraft Installed Sensors

    Science.gov (United States)

    2011-03-23

    transmittance/reflectance can also be affected by the surface material (e.g., glass versus aluminum ) and the angle of incidence the light makes with the surface...ºC) with a CTE that is ten times lower than aluminum . Graphite epoxy structures provide an excellent trade-off between weight, cost, and robustness...absolute and relative) which defines temperatures based on effects of ambient background or thermometric fluctuations. 2. Remote Panel. The Remote

  3. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  4. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  5. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  6. Using a referee to resolve shipper-receiver differences

    International Nuclear Information System (INIS)

    Tietjen, G.L.

    1981-01-01

    Within the nuclear community, shipper-receiver differences generate considerable concern. Current methods of resolving these differences are discussed, prticularly the use of an umpire or referee. Numerous statistical problems connected with the present procedures are also considered

  7. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  8. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  9. 48 CFR 2052.242-70 - Resolving differing professional views.

    Science.gov (United States)

    2010-10-01

    ... resolution of differing professional views (DPVs) of health and safety related concerns associated with the... professional views. 2052.242-70 Section 2052.242-70 Federal Acquisition Regulations System NUCLEAR REGULATORY....242-70 Resolving differing professional views. As prescribed in 2042.570-1, the contracting officer...

  10. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  11. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  12. Temperature of thermal plasma jets: A time resolved approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahasrabudhe, S N; Joshi, N K; Barve, D N; Ghorui, S; Tiwari, N; Das, A K, E-mail: sns@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 094 (India)

    2010-02-01

    Boltzmann Plot method is routinely used for temperature measurement of thermal plasma jets emanating from plasma torches. Here, it is implicitly assumed that the plasma jet is 'steady' in time. However, most of the experimenters do not take into account the variations due to ripple in the high current DC power supplies used to run plasma torches. If a 3-phase transductor type of power supply is used, then the ripple frequency is 150 Hz and if 3- phase SCR based power supply is used, then the ripple frequency is 300 Hz. The electrical power fed to plasma torch varies at ripple frequency. In time scale, it is about 3.3 to 6.7 ms for one cycle of ripple and it is much larger than the arc root movement times which are within 0.2 ms. Fast photography of plasma jets shows that the luminosity of plasma jet also varies exactly like the ripple in the power supply voltage and thus with the power. Intensity of line radiations varies nonlinearly with the instantaneous power fed to the torch and the simple time average of line intensities taken for calculation of temperature is not appropriate. In this paper, these variations and their effect on temperature determination are discussed and a method to get appropriate data is suggested. With a small adaptation discussed here, this method can be used to get temperature profile of plasma jet within a short time.

  13. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 48 CFR 2052.242-71 - Procedures for Resolving Differing Professional Views.

    Science.gov (United States)

    2010-10-01

    ... Differing Professional Views. 2052.242-71 Section 2052.242-71 Federal Acquisition Regulations System NUCLEAR... Clauses 2052.242-71 Procedures for Resolving Differing Professional Views. As prescribed in 2042.570-2(b... contracting officer. Procedures for Resolving NRC Contractor Differing Professional Views (DPVs) (OCT 1999) (a...

  15. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  16. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  17. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Science.gov (United States)

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  19. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  20. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  1. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  2. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  3. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  4. ZUT, Resonance Integrals in Resolved Region at Various Temperature, Escape Probability Calculation

    International Nuclear Information System (INIS)

    Kuncir, G.F.

    1984-01-01

    1 - Nature of physical problem solved: ZUT computes resonance integrals from resonance parameters for a wide variety of temperatures, compositions, and geometries for the resolved resonances. 2 - Method of solution: The form used permits specification of escape probability as a function of the lump dimension and the mean free path. The absorber term may be treated by the integral method, the narrow resonance or the infinite mass approximation. Moderator terms may be represented either by the full integral method (IM) or the asymptotic (NR) form

  5. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  6. Extracting the temperature of hot carriers in time- and angle-resolved photoemission

    International Nuclear Information System (INIS)

    Ulstrup, Søren; Hofmann, Philip; Johannsen, Jens Christian; Grioni, Marco

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment

  7. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    Science.gov (United States)

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  8. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    Science.gov (United States)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  9. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...

  10. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  11. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar.

    Science.gov (United States)

    Harrison, Steven M; Dolinsky, Jill S; Knight Johnson, Amy E; Pesaran, Tina; Azzariti, Danielle R; Bale, Sherri; Chao, Elizabeth C; Das, Soma; Vincent, Lisa; Rehm, Heidi L

    2017-10-01

    Data sharing through ClinVar offers a unique opportunity to identify interpretation differences between laboratories. As part of a ClinGen initiative, four clinical laboratories (Ambry, GeneDx, Partners Healthcare Laboratory for Molecular Medicine, and University of Chicago Genetic Services Laboratory) collaborated to identify the basis of interpretation differences and to investigate if data sharing and reassessment resolve interpretation differences by analyzing a subset of variants. ClinVar variants with submissions from at least two of the four participating laboratories were compared. For a subset of identified differences, laboratories documented the basis for discordance, shared internal data, independently reassessed with the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines, and then compared interpretations. At least two of the participating laboratories interpreted 6,169 variants in ClinVar, of which 88.3% were initially concordant. Laboratories reassessed 242/724 initially discordant variants, of which 87.2% (211) were resolved by reassessment with current criteria and/or internal data sharing; 12.8% (31) of reassessed variants remained discordant owing to differences in the application of the ACMG-AMP guidelines. Participating laboratories increased their overall concordance from 88.3 to 91.7%, indicating that sharing variant interpretations in ClinVar-thereby allowing identification of differences and motivation to resolve those differences-is critical to moving toward more consistent variant interpretations.Genet Med advance online publication 09 March 2017.

  12. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  13. Detection of Temperature Difference in Neuronal Cells.

    Science.gov (United States)

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-03-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.

  14. See laser testing at different temperatures

    Directory of Open Access Journals (Sweden)

    Alexander Anatolievich Novikov

    2016-10-01

    Full Text Available The main problem for laser SEE testing at different temperatures is to determine correlation between laser pulse energy and LET. In the first approximation, LET values with the same laser pulse energy and different temperatures are directly proportional to the absorption coefficient of laser light in a semiconductor. Use of tabulated values could lead to errors and absorption coefficient should be determined for each sensitive volume of device under test (DUT. Temperature dependence of absorption coefficient could be determined using ionization response of DUT in power supply circuit under local laser irradiation. Using this approach a satisfactory correlation of ion and laser SEE test result was observed.

  15. Data scaling and temperature calibration in time-resolved photocrystallographic experiments

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Kaminski, Radoslaw; Benedict, Jason B.

    2010-01-01

    -steady-state experiments conducted at conventional sources, but not negligible in synchrotron studies in which very short laser exposures may be adequate. The relative scaling of the light-ON and light-OFF data and the correction for temperature differences between the two sets are discussed....

  16. Time-resolved x-ray diffraction measurement of C60 under high pressure and temperature using synchrotron radiation

    International Nuclear Information System (INIS)

    Horikawa, T; Suito, K; Kobayashi, M; Onodera, A

    2002-01-01

    C 60 has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C 60 structure are presented and the relevance to the hardness of materials derived from C 60 is discussed

  17. Annually-resolved temperature reconstructions of the past 2000 years from Dome-Fuji, East Antarctica

    Science.gov (United States)

    Motizuki, Yuko; Takahashi, Kazuya; Nakai, Yoichi; Motoyama, Hideaki

    2016-04-01

    We present annually-resolved temperature and SST reconstructions of the past 2000 years based on water (oxygen and deuterium) isotope measurement on a shallow ice core drilled in 2010 at Dome Fuji station, East Antarctica. These time series records will be an essential contribution to the PAGES 2k project from sparse data area in Antarctica. Dome Fuji station is located on a summit of Dronning Maud Land at an altitude of 3810 m a.s.l. (above sea level) (77o19'01'' S, 39o42'12'' E) in East Antarctica. The 10 m depth mean snow temperature at Dome Fuji is -57.3oC1). The inland area around Dome Fuji has been recognized to be especially unique: The snow and ice there contain much stratospheric information. The direct evidence for this comes from tritium contents originated from the nuclear bomb tests in the 1960s; the tritium fallout at the Dome Fuji site is outstandingly high among 16 snow pit samples widely collected over Antarctica2). To date the concerned Dome Fuji ice core, we applied volcanic signature matching to transfer the West Antarctic Ice Sheet (WAIS) Divide ice core chronology constructed by annual layer counting as used in the study by Sigl et al. (2014)3). In our presentation, we confine ourselves to discuss the oscillation periodicity that we observed in the oxygen isotope record in our data: The periods of approximately 10, 20, and 200 years were found. We will present the time series analyses for this in detail, and will discuss the origin of this periodicity. References: 1) Kameda, T., Motoyama, H., Fujita, S., and Takahashi, S.: "Past temporal and spatial variability of surface mass balance at Dome Fuji", East Antarctica, by the stake method from 1995 to 2006, J. Glaciol., 54, 107-116, 2008. 2) Fourre, E., Jean-Baptiste, P., Dapoigny, A., Baumier, D., Petit, J.-R., and Jouzel, J.: "Past and recent tritium levels in Arctic and Antarctic polar caps", Earth Planet. Sc. Lett., 245, 56-64, 2006. 3) Sigl, M., J. McConnell, M. Toohey, M. Curran, S. Das, R

  18. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    Directory of Open Access Journals (Sweden)

    Ruth E Propper

    2013-03-01

    Full Text Available We review literature examining relationships between tympanic membrane temperature (TMT, affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demanding the processing and representation of emotional and/or motivational states, and for predicting trait-related affective/motivational orientations. The precise nature of the relationship between TMT and brain physiology, however, remains elusive. Indeed the limited extant research has sampled different participant populations and employed largely different procedures and measures, making for seemingly discrepant findings and implications. We propose, however, that many of these discrepancies can be resolved by considering how emotional states map onto motivational systems, and further examining how validated methods for inducing lateralized brain activity might affect TMT.

  19. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  20. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  1. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  2. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    International Nuclear Information System (INIS)

    Cottingham, Patrick; Morey, Jennifer R.; Lemire, Amanda; Lemire, Penny; McQueen, Tyrel M.

    2016-01-01

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe a rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.

  3. Myoglobin solvent structure at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, B.V.; Korszun, Z.R. [Brookhaven National Laboratory, Upton, NY (United States); Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  4. Urban-Rural Temperature Differences in Lagos

    Directory of Open Access Journals (Sweden)

    Vincent N. Ojeh

    2016-05-01

    Full Text Available In this study, the hourly air temperature differences between City hall (urban and Okoafo (rural in Lagos, Nigeria, were calculated using one year of meteorological observations, from June 2014 to May 2015. The two sites considered for this work were carefully selected to represent their climate zones. The city core, City hall, is within the Local Climate Zone (LCZ 2 (Compact midrise while the rural location, Okoafo, falls within LCZ B (Scattered Trees in the south-western part on the outskirt of the city. This study is one of very few to investigate urban temperature conditions in Lagos, the largest city in Africa and one of the most rapidly urbanizing megacities in the world; findings show that maximum nocturnal UHI magnitudes in Lagos can exceed 7 °C during the dry season, and during the rainy season, wet soils in the rural environment supersede regional wind speed as the dominant control over UHI magnitude.

  5. Myoglobin solvent structure at different temperatures

    International Nuclear Information System (INIS)

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-01-01

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B sn , versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35 Angstrom and 3.85 Angstrom. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased

  6. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    Science.gov (United States)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  7. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  8. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    Science.gov (United States)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  9. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  10. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    Science.gov (United States)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  11. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  12. Molecular Dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)

    2015-08-18

    Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  13. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  14. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  15. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  16. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  17. Resolving the neutrino mass hierarchy and CP degeneracy by two identical detectors with different baselines

    International Nuclear Information System (INIS)

    Ishitsuka, Masaki; Kajita, Takaaki; Minakata, Hisakazu; Nunokawa, Hiroshi

    2005-01-01

    We explore the possibility of the simultaneous determination of neutrino mass hierarchy and the CP violating phase by using two identical detectors placed at different baseline distances. We focus on a possible experimental setup using a neutrino beam from the J-PARC facility in Japan with a beam power of 4 MW and megaton (Mton)-class water Cherenkov detectors, one placed in Kamioka and the other somewhere in Korea. We demonstrate, under reasonable assumptions of systematic uncertainties, that the two-detector complex with each fiducial volume of 0.27 Mton has a potential of resolving the neutrino mass hierarchy up to sin 2 2θ 13 >0.03 (0.055) at 2σ (3σ) C.L. for any values of δ and at the same time has the sensitivity to CP violation by 4+4 years running of ν e and ν e appearance measurement. The significantly enhanced sensitivity is due to clean detection of the modulation of the neutrino energy spectrum, which is enabled by the cancellation of systematic uncertainties between two identical detectors which receive the neutrino beam with the same energy spectrum in the absence of oscillations

  18. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  19. Extracting the temperature of hot carriers in time- and angle-resolved photoemission

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco

    2014-01-01

    The interaction of light with a material’s electronic system creates an out-of-equilibrium (nonthermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature......, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment...

  20. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Temperature measurements of shocked translucent materials by time-resolved infrared radiometry

    International Nuclear Information System (INIS)

    Von Holle, W.G.

    1981-01-01

    Infrared emission in the range 2 to 5.5 μm has been used to measure temperatures in shock-compressed states of nitromethane, cyclohexane and benzene and in polycrystalline KBr. Polymethylmethacrylate shows anomolous emission probably associated with some heterogeneity

  2. Time-resolved tomographic measurements of temperatures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří

    2010-01-01

    Roč. 43, č. 5 (2010), s. 1-9 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * optical diagnostics * temperature distribution Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010

  3. Temperature effects on flocculation, using different coagulants.

    Science.gov (United States)

    Fitzpatrick, C S B; Fradin, E; Gregory, J

    2004-01-01

    Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.

  4. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  5. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  6. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Yu, Zhikang; Ast, Sandra; Rutledge, Peter J; Wong, Joseph K-H; Jamalipour, Abbas; Crossley, Maxwell J

    2017-05-30

    A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λ ex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn 2+ is observed to accelerate with an increasing rate constant, k = 1.94 min -1 at T = 15 °C and k = 3.64 min -1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

  7. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    Science.gov (United States)

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  8. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  9. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  10. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  11. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature......The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C...... of the corrosion products as a function of distance from the deposit surface were revealed through this comprehensive characterisation. Corrosion attack during simulated straw-firing conditions was observed to occur through both active oxidation and sulphidation mechanisms....

  12. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  13. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  14. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    Science.gov (United States)

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  15. [Features of interpersonal behavior among executives of healthcare institutions with different styles of resolving management decisions].

    Science.gov (United States)

    Vezhnovets', T A

    2014-01-01

    The aim of this work is to study the influence of the type of interpersonal relationships between executives and subordinates in healthcare institutions on their style of resolving management decision. It was established that indulgent and autonomous style are formed against background of liberal interpersonal relationship by the following criteria, as the absence of dominant traits, expressed benevolence among executives with autonomous style, uncertainty and inexperience among executives with indulgent style. Authoritarian and marginal styles are formed against empowerment and dominance in relationship with subordinates by expressed dominance criteria, as leadership qualities among executives with authoritarian style or as a manifestation of social maladjustment among executives with marginal style. Type of interpersonal relationships determines the style of resolving management decisions, that should be considered at conducting professional selection of candidates for senior positions in healthcare institutions.

  16. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  17. Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades

    DEFF Research Database (Denmark)

    Jensen, Pernille Rose; Meier, Sebastian

    2016-01-01

    The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable...... in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response...

  18. Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT

    International Nuclear Information System (INIS)

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-01-01

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT). We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography(3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image. (author)

  19. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    Science.gov (United States)

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  20. Topographic Evolution of the Sierra Nevada Resolved by Inversion of Low-Temperature Thermochronology

    Science.gov (United States)

    McPhillips, D. F.; Brandon, M. T.

    2011-12-01

    At present, there are two competing ideas for the topographic evolution of the Sierra Nevada Range. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic signature of local relief and the stable isotopic evidence of a topographic rain shadow support this hypothesis. However, a suite of geomorphic observations suggests that the Sierra gained a large fraction of its present elevation as recently as the Pliocene. This recent surface uplift could have been driven by convective removal of in the lower part of the lithosphere and/or by changes in dynamic topography associated with deep subduction of the Farallon plate. Here we present the first comprehensive analysis of low-temperature thermochronology in the Sierra Nevada, which provides a definitive solution, which indicates that both ideas are likely correct. Our analysis is distinguished by three new factors: The first is that we allow for separate evolutions for the local relief and the long-wavelength topography. Second, we use Al-in-Hb paleobarometry to constrain the initial depth of emplacement for the Sierra Nevada plutons. Third, our analysis is tied to a sea-level reference by using the paleo-bathymetric record of the Great Valley basin, where it on-laps the Sierra Nevada batholith. According to our analysis, westward tilting of the Sierra accounts for 2 km of uplift since 20 Ma. Topographic relief increased by a factor of 2. These findings suggest that the Sierra Nevada lost elevation through most of the Tertiary but regained much of its initial elevation following the onset of surface uplift in the Miocene.

  1. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  2. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  3. Radically Different Kinetics at Low Temperatures

    Science.gov (United States)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  4. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  5. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    Science.gov (United States)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  6. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  7. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  8. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  9. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  10. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    International Nuclear Information System (INIS)

    Kiraly, J.; Bitter, M.; Efthimion, P.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 μs. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed

  11. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, J.; Bitter, M.; Efthimion, P.; von Goeler, S.; Grek, B.; Hill, K.W.; Johnson, D.; McGuire, K.; Sauthoff, N.; Sesnic, S.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 ..mu..s. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed.

  12. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C., E-mail: fcd@mps.ohio-state.edu [Department of Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States)

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  13. Racial Differences in Resolving Conflicts: A Comparison between Black and White Police Officers

    Science.gov (United States)

    Sun, Ivan Y.; Payne, Brian K.

    2004-01-01

    This study examined the behavioral differences between Black and White police officers in handling interpersonal conflicts. Observational and survey data from the Project on Policing Neighborhoods and the 1990 census data were used. Actions taken by officers are examined along two behavioral dimensions: coercion and support. Findings show that…

  14. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  15. Sublattice-specific ordering of ZnO layers during the heteroepitaxial growth at different temperatures

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Vinnichenko, M.; Muecklich, A.; Kolitsch, A.; Krause, M.; Munoz, E.; Gago, R.

    2011-01-01

    The effect of the substrate temperature on the sublattice ordering in ZnO layers grown by reactive pulsed magnetron sputtering on sapphire has been investigated by different techniques. The improvement of the crystal quality and heteroepitaxial growth at relatively low temperatures (550 deg. C) is verified by x-ray diffraction, high-resolution transmission electron microscopy, Rutherford backscattering spectrometry in channeling mode (RBS/C), and Raman spectroscopy. Sublattice-resolved analysis by resonant RBS/C and Raman spectroscopy reveals that the progressive transition to the single crystal phase is accomplished in a faster way for Zn- than for O-sublattice. This behavior is attributed to the preferential annealing of defects in the Zn sublattice at low temperatures when compared to those of the O sublattice.

  16. Seasonal differences in human responses to increasing temperatures

    DEFF Research Database (Denmark)

    Kitazawa, Sachie; Andersen, Rune Korsholm; Wargocki, Pawel

    2014-01-01

    to be sleepier. Heart rate slightly increased during exposure, and SpO2 and ETCO2 began to decrease while core temperature started to increase. Performance of Tsai-partington test and addition test improved during exposures due to learning though lesser in winter. Results show negative effects of the temperature......Experiments were conducted in late summer and winter with 80 young and elderly Danish subjects exposed for 3.5 hours in a climate chamber to the temperature increasing from 24°C to 35.2°C at a rate of 3.7K/h. Psychological and physiological measurements were performed during exposure and subjects...... assessed comfort and acute health symptoms. Thermal sensation increased with increasing chamber temperature and did not differ during late summer and winter exposures. Skin temperature increased with increasing temperature and was slightly but significantly higher in the late summer in the first half...

  17. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  18. Different phylogenomic approaches to resolve the evolutionary relationships among model fish species.

    Science.gov (United States)

    Negrisolo, Enrico; Kuhl, Heiner; Forcato, Claudio; Vitulo, Nicola; Reinhardt, Richard; Patarnello, Tomaso; Bargelloni, Luca

    2010-12-01

    Comparative genomics holds the promise to magnify the information obtained from individual genome sequencing projects, revealing common features conserved across genomes and identifying lineage-specific characteristics. To implement such a comparative approach, a robust phylogenetic framework is required to accurately reconstruct evolution at the genome level. Among vertebrate taxa, teleosts represent the second best characterized group, with high-quality draft genome sequences for five model species (Danio rerio, Gasterosteus aculeatus, Oryzias latipes, Takifugu rubripes, and Tetraodon nigroviridis), and several others are in the finishing lane. However, the relationships among the acanthomorph teleost model fishes remain an unresolved taxonomic issue. Here, a genomic region spanning over 1.2 million base pairs was sequenced in the teleost fish Dicentrarchus labrax. Together with genomic data available for the above fish models, the new sequence was used to identify unique orthologous genomic regions shared across all target taxa. Different strategies were applied to produce robust multiple gene and genomic alignments spanning from 11,802 to 186,474 amino acid/nucleotide positions. Ten data sets were analyzed according to Bayesian inference, maximum likelihood, maximum parsimony, and neighbor joining methods. Extensive analyses were performed to explore the influence of several factors (e.g., alignment methodology, substitution model, data set partitions, and long-branch attraction) on the tree topology. Although a general consensus was observed for a closer relationship between G. aculeatus (Gasterosteidae) and Di. labrax (Moronidae) with the atherinomorph O. latipes (Beloniformes) sister taxon of this clade, with the tetraodontiform group Ta. rubripes and Te. nigroviridis (Tetraodontiformes) representing a more distantly related taxon among acanthomorph model fish species, conflicting results were obtained between data sets and methods, especially with respect

  19. Raman and time resolved photoluminescence studies on the effect of temperature on disorder production in SHI irradiated N-doped 6H-SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sivaji, K., E-mail: sivaji.krishnan@yahoo.com [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Viswanathan, E. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Selvakumar, S. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); University of Tsukuba Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Ibaraki 305-8577 (Japan); Sankar, S. [Department of Physics, MIT Campus, Anna University, Chennai 600044 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-02-25

    Highlights: • N doped SiC were irradiated with 150 MeV Ag{sup 12+} (1 × 10{sup 12} to 5 × 10{sup 13} ions/cm{sup 2}). • Local disorder are analyzed by studying the LO Raman mode of the irradiated sample. • The TRPL studies provided evidence of the formation of radiative centers at 80 K. -- Abstract: In this report, the effect of disorder accumulation in Swift Heavy Ion (SHI) irradiated 6H-SiC is distinguished with respect to the irradiation temperature, viz., 80 K and 300 K. The samples were irradiated with 150 MeV Ag{sup 12+} ions with different fluences ranging from 1 × 10{sup 12} to 5 × 10{sup 13} ions/cm{sup 2}. The structural and optical properties of N-doped 6H-SiC in its pristine condition and after SHI irradiation have been studied. The changes observed by Raman spectroscopy and Time resolved photoluminescence (TRPL) spectroscopy were ascribed to the disorder accumulation in 6H-SiC. The local disorder has been analyzed by studying the LO Raman mode of the irradiated sample in comparison to the pristine sample. The TRPL studies have provided evidence of the formation of radiative centers after irradiation at 80 K.

  20. A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors -- possible evidence of spinon and holon branches

    International Nuclear Information System (INIS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2006-01-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E 1 approx 0.38eV and E 2 approx 0.8 eV. E 1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Gamma point at approx 0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E 1 and E 2 . Above E 2 , a band-like dispersion re-emerges. We conjecture that these two energies mark the disintegration of the low energy quasiparticles into a spinon and holon branch in the high T c cuprates

  1. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different

  2. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Laforsch Christian

    2011-02-01

    Full Text Available Abstract Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key

  3. A high-temperature furnace and a heating/drawing device designed for time-resolved X-ray diffraction measurements of polymer solids using imaging plates

    International Nuclear Information System (INIS)

    Murakami, Syozo; Tanno, Kiyomitsu; Tsuji, Masaki; Kohjiya, Shinzo

    1995-01-01

    For time-resolved X-ray diffraction measurements using the imaging plate system in the drawing and/or heating process of polymer solids, a high-temperature furnace for heat treatment and a heating/drawing device were newly designed and constructed. Then, to demonstrate their performance, some experimental results obtained in the drawing process of an extruded/blown film of high-density polyethylene at room temperature and in the crystallization process of an oriented amorphous film of poly(ethylene naphthalene-2,6-dicarboxylate) by heating were presented. Other experimental results obtained using them were also briefly cited. (author)

  4. Time-resolved x-ray diffraction measurement of C{sub 60} under high pressure and temperature using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, T [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suito, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kobayashi, M [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Onodera, A [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2002-11-11

    C{sub 60} has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C{sub 60} structure are presented and the relevance to the hardness of materials derived from C{sub 60} is discussed.

  5. Nondestructive evaluation of differently doped InP wafers by time-resolved four-wave mixing technique

    International Nuclear Information System (INIS)

    Kadys, A.; Sudzius, M.; Jarasiunas, K.; Mao Luhong; Sun Niefeng

    2006-01-01

    Photoelectric properties of semi-insulating, differently doped, and undoped indium phosphide wafers, grown by the liquid encapsulation Czochralski method, have been investigated by time-resolved picosecond four-wave mixing technique. Deep defect related carrier generation, recombination, and transport properties were investigated experimentally by measuring four-wave mixing kinetics and exposure characteristics. The presence of deep donor states in undoped InP was confirmed by a pronounced effect of a space charge electric field to carrier transport. On the other hand, the recharging dynamics of electrically active residual impurities was observed in undoped and Fe-doped InP through the process of efficient trapping of excess carriers. The bipolar diffusion coefficients and mobilities were determined for the all wafers

  6. Space and time resolved measurements of ion temperature with the CVI 5292 A charge exchange recombination line after subtracting background radiation

    International Nuclear Information System (INIS)

    Ida, K.; Hidekuma, S.

    1988-08-01

    An ion temperature profile has been obtained with the CVI 5292 A (n = 8 - 7) charge exchange recombination (CXR) line using a space and wave-length resolving visible spectrometer installed on the JIPP TII-U tokamak. Two sets of 50 channels optical fiber arrays: one viewing a fast neutral hydrogen beam (CXR channels) and the other viewing off the neutral beam line (background channels), is arranged on the entrance slit of the spectrometer. This spectrometer is coupled to an image intensifier and CCD detector at the focal plane and provides temperature profile every 1/60 second. An ion temperature is derived from the Doppler broadened line profile after subtracting the simultaneously measured cold component (background channels), which is due to electron-excitation and/or charge exchange recombination in the plasma periphery. Alternative approach to obtain the ion temperature profile without CXR is also demonstrated. This method is based on an Abel inversion technique for each wavelength separately. (author)

  7. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  8. THE COMPLETE, TEMPERATURE-RESOLVED EXPERIMENTAL SPECTRUM OF VINYL CYANIDE (H2CCHCN) BETWEEN 210 AND 270 GHz

    International Nuclear Information System (INIS)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-01-01

    The results of an experimental approach to the identification and characterization of the astrophysical weed vinyl cyanide in the 210-270 GHz region are reported. This approach is based on spectrally complete, intensity-calibrated spectra taken at more than 400 different temperatures in the 210-270 GHz region and is used to produce catalogs in the usual astrophysical format: line frequency, line strength, and lower state energy. As in our earlier study of ethyl cyanide, we also include the results of a frequency point-by-point analysis, which is especially well suited for characterizing weak lines and blended lines in crowded spectra. This study shows substantial incompleteness in the quantum-mechanical (QM) models used to calculate astrophysical catalogs, primarily due to their omission of many low-lying vibrational states of vinyl cyanide, but also due to the exclusion of perturbed rotational transitions. Unlike ethyl cyanide, the QM catalogs for vinyl cyanide include analyses of perturbed excited vibrational states, whose modeling is more challenging. Accordingly, we include an empirical study of the frequency accuracy of these QM models. We observe modest frequency differences for some vibrationally excited lines.

  9. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  10. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    Science.gov (United States)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  11. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  12. Temperature dependant thermal and mechanical properties of a metal-phase change layer interface using the time resolved pump probe technique

    International Nuclear Information System (INIS)

    Schick, V; Battaglia, J-L; Kusiak, A; Rossignol, C; Wiemer, C

    2011-01-01

    Time Resolved Pump Probe (TRPP) technique has been implemented to study the thermal and mechanical properties of Ge 2 Sb 2 Te 5 (GST) film deposited on a silicon substrate. According to the knowledge of the thermal properties of the GST layer, the temperature dependant Thermal Boundary Resistance (TBR) at the metal-GST interface is evaluated. Measuring the acoustic oscillation and more particularly its damping leads to characterize the adhesion at the metal - GST interface. This quantity can be efficiently related to the temperature dependent TBR in the 25 deg. C - 400 deg. C range. The TBR increases with temperature and follows the changes of the crystalline structure of materials. A linear relation between the acoustic reflection coefficient and the logarithm of the thermal boundary resistance is found.

  13. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  14. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The odour of the sausages was evaluated by a quantitative descriptive...... tested using multiple linear regression and analysis of variance. The study showed that salami odour was more pronounced in sausages fermented at low temperature than in sausages fermented at high temperature and added nitrite, glucose and P. pentosaceus. High temperature sausages had a more sour...

  15. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  16. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  17. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  18. Metabolic responses of Eucalyptus species to different temperature regimes

    NARCIS (Netherlands)

    Mokochinski, Joao Benhur; Mazzafera, Paulo; Sawaya, Alexandra Christine Helena Frankland; Mumm, Roland; Vos, de Ric Cornelis Hendricus; Hall, Robert David

    2018-01-01

    Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may

  19. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  20. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  1. Effects of Different Temperatures for Drying Cervical Mucus Smear ...

    African Journals Online (AJOL)

    The effects of different room temperatures for drying cervical mucus on crystallisation of fern-tree patterns was determined using cervical mucus smears from 60 women undergoing investigation for infertility at the University of Benin Teaching Hospital. Cervical mucus smears were dried in the oven at 15, 20, 25, 30 and 35C ...

  2. Different annealing temperature suitable for different Mg doped P-GaN

    Science.gov (United States)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  3. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  4. Uniformity factor of temperature difference in heat exchanger networks

    International Nuclear Information System (INIS)

    Chen, Shang; Cui, Guo-min

    2016-01-01

    Highlights: • A uniformity factor of temperature (UFTD) is proposed to heat exchanger network (HEN). • A novel stage-wise superstructure with inner utilities is presented based on UFTD. • New model and DE method is combined as an optimization method. • Optimal HEN structures with inner utilities can be obtained with new method. - Abstract: A uniformity factor of temperature difference (UFTD) is proposed and set up to guide the optimization of Heat exchanger network (HEN). At first, the factor is presented to evaluate the whole enhancement of HEN by handling the logical mean temperature difference as two-dimensional discrete temperature field in system. Then, the factor is applied to different HENs, of which the comparison indicates that a more uniform discrete temperature field leads to a lower UFTD which correlated with a better whole enhancement to improve the optimization level of HEN. A novel stage-wise superstructure model where inner utility can be generated is presented for further analysis of correlation between UFTD and the efficiency of HEN, and more optimal HEN structures can be obtained as inner utility added. Inner utility appears to violate the thermodynamic law, but it makes the discrete temperature field more uniform and improves the heat transfer efficiency of the whole HEN, which brings much more profit than the side effect of inner utility. In sum, the UFTD can not only evaluate the optimization level of the HEN, but also be an optimization object to design new HEN with higher efficiency of energy utilization and lower total annual cost.

  5. Two-phase exchangers with small temperature differences

    International Nuclear Information System (INIS)

    Moracchioli, R.; Marie, G.; Lallee, J. de.

    1976-01-01

    The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr

  6. Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission

    International Nuclear Information System (INIS)

    Liu Shan-Yu; Zhang Wen-Tao; Weng Hong-Ming; Zhao Lin; Liu Hai-Yun; Jia Xiao-Wen; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Dai Xi; Fang Zhong; Zhou Xing-Jiang; Mao Zhi-Qiang; Chen Chuang-Tian; Xu Zu-Yan

    2012-01-01

    High resolution angle-resolved photoemission measurements are carried out to systematically investigate the effect of cleaving temperature on the electronic structures and Fermi surfaces of Sr 2 RuO 4 . Unlike previous reports, which found that a high cleaving temperature can suppress the surface Fermi surface, we find that the surface Fermi surface remains obvious and strong in Sr 2 RuO 4 cleaved at high temperature, even at room temperature. This indicates that cleaving temperature is not a key effective factor in suppressing surface bands. On the other hand, the bulk bands can be enhanced in an aged surface of Sr 2 RuO 4 that has been cleaved and held for a long time. We have also carried out laser ARPES measurements on Sr 2 RuO 4 by using a vacuum ultra-violet laser (photon energy at 6.994 eV) and found an obvious enhancement of bulk bands even for samples cleaved at low temperature. This information is important for realizing an effective approach to manipulating and detecting the surface and bulk electronic structure of Sr 2 RuO 4 . In particular, the enhancement of bulk sensitivity, along with the super-high instrumental resolution of VUV laser ARPES, will be advantageous in investigating fine electronic structure and superconducting properties of Sr 2 RuO 4 in the future. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  8. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  9. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  10. Determination of Cardinal Temperatures and Germination Respond to Different Temperature for Five Lawns Cultivars

    Directory of Open Access Journals (Sweden)

    hadi khavari

    2017-08-01

    Full Text Available Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb, optimum (To and maximum temperatures (Tc for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature

  11. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    Science.gov (United States)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  12. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  13. Physical performance and peak aerobic power at different body temperatures.

    Science.gov (United States)

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  14. The Effects of High Temperature on Gessoes with Different Admixtures

    Science.gov (United States)

    Budu, Ana-Maria; Sandu, Ion; Cristache, Raluca Anamaria

    2014-11-01

    This paper presents the effects of temperature on gessoes that have different substances added, usually used in painting or restoration to enhance the flexibility of the ground layer or to create a suitable gesso for the specific painting technique. Five samples of gesso were made and applied on Balsa wood (a dry, stable wood that is used in restoration for completing the missing elements of the panel). After the thermal treatment, the samples were analyzed optical, by microscopy and colorimetry. The results showed small differences in colour, but no cracks of the gessoes

  15. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  16. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  17. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  18. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  19. Zero sound velocity in π, ρ mesons at different temperatures

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Tomio, L.; Araujo, C.F. de Jr.

    1994-07-01

    Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T=T ν ≠ 0 and that the numerical value of this T ν depends on the nature of the meson. The average thermal energy of mesons go linearly with T near T ν , with much smaller slope for the pion. The T ν - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy ion collision at mid-rapidity. It would be interesting to check the presence of different T ν - s in present day finite T lattice theory. (author). 22 refs, 1 fig., 2 tabs

  20. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  1. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    Science.gov (United States)

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  2. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    Science.gov (United States)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal

  3. Charge transport parameters of HBC at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Marcon, V.; Kremer, K.; Andrienko, D. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Nelson, J. [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2008-05-15

    We study the dependence on temperature of the charge transport parameters for hexabenzocoronene (HBC). Following from Marcus theory, two charge transport parameters will be calculated: the transfer integral and the difference in site energies. These parameters are strongly dependent on the orientation and position of molecules. Position and orientation of molecules are determined using molecular dynamics. Transfer integrals are calculated from a simplified INDO method. A technique to compute energetic disorder, that is the spread in site energies for the charge carriers, is developed. In the herringbone phase transfer integrals are higher, but so is energetic disorder. We consider three derivatives of HBC with different side chains, which lead to different phase behaviour and distributions of charge transport parameters. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. High Time-Resolved Kinetic Temperatures of Solar Wind Minor Ions Measured with SOHO/CELIAS/CTOF

    Science.gov (United States)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Solar wind heavy ions with an atomic number Z > 2 are referred to as minor ions since they represent a fraction of less than one percent of all solar wind ions. They can be therefore regarded as test particles, only reacting to but not driving the dynamics of the solar wind plasma, which makes them a unique diagnostic tool for plasma wave phenomena both in the solar atmosphere and the extended heliosphere. In the past, several studies have investigated the kinetic temperatures of minor ions, but due to low counting statistics these studies are based on ion velocity distribution functions (VDFs) recorded over time periods of several hours. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) provides solar wind heavy ion 1D radial VDFs with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In our study, based on CTOF measurements at Langrangian point L1 between DOY 150 and DOY 220 in 1996, we investigate systematically the influence of the VDF time resolution on the derived kinetic temperatures for solar wind silicon and iron ions. The selected ion set spans a wide range of mass-per-charge from 3 amu/e heavy ions with ion-cyclotron waves.

  5. Resolving a double standard for risk management of thalidomide: an evaluation of two different risk management programmes in Japan.

    Science.gov (United States)

    Ooba, Nobuhiro; Sato, Tsugumichi; Watanabe, Hikaru; Kubota, Kiyoshi

    2010-01-01

    Thalidomide, once withdrawn because of its teratogenicity, has now been re-launched worldwide. In Japan, thalidomide has been imported by individual doctors since around the year 2000. In October 2008, it was approved for the treatment of multiple myeloma (MM) by the Ministry of Health, Labour and Welfare (MHLW) on the condition that the manufacturer implemented a risk management programme termed the Thalidomide Education and Risk Management System (TERMS). It is likely that the imports of thalidomide will be used off-label to treat diseases other than MM. Thus, the MHLW is also planning to introduce a web-based registration system, referred to as the Safety Management System for Unapproved Drugs (SMUD), for thalidomide imported by individual doctors. To evaluate the difference between TERMS and SMUD and establish a way to resolve the 'double standard' for risk management of thalidomide treatment in Japan. The fraction of patients with disorders other than MM was estimated by the volume of annual imports obtained from the MHLW and records of the imports for patients with MM, other oncological diseases (ODs) and non-ODs in 2007 through a major supplier covering 63% of the total imported thalidomide. The information for TERMS was obtained from web pages of the manufacturer and the MHLW. The components of TERMS were compared with those in SMUD. Provided that the distribution of the indication for thalidomide (MM) in 2007, estimated from the records of imports through the major supplier, is representative of the entire nation, it is estimated that on average 866 patients, including 851 (98.3%) with MM, are using thalidomide on any one day. However, if the major supplier's imports, which account for 63% of the total imports, are not representative of the nation as a whole, possibly only half of the patients treated with thalidomide in Japan have MM. This would be the case in a scenario where the remaining 37% of imports are exclusively used to treat disorders other than

  6. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    temperatures, phosphoric acid (H3PO4)[1] and zirconium phosphate (ZrP)[2] were introduced. These composite membranes were tested in an electrolysis setup. A typical electrolysis test was performed at 130°C with a galvanostatic load. Polarization curves were recorded under stationary conditions. Testing...... night at 150°C in a zirconium phosphate saturated 85wt% phosphoric acid solution. Different thicknesses of membranes were tested and as expected, the performance increased when the thickness of the membranes decreased. Furthermore composite membranes only treated with phosphoric acid or only treated...

  7. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The numbers of surviving Staphylococcus xylosus, lactic acid bacteria......, pH, free fatty acids and residual amounts of nitrite and nitrate were measured. The effects of temperature and different ingredients on the chemical and bacterial data were tested using multiple linear regression and analysis of variance. The study showed that numbers of surviving Staphylococcus...... of glucose and Pediococcus pentosaceus. On the other hand pH was increased by addition of nitrate. The pH-lowering effect of glucose was small when temperature was low. The residual levels of nitrite and nitrate were increased by addition of nitrate, but then increased and decreased, respectively...

  8. Single molecule manipulation at low temperature and laser scanning tunnelling photo-induced processes analysis through time-resolved studies

    International Nuclear Information System (INIS)

    Riedel, Damien

    2010-01-01

    This paper describes, firstly, the statistical analysis used to determine the processes that occur during the manipulation of a single molecule through electronically induced excitations with a low temperature (5 K) scanning tunnelling microscope (STM). Various molecular operation examples are described and the ability to probe the ensuing molecular manipulation dynamics is discussed within the excitation context. It is, in particular, shown that such studies can reveal reversible manipulation for tuning dynamics through variation of the excitation energy. Secondly, the photo-induced process arising from the irradiation of the STM junction is also studied through feedback loop dynamics analysis, allowing us to distinguish between photo-thermally and photo-electronically induced signals.

  9. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  10. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    headspace sampling and quantified and identified by gas chromatography and gas chromatography-mass spectrometry. The effects of temperature and different ingredients on the levels of individual volatiles were tested using multiple linear regression and analysis of variance. The study showed that sausages...

  11. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  12. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  13. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea.

    Directory of Open Access Journals (Sweden)

    Anna Akimova

    Full Text Available Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2° hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948-2013. Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod. We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks' dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models.

  14. Characteristic functions of quantum heat with baths at different temperatures

    Science.gov (United States)

    Aurell, Erik

    2018-06-01

    This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].

  15. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  16. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  17. Low temperature time resolved photoluminescence in ordered and disordered Cu{sub 2}ZnSnS{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, Taavi, E-mail: taavi.raadik@ttu.ee [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M. [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Ernits, K. [crystalsol OÜ, Akadeemia tee 15a, 12618 Tallinn (Estonia); Bleuse, J. [CEA-CNRS-UGA group “Nanophysique et Semiconducteurs”, Univ. Grenoble Alpes, INAC-PHELIQS, CEA, INAC-PHELIQS, CNRS, PLUM, F-38000 Grenoble (France)

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu{sub 2}ZnSnS{sub 4} (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be E{sub T} {sub (PO)} =65±9 meV for partially ordered and E{sub T(PD)} =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers’ recombination dynamics at low temperature.

  18. Seedling characters at different temperatures in pearl millet ...

    African Journals Online (AJOL)

    The effect of six temperatures ranging from 20 to 45°C on the germination and seedling length of six grain pearl millet genotypes (KS, AM, HG, EC, ZZ and D) was determined. There was significant variation in germination and seedling length across temperatures and among genotypes. As a result, significant temperature ...

  19. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  20. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  1. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Waade, C.; Waade, Charlotte

    1997-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six-factor fractional design. The amounts of individual amino acids were measured and the effects...... that the amounts of the volatile compounds, 2-methyl propanal, 2- and 3-methyl butanal, were inversely correlated with the amounts of valine, isoleucine and leucine, respectively, indicating that those volatiles were degradation products of the latter. (C) 1997 Elsevier Science Ltd....

  2. The angular distributions of sputtered indium atoms at different temperature

    International Nuclear Information System (INIS)

    Zhang Jiping; Wang Zhenxia; Tao Zhenlan; Pan Jisheng

    1993-01-01

    The effect of temperature and surface topography on the angular distribution of indium atoms was studied under bombardment by 2T KeV Ar + ions at normal incidence. Experiments were carried out on two samples, A and B, at 25 o C and 70 o C respectively. The function Y(θ) = a cosθ + b cos n θ, where θ is the sputtering angle, was found to fit the experimental data. The term (a cos θ) corresponds to the cosine distribution predicted by random collision cascade theory, and the term (b cos n θ) is dependent on factors such as the surface topography. For sample A, a∼b, whereas for sample B a< b. The surface of A consisted of flat and pebble like regions of almost equal area while the surface of B was more cratered. An explanation of the fitting values of a,b and n is given in terms of the shielding effects of the different structures. (UK)

  3. Effect of different storage temperatures on bacterial spoilage of ...

    African Journals Online (AJOL)

    This study determined the bacterial organisms associated with Oreochromis niloticus spoilage at two storage temperatures (6 and 20°C) and also assessed the ability of the individual bacterial isolates to cause spoilage at the two storage temperatures. Bacteriological analysis revealed the association of five bacteria ...

  4. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  5. Isotopically resolved residues from the fragmentation of projectiles with largely different N/Z - the isospin-thermometer method

    Czech Academy of Sciences Publication Activity Database

    Henzlová, D.; Audouin, L.; Henzl, Vladimír; Krása, Antonín; Pleskač, Radek

    2005-01-01

    Roč. 749, - (2005), 110C-113C ISSN 0375-9474 R&D Projects: GA AV ČR IAA1048304 Institutional research plan: CEZ:AV0Z10480505 Keywords : TEMPERATURE Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.950, year: 2005

  6. Microbiological evaluation of poultry sausages stored at different temperatures

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2014-02-01

    Full Text Available The aim of our study was to evaluate the microbiological quality of poultry sausages, which were stored at different temperatures (4 °C, 15 °C. Total count of bacteria, coliform bacteria, yeasts and filamentous microscopic fungi were detected in poultry sausages. Microbiological quality was evaluated using the horizontal method for the determination number of microorganisms. Total count of bacteria in sausages stored at 4 °C ranged from 1 × 101 CFU.g-1 in sample 1 (after opening to 4.35 × 104 CFU.g-1  in sample 1 (7th day of storage. Total count of bacteria in sausages stored at 15 °C ranged from 3.25 × 103 CFU.g-1 in sample 1 (after opening to 3.12 × 106 CFU.g-1 in sample 1 to 3.12 × 106  CFU.g-1 in sample 1 (7th day of storage.  Coliform bacteria in sausages stored at 4 °C ranged from 1 × 101 CFU.g-1 to 3.15 × 105 CFU.g-1. Coliform bacteria in sausages stored at 15 °C ranged from 1.54 × 103 CFU.g-1 to 1.40 × 106 CFU.g-1.  Yeasts and microscopic filamentous fungi in sausages stored at 4 °C ranged from 2.75 × 104 CFU.g-1 to 1.40 × 106 CFU.g-1.  Yeasts and microscopic filamentous fungi in sausages stored at 15 °C ranged from 1.30 × 104 CFU.g-1 to 1.44 × 106  CFU.g-1. Total count of bacteria, coliform bacteria, yeast and microscopic fungi were not in accordance with Codex Alimentarius of Slovak Republic on 3rd day in samples stored at 15 °C.

  7. Different patterns of transcriptomic response to high temperature ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... The objectives of this study were: (i) to shed light on how genome doubling affects ... for 24 h with the same photoperiod and light intensity as control. After the high temperature ..... in photosynthesis. Photosynth. Res., 98: ...

  8. Oxygen consumption in Mediterranean octocorals under different temperatures

    NARCIS (Netherlands)

    Previati, M.; Scinto, A.; Cerrano, C.; Osinga, R.

    2010-01-01

    Ecosystem resilience to climate anomalies is related to the physiological plasticity of organisms. To characterize the physiological response of some common Mediterranean gorgonians to fluctuations in temperature, four species (Paramuricea clavata, Eunicella singularis, Eunicella cavolinii and

  9. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  10. Temperature Effect on Power Drop of Different Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Emad Talib Hahsim

    2016-05-01

    Full Text Available Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si, poly-crystalline Silicon (pc-Si, amorphous Silicon (a-Si and Cupper Indium Gallium di-selenide (CIGS photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit voltage by -0.0912V/ºC while mc-Si and a-Si had nearly -0.07V/ºC and the CIGS has -0.0123V/ºC. The results showed a slightly increase in short circuit current with temperature increasing about 0.3mA/ºC ,4.4mA/ºC and 0.9mA/ºC for mc-Si , pc-Si and both a-Si and CIGS. The mc-Si had the largest drop in output power about -0.1353W/ºC while -0.0915, -0.0114 and -0.0276 W/ºC for pc-Si, a-Si and CIGS respectively. The amorphous silicon is the more suitable module for high operation temperature but it has the lowest conversion efficiency between the tested modules.

  11. Presence and significance of temperature gradients among different ovarian tissues

    DEFF Research Database (Denmark)

    Hunter, Ronald Henry Fraser; Einer-Jensen, Niels; Greve, Torben

    2006-01-01

    also be involved. Temperature gradients would be maintained locally by counter-current heat exchange mechanisms and, in this context, the microvasculature and lymphatic flow of individual follicles were found to be appropriate. Observations on the temperature of preovulatory follicles appear relevant......, and cow, and generally fell in the range of 1.3-1.7 degrees C: follicles were always cooler than stroma. Measurements were made principally by means of a thermo-sensing camera at midventral laparotomy, but also using microelectrodes or thermistor probes sited in the follicular antrum of rabbits and pigs...

  12. Strontium binding to cement paste cured at different temperature

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Concentration - depth profiles were measured using Proton Induced X-ray Emission (PIXE). These results were used as a measure of the Sr 2+ retention abilities of each matrix. Ordinary Portland cement (OPC) and cemented clinoptilolite samples were cured at 25 deg C, 60 deg C and 150 deg C. As expected, the Sr 2+ penetration depth increased with increasing OPC cure temperature, caused by an increase in sample permeability. Surprisingly, the penetration depths of Sr 2+ increased with the addition of clinoptilolite to the OPC, also thought to be caused by an increase in sample permeability. However, the increase in penetration depth was reduced in samples cured at higher temperatures

  13. Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics

    International Nuclear Information System (INIS)

    Tiziani, Stefano; Lodi, Alessia; Ludwig, Christian; Parsons, Helen M.; Viant, Mark R.

    2008-01-01

    Two dimensional (2D) homonuclear 1 H J-resolved (JRES) nuclear magnetic resonance spectroscopy is increasingly used in metabolomics. This approach visualises metabolite chemical shifts and scalar couplings along different spectral dimensions, thereby increasing peak dispersion and facilitating spectral assignments and accurate quantification. Here, we optimise the processing of 2D JRES spectra by evaluating different window functions, a traditional sine-bell (SINE) and a combined sine-bell-exponential (SEM) function. Furthermore, we evaluate different projection methods for generating 1D projected spectra (pJRES). Spectra were recorded from three disparate types of biological samples and evaluated in terms of sensitivity, reproducibility and resolution. Overall, the SEM window function yielded considerably higher sensitivity and comparable spectral reproducibility and resolution compared to SINE, for both 1D pJRES and 2D JRES datasets. Furthermore, for pJRES spectra, the highest spectral quality was obtained using SEM combined with skyline projection. These improvements lend further support to utilising 2D J-resolved spectroscopy in metabolomics

  14. Efficacy of tricaine on Peocilia latipinna at different temperatures and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... In the experiment, three tricaine methanesulfonate concentrations for each temperature were used .... Fish average weight and length (mean ± SD) were 230 ± 25 mg and 24.07 ± 5.5 .... coral reef fish, J. Fish Biol. 51: 931-938.

  15. Hysteresis of soil temperature under different soil moisture and ...

    African Journals Online (AJOL)

    ... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...

  16. Structural properties of gold clusters at different temperatures

    CSIR Research Space (South Africa)

    Mahladisa, MA

    2005-09-01

    Full Text Available A series of gold clusters consisting of aggregates of from 13 to 147 atoms was studied using the Sutton-Chen type many-body potential in molecular dynamics simulations. The properties of these clusters at temperatures from 10 K to 1000 K were...

  17. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  20. Effect and control on temperature measurement accuracy of the fiber- optic colorimeter by emissivity of different temperatures

    Science.gov (United States)

    Liu, Yu-fang; Han, Xin; Shi, De-heng

    2008-03-01

    Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.

  1. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Science.gov (United States)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  2. Differences between true mean temperatures and means calculated with four different approaches: a case study from three Croatian stations

    Science.gov (United States)

    Bonacci, Ognjen; Željković, Ivana

    2018-01-01

    Different countries use varied methods for daily mean temperature calculation. None of them assesses precisely the true daily mean temperature, which is defined as the integral of continuous temperature measurements in a day. Of special scientific as well as practical importance is to find out how temperatures calculated by different methods and approaches deviate from the true daily mean temperature. Five mean daily temperatures were calculated (T0, T1, T2, T3, T4) using five different equations. The mean of 24-h temperature observations during the calendar day is accepted to represent the true, daily mean T0. The differences Δ i between T0 and four other mean daily temperatures T1, T2, T3, and T4 were calculated and analysed. In the paper, analyses were done with hourly data measured in a period from 1 January 1999 to 31 December 2014 (149,016 h, 192 months and 16 years) at three Croatian meteorological stations. The stations are situated in distinct climatological areas: Zagreb Grič in a mild climate, Zavižan in the cold mountain region and Dubrovnik in the hot Mediterranean. Influence of fog on the temperature is analysed. Special attention is given to analyses of extreme (maximum and minimum) daily differences occurred at three analysed stations. Selection of the fixed local hours, which is in use for calculation of mean daily temperature, plays a crucial role in diminishing of bias from the true daily temperature.

  3. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature.

    Science.gov (United States)

    Cerasoli, Sofia; Wertin, Timothy; McGuire, Mary Anne; Rodrigues, Ana; Aubrey, Doug P; Pereira, João Santos; Teskey, Robert O

    2014-04-11

    Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature. Published by Oxford

  4. Fracture Toughness of Ceramics Fired at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Peter SIN

    2012-03-01

    Full Text Available The fracture toughness test was performed at room temperature on sets of 5 ceramic samples made from material for high voltage insulators (kaolin 36 wt. %, Al2O3 30 wt. %, clay 12 wt. % and feldspar 22 wt. % fired at temperatures 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500 °C at heating and cooling rate of 5 °C/min. The precrack was made to each sample by indentation under the loads 10 N – 200 N, the dwell time was 45 s and the loading rate was 10 N/s. Results of the fracture toughness tests were in accordance with changes of structure of the samples after the partial firings. Fracture toughness from 20 °C to 500 °C is almost constant and it varies between 0.1 MPa·m0.5and 0.2 MPa·m0.5. Dehydroxylation (420 °C – 600 °C does not influence the value of fracture toughness. At temperature interval where we assume sintering (700 °C – 1250 °C we observe exponential dependence of fracture toughness up to 1.5 MPa·m0.5. From comparison of the fracture toughness, Young’s modulus and flexural strength follows a correlation and proporcionality of these mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1349

  5. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2018-01-01

    refrigerants. This approach enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. The exergy destruction due...

  6. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE.

    Science.gov (United States)

    Wieman, S R; Didkovsky, L V; Judge, D L

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e ., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  7. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    Science.gov (United States)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  8. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  9. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  10. Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures

    Science.gov (United States)

    Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.

  11. Design of stirling engine operating at low temperature difference

    Directory of Open Access Journals (Sweden)

    Sedlák Josef

    2018-01-01

    Full Text Available There are many sources of free energy available in the form of heat that is often simply wasted. The aim of this paper is to design and build a low temperature differential Stirling engine that would be powered exclusively from heat sources such as waste hot water or focused solar rays. A prototype is limited to a low temperature differential modification because of a choice of ABSplus plastic as a construction material for its key parts. The paper is divided into two parts. The first part covers a brief history of Stirling engine and its applications nowadays. Moreover, it describes basic principles of its operation that are supplemented by thermodynamic relations. Furthermore, an analysis of applied Fused Deposition Modelling has been done since the parts with more complex geometry had been manufactured using this additive technology. The second (experimental part covers 4 essential steps of a rapid prototyping method - Computer Aided Design of the 3D model of Stirling engine using parametric modeller Autodesk Inventor, production of its components using 3D printer uPrint, assembly and final testing. Special attention was devoted to last two steps of the process since the surfaces of the printed parts were sandpapered and sprayed. Parts, where an ABS plus plastic would have impeded the correct function, had been manufactured from aluminium and brass by cutting operations. Remaining parts had been bought in a hardware store as it would be uneconomical and unreasonable to manufacture them. Last two chapters of the paper describe final testing, mention the problems that appeared during its production and propose new approaches that could be used in the future to improve the project.

  12. Single layer porous gold films grown at different temperatures

    International Nuclear Information System (INIS)

    Zhang Renyun; Hummelgard, Magnus; Olin, Hakan

    2010-01-01

    Large area porous gold films can be used in several areas including electrochemical electrodes, as an essential component in sensors, or as a conducting material in electronics. Here, we report on evaporation induced crystal growth of large area porous gold films at 20, 40 and 60 deg. C. The gold films were grown on liquid surface at 20 deg. C, while the films were grown on the wall of beakers when temperature increased to 40 and 60 deg. C. The porous gold films consisted of a dense network of gold nanowires as characterized by TEM and SEM. TEM diffraction results indicated that higher temperature formed larger crystallites of gold wires. An in situ TEM imaging of the coalescence of gold nanoparticles mimicked the process of the growth of these porous films, and a plotting of the coalescence time and the neck radius showed a diffusion process. The densities of these gold films were also characterized by transmittance, and the results showed film grown at 20 deg. C had the highest density, while the film grown at 60 deg. C had the lowest consistent with SEM and TEM characterization. Electrical measurements of these gold films showed that the most conductive films were the ones grown at 40 deg. C. The conductivities of the gold films were related to the amount of contamination, density and the diameter of the gold nanowires in the films. In addition, a gold film/gold nanoparticle hybrid was made, which showed a 10% decrease in transmittance during hybridization, pointing to applications as chemical and biological sensors.

  13. Effects of Different Hatcher Temperatures on Hatching Traits of ...

    African Journals Online (AJOL)

    selcuk

    of genetic improvements in the modern broilers, the incubation conditions and ... development of the different organs and body structures of the embryo in time, and .... (hatching time, hatchability of fertile eggs, mortality stages and embryo ...

  14. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: the RESOLVE randomized trial.

    Science.gov (United States)

    Dutheil, Frédéric; Lac, Gérard; Lesourd, Bruno; Chapier, Robert; Walther, Guillaume; Vinet, Agnès; Sapin, Vincent; Verney, Julien; Ouchchane, Lemlih; Duclos, Martine; Obert, Philippe; Courteix, Daniel

    2013-10-09

    Opinions differ over the exercise modalities that best limit cardiovascular risk (CVR) resulting from visceral obesity in individuals with metabolic syndrome (MetS). As little is known about the combined effects of resistance and endurance training at high volumes under sound nutritional conditions, we aimed to analyze the impact of various intensities of physical activity on visceral fat and CVR in individuals with MetS. 100 participants, aged 50-70 years, underwent a diet restriction (protein intake 1.2g/kg/day) with a high exercise volume (15-20 h/week). They were randomized to three training groups: moderate-resistance-moderate-endurance (re), high-resistance-moderate-endurance (Re), or moderate-resistance-high-endurance (rE). A one-year at-home follow-up (M12) commenced with a three-week residential program (Day 0 to Day 21). We measured the change in visceral fat and body composition by DXA, MetS parameters, fitness, the Framingham score and carotid-intima-media-thickness. 78 participants completed the program. At D21, visceral fat loss was highest in Re (-18%, p-13.0% (re) at M12 (p<.001). CVR, MetS parameters and fitness improved in all groups. Visceral fat loss correlated with changes in MetS parameters. Increased intensity in high volume training is efficient in improving visceral fat loss and carotid-intima-media-thickness, and is realistic in community dwelling, moderately obese individuals. High-intensity-resistance training induced a faster visceral fat loss, and thus the potential of resistance training should not be undervalued (ClinicalTrials.gov number: NCT00917917). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales

    Science.gov (United States)

    Turner, Alexander J.; Jacob, Daniel J.; Benmergui, Joshua; Brandman, Jeremy; White, Laurent; Randles, Cynthia A.

    2018-06-01

    Anthropogenic methane emissions originate from a large number of fine-scale and often transient point sources. Satellite observations of atmospheric methane columns are an attractive approach for monitoring these emissions but have limitations from instrument precision, pixel resolution, and measurement frequency. Dense observations will soon be available in both low-Earth and geostationary orbits, but the extent to which they can provide fine-scale information on methane sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) to assess the capabilities of different satellite observing system configurations. We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 × 1.3 km2 spatial resolution and hourly temporal resolution over a 290 × 235 km2 domain in the Barnett Shale, a major oil and gas field in Texas with a large number of point sources. We sub-sample these footprints to match the observing characteristics of the recently launched TROPOMI instrument (7 × 7 km2 pixels, 11 ppb precision, daily frequency), the planned GeoCARB instrument (2.7 × 3.0 km2 pixels, 4 ppb precision, nominal twice-daily frequency), and other proposed observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its eigenvalues. We find that a week of TROPOMI observations should provide information on temporally invariant emissions at ˜ 30 km spatial resolution. GeoCARB should provide information available on temporally invariant emissions ˜ 2-7 km spatial resolution depending on sampling frequency (hourly to daily). Improvements to the instrument precision yield greater increases in information content than improved sampling frequency. A precision better than 6 ppb is critical for GeoCARB to achieve fine resolution of emissions. Transient emissions would be missed with either TROPOMI or GeoCARB. An aspirational high

  16. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    Science.gov (United States)

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field

  17. Solubility of rosuvastatin calcium in different neat solvents at different temperatures

    International Nuclear Information System (INIS)

    Alshora, Doaa H.; Haq, Nazrul; Alanazi, Fars K.; Ibrahim, Mohamed A.; Shakeel, Faiyaz

    2016-01-01

    Highlights: • Solubility of rosuvastatin calcium (ROSCa) in seven neat solvents was determined. • The solubility of ROSCa was recorded highest in propylene glycol. • Experimental solubilities were correlated with Apelblat and ideal models. • Good correlation was existed between experimental and calculated solubilities. - Abstract: In the current research work, the solubility of rosuvastatin calcium (ROSCa) in seven different neat solvents such as water, ethanol, 1-butanol, 2-butanol, ethylene glycol (EG), isopropyl alcohol (IPA) and propane-1,2-diol (PG) was measured at five different temperatures i.e. T = (298.15 to 318.15) K and atmospheric pressure. Values of the experimental solubility of ROSCa were correlated with Apelblat and ideal models which showed good correlation and model fitting. The solubility (as mole fraction) of ROSCa was recorded highest in PG (1.89 · 10"−"2 at T = 318.15 K) followed by 1-butanol (8.20 · 10"−"4 at T = 318.15 K), ethanol (6.81 · 10"−"4 at T = 318.15 K), IPA (5.66 · 10"−"4 at T = 318.15 K), EG (5.03 · 10"−"4 at T = 318.15 K), 2-butanol (1.08 · 10"−"4 at T = 318.15 K) and water (1.40 · 10"−"5 at T = 318.15 K). The experimental results from this research work would be helpful in the development of conventional and advanced liquid dosage forms of ROSCa.

  18. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  19. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  20. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  1. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  2. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  3. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  4. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  5. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    International Nuclear Information System (INIS)

    Varyanitsa, V.Yu.; Egorov, V.I.; Sobolev, N.D.

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes [ru

  6. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Varyanitsa, V Yu; Egorov, V I; Sobolev, N D [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes.

  7. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  8. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  9. Differences induced by incubation temperature, versus androgen manipulation, in male leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Huang, Victoria; Crews, David

    2012-08-20

    A fundamental tenet of sexual selection is that in sexually dimorphic traits, there is variation within a sex. In leopard geckos (Eublepharis macularius), a species with temperature-dependent sex determination, embryonic temperature contributes both to sex determination and polymorphisms within each sex. In this study we report that males from different incubation temperatures, one hitherto untested, exhibit significant differences in behavior even when castrated. Further, treatment with dihydrotestosterone increases scent marking, a territorial behavior. This supports previous results indicating that temperature has a direct organizing action on brain and sociosexual behavior independent of gonadal hormones. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  11. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    Science.gov (United States)

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  12. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.

    1982-10-01

    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  13. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  14. Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum

    Directory of Open Access Journals (Sweden)

    Khadija Kadhem Hreeb

    2016-12-01

    Full Text Available Objective: To evaluate the effect of some different water temperatures on growth of aquatic plants (Salvinia natans and Ceratophyllum demersum. Methods: The aquatic plants were brought from Shatt Al-Arab River in 2016. Equal weights of aquatic plants were aquacultured in aquaria, and were exposed to three different temperatures ( 12, 22 and 32 °C. Results: The results showed that the two plants did not show significant differences with respect to their effects on pH and electrical conductivity values. Time and temperature did not affect the values of pH and electrical conductivity. The values of dissolved oxygen was significantly influenced with variation of time and temperature, while the two plants did not have significant differences on dissolved oxygen values, nitrate ion concentration and was not significantly influenced with variation of plant species or temperature or time. Plant species and temperature significantly affected phosphate ion concentration, while the time did not significantly influence the concentration of phosphate ion. Chlorophyll a content and biomass were significantly influenced with the variation of plant species, and temperature . Conclusions: Aquatic plants has a species specific respond to temperatures change in their environment. Water plant, Ceratophyllum demersum is more tolerant to temperatures change than Salvinia natans.

  15. Temperature-induced transition of the diffusion mechanism of n-hexane in ultra-thin polystyrene films, resolved by in-situ Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wormeester, Herbert; Wessling, Matthias; Benes, Nieck Edwin

    2013-01-01

    In-situ Spectroscopic Ellipsometry is used to study diffusion of liquid n-hexane in silicon wafer supported 150 nm thick polystyrene films, in the temperature range 16e28 C. In the higher part of this temperature range Case II diffusion is shown to be dominant. In this case the temporal evolution of

  16. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    Science.gov (United States)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  17. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  18. Eclosion rate, development and survivorship of Aedes albopictus (Skuse)(Diptera: Culicidae) under different water temperatures

    International Nuclear Information System (INIS)

    Monteiro, Laura C.C.; Souza, Jose R.B. de; Albuquerque, Cleide M.R. de

    2007-01-01

    In tropical areas, where vector insects populations are particularly numerous, temperature usually range between 25 de C and 35 deg C. Considering the importance of such temperature variation in determining mosquitoes population dynamics, in this work the developmental, eclosion and survival rates of the immature stages of Aedes albopictus (Skuse) were compared under constant 25, 30 and 35 deg C (using acclimatized chambers) and environmental (25 deg C to 29 deg C) temperatures. The hatching rate was considered as total number of larvae recovered after 24h. The development period as well as larval and pupal survival rate were evaluated daily. Eclosion rate was significantly higher under environmental temperature than under the studied constant temperatures, suggesting that temperature variation may be an eclosion-stimulating factor. The mean eclosion time increased with the temperature, ranging from 2.8 h (25 deg C) to 5.2 h (35 deg C). The larval period was greatly variable inside each group, although it did not differ significantly amongst groups (11.0 +- 4.19 days), with individuals showing longer larval stages in water at 35 deg C (12.0 +- 4.95 days) and environmental temperature (13.6 +- 5.98 days). Oppositely, survival was strongly affected by the higher temperature, where only one individual lived through to adult phase. The results suggest that population of Ae. albopictus from Recife may be adapting to increasing of environmental temperatures and that the limiting temperature to larval development is around 35 deg C. (author)

  19. Comparison of cyanobacterial and green algal growth rates at different temperatures

    NARCIS (Netherlands)

    Lurling, M.; Faassen, E.J.; Kosten, S.; Eshetu, Z.; Huszar, V.M.

    2013-01-01

    1.The hypothesis that cyanobacteria have higher optimum growth temperatures and higher growth rates at the optimum as compared to chlorophytes was tested by running a controlled experiment with eight cyanobacteria species and eight chlorophyte species at six different temperatures (20-35°C) and by

  20. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  1. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    Science.gov (United States)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  2. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    Science.gov (United States)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal

  3. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... and distributional patterns corresponded well with the long-term (weeks) results obtained, but with some important deviations. The long-term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum...... in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...

  4. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures

    International Nuclear Information System (INIS)

    Igual Munoz, A.; Garcia Anton, J.; Lopez Nuevalos, S.; Guinon, J.L.; Perez Herranz, V.

    2004-01-01

    The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 deg C) by electrochemical methods. Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature. Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 deg C

  5. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    Directory of Open Access Journals (Sweden)

    Poonam Singh

    2016-01-01

    Full Text Available Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air as well as indoor habitats (resting place of mosquito were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs for Plasmodium vivax (Pv and P. falciparum (Pf based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and

  6. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  7. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  8. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  9. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about -80 degrees C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze...... temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze-thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures...... and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze-thaw tests. Further the air void structure was investigated using a microscopic technique in which air'bubble' size...

  10. Effect of Different Storage Periods and Temperatures on the Hatchability of Broiler Breeder Eggs

    Directory of Open Access Journals (Sweden)

    A. Mahmud*, M. Z. U. Khan1, Saima1 and M. A. Javed

    2011-01-01

    Full Text Available Temperature and humidity have been the two most common variables used to manipulate the storage environment of hatching eggs. To ascertain the effects of different egg storage periods and temperatures on hatchability; 400 eggs were obtained from a broiler breeder flock of 32 weeks of age on a single day collection basis. These eggs were randomly divided into 5 equal groups of 80 eggs each. After collection these were cleaned, fumigated and stored on four temperatures viz 4oC, 16oC, room temperature (25oC and ambient temperature (29oC. Each group was further subdivided into 4 replicates having 20 eggs each. Eggs of Group A (control were set in incubator with temperature of 37.5oC and relative humidity 60% after the storage of one day. Eggs of rest of the four groups were set in the incubator after the storage of 3, 6, 9 and 12 days. Subsequently, these were shifted to hatchers on 18th day where the temperature and humidity were maintained at 36.5oC and 75%, respectively. The data on hatchability and dead-in-shell embryos for various groups were recorded. The results revealed that as the storage period increased at different temperatures, the hatchability decreased significantly (P<0.01. Similarly, as the storage time increased, the percentage of dead-in-shell embryos increased (P<0.01.

  11. Analyzing the LiF thin films deposited at different substrate temperatures using multifractal technique

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kumar, Manvendra [Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India); Pandey, A.C. [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India)

    2014-07-01

    The Atomic Force Microscopy technique is used to characterize the surface morphology of LiF thin films deposited at substrate temperatures 77 K, 300 K and 500 K, respectively. It is found that the surface roughness of thin film increases with substrate temperature. The multifractal nature of the LiF thin film at each substrate temperature is investigated using the backward two-dimensional multifractal detrended moving average analysis. The strength of multifractility and the non-uniformity of the height probabilities of the thin films increase as the substrate temperature increases. Both the width of the multifractal spectrum and the difference of fractal dimensions of the thin films increase sharply as the temperature reaches 500 K, indicating that the multifractility of the thin films becomes more pronounced at the higher substrate temperatures with greater cluster size. - Highlights: • Analyzing LiF thin films using multifractal detrended moving average technique • Surface roughness of LiF thin film increases with substrate temperature. • LiF thin films at each substrate temperature exhibit multifractality. • Multifractility becomes more pronounced at the higher substrate temperatures.

  12. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Impact of container material on the development of Aedes aegypti larvae at different temperatures.

    Science.gov (United States)

    Kumar, Gaurav; Singh, R K; Pande, Veena; Dhiman, R C

    2016-01-01

    Aedes aegypti, the primary vector of dengue generally breeds in intradomestic and peridomestic containers made up of different materials, i.e. plastic, iron, rubber, earthen material etc. The material of container is likely to affect the temperature of water in container with variation in environmental temperature. The present study was aimed to determine the effect of different container materials on larval development of Ae. aegypti at different temperatures. Newly hatched I instar larvae (2-4 h old) were used in the study and experiments were conducted using three different containers made up of plastic, iron and earthen material. Three replicates for each type of container at 22, 26, 30, 34, 38, 40, and 42°C were placed in environmental chamber for the development of larvae. At temperatures >22°C, 50% pupation was completed in earthen pot within 4.3±0.6 to 6.3±0.6 days followed by plastic containers (5±0 to 8±0 days) and iron containers (6±0 to 9±0 days). Developmental time for 50% pupation in the three containers differed significantly (p containers (p containers resulted in significant variations in the developmental period of larvae. More than 35°C temperature of water was found inimical for pupal development. The results revealed the variation in temperature of water in different types of containers depending on the material of container, affecting duration of larval development. As the larval development was faster in earthen pot as compared to plastic and iron containers, community should be discouraged for storing the water in earthen pots. However, in view of containers of different materials used by the community in different temperature zones in the country, further studies are required for devising area-specific preventive measures for Aedes breeding.

  14. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    Science.gov (United States)

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  15. Effects of high ambient temperature on ambulance dispatches in different age groups in Fukuoka, Japan.

    Science.gov (United States)

    Kotani, Kazuya; Ueda, Kayo; Seposo, Xerxes; Yasukochi, Shusuke; Matsumoto, Hiroko; Ono, Masaji; Honda, Akiko; Takano, Hirohisa

    2018-01-01

    The elderly population has been the primary target of intervention to prevent heat-related illnesses. According to the literature, the highest risks have been observed among the elderly in the temperature-mortality relationship. However, findings regarding the temperature-morbidity relationship are inconsistent. This study aimed to examine the association of temperature with ambulance dispatches due to acute illnesses, stratified by age group. Specifically, we explored the optimum temperature, at which the relative health risks were found to be the lowest, and quantified the health risk associated with higher temperatures among different age groups. We used the data for ambulance dispatches in Fukuoka, Japan, during May and September from 2005 to 2012. The data were grouped according to age in 20-year increments. We explored the pattern of the association of ambulance dispatches with temperature using a smoothing spline curve to identify the optimum temperature for each age group. Then, we applied a distributed lag nonlinear model to estimate the risks of the 85th-95th percentile temperature relative to the overall optimum temperature, for each age group. The relative risk of ambulance dispatches at the 85th and 95th percentile temperature for all ages was 1.08 [95% confidence interval (CI): 1.05, 1.12] and 1.12 (95% CI: 1.08, 1.16), respectively. In comparison, among age groups, the optimum temperature was observed as 25.0°C, 23.2°C, and 25.3°C for those aged 0-19, 60-79, and ≥80, respectively. The optimum temperature could not be determined for those aged 20-39 and 40-59. The relative risks of high temperature tended to be higher for those aged 20-39 and 40-59 than those for other age groups. We did not find any definite difference in the effect of high temperature on ambulance dispatches for different age groups. However, more measures should be taken for younger and middle-aged people to avoid heat-related illnesses.

  16. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    Science.gov (United States)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  17. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  18. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Gergely [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Máthis, Kristian [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Pilch, Ján [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Minárik, Peter [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Lukáš, Petr [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Vinogradov, Alexei, E-mail: alexei.vinogradov@ntnu.no [Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim N-7491 (Norway); Institute of Advanced Technologies, Togliatti State University, 445020 (Russian Federation)

    2017-02-08

    The influence of the reinforcement short Saffil fibers on the deformation behavior of Mg-Al-Ca alloy-based composite with two different fiber plane orientations is investigated and clarified using in-situ neutron diffraction at room and elevated temperatures. The measured lattice strain evolution points to a more efficient reinforcing effect of fibers at parallel fiber plane orientation, which decreases at elevated temperature. A significant decrement of compressive lattice strain was incidentally observed in the matrix in the direction of load axis when deformation due to the elevated temperature occurred. Electron microscopy revealed the influence of the temperature and fiber orientation on fiber cracking. The EBSD observations corroborated neutron diffraction results highlighting significant twin growth at elevated testing temperatures.

  19. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    Science.gov (United States)

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  20. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  1. Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction

    Science.gov (United States)

    Kołodziej, B.; Kowal, A.; Lipiński, L.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.

    2017-06-01

    The argon triple point (T_{90} = 83.8058 \\hbox {K}) is a fixed point of the International Temperature Scale of Preston-Thomas (Metrologia 27:3, 1990). Cells for realization of the fixed point have been manufactured by several European metrology institutes (Pavese in Metrologia 14:93, 1978; Pavese et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Hermier et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The Institute of Low Temperature and Structure Research has in its disposal a few argon cells of various constructions used for calibration of capsule-type standard platinum resistance thermometers (CSPRT) that were produced within 40 years. These cells differ in terms of mechanical design and thermal properties, as well as source of gas filling the cell. This paper presents data on differences between temperature values obtained during the realization of the triple point of argon in these cells. For determination of the temperature, a heat-pulse method was applied (Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The comparisons were performed using three CSPRTs. The temperatures difference was determined in relation to a reference function W(T)=R(T_{90})/R(271.16\\hbox {K}) in order to avoid an impact of CSPRT resistance drift between measurements in the argon cells. Melting curves and uncertainty budgets of the measurements are given in the paper. A construction of measuring apparatus is also presented in this paper.

  2. The coupled dynamical problem of thermoelasticity in case of large temperature differences

    International Nuclear Information System (INIS)

    Szekeres, A.

    1981-01-01

    In the tasks of thermoelasticity in general, also in dynamical problems it is common to suppose small temperature differences. The equations used in scientific literature refer to these. It arises the thought of what is the influence on the dynamical problems of taking into account the large temperature changes. To investigate this first we present the general equation of heat conduction in case of small temperature differences according to Nowacki and Biot. On this basis we introduce the general equation of heat conduction with large temperature changes. Some remarks show the connection between the two cases. Using the latter in the equations of thermoelasticity we write down the expressions of the problem for the thermal shock of a long bar. Finally we show the results of the numerical example and the experimental opoortunity to measure some of the constants. (orig.)

  3. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  4. Effects of different vegetation on temperature in an urban building environment. Micro-scale numerical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Guenter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-08-15

    A three-dimensional micro-scale model is used to study the effects of various greenery on temperature in a built-up environment. Green design elements like roofs and facades, lawns in courtyards and single trees are studied individually as well as in various combinations. Measures for comparison are temperatures at 2 m height and mean temperatures for the urban atmosphere up to the building height. Different types of greenery can reduce local temperatures up to 15 K during specific daytime hours. However, this extraordinary effect is restricted to a short time and especially to the direct surroundings, while an impact over larger distances is small. Roof and facade greenery have hardly any influence on temperature at the 2 m level but reduce daytime heating of the urban atmosphere to a minor degree, while the relevance of trees is more or less limited to the shadow effect. A significant decrease in urban temperatures can be achieved only with a large number of very different individual green elements. The largest effect on the urban atmosphere was simulated for a change in albedo resulting in a temperature decrease of some degrees around noon. (orig.)

  5. Quench-in of different high T complexities of glassformers for leisurely study at lower temperatures

    DEFF Research Database (Denmark)

    Angell, C. A.; Yue, Yuanzheng; Wang, L. M.

    Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system by quenc......Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system...... by quenching to the glassy state at extreme rates, and then observing the way the system evolves at low temperatures during a controlled annealing procedure. In this manner, events that normally occur during change of temperature may be observed occurring during passage of time, at much lower temperatures....... At these low temperatures, the smearing effects of vibrationally excited modes may be greatly reduced. We study both relaxational properties and vibrational properties and find that the high fictive temperature states are characterized by short relaxation times (already known) and considerably more intense...

  6. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  7. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    Science.gov (United States)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  8. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  9. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    Science.gov (United States)

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  10. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  11. EMBRYO DEVELOPMENT OF YELLOWFIN TUNA (Thunnus albacares AT DIFFERENT INCUBATION TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Jhon Harianto Hutapea

    2007-12-01

    Full Text Available The experiment was conducted in order to figure out the effect of incubation temperature on embryonic development of yellowfin tuna, Thunnus albacares eggs. Five different incubation temperatures were applied as treatments, i.e.: 24°C, 26°C, 28°C, 30°C, and 32°C with 3 replicate each. Ten micro plates with lid (IWAKI, Japan were used; each has 6 well and 10 mL volumes. Five micro plates were used for experiment and five for balance on shaker. Three well of each micro plate were filled with 8 mL ultra violet sterilized sea water and 50 fertilized eggs. Temperature was set using Multi Thermo Incubator which has 5 level racks. Temperatures were set from the lowest to the highest on bottom to upper rack order. To maintain eggs dispersed in the medium, shaker on each rack was operated at 150 RPM. The embryo was monitored every 30-60 minutes depends on embryonic stage development using Microscope which was connected to Digital Camera DXM 1200F. Image analyses by Image Analyzer Program. The results showed, incubation temperature was significantly affect (P<0.05 embryonic development and hatching time of yellowfin tuna (Thunnus albacares eggs. Optimum incubation temperature for embryo development and hatching was 28°C. Decreased on incubation temperature slows down embryo development at all stages, and vice versa, increased on incubation temperature accelerates embryo development.

  12. Research for the influence on PRHR HX performance with different inlet temperature and flow rate

    International Nuclear Information System (INIS)

    Jia Bin; Jing Jianping; An Jieru; Bi Jinsheng; Li Yuanshan; Zhuang Shaoxin

    2014-01-01

    To study the residual heat removal capacity of PRHR HX, numerical simulation is demonstrated using FLUENT. Meanwhile to research the trends of PRHR HX residual heat removal capacity, different operating modes have been simulated with parameters deviated from design value. Finally it's found that when the coolant inlet temperature is higher than design valve the residual heat removal capacity is better and the higher the temperature is the lower the coolant outlet temperature can be obtained. And meanwhile the faster the coolant flows the better the residual heat in the core can be removed. (authors)

  13. Detection and analysis of anomalies in the brightness temperature difference field using MSG rapid scan data

    Czech Academy of Sciences Publication Activity Database

    Šťástka, J.; Radová, Michaela

    2013-01-01

    Roč. 123, SI (2013), s. 354-359 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905 Institutional support: RVO:68378289 Keywords : brightness temperature difference (BTD) * BTD anomaly * cloud-top brightness temperature (BT) * convective storm * MSG Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.421, year: 2013 https://www.sciencedirect.com/science/article/pii/S0169809512001548

  14. Study on the Key Indexes of Carambola Quality Safety under Logistics Environment of Different Temperature

    OpenAIRE

    Lei Wang; Ruhe Xie; Yifeng Zou

    2015-01-01

    By using layered factor analysis method, the key indexes of quality safety of Carambola are determined. The whole logistics process from picking, storing, transportation to selling is simulated in the experiment. At the same time, the key indexes are detected and analyzed under different temperature in logistics environment. The results indicate that both temperature and package have certain effect on the quality of Carambola. As shown in the study, the following conclusions are made. The tem...

  15. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  16. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  17. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  18. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China

    Science.gov (United States)

    Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao

    2018-06-01

    Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4

  19. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  20. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  1. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  2. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell

    Science.gov (United States)

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ˜120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  3. Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghuan; Cai, Rongsheng; Zhang, Yujuan; Wang, Chao [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Chemistry and Chemical Engineering, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Wang, Yiqian, E-mail: yqwang@qdu.edu.cn [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Ross, Guy G.; Barba, David [INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2014-07-01

    Ge nanocrystals (Ge-ncs) were produced by implantation of {sup 74}Ge{sup +} into a SiO{sub 2} film on (100) Si, followed by high-temperature annealing from 700 °C to 1100 °C. Transmission electron microscopy (TEM) studies show that the average size of Ge-ncs increases with the annealing temperature. High-resolution TEM (HRTEM) investigations reveal the presence of planar and linear defects in the formed Ge-ncs, whose relative concentrations are determined at each annealing temperature. The relative concentration of planar defects is almost independent of the annealing temperature up to 1000 °C. However, from 1000 °C to 1100 °C, its concentration decreases dramatically. For the linear defects, their concentration varies considerably with the annealing temperatures. In addition, by measuring the interplanar spacing of Ge-ncs from the HRTEM images, a strong correlation is found between the dislocation percentage and the stress field intensity. Our results provide fundamental insights regarding both the presence of microstructural defects and the origin of the residual stress field within Ge-ncs, which can shed light on the fabrication of Ge-ncs with quantified crystallinity and appropriate size for the advanced Ge-nc devices. - Highlights: • Growth of Ge nanocrystals at different annealing temperatures was investigated. • Strain field has great effects on the formation of dislocations. • Different mechanisms are proposed to explain growth regimes of Ge nanocrystals.

  4. Effects of Wax Coating on the Moisture Loss of Cucumbers at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-01-01

    Full Text Available The effects of wax coating on moisture loss of cucumbers (Cucumis sativus L., cv. Jinglv were investigated at different temperatures. Cucumbers were treated with 10% (volume : volume wax and then stored at 15, 20, 25, or 30°C and 55% relative humidity. The changes in the mass of samples were recorded every 6 h. Results showed that wax coating along with low temperature was very effective in preventing moisture loss of cucumbers during simulated distribution. After 48 h storage, moisture loss in wax treated cucumbers at 15°C was 45% lower than the control at 30°C. Furthermore, a kinetic model was developed to study the influence of temperature on moisture loss based on the Arrhenius law. The model successfully described changes in cucumber moisture loss at different temperatures during storage. The shelf life of cucumber was also predicted using the kinetic model. A synergistic effect was found between wax coating and storage temperature on cucumber shelf life. Wax coating combined with low storage temperature was an effective method to extend the shelf life of cucumber fruit.

  5. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  6. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    -scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...

  7. Analysis of simultaneous measurement of temperature and strain using different combinations of FBG

    Science.gov (United States)

    Ashik T., J.; Kachare, Nitin; Kalyani bai, K.; Kumar, D. Sriram

    2017-06-01

    The Fiber Bragg Grating (FBG) can be used for measuring temperature and or strain. In this paper analysis of different combinations of FBG is made. Certain parameters of FBG are considered such as Bandwidth, Side lobes, Peak power, and Sensitivity. Simultaneous measurement of temperature and strain is made using two combinations of FBG. The setup is simulated using two software. Optigrating 4.2.2 is used for designing different types of gratings such as Uniform, Apodized, Tilted and Superstructure. After designing, these files are exported to Optisystem 12 to simulate the spectrum and to observe the parameters.

  8. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    International Nuclear Information System (INIS)

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  9. Improving efficiency of heat pumps by use of zeotropic mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2017-01-01

    The present study demonstrates the optimization of a heat pump for an application with a large temperature glide on the sink and a smaller temperature glide on the source side. The study includes a simulation of a heat pump cycle for all possible binary mixtures from a list of 14 natural...... refrigerants, which enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. For a separated evaluation...... of the irreversibility solely caused by the fluid properties, the exergy destruction in the heat exchangers has been distinguished accordingly and an indicator quantifying the glide match has been defined to analyse the influence on the performance. It was observed that a good glide match can contribute to an increased...

  10. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  11. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  12. Sensory profiling of Dalmatian dry-cured ham under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Zlatko Janječić

    2010-01-01

    Full Text Available To investigate the influence of the Dalmatian ham processing conditions on weight loss and sensory characteristics, 20 hams were processed following different temperature conditions during salting and ripening. For that purpose, hams were evaluated using quantitative descriptive analysis. The weight loss was higher and all sensory traits except presence of tyrosine and phenylalanine crystals were higher rated for hams processed at higher temperatures. The most significant (P<0.0001 influence of temperature was established on subcutaneous fat color, muscle color and presence of tyrosine and phenylalanine, whereas no influence was established on appearance, marbling, flavor and melting. This concludes that there is overall significant effect of higher temperature on sensory characteristics most likely due to the more intense proteolysis and lipolysis.

  13. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  14. Adverse effects in coronary angiography: a comparative study of different temperature contrast medium

    International Nuclear Information System (INIS)

    Zhou Peng; Wang Qiulin; Cai Guocai; Li Lu; Jiang Licheng; Yang Zhen; Huang Xiuping

    2011-01-01

    Objective: To investigate the correlation between different temperature contrast medium and the occurrence of adverse effects, including the chest discomfort, the changes of heart rate, ST segment and T wave, the operating time and the used dosage of contrast medium, in performing coronary angiography. Methods: According to the contrast medium temperature used in coronary angiography, the patients were randomly divided into two groups: room temperature group (n=521) and warm temperature group (n=522). The contrast medium used in warm temperature group was bathed in 37 ℃ water for 60 minutes when the coronary angiography was carried out. The T Wave amplitude changes ≥ 0.01 mv, ST segment depression ≥ 0.05 mv, changes in heart rate ≥ 10 times/min were brought into the positive accounting. The occurrence of adverse effects, such as palpitation, chest distress and pectoralgia, the operative time and the used dosage of contrast medium were recorded. The results were analyzed and compared between the two groups. Results: Statistically significant differences in the changes of heart rate, ST segment deviation, T wave change and operating time existed between the two groups (P<0.05). And the difference in the occurrence of adverse effects between the two groups was also statistically significant (P<0.05). Conclusion: When performing coronary angiography, warming of the contrast medium with water bath is greatly conducive to the prevention of cardiac adverse effects. (authors)

  15. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  16. Utilising temperature differences as constraints for estimating parameters in a simple climate model

    International Nuclear Information System (INIS)

    Bodman, Roger W; Karoly, David J; Enting, Ian G

    2010-01-01

    Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.

  17. Evaluation of temperature rise with different curing methods and units in two composite resins

    Directory of Open Access Journals (Sweden)

    Tabatabaei M

    2006-01-01

    Full Text Available Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED. Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance. Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05. Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise. Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.

  18. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  19. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187 (Turkey)

    2016-04-21

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  20. Thermoluminescence of KI:Eu2+ Stimulated by Ultraviolet Irradiation at Different Temperatures

    International Nuclear Information System (INIS)

    Aguirre de Carcer, I.; Jaque, F.; Townsend, P.D.

    1999-01-01

    The thermoluminescence (TL) of KI:Eu 2+ after ultraviolet (254 nm) irradiation at different temperatures from -40 deg. C to +40 deg. C has been studied. Two main glow peaks and some minor features have been identified on the thermoluminescence glow curves. Irradiating at low temperature gives a strong peak at γ5 deg. C and a less pronounced one at 230 deg. C. The TL glow peak emission spectra were analysed as consisting of the addition of several Gaussian shaped emission bands. The position of the Gaussian peaks, and their widths, are coincident with divalent europium emission at different sites of the KI:Eu 2+ system. A new emission band centred at 3.05 eV, 0.16 eV FWHM for Eu 2+ has been observed from the TL emission spectra. The changes in the spectral distribution of the TL emission with irradiation temperature are discussed. (author)

  1. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  2. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  3. Difference in canopy and air temperature as an indicator of grassland water stress

    International Nuclear Information System (INIS)

    Duffková, R.

    2006-01-01

    In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (T c ) and air temperature at 2 m (T a ) was tested as an indicator of grassland water stress. To evaluate water stress ten-minute averages of temperature difference T c –T a were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approaching the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of vapour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of T c –T a with VPD and T c –T a with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of T c –T a with VPD and multiple linear correlations of T c –T a with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated. (author)

  4. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach.

    Science.gov (United States)

    Ribeiro, Paulo Roberto; Fernandez, Luzimar Gonzaga; de Castro, Renato Delmondez; Ligterink, Wilco; Hilhorst, Henk W M

    2014-08-12

    Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems to be the main biochemical

  5. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  6. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations

    Science.gov (United States)

    Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations,...

  7. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    Science.gov (United States)

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  8. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Bujalský, L.; Jirka, V.; Zemek, František; Frouz, J.

    2018-01-01

    Roč. 32, č. 4 (2018), s. 254-263 ISSN 1748-0930 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : temperature * normalised difference * vegetation index (NDVI) * vegetation cover * remote sensing Subject RIV: DF - Soil Science Impact factor: 1.078, year: 2016

  9. The sectional size effect on the deformation behaviour of Inconel 718 at different temperatures

    Directory of Open Access Journals (Sweden)

    Zhao R.

    2015-01-01

    Full Text Available Inconel 718, as a multiphase super-alloy, is widely used in aeronautics and astronautics industries. In this field, a modified Hall-Petch equation was used to describe the grain size effect on the deformation behaviour of Inconel 718 sheet in uniaxial tension test. There is a piecewise linearity in the σ-d−1 curve: With the thickness t is a constant, the slope changes obviously after a critical t/d ratio, which increases with strain. Moreover, the influence on sectional curve caused by temperature is also an interesting issue. To address that, the sectionalized curve was fitted at different strains and temperatures, and the phenomena of grain size effect in piecewise curve at different temperatures were further explained. A surface model of Inconel 718 was proposed to explain the intrinsic mechanism of different slopes. The research provided an in-depth understanding of the size effect on the deformation behaviour of Inconel 718 at different hot working temperatures.

  10. Can qualitatively similar temperature-histories be obtained in different pilot HP units?

    NARCIS (Netherlands)

    Landfeld, A.; Matser, A.M.; Strohalm, J.; Oey, I.; Plancken, van der I.; Grauwet, T.; Hendrickx, M.; Moates, G.; Furfaro, M.E.; Waldron, K.W.; Betz, M.; Halama, R.; Houska, M.

    2011-01-01

    An experimental protocol to harmonize the pressure and temperature-histories of model samples treated in different individual high pressure pilot units was developed. This protocol was based on the endpoint strategy. Step zero of this protocol consisted of an exploratory measurement of the pressure,

  11. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  12. Effects of different temperature treatments on biological ice nuclei in snow samples

    Science.gov (United States)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  13. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  14. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  15. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats.

    Science.gov (United States)

    Smith, Amanda L; Garbus, Haley; Rosenkrantz, Ted S; Fitch, Roslyn Holly

    2015-05-22

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  16. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2015-12-01

    Full Text Available Monitoring Land Surface Temperature (LST via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  17. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  18. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  19. Conservation of Campomanesia adamantium (CAMB. O. berg seeds in different packaging and at varied temperatures

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2013-03-01

    Full Text Available This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.

  20. Effect of different light curing units on Knoop hardness and temperature of resin composite

    Directory of Open Access Journals (Sweden)

    Guiraldo Ricardo

    2009-01-01

    Full Text Available Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46. A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan. Data were submitted to ANOVA and Tukey′s test (a = 0.05. Results: For both composites, there were no significant differences (P > 0.05 in the top surface hardness; however, PAC promoted statistically lower (P < 0.05 Knoop hardness number values in the bottom. The mean temperature increase showed no significant statistical differences (P > 0.05. Conclusion: The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  1. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    Science.gov (United States)

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  2. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  3. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  4. Behavior of Arcobacter butzleri and Arcobacter cryaerophilus in ultrahigh-temperature, pasteurized, and raw cow's milk under different temperature conditions.

    Science.gov (United States)

    Giacometti, Federica; Serraino, Andrea; Pasquali, Frederique; De Cesare, Alessandra; Bonerba, Elisabetta; Rosmini, Roberto

    2014-01-01

    The growth and survival of Arcobacter butzleri and Arcobacter cryaerophilus in milk were investigated at different storage temperatures. Three strains of each Arcobacter species were inoculated into ultrahigh-temperature (UHT), pasteurized, and raw cow's milk and stored at 4, 10, and 20°C for 6 days. The survival of Arcobacter spp. during storage was evaluated by a culture method. Results clearly showed that A. butzleri and A. cryaerophilus remained viable in milk when stored at 4°C and 10°C for a period of 6 days. When UHT and pasteurized milk were stored at 20°C, the A. butzleri count increased, with a longer lag-phase in pasteurized milk, whereas the A. cryaerophilus count increased in the first 48 h and then rapidly decreased to below the detection limit on the sixth storage day. When raw milk was stored at 20°C, the A. butzleri and A. cryaerophilus counts decreased from the first day of storage and no viable bacteria were recovered on the last day of storage. Generally, A. butzleri displayed a significantly better growth and survival capacity than A. cryaerophilus in milk. The present study is the first to assess the survival and/or growth of A. butzleri and A. cryaerophilus in milk. The evidence suggests that in case of primary contamination of milk or secondary contamination due to postprocessing contamination, milk can act as a potential source of Arcobacter infection in humans and could have public health implications, especially for raw milk consumption.

  5. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  6. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  7. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.

    Science.gov (United States)

    Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-12-05

    The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.

  8. Investigations on uranyl nitrate solubility in nitric acid in different concentrations at temperatures of 50C

    International Nuclear Information System (INIS)

    Deigele, E.

    1983-01-01

    The solubility of uranyl nitrate was studied in nitric acid solutions of different concentrations at a temperature of 5 0 C. This temperature was chosen with a view to using water as coolant and to facilitate the handling of the strong acid solutions. Accurate curves were established by a multitude of accurate measurements in the high concentration range. Further solubility curves can be derived from this basic curve. Some of the precipitates in the interesting regions of the solubility curve were analyzed. (orig./EF) [de

  9. Study of flue-gas temperature difference in supercritical once-through boiler

    Science.gov (United States)

    Kang, Yanchang; Li, Bing; Song, Ang

    2018-02-01

    The 600 MW coal-fired once-through Boilers with opposed firing at a power plant are found to experience marked temperature variation and even overtemperature on the wall of the heating surface as a result of flue-gas temperature (FGT) variation in the boiler. In this study, operational adjustments were made to the pulverizing, combustion, and secondary air box systems in these boilers, in order to solve problems in internal combustion. The adjustments were found to reduce FGT difference and optimize the boiler’ combustion conditions. The results of this study can provide a reference for optimization of coal-fired boiler of the same type in similar conditions.

  10. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  11. Shelf-life of almond pastry cookies with different types of packaging and levels of temperature.

    Science.gov (United States)

    Romeo, F V; De Luca, S; Piscopo, A; Santisi, V; Poiana, M

    2010-06-01

    Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness.

  12. Bands of respiratory rate and cloacal temperature for different broiler chicken strains

    Directory of Open Access Journals (Sweden)

    Sheila Tavares Nascimento

    2012-05-01

    Full Text Available The objective of this investigation was to estimate ideal bands of respiratory rate and cloacal temperature for broiler chicken strains during the rearing period and to evaluate the influence of time of exposure on bird physiological variables under different thermal stress conditions. The research was conducted in a climatic chamber during the six weeks of the rearing period, with Avian and Cobb strains exposed to two climatic conditions (comfort and stress, in three distinct times of exposure, in three conditions (before going to the chamber; at the end of exposure time; 30 minutes after the end of exposure, in four treatments: comfort with 60 minutes of exposure; stress with 30 minutes of exposure; stress with 60 minutes of exposure; stress with 90 minutes of exposure. Bands of respiratory rate and cloacal temperature were elaborated for both strains, for each one of the weeks of the rearing period. Strains differed, regardless of treatments and conditions adopted in the research on the third, fifth and sixth weeks of life in relation to the cloacal temperature. The Cobb strain is more tolerant to thermal stress in comparison with the Avian. There was difference for both variables between comfort and stress, but time of exposure to stress did not influence the physiological response of birds, except for cloacal temperature on the second week of life.

  13. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Zodape, Sangesh P.; Parwate, Dilip V.

    2012-01-01

    Highlights: ► Study of aqueous solutions of biologically important compounds has been reported. ► MH is used for treating type II diabetes, RH is in treatment of peptic ulcer and TH is used to treat severe pain. ► All the compounds act as structure makers by volumetric studies. ► MH and RH act as weak structure breakers and TH acts as a weak structure maker by viscometric studies. - Abstract: Density and viscosity measurements are reported for aqueous solutions of the drugs like Metformin hydrochloride (MH), Ranitidine hydrochloride (RH) and Tramadol hydrochloride (TH) at different temperatures T = (288.15, 298.15, and 308.15) K within the concentration range (0 to 0.15) mol · kg −1 . The density and viscosity data are used to obtain apparent molar volume of solute (φ V ) and relative viscosity (η r ) of aqueous solutions at different temperatures. The limiting apparent molar volume of solute (φ V 0 ), limiting apparent molar expansivity (φ E 0 ), thermal expansion coefficient (α ∗ ), hydration number (n h ), Jones–Dole equation viscosity A and B coefficients, experimental slope (S V ) at different temperatures, and temperature coefficient of Bi.e.(dB/dT) at T = 298.15 K were also obtained. The results obtained have been interpreted in terms of solute–solvent and solute–solute interactions and structure making/breaking ability of solute in the aqueous solution.

  14. Effect of different seed treatments on maize seed germination parameters under optimal and suboptimal temperature conditions

    Directory of Open Access Journals (Sweden)

    Vujošević Bojana

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of different seed treatments on germination parameters of three maize genotypes under optimal and suboptimal temperature conditions. Seed was treated with recommended doses of three commercial pesticide formulations: metalaxyl-m 10 g/L + fludioxonil 25 g/L, metalaxyl 20 g/kg + prothioconazole 100 g/kg and thiacloprid 400 g/L. Testing was conducted at 25°C and 15°C. Results of the study indicate that there are differences in response of maize genotypes to applied seed treatments, as well as to a specific treatment at optimal and suboptimal temperatures. Some treatments, depending on the mixing partner and temperature conditions, can affect final germination. In other cases, germination rate can be accelerated or prolonged, but with no effect on final germination. In order to provide fast and uniform emergence under different temperature conditions, further examination of the response of maize genotypes to specific seed treatments would be beneficial.

  15. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  16. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  17. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  18. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  20. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  1. Tungsten self-sputtering yield with different incidence angles and target temperatures

    International Nuclear Information System (INIS)

    Bandourko, V.; Nakamura, K.; Akiba, M.; Jimbou, R.

    1998-01-01

    The self-sputtering of different types of tungsten due to 1 keV W + bombardment at temperatures of 25 C and 600 C and incident angles in the range of 30-60 was studied by means of the weight loss method. The experimental data at room temperature agreed reasonably with the results of TRIM calculations. Enhanced self-sputtering yields due to beam-induced desorption of WO 2 were found at a temperature of 600 C. The weight loss of W-Cu composite is larger than that of the CVD-W and ps-W under the same irradiation conditions due to the selective removal of copper. (orig.)

  2. Effect of temperature on different stages of Romanomermis iyengari, a mermithid nematode parasite of mosquitoes

    Directory of Open Access Journals (Sweden)

    K. P. Paily

    1994-12-01

    Full Text Available The effect of temperature (20 degrees-35 degrees C on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.

  3. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    Science.gov (United States)

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste. © 2015 Institute of Food Technologists®

  4. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    Science.gov (United States)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  5. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2018-05-01

    Full Text Available To improve the reactor efficiency, this study investigated the influence of temperature on the biological hydrogen methanation (BHM in trickle-bed reactors (TBR. Rising temperatures increase the metabolic activity of methanogenic microorganisms, thus leading to higher reactor specific methane formation rates (MFR. In order to quantify the potential for improved performance, experiments with four different operating temperatures ranging from 40 to 55 °C were carried out. Methane content increased from 88.29 ± 2.12 vol % at 40 °C to 94.99 ± 0.81 vol % at 55 °C with a stable biological process. Furthermore, a reactor specific methane formation rate (MFR of up to 8.85 ± 0.45 m3 m−3 d−1 was achieved. It could be shown that the microorganisms were able to adapt to higher temperatures within hours. The tests showed that TBR performance with regard to BHM can be significantly increased by increasing the operating temperature.

  6. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures

    International Nuclear Information System (INIS)

    Zhang Fuzen; Jiang Peixe

    2012-01-01

    Enhanced Geothermal Systems show promise for meeting growing energy demands. The Organic Rankine Cycle (ORC) can be used to convert low and medium-temperature geothermal energy to electricity, but the working fluid must be carefully selected for the ORC system design. This paper compares the system performance using R134a, isobutane, R245fa and isopentane for four typical geofluid temperatures below 200 °C. Three type (subcritical, superheated and transcritical) power generation cycles and two heat transfer control models (total heat control model and vaporization control model) are used for different EGS source temperatures and working fluids. This paper presents a basic analysis method to select the most suitable working fluid and to optimize the operating and design parameters for a given EGS resource based on the thermodynamics. - Highlights: ► We present a method to selecting working fluids for EGS resources. ► Working fluids with critical temperatures near geofluid temperature is priority. ► Operating conditions requiring use of total heat control model give good behave. ► Transcritical cycle is good choice.

  7. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    Science.gov (United States)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  8. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  9. Thermodynamics for proton binding of phytate in KNO3(aq) at different temperatures and ionic strengths

    International Nuclear Information System (INIS)

    Bretti, Clemente; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2013-01-01

    Highlights: • Protonation data were modeled in a wide range of temperatures and ionic strengths. • Protonation values decrease with increasing ionic strength and temperature. • In KNO 3 proton binding process is slightly exothermic, but less than in NaCl. • The major contribution for the proton association is entropic in nature. • Results are in agreement with previous findings for KCl and NaCl. - Abstract: Potentiometric measurements were performed in KNO 3(aq) , to determine the apparent protonation constants of phytate at different temperatures (278.15 ≤ T (K) ≤ 323.15) and ionic strengths (0.25 ≤ I (mol) dm −3 ≤ 3.0) values. In general, the protonation constants decrease with increasing both temperature and ionic strength. The data reported were critically compared with previous results obtained in KCl and the values are in a good agreement, considering the experimental errors and slight differences between the activity coefficients of the various species in KCl and KNO 3 . Experimental data were then modeled as a function of temperature and ionic strength using, with comparable results, two approaches: the extended Debye–Hückel equation and the specific ion interaction theory (SIT). The single specific ion interaction coefficients, ε, were also determined. The corresponding values are higher than those in Na + media. The protonation constants were also analyzed considering a simplified weak interaction model using an empirical equation that contains an additional term which takes into account the formation of weak complexes. The results obtained for the modeling of the protonation constants are in agreement with the literature findings. Thermodynamic protonation parameters were also obtained at different temperatures and ionic strengths. The proton association process is slightly exothermic and the enthalpic contribution is less negative than that in NaCl solution. As observed in other cases for phytate anion, the major contribution for

  10. Temperature control during therapeutic hypothermia for newborn encephalopathy using different Blanketrol devices.

    Science.gov (United States)

    Laptook, Abbot R; Kilbride, Howard; Shepherd, Edward; McDonald, Scott A; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D

    2014-12-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C ± 1.0°C for B2 vs. 33.9°C ± 1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8% ± 0.1% vs. 95.8% ± 0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia.

  11. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Moltó, Julia; Conesa, Juan A.; Font, Rafael

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants. - Highlights: • Decomposition of a brominated flame retardant is performed in a laboratory furnace. • Both pyrolysis and combustion at two different temperatures are studied. • Brominated organic compounds such as Br-dioxins and furans are analysed. • Main product of decomposition is HBr, accounting for ca. 50%. • Very high and dangerous levels of PBDD/Fs and precursors (bromophenols) are detected. - TBBPA mainly decomposes to give HBr and brominated hydrocarbons at high temperature, but high levels of bromophenols and polybrominated dibenzo-p-dioxins and furans are also produced

  12. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría

    2016-01-01

    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  13. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  14. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  15. Prediction of Human Performance Using Electroencephalography under Different Indoor Room Temperatures

    Science.gov (United States)

    Zhang, Tinghe; Mao, Zijing; Xu, Xiaojing; Zhang, Lin; Pack, Daniel J.; Dong, Bing; Huang, Yufei

    2018-01-01

    Varying indoor environmental conditions is known to affect office worker’s performance; wherein past research studies have reported the effects of unfavorable indoor temperature and air quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors that can predict performance in changing indoor environments have become a highly important research topic bearing significant impact in our society. While past research studies have attempted to determine predictors for performance, they do not provide satisfactory prediction ability. Therefore, in this preliminary study, we attempt to predict performance during office-work tasks triggered by different indoor room temperatures (22.2 °C and 30 °C) from human brain signals recorded using electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature, heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance. Our results indicate EEG PSDs as predictors provide the highest R2 (> 0.70), that is 17 times higher than using other physiological signals as predictors and is more robust. Finally, the paper provides insight on the selected predictors based on brain activity patterns for low- and high-performance levels under different indoor-temperatures. PMID:29690601

  16. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  17. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    Science.gov (United States)

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  19. Floor Response Spectra of a Base Isolated Auxiliary Building in Different Temperature Environments

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Youngsun; Choi, Inkil

    2013-01-01

    It is necessary to investigate the aging effect of degradation factors and to evaluate the seismic response of base isolated NPPs with age-related degradation. In this study, the seismic responses for NPPs using high damping rubber bearing with age-related degradation in different temperature were investigated by performing a nonlinear time history analysis. The floor response spectrums (FRS) were presented with time in different temperature environments. The degradation of HRB is found to be particularly sensitive to the ambient temperature. The increase of HRB stiffness leads to the increase of FRS it was observed that the seismic demand for equipment located in the AUX was changed. Therefore it is required that the seismic evaluation for the isolation system (e. g. isolators, equipment located in isolated structure) is performed considering the temperature environments. From the seismic fragility analysis, the seismic capacity of cabinet was affected by the degradation of HRB. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the degradation during the life time

  20. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  1. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  2. Simulation of leaf photosynthesis of C3 plants under fluctuating light and different temperatures

    DEFF Research Database (Denmark)

    Öztürk, Isik; Holst, Niels; Ottosen, Carl-Otto

    2012-01-01

    An induction-dependent empirical model was developed to simulate the C3 leaf photosynthesis under fluctuating light and different temperatures. The model also takes into account the stomatal conductance when the light intensity just exceeds the compensation point after a prolonged period...... of darkness (initial stomatal conductance, ). The model was parameterized for both Chrysanthemum morifolium and Spinacia oleracea by artificially changing the induction states of the leaves in the climate chamber. The model was tested under natural conditions that were including frequent light flecks due...... to partial cloud cover and varying temperatures. The temporal course of observed photosynthesis rate and the carbon gain was compared to the simulation. The ability of the current model to predict the carbon assimilation rate was assessed using different statistical indexes. The model predictions were...

  3. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  4. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  5. Microstructural characterisation of a P91 steel normalised and tempered at different temperatures

    International Nuclear Information System (INIS)

    Hurtado-Norena, C.; Danon, C.A.; Luppo, M.I.; Bruzzoni, P.

    2015-01-01

    9%Cr-1%Mo martensitic-ferritic steels are used in power plant components with operating temperatures of around 600 deg. C because of their good mechanical properties at high temperature as well as good oxidation resistance. These steels are generally used in the normalised and tempered condition. This treatment results in a structure of tempered lath martensite where the precipitates are distributed along the lath interfaces and within the martensite laths. The characterisation of these precipitates is of fundamental importance because of their relationship with the creep behaviour of these steels in service. In the present work, the different types of precipitates found in these steels have been studied on specimens in different metallurgical conditions. The techniques used in this investigation were X-ray diffraction with synchrotron light, scanning electron microscopy, energy dispersive microanalysis and transmission electron microscopy. (authors)

  6. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    Science.gov (United States)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  7. Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

    OpenAIRE

    Zarmina Gillani; Nuzhat Huma; Aysha Sameen; Mulazim Hussain Bukhari

    2017-01-01

    Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturati...

  8. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  9. Mass-controlled capillary viscometer for a Newtonian liquid: Viscosity of water at different temperatures

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2007-03-01

    The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.

  10. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  11. Quality changes of long-life foods during three-month storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Zuzana Bubelová

    2017-01-01

    Full Text Available The aim of this study was to describe quality changes of eight long-life foods (instant potato purée with milk, instant goulash soup, canned white-type cheese, pre-baked baguette, szeged goulash meal-ready-to-eat, canned chicken meat, pork pate and canned tuna fish during three-month storage at 4 different temperatures (-18 °C, 5 °C, 23 °C and 40 °C. These temperatures were chosen to simulate various climatic conditions in which these foods could be used to ensure the boarding during crisis situations and military operations to provide high level of sustainability. Foods were assessed in terms of microbiological (total number of aerobic and/or facultative anaerobic mesophilic microorganisms, number of aerobic and anaerobic spore-forming microorganisms, number of enterobacteria, number of yeasts and/or moulds, chemical (pH-values, dry matter, fat, crude protein, ammonia and thiobarbituric acid reactive substances contents, texture profile (hardness and sensory (appearance, consistency, firmness, flavour and off-flavour analyses. Microbiological analyses showed expected results with the exception of szeged goulash, pork pate and tuna fish, which, although being sterilised products, contained some counts of bacteria. The decrease of pH-values and increase of dry matter, ammonia and thiobarbituric acid reactive substances contents were observed during the storage of all foods due to prolonged storage time and/or elevated storage temperature. Furthermore, according to texture profile analysis, hardness of cheese and baguette rose as a result of both storage temperature and time. Finally, the highest storage temperature (40 °C resulted in a deterioration of sensory quality (especially flavour of most foods; the exceptions were pate and tuna fish which retained good sensory quality throughout 3-month storage at all temperatures.

  12. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  13. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients

    Directory of Open Access Journals (Sweden)

    Sniegowski M

    2015-03-01

    Full Text Available Matthew Sniegowski, Michael Erlanger, Raul Velez-Montoya, Jeffrey L Olson Ophthalmology Department, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Aurora, CO, USA Purpose: To assess the change in ocular surface temperature between healthy phakic and pseudophakic patients.Methods: We included patients with no history of ocular disease other than cataract. Patients were divided into three groups: clear lens, cataract, and pseudophakic. All patients had two ocular surface digital thermal scans. An average of five surface points was used as the mean ocular surface temperature. Results were analyzed with a one-way analysis of variance and a Tukey’s least significance difference test. The patients were further divided into phakic and pseudophakic groups. Correlation coefficients between several variables were done in order to assess dependencies.Results: Fifty-six eyes (28 cataracts, 12 clear lenses, 16 pseudophakic were enrolled. The mean ocular surface temperature in the cataract group was 34.14°C±1.51°C; clear lens: 34.43°C±2.27°C; and pseudophakic: 34.97°C±1.57°C. There were no statistical differences among the study groups (P=0.3. There was a nonsignificant negative correlation trend between age and surface temperature in the phakic group. The trend inverted in the pseudophakic group but without statistical significance.Conclusion: Although cataract extraction and intraocular lens implantation seem to induce a mild increase in ocular surface temperature, the effect is not clear and not significant. Keywords: digital thermal scans, intraocular lens implantation, cataract extraction

  14. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures

    International Nuclear Information System (INIS)

    Li, Jing; Pei, Gang; Li, Yunzhu; Wang, Dongyue; Ji, Jie

    2012-01-01

    The energetic and exergetic performance of an updated ORC (organic Rankine cycle) is investigated. The thermal efficiencies of the ORC at different heat source temperatures of about 100, 90, 80, and 70 °C are explored. The thermodynamic irreversibility that takes place in the evaporator, condenser, turbine, pump, and separator is revealed. The ORC feasibility for low-temperature applications is demonstrated. With a hot side temperature of around 80 °C, a thermal efficiency of 7.4% and a turbine isentropic efficiency of 0.68 can be achieved. The present research further indicates that exergy destruction caused by heat transfer through an appreciable temperature difference in the evaporator is the largest in the energy conversion process, followed by that in the condenser. The exergy destroyed in the heat exchangers amounts to 74% of the overall exergy loss. The total system exergy efficiency is approximately 40%; thus, ways to improve exergy efficiency are required. HCFC-123, a dry fluid, is experimentally confirmed to be highly superheated after expansion in this study. A regenerator should be used to preheat HCFC-123 prior to entering the evaporator. Meanwhile the heat-transfer configuration with two oil cycles can be a good solution to overcome the thermodynamic disadvantage of a one-stage evaporator. -- Highlights: ► An updated ORC system is introduced. ► The ORC feasibility for low-temperature applications is experimentally demonstrated. ► Thermodynamic irreversibility in ORC components is revealed. ► Suggestions are given to reduce the exergy destruction.

  15. A comparison of three different types of temperature measurement in HITU fields

    Science.gov (United States)

    Haller, J.; Jenderka, K.-V.; Seifert, F.; Klepsch, T.; Martin, E.; Shaw, A.; Durando, G.; Guglielmone, C.; Girard, F.

    2012-10-01

    The spatial and temporal distribution of the temperature elevation caused by high-intensity therapeutic ultrasound (HITU) in a tissue-mimicking material (TMM) has been determined with magnetic resonance (MR) thermometry, infrared (IR) thermometry and a thermal test object with an integrated thin-film thermocouple at three different National Metrological Institutes (PTB/Germany, NPL/UK, INRIM/Italy). Results obtained from the different types of measurement are compared and some general aspects of the methods are discussed, particularly with regard to their suitability for the in vitro characterization of transducers for treatment planning.

  16. Etching characteristics of a CR-39 track detector at room temperature in different etching solutions

    International Nuclear Information System (INIS)

    Dajko, G.

    1991-01-01

    Investigations were carried out to discover how the etching characteristics of CR-39 detectors change with varying conditions of the etching process. Measurements were made at room temperature in pure NaOH and KOH solutions; in different alcoholic KOH solutions (PEW solution, i.e. potassium hydroxide, ethyl alcohol, water); and in NaOH and KOH solutions containing different additives. The bulk etching rate of the detector (V B ) and the V (= V T /V B ) function, i.e. track to bulk etch rates ratio, for 6.1 MeV α-particles, were measured systematically. (author)

  17. Effect of different light curing units on Knoop hardness and temperature of resin composite.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Xediek Consani, Rafael Leonardo; Mendes, Wilson Batista; Lympius, Thais; Coelho Sinhoreti, Mario Alexandre

    2009-01-01

    To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan). Data were submitted to ANOVA and Tukey's test (alpha = 0.05). For both composites, there were no significant differences (P > 0.05) in the top surface hardness; however, PAC promoted statistically lower (P 0.05). The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  18. The forms of alkalis in the biochar produced from crop residues at different temperatures.

    Science.gov (United States)

    Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong

    2011-02-01

    The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Spectroscopic determination of ionization constants of quinoline and 3-aminoquinoline at different temperature

    International Nuclear Information System (INIS)

    Indhar, H.A.B.

    2000-01-01

    Quinoline and its derivative are chemically and biologically important heterocylic compounds. Its ionization constant (pK/sub a/ values have been previously determined only at 18 or 20 deg. C. We have enhanced this work at different temperatures from 20-50 deg. C at the interval of 5 deg. C. The dissociation constants (pk/sub a/s), and Gibb's free energies of quinoline and 3-aminoquinoline have been determined by UV-Spectrophotometer (lambda 2) equipped with a temperature control of - + 0.1 deg. C at temperatures ranging from 20-50 deg. C in water. The experimental data have been used for the determination of thermodynamic ionization constants (pk /sub a //sup t/) sub t/, concentration ionization constants (pK/sub a//sup M/) and Gibbs's free energy values of pK/sub a/sup M/. The ionization constant values decrease with increase of temperature. The significance of relative magnitudes of the values is discussed and some useful generalization are obtained. The curves are parabolic. A computer program in GW-BASIC calculates the values of dissociation constants. From the pK/sub a/ values, Gibb's free energies are compared and discussed. (author)

  20. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  2. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    Science.gov (United States)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  3. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchikov, Mikhail V., E-mail: Mikhailkamenshchikov@yandex.ru [Tver State University, 170002, Tver (Russian Federation); Solnyshkin, Alexander V. [Tver State University, 170002, Tver (Russian Federation); Pronin, Igor P. [Ioffe Institute, 194021, St. Petersburg (Russian Federation)

    2016-12-09

    Highlights: • Correlation of the microstructure of PZT films and dielectric response was found. • Difference of dielectric responses under low and high bias is caused by domains. • Internal fields is discussed on the basis of the space charges. • Dependences of PZT films characteristics on synthesis temperature are extremal. - Abstract: Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540–570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance–voltage (C–V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  4. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Science.gov (United States)

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  5. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  6. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions

    Directory of Open Access Journals (Sweden)

    Alefsi David Sanchez-Reinoso

    2014-12-01

    Full Text Available Heat stress due to high daytime temperatures is one of the main limiting factors in rice (Oryza sativa L. yield in Colombia. Thus, the objective of the present research was to analyze the effect of three different daytime temperatures (25, 35, and 40 °C on the physiological responses of three Colombian rice cultivars (F60, F733, and F473, thereby contributing to the knowledge of rice acclimation mechanisms. For 10 d, eight plants of each of the three cultivars were subjected daily to 5 h periods of 35 and 40 °C. The control treatment corresponded to normal growth conditions (25 °C. Thermal stress was assessed based on a series of physiological and biochemical parameters. The 35 °C treatment produced photosynthetic and respiratory differences in all three cultivars. At 40 °C, 'F60' displayed the lowest photosynthetic rate and the highest respiratory rate. Although this cultivar experienced particularly strong electrolyte leakage and changes in proline when subjected to the high-temperature treatments, similar trends were observed in 'F733' and 'F473'. At 40 °C, the concentration of malondialdehyde (MDA was lower in 'F473' than in the other cultivars. These results may explain the poor agronomic performance of 'F60' in the field under daytime heat stress. The methodologies employed in the present work may be useful in Colombian rice breeding programs, particularly for the selection of heat-tolerant breeding stocks.

  7. Development of Colletotrichum gloeosporioides isolated from green pepper in different culture media, temperatures, and light regimes

    Directory of Open Access Journals (Sweden)

    Mello Alexandre Furtado Silveira

    2004-01-01

    Full Text Available Control of anthracnose in green pepper involves the use of resistant varieties and/or fungicides. The selection of varieties and efficient products demands great amounts of conidia as inoculum. It is thus necessary to optimize the production of Colletotrichum gloeosporioides conidia in the laboratory, establishing the best conditions for fungus development. The present study aimed at determining the most favorable culture media, temperature, and light conditions for the production of fungus inoculum. The fungus was isolated from green pepper fruits (Capsicum annuum L. and transferred to four culture media (PDA, oat, filtered pepper extract, and autoclaved pepper extract, under different temperatures (15, 20, 25, 30, and 35ºC and light conditions (24h dark, and 24h light. Colony growth was evaluated after 7 and 12 days of incubation. No differences were found between the culture media. However, the greatest number of conidia was obtained from colonies grown in oat medium at 25ºC. Temperatures of 20 and 25ºC were the most favorable for colony growth and sporulation. Higher sporulation was obtained under incubation in constant light. Cultivation of C. gloeosporioides in oat medium, at 25ºC, and constant light is recommended.

  8. Physiological performance of sesame seeds under the water stress at different temperatures

    Directory of Open Access Journals (Sweden)

    Dayana Silva de Medeiros

    2015-10-01

    Full Text Available Sesame (Sesamum indicum L. shows great economic potential because it can be explored by the national as well as the international market. It can be grown in the second season when it is subject to less favorable weather conditions such as drought during the sowing and emergence. Given this the objective was to evaluate the effect of water stress induced by polyethylene glycol solutions (PEG 6000 at different temperatures in order to asses the physiological quality of sesame seeds. In this work, were used PEG 6000 with different osmotic potentials (0.0 control and (-0.2, –0.4, –0.6, –0.8, –1.0 –1,2 and –1.4 MPa at temperatures of 25, 30 and 35 °C. For determine the effect of the treatments it was evaluated seed germination and vigor (first count and length of the primary root and shoot, in a completely randomized, with four replications. The sesame seeds are affected by water stress, with significant reductions in germination and vigor. A temperature of 30 °C favored the germination performance in less restrictive water potentials.

  9. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  10. Assessing the processing quality of different potato cultivars during storage at various temperatures

    International Nuclear Information System (INIS)

    Amjad, A.; Randhawa, M.A.; Butt, M.S.; Asghar, M.

    2016-01-01

    Processing industry needs continuous supply of tubers for fries/chips preparation throughout the year. Storage is obligatory to meet the increasing demand of population. Objective of this study was to evaluate the processing and quality characteristics of different potato cultivars (Lady Rosetta, Sante, Hermes, Crozo, Kuroda and Asterix) during storage with 75-80 percent relative humidity for the period of 160 days at various temperatures (3 degree C, 7 degree C, 11 degree C). Quality parameters such as specific gravity, sprouting, weight loss, dry matter, starch content, ascorbic acid, sugar content and invertase enzyme activity were determined to estimate the processing potential of each cultivar. High Performance Liquid Chromatography (HPLC) equipped with amino (NH2) column and Refractive Index Detector (RID) was used for the identification and quantification of sugars. The findings of the present work showed that temperature significantly (p Hermes > Crozo > Sante > Asterix > Kuroda. (author)

  11. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  12. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  13. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  14. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    Science.gov (United States)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  15. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  16. Performance ceramic red mass containing mill scale of rolling in different firing temperatures

    International Nuclear Information System (INIS)

    Meller, J.G.; Arnt, A.B.C; Rocha, M.R.

    2014-01-01

    This study aimed to evaluate the performance of the properties of samples of red clay with addition of mill scale steel. This residue consists of oxides of iron has the function replace pigments used in ceramic materials. The mechanical strength of the sintered material can be associated with reactions that occur during sintering, leading to the formation of compounds provided with good mechanical characteristics, particle size of the components and the structure of the dough piece after the compactation. After chemical and microstructural characterization diffraction and fluorescence X-rays, this residue was added in the proportion of 1.45% of a commercial ceramic mass. The formulations were subjected to different temperatures and performance of the formulations was evaluated for physical characteristics: loss on ignition, linear firing shrinkage, water absorption, flexural strength by 3 and intensity of tone. The loss on ignition and linear firing shrinkage tests relate to the sintering temperature with the performance of the tested formulations. (author)

  17. Shearing single crystal magnesium in the close-packed basal plane at different temperatures

    Science.gov (United States)

    Han, Ming; Li, Lili; Zhao, Guangming

    2018-05-01

    Shear behaviors of single crystal magnesium (Mg) in close-packed (0001) basal plane along the [ 1 bar 2 1 bar 0 ], [ 1 2 bar 10 ], [ 10 1 bar 0 ] and [ 1 bar 010 ] directions were studied using molecular dynamics simulations via EAM potential. The results show that both shear stress-strain curves along the four directions and the motion path of free atoms during shearing behave periodic characteristics. It reveals that the periodic shear displacement is inherently related to the crystallographic orientation in single crystal Mg. Moreover, different temperatures in a range from 10 to 750 K were considered, demonstrating that shear modulus decreases with increasing temperatures. The results agree well with the MTS model. It is manifested that the modulus is independent with the shear direction and the size of the atomic model. This work also demonstrates that the classical description of shear modulus is still effective at the nanoscale.

  18. Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures

    International Nuclear Information System (INIS)

    Naseem, Bushra; Iftikhar, Madeeha

    2017-01-01

    Highlights: • Antibiotics in different alcohols are used to study their interactions in solutions. • Density and sound velocity for antibiotic solutions are measured at different temperatures. • Apparent molar volume and isentropic compressibility are used to calculate partial molar quantities. • Acoustical parameters are calculated and discussed in terms of solute–solute and solute–solvent interactions. - Abstract: The density and sound velocity for pure alcohols (methanol, ethanol, iso-propanol and n-butanol) and molal solutions of nitroimidazoles (metronidazole (MNZ) and dimetridazole (DMZ) have been measured at different temperatures (293.15–313.15 K). Different volumetric and acoustical parameters like apparent molar volume (V ϕ ), partial molar volume (VЛљ ϕ ), apparent molar isentropic compressibility (K ϕ ), partial molar isentropic compressibility (KЛљ ϕ ), hydration number (n H ), acoustic impedance (Z) and intermolecular free length (L f ) of antibiotic solutions were calculated from the experimental values of density and sound velocity. The derived values have been used to explore the solute–solute and solute–solvent interactions. The V ϕ values are positive and K ϕ values are negative in both antibiotics, indicative of strong solute–solvent interactions and closely packed structure of antibiotics in alcohols. The decreasing trend of L f with increasing antibiotic concentration shows the presence of strong intermolecular interactions in solutions.

  19. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  1. The Statistical Differences Between the Gridded Temperature Datasets, and its Implications for Stochastic Modelling

    Science.gov (United States)

    Fredriksen, H. B.; Løvsletten, O.; Rypdal, M.; Rypdal, K.

    2014-12-01

    Several research groups around the world collect instrumental temperature data and combine them in different ways to obtain global gridded temperature fields. The three most well known datasets are HadCRUT4 produced by the Climatic Research Unit and the Met Office Hadley Centre in UK, one produced by NASA GISS, and one produced by NOAA. Recently Berkeley Earth has also developed a gridded dataset. All these four will be compared in our analysis. The statistical properties we will focus on are the standard deviation and the Hurst exponent. These two parameters are sufficient to describe the temperatures as long-range memory stochastic processes; the standard deviation describes the general fluctuation level, while the Hurst exponent relates the strength of the long-term variability to the strength of the short-term variability. A higher Hurst exponent means that the slow variations are stronger compared to the fast, and that the autocovariance function will have a stronger tail. Hence the Hurst exponent gives us information about the persistence or memory of the process. We make use of these data to show that data averaged over a larger area exhibit higher Hurst exponents and lower variance than data averaged over a smaller area, which provides information about the relationship between temporal and spatial correlations of the temperature fluctuations. Interpolation in space has some similarities with averaging over space, although interpolation is more weighted towards the measurement locations. We demonstrate that the degree of spatial interpolation used can explain some differences observed between the variances and memory exponents computed from the various datasets.

  2. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  3. Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea.

    Science.gov (United States)

    Fiori, Emanuela; Mazzotti, Matilde; Guerrini, Franca; Pistocchi, Rossella

    2013-03-15

    The triazinic herbicide terbuthylazine (TBA) is becoming an emergent contaminant in Italian rivers and in coastal and groundwater. A preliminary analysis of the sensitivity of marine flagellates to TBA was performed by monitoring the photosynthetic efficiency of nine species (belonging to the Dinophyceae or Raphidophyceae class) isolated from the Adriatic Sea. Different sensitivity levels for each flagellate were observed and the most sensitive microalgae, based on PSII inhibition, were: Gonyaulax spinifera>Fibrocapsa japonica>Lingulodinium polyedrum while the most resistant were two species belonging to the Prorocentrum genus. Then the response of two microalgae to drivers, such as temperature and terbuthylazine, applied in combination was also investigated. Two potentially toxic flagellates, Prorocentrum minimum and G. spinifera, were exposed, under different temperature conditions (15, 20 and 25°C), to TBA concentrations that did not completely affect PSII. For both flagellates, effects of TBA on algal growth, measured through cell density and carbon analysis, as well as on the photosynthetic activity are reported. All parameters analyzed showed a negative effect of TBA from the exponential phase. TBA effect on algal growth was significantly enhanced at the optimal temperature conditions (20 and 25°C), while no difference between control and herbicide treatments were detected for G. spinifera grown at 15°C, which represented a stress condition for this species. The maximum inhibition of photosynthetic efficiency was found at 20°C for both organisms. Both flagellates increased cell carbon and nitrogen content in herbicide treatments compared to the control, except G. spinifera grown at 15°C. Chlorophyll-a production was increased only in G. spinifera exposed to 5 μg L(-1) of TBA and the effect was enhanced with the increase of temperature. Herbicide-induced variations in cellular components determined changes in cellular carbon:nitrogen (C:N) and

  4. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes

    Directory of Open Access Journals (Sweden)

    Windisch Heidrun Sigrid

    2012-10-01

    Full Text Available Abstract Background Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. Results By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. Conclusion Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins with implications for the transcription and

  5. Comparison of quality attributes of buffalo meat curry at different storage temperature.

    Science.gov (United States)

    Kandeepan, Gurunathan; Anjaneyulu, Anne Seet Ram; Kondaiah, Napa; Mendiratta, Sanjod Kumar

    2011-01-01

    The product quality of curry is determined by the food animal source, raw materials and the method of processing. Moreover the scientific information on processing and quality of traditional buffalo meat curry from different groups of buffaloes is not available. This study was undertaken to develop processed curry from different buffalo groups and to compare its quality during storage at ambient and refrigeration temperature. The meat samples were collected from the longissimus dorsi muscle of the carcasses from each group of buffaloes slaughtered according to the traditional halal method. Buffalo meat curry was prepared in a pressure cooker with the standardized formulation. This final product was subjected to evaluation of quality and shelf life. To evaluate the effect of different groups of meat samples on the quality of curry, product yield, pH, proximate composition, water activity (aw), thiobarbituric acid reactive substances (TBARS), calorific value, sensory attributes and microbiological assay were determined The energy of meat curry from young buffaloes was significantly lower than the meat curry from spent animal groups. The overall acceptability of curry decreased significantly during 3 days ambient storage compared to refrigeration storage. Scientific processing by adopting good manufacturing practices and suitable packaging helped greatly to improve the shelf life of the ambient temperature stored buffalo meat curry. Buffalo meat curry from young male group showed better product characteristics and overall acceptability scores than spent buffalo group.

  6. Low-temperature deuteron irradiation of differently reacted Nb3Sn superconductors

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1978-01-01

    Irradiation measurements with 50 MeV deuterons at 18 K and subsequent annealing measurements were performed on Nb 3 Sn single and multifilamentary superconductors at the Helium-Bath Irradiation Facility of the Karlsruhe Cyclotron. The critical current densities jsub(c) of Nb 3 Sn bronze-reacted wire samples at various reaction temperatures (Tsub(R)=650,700,750,800 and 850 0 C) with equal layer thickness were measured for integral deuteron fluxes up to PHIsub(t)=0.7x10 18 cm -2 . After a decrease in jsub(c) of 85% at maximum dose a relatively small annealing effect (4 to 10%) was observed at ambient temperatures. The maximum value of the normalized critical current density, jsub(c)/jsub(c0), at PHIsub(t)approximately=10 17 cm -2 increases with increasing reaction temperature. The difference in volume pinning forces before and after irradiation increases less than linear (approximately√PHIsub(t)) with the irradiation dose. An almost linear dependence between the inverse grain diameter (dsub(K) -1 )) and volume pinning force is obtained both before and after irradiation. (Auth.)

  7. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available The principle of enzyme kinetics suggests that the temperature sensitivity (Q10 of soil organic matter (SOM decomposition is inversely related to organic carbon (C quality, i.e., the C quality-temperature (CQT hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm, microaggregates (MI, 53-250 μm, and mineral fractions (MF, MF>bulk soil >MI(P <0.05. The Q10 values were highest for MA, followed (in decreasing order by bulk soil, MF, and MI. Similarly, the activation energies (Ea for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05 suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001, with the largest values occurring in MA (1101 μg g-1, followed by MF (976 μg g-1 and MI (879 μg g-1. These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  8. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    Science.gov (United States)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  9. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    LUO Yu; JIAO Yu-jie; ZHAO Xiao-rong; LI Gui-tong; ZHAO Li-xin; MENG Hai-bo

    2014-01-01

    Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73%and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537%more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

  10. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  11. Toxic effects of juvenile sablefish, Anoplopoma fimbria by ammonia exposure at different water temperature.

    Science.gov (United States)

    Kim, Jun-Hwan; Park, Hee-Ju; Hwang, In-Ki; Han, Jae-Min; Kim, Do-Hyung; Oh, Chul Woong; Lee, Jung-Sick; Kang, Ju-Chan

    2017-09-01

    Juvenile sablefish, Anoplopoma fimbria (mean length 17.1±2.4cm, and mean weight 75.6±5.7g) were used to evaluate toxic effects on antioxidant systems, immune responses, and stress indicators by ammonia exposure (0, 0.25, 0.75, and 1.25mg/L) at different water temperature (12 and 17°C) in 1 and 2 months. In antioxidant responses, superoxide dismutase (SOD) and catalase (CAT) were significantly increased by ammonia exposure, whereas glutathione (GSH) was decreased. In immune responses, lysozyme and phagocytosis activity were significantly increased by ammonia exposure. In stress indicators, plasma glucose, heat shock protein 70 (HSP 70), and cortisol were significantly increased. At high water temperature (17°C), alterations by ammonia exposure were more distinctly. The results of this study indicated that ammonia exposure can induce toxic effects in the sablefish, and high water temperature can affect the ammonia exposure toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas

    International Nuclear Information System (INIS)

    Jing, Li; Gang, Pei; Jie, Ji

    2010-01-01

    The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1-20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 C. (author)

  13. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  14. Seed viability of Dimorphandra gardneriana subject to water stress in different temperatures

    Directory of Open Access Journals (Sweden)

    Marina Matias Ursulino

    Full Text Available ABSTRACT: The forest species Dimorphandra gardneriana Tul. is widely used for various pharmacological products, yet few basic studies have been undertaken to understand their ecological and physiological attributes under stress conditions. The goal of this research was to evaluate the seed germination and vigor when subjected to different osmotic potentials and temperatures. Water restriction was simulated with polyethylene glycol 6000 solution (PEG 6000 with osmotic potentials of 0; -0,2; -0,4; -0,6; -0,8, and -1,0MPa at temperatures of 20, 25, 30, and 35°C. The effect of the treatment was determined by the germination and vigor (germination speed index, length and phytomass of dry shoot and roots of the seeds, in an entirely random design with four repetitions. From-0, 4MPa it occurs a drastic reduction in germination and vigor of seeds although these factors were less affected at temperature of 25°C up to -0, 2MPa.

  15. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Ravindran, Keppanan; Lin, Yongwen; Bamisile, Bamisope Steve; Qasim, Muhammad; Dash, Chandra Kanta; Wang, Liande

    2017-09-01

    The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Isolation and Screening of Thermo-Stable Cellulase Enzyme Fungal Producer at Different Temperature

    International Nuclear Information System (INIS)

    Noor Ashiqin Jamroo; Noor Azrimi Umor; Kamsani

    2015-01-01

    Thermo stable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermo stable cellulase were done using 2 % carboxymethyl cellulose and congo red as an indicator at temperature 30, 37, 45 and 50 degree Celsius respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32 mm to 35 mm were obtained after 72 hour incubation at 50 degree Celsius by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50 degree Celsius referred to the halo zone obtained. The SW1 isolates showed highest cellulolytic index which was 2.93 measured at 37 degree Celsius and 2.67 at 50 degree Celsius respectively. (author)

  17. Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

    Energy Technology Data Exchange (ETDEWEB)

    Lan, X.G. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); China West Normal University, Institute of Theoretical Physics, Nanchong (China); Jiang, Q.Q. [China West Normal University, Institute of Theoretical Physics, Nanchong (China); Wei, L.F. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China)

    2012-04-15

    We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future. (orig.)

  18. Microculture model studies on the effect of various gas atmospheres on microbial growth at different temperatures.

    Science.gov (United States)

    Eklund, T; Jarmund, T

    1983-08-01

    A microculture technique, employing 96-well tissue culture plates in plastic bags, was used to test the effect of different gas atmospheres (vacuum, air, nitrogen, and carbon dioxide) on the growth of Escherichia coli, Bacillus macerans, Salmonella typhimurium. Candida albicans, Lactobacillus plantarum, Pseudomonas/Acinetobacter/moraxella-group, Brochothrix thermosphacta and Yersinia enterocolitica at 2, 6, and 20 degrees C. In general, carbon dioxide was the most effective inhibitor. The inhibition increased with decreasing temperature. Only the combination of carbon dioxide and 2 degrees C provided complete inhibition of Broch. thermosphacta and Y. enterocolitica.

  19. Fabrication of AlN thin films on different substrates at ambient temperature

    CERN Document Server

    Cai, W X; Wu, P H; Yang, S Z; Ji, Z M

    2002-01-01

    Aluminium nitride (AlN) is very useful as a barrier in superconductor-insulator-superconductor (SIS) device or as an insulating layer in many other applications. At ambient temperature, we deposit AlN thin films onto different substrates (such as MgO, LaAlO sub 3 and Si) by using radio-frequency magnetron sputtering and pure Al target. X-ray diffraction (XRD) and PHI-scan patterns show that the films grown on MgO substrates are excellent epitaxial films with (101) orientation of a hexagonal lattice. A possible structure of the interface between the film and the substrate is suggested and discussed.

  20. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    1987-01-01

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV. (orig./HP) [de

  1. Transmission of germanium poly- and monocrystals for thermal neutrons at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.; Abbas, Y.; Habib, N.; Kilany, M.; Ashry, A.

    Neutron cross-sections of germanium poly- and monocrystals were measured with two time-of-flight and two double-axis crystal spectrometers. The results were analyzed using the single-level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the cross-section of a polycrystal and the analysis of the neutron diffraction pattern. The incoherent and the thermal diffuse scattering cross-section were estimated from the analysis of the total cross-section data obtained for a monocrystal at different temperatures in the energy range 2 meV to 1 eV.

  2. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  3. Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    ) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....

  4. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  5. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans.

    Science.gov (United States)

    Heppard, E P; Kinney, A J; Stecca, K L; Miao, G H

    1996-01-01

    The polyunsaturated fatty acid content is one of the major factors influencing the quality of vegetable oils. Edible oils rich in monounsaturated fatty acid provide improved oil stability, flavor, and nutrition for human and animal consumption. In plants, the microsomal omega-6 desaturase-catalyzed pathway is the primary route of production of polyunsaturated lipids. We report the isolation of two different cDNA sequences, FAD2-1 and FAD2-2, encoding microsomal omega-6 desaturase in soybeans and the characterization of their developmental and temperature regulation. The FAD2-1 gene is strongly expressed in developing seeds, whereas the FAD2-2 gene is constitutively expressed in both vegetative tissues and developing seeds. Thus, the FAD2-2 gene-encoded omega-6 desaturase appears to be responsible for production of polyunsaturated fatty acids within membrane lipids in both vegetative tissues and developing seeds. The seed-specifically expressed FAD2-1 gene is likely to play a major role in controlling conversion of oleic acid to linoleic acid within storage lipids during seed development. In both soybean seed and leaf tissues, linoleic acid and linolenic acid levels gradually increase as temperature decreases. However, the levels of transcripts for FAD2-1, FAD2-2, and the plastidial omega-6 desaturase gene (FAD 6) do not increase at low temperature. These results suggest that the elevated polyunsaturated fatty acid levels in developing soybean seeds grown at low temperature are not due to the enhanced expression of omega-6 desaturase genes. PMID:8587990

  6. Individual differences in temperature perception: evidence of common processing of sensation intensity of warmth and cold.

    Science.gov (United States)

    Green, Barry G; Akirav, Carol

    2007-01-01

    The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.

  7. Correlation between RNA Degradation Patterns of Rat's Brain and Early PMI at Different Temperatures.

    Science.gov (United States)

    Lü, Y H; Li, Z H; Tuo, Y; Liu, L; Li, K; Bian, J; Ma, J L; Chen, L

    2016-06-01

    To explore the correlation between early postmortem interval (PMI) and eight RNA markers of rat's brain at different temperatures. Total 222 SD rats were randomly divided into control group (PMI=0 h) and four experimental groups. And the rats in the experimental groups were sacrificed by cervical dislocation and respectively kept at 5 ℃, 15 ℃, 25 ℃ and 35 ℃ in a controlled environment chamber. The RNA was extracted from brain tissues, which was taken at 9 time points from 1 h to 24 h postmortem. The expression levels of eight markers, β-actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, were detected using real-time fluorescent quantitative PCR, respectively. Proper internal reference was selected by geNorm software. Regression analysis of normalized RNA markers was performed by SPSS software. Mathematical model for PMI estimation was established using R software. Another 6 SD rats with known PMI were used to verify the mathematical model. 5S rRNA, miR-9 and miR-125b were suitable as internal reference markers for their stable expression. Both β-actin and GAPDH had well time-dependent degradation patterns and degraded continually with prolongation of PMI in 24 h postmortem. The mathematical model of the variation of ΔCt values with PMI and temperature was set up by R software and the model could be used for PMI estimation. The average error rates of model validation using β-actin and GAPDH were 14.1% and 22.2%, respectively. The expression levels of β-actin and GAPDH are well correlated with PMI and environmental temperature. The mathematical model established in present study can provide references for estimating early PMI under various temperature conditions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  8. Time-resolved searchlight analysis of imagined visual motion using 7 T ultra-high field fMRI : Data on interindividual differences

    NARCIS (Netherlands)

    Emmerling, Thomas C; Zimmermann, Jan; Sorger, Bettina; Frost, Martin; Goebel, R.

    Interindividual differences play a crucial role in research on mental imagery. The inherently private nature of imagery does not allow for the same experimental control that is possible in perception research. Even when there are precise instructions subjects will differ in their particular imagery

  9. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  10. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  11. Effect of antagonistic fungi against Fusarium graminearum and F. culmorum on stubble of different cereals and at different temperatures

    NARCIS (Netherlands)

    El-Naggar, M.; Haas, de B.H.; Köhl, J.

    2003-01-01

    Bioassays were carried out with antagonists to suppress sporulation by F. culmorum and F. graminearum on cereal debris. A differential effect was found for temperatures on the effect of antagonistic fungal isolates. Isolates 10 and 11 were more effective at low temperature of 5 °C, while isolate 2

  12. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Science.gov (United States)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  13. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  14. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    International Nuclear Information System (INIS)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H.; Marchioni, Eric

    2009-01-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a 60 Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  15. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  16. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.

    Science.gov (United States)

    Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying

    2018-04-26

    Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.

  17. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  18. Effects of Different Temperatures on the Chemical Structure and Antitumor Activities of Polysaccharides from Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Eliyas Nurmamat

    2018-04-01

    Full Text Available The effects of different extraction temperatures (4 and 80 °C on the physicochemical properties and antitumor activity of water soluble polysaccharides (CMPs-4 and CMPs-80 from Cordyceps militaris (C. militaris were evaluated in this study. The results of gas chromatography (GC and high-performance gel permeation chromatography (HPGPC showed that a higher extraction temperature could degrade the polysaccharides with 188 kDa, mainly composed of glucose, and increase the dissolution rate of polysaccharides about 308 kDa, mainly consisting of rhamnose and galactose. In addition, the CMPs displayed the same sugar ring and category of glycosidic linkage based on Fourier-transform infrared spectroscopy (FTIR analysis, however, their invisible structural difference occurred in the specific rotation and conformational characteristics according to the results of specific optical rotation measurement and Congo red test. In vitro antitumor experiments indicated that CMPs-4 possessed stronger inhibitory effects on human esophagus cancer Eca-109 cells by inducing cell apoptosis more than CMPs-80 did. These findings demonstrated that the polysaccharides extracted with cold water (4 °C could be applied as a novel alternative chemotherapeutic agent or dietary supplement with its underlying antitumor property.

  19. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: renatocduarte@yahoo.com.br; Marchioni, Eric [Universite de Strasbourg, Illkirch (France). Faculte de Pharmacie. Lab. de Chimie Analytique et Sciences de l' Aliment

    2009-07-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a {sup 60}Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  20. Physical, Mineralogical, and Micromorphological Properities of Expansive Soil Treated at Different Temperature

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-01-01

    Full Text Available Different characterizations were carried out on unheated expansive soil and samples heated at different temperature. The samples are taken from the western outskirts of Nanning of Guangxi Province, China. In the present paper, the mineral and chemical composition and several essential physical parameters of unheated expansive soil are indicated by XRD and EDX analysis. Moreover, the structural transition and change of mechanical properties of samples heated in the range of room temperature to 140°C are proved by TG-DTA and SEM observation. The mean particle diameter, density, hydraulic behaviors, and bond strength also have been investigated. The results indicate that, along with the loss of free water, physical absorbed water, and chemically bound water, the microstructure experiences some obvious change. In addition, the particle size and density both will increase rapidly before 100°C and undertake a slow growth or decline when higher than 100°C. The hydraulic behaviors and strength performance of unheated samples and the one heated at 100°C are given out as well. All these researches play fundamental role in the pollution prevention, modification, and engineering application of expansive soil.

  1. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  2. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures.

    Science.gov (United States)

    Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira

    2016-11-01

    Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    Science.gov (United States)

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  4. Development of fabrication method for thermal expansion difference irradiation temperature monitor

    International Nuclear Information System (INIS)

    Noguchi, Kouichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi; Kobori, Takahisa; Miyo, Toshimasa

    1998-03-01

    This report describes the development activities for the fabrication of the Thermal Expansion Difference irradiation temperature monitor (TED) at the Oarai Engineering Center (OEC)/PNC. TED is used for various irradiation tests in the experimental fast reactor JOYO. TED is the most accurate off-line temperature monitor used for irradiation examination. The TED is composed of a metallic sphere lid and either a stainless steel or nickel alloy container. Once the container is filled with sodium, the metallic sphere lid is sealed by using a resistance weld. This capsule is then loaded into a reactor. Once a TED is loaded into the JOYO reactor, the sodium inside the metallic container increases as a result of thermal expansion. The TED identifies the peak irradiation temperature of the reactor based on a formula correlating temperature to increment values. This formula is established specifically for the particular TED being used during a calibration process performed when the TED is fabricated. Initially the TED was developed by Argonne National Laboratory (ANL) in the United States, and was imported by PNC for use in the JOYO reactor. In 1992 PNC decided to fabricate TED domestically in order to ensure the stability of future supplies. Based on technical information provided by ANL, PNC began fabrication of a TED on an experimental basis. In addition, PNC endeavored to make the domestically produced TED more efficient. This involved improving the techniques used in the sodium filling and the metallic sphere welding processes. These quality control efforts led to PNC's development of processes enabling the capsules to be filled with sodium to nearly 100%. As a result, the accuracy of the temperature dispersion in the out-pile calibration test was improved from +/-10degC to +/-5degC. In 1996 the new domestically fabricated TED was attached to a JOYO irradiation rig. In March of 1997, irradiation of the rig was started on the 30th duty cycle operation, and should be

  5. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  6. A 72-year-old Danish puzzle resolved--comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions

    DEFF Research Database (Denmark)

    Kjær, Klaus Wilbrandt; Hansen, Lars; Eiberg, Hans

    2005-01-01

    A phenotype-genotype correlation was previously described for carriers of different sized of polyalanine expansions in HOXD13. We report on a detailed comparison of 55 members (approximately 220 limbs) from 4 Danish families with duplications of 21 or 27 bp, expanding the polyalanine repeat from ...

  7. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  8. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  9. Steroid signaling system responds differently to temperature and hormone manipulation in the red-eared slider turtle (Trachemys scripta elegans), a reptile with temperature-dependent sex determination.

    Science.gov (United States)

    Ramsey, M; Crews, D

    2007-01-01

    Many reptiles, including the red-eared slider turtle (Trachemys scripta elegans), exhibit temperature-dependent sex determination (TSD). Temperature determines gonadal sex during the middle of embryogenesis, or the temperature-sensitive period (TSP), when gonadal sex is labile to both temperature and hormones--particularly estrogen. The biological actions of steroid hormones are mediated by their receptors as defined here as the classic transcriptional regulation of target genes. To elucidate estrogen action during sex determination, we examined estrogen receptor alpha (Esr1, hereafter referred to as ERalpha), estrogen receptor beta (Esr2, hereafter referred to as ERbeta), and androgen receptor (Ar, hereafter referred to as AR) expression in slider turtle gonads before, during and after the TSP, as well as following sex reversal via temperature or steroid hormone manipulation. ERalpha and AR levels spike at the female-producing temperature while ovarian sex is determined, but none of the receptors exhibited sexually dimorphic localization within the gonad prior to morphological differentiation. All three receptors respond differentially to sex-reversing treatments. When shifted to female-producing temperatures, embryos maintain ERalpha and AR expression while ERbeta is reduced. When shifted to male-producing temperatures, medullary expression of all three receptors is reduced. Feminization via estradiol (E(2)) treatment at a male-producing temperature profoundly changed the expression patterns for all three receptors. ERalpha and ERbeta redirected to the cortex in E(2)-created ovaries, while AR medullary expression was transiently reduced. Although warmer incubation temperature and estrogen result in the same endpoint (ovarian development), our results indicate different steroid signaling patterns between temperature- and estrogen-induced feminization. 2007 S. Karger AG, Basel

  10. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  11. Evaluation of temperature change during antimicrobial photodynamic therapy with two different photosensitizers in dental caries.

    Science.gov (United States)

    Mirzaie, Mansoreh; Yassini, Esmael; Ashnagar, Sajjad; Hadadi, Azadeh; Chiniforush, Nasim

    2016-06-01

    Many attempts have been made in elimination of bacteria in infected and demineralized dentin to not only provide efficient bactericidal potential, but to have minimal damage for tooth structure. The aim of this study was to assess the temperature change during aPDT with ICG and TBO compared with conventional Diode laser irradiation. 48 premolar teeth which were selected for this study. A class I cavity was drilled in each teeth, with dimensions of 2mm width, 4mm length and depth of 2.5-3.5mm, providing a dentinal wall of approximately 0.5mm for pulp chamber. Then teeth were randomly allocated in 4 experimental groups (n=12); Group 1: TBO+LED, Group 2: ICG+Diode Laser, Group 3: Diode laser with output power of 0.5W, Group 4: Diode laser with output power of 1W. Thermocouple device was held by experimenter hand and the sensor was in pulp chamber of the teeth. Heat generated during irradiation was reported on LCD screen by NUX Plus software. Repeated measure ANOVA was used in order to compare the temperature before and after laser application. Tukey HSD was used to compare the results between groups. Temperature was risen for about 0.54±0.05°C for group 1, 1.67±0.14°C for group 2, 4.21±0.83°C for group 3, and 4. 50±0.32°C for group 4. The difference between group 1 & 2, 1 & 3 and 1 & 4 was significant (p<0.0001). According to results of this study, Diode (with or without photosensitizer- 0.5 and 1W) can be safely used as alternative approach for disinfection after caries removal in thermal point of view. Copyright © 2016. Published by Elsevier B.V.

  12. QUALITY OF MINIMALLY PROCESSED YAM (Dioscorea sp. STORED AT TWO DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    ADRIANO DO NASCIMENTO SIMÕES

    2016-01-01

    Full Text Available This work studied the physical, chemical and bio chemical alterations in minimally processed yam stored at two different temperatures, as well a s the incidence of bacteria of the genus Pseudomonas . The experimental design was completely randomised in a 2x8 factorial design, with two storage temperature s (5 and 10°C and eight storage times (0, 2, 4, 6, 8, 1 0, 12 and 14 days. Experiments were in triplicate. Yam was selected, peeled and cut into slices of approximate ly 3 cm thickness. The slices were rinsed with wate r, sanitised and then drained in kitchen strainers. Ap proximately 300 g of the processed product were pac ked in nylon multilayers 15 μ m thick, 15 cm wide and 20 cm long. The packs were sealed, weighed and kept at 5 and 10 ± 2°C for 14 days. Fresh weight loss, baking tim e, enzymatic activity of polyphenol oxidases, perox idases and catalases, total soluble phenol content, and an tioxidant capacity were evaluated, as well as visua l analysis and incidence of Pseudomonas sp. Means of temperatures were compared by Tukey ́s test at 5% significance. Yam storage at 5°C reduced weight loss and kept vis ual quality for longer; it also reduced cooking tim e and the activity of the enzymes polyphenol oxidase and pero xidase. In contrast, it promoted higher content of total soluble phenols, as well as a higher catalase activ ity and antioxidant capacity. During the storage ti me, there was no incidence of Pseudomonas sp. Minimally processed yam stored at 10°C may be sold for up to six days, and yam stored at 5ºC for up to 14 days.

  13. Low temperature rheological properties of asphalt mixtures containing different recycled asphalt materials

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP and Recycled Asphalt Shingles (RAS are valuable materials commonly reused in asphalt mixtures due to their economic and environmental benefits. However, the aged binder contained in these materials may negatively affect the low temperature performance of asphalt mixtures. In this paper, the effect of RAP and RAS on low temperature properties of asphalt mixtures is investigated through Bending Beam Rheometer (BBR tests and rheological modeling. First, a set of fourteen asphalt mixtures containing RAP and RAS is prepared and creep stiffness and m-value are experimentally measured. Then, thermal stress is calculated and graphically and statistically compared. The Huet model and the Shift-Homothety-Shift in time-Shift (SHStS transformation, developed at the École Nationale des Travaux Publics de l'État (ENTPE, are used to back calculate the asphalt binder creep stiffness from mixture experimental data. Finally, the model predictions are compared to the creep stiffness of the asphalt binders extracted from each mixture, and the results are analyzed and discussed. It is found that an addition of RAP and RAS beyond 15% and 3%, respectively, significantly change the low temperature properties of asphalt mixture. Differences between back-calculated results and experimental data suggest that blending between new and old binder occurs only partially. Based on the recent finding on diffusion studies, this effect may be associated to mixing and blending processes, to the effective contact between virgin and recycled materials and to the variation of the total virgin-recycled thickness of the binder film which may significantly influence the diffusion process. Keywords: Reclaimed Asphalt Pavement (RAP, Recycled Asphalt Shingles (RAS, Thermal stress, Statistical comparison, Back-calculation, Binder blending

  14. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds.

    Science.gov (United States)

    Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  15. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures

    Science.gov (United States)

    Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.

    2018-04-01

    Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.

  16. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae seeds

    Directory of Open Access Journals (Sweden)

    Noel Ndihokubwayo

    2016-08-01

    Full Text Available Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae, a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north–eastern and south–western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C, seeds from the majority of the populations showed >90% germination percentage (GP and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C and seasons (in summer or autumn were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6% was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C, and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  17. Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal

    Science.gov (United States)

    Isa, Norain; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-09-01

    Metallic nanoparticles are well known of having wide applications in various fields such as, catalysis, electronics, energy, chemistry and medicine due to its unique physico-chemical properties. In this study, nanocatalyst Kyllinga brevifolia-mediated silver nanoparticles (AgNPs) were prepared by reduction of silver nitrate using aqueous extract of Kyllinga brevifolia at different temperature. The formations of AgNPs were monitored using UV-visible spectroscopy. Transmission electron microscope (TEM) results reveal that the AgNPs well dispersed with average particle size are 22.34 and 6.73 nm for synthesized at room temperature and cold temperature respectively. The biomolecules present in the Kyllinga brevifolia aqueous extract responsible for the formation of AgNPs were identified using Fourier transform infrared (FTIR). Our AgNPs performed excellent catalytic activity in degradation of methylene blue (MB) dyes via electron relay effect. MB is toxic to ecological system and also has carcinogenic properties. The AgNPs nanocatalysts synthesized in this study are highly dispersed, quasi-spherical and due to their size in nanoscale, they have shown effectiveness for degradation of MB dyes. More importantly, our AgNPs were prepared using biomolecules as capping and reducing agent, which make our product "greener" than available AgNPs that are commonly prepared using hydrazine and borohydride; which are harmful substances to human and environment. Not only the AgNPs can act as nanocatalyst for degradation of MB, they can also be expected to degrade other types of toxic dyes used in textiles industry.

  18. Operation: Inherent Resolve

    DEFF Research Database (Denmark)

    Cramer-Larsen, Lars

    2015-01-01

    Kapitlet giver læseren indsigt i den internationale koalitions engagement mod IS igennem Operaton Inherent Resolve; herunder koalitionens strategi i forhold til IS strategi, ligesom det belyser kampagnens legalitet og folkeretlige grundlag, ligesom det giver et bud på overvejelser om kampagnens...

  19. Effects of helium and deuterium irradiation on SPS sintered W–Ta composites at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, R., E-mail: rmateus@ipfn.ist.utl.pt [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Dias, M. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Lopes, J. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); ISEL, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa (Portugal); Rocha, J.; Catarino, N.; Franco, N. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Livramento, V. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); and others

    2013-11-15

    Energetic He{sup +} and D{sup +} ions were implanted into different W–Ta composites in order to investigate their stability under helium and deuterium irradiation. The results were compared with morphological and chemical modifications arising from exposure of pure W and Ta. Special attention was given to tantalum hydride (Ta{sub 2}H) formation due to its implications for tritium inventory. Three W–Ta composites with 10 and 20 at.% Ta were prepared from elemental W powder and Ta fibre or powder through low-energy ball milling in argon atmosphere. Spark plasma sintering (SPS) was used as the consolidation process in the temperature range from 1473 to 1873 K. The results obtained from pure elemental samples and composites are similar. However, Ta{sub 2}H is easily formed in pure Ta by using a pre-implantation stage of He{sup +}, whereas in W–Ta composites the same reaction is clearly reduced, and it can be inhibited by controlling the sintering temperature.

  20. The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Khazaei

    2014-07-01

    Full Text Available In this work, artificial neural network (ANN has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD% of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.

  1. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    Science.gov (United States)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  2. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  3. The effects of temperature and strain rate on the dynamic flow behaviour of different steels

    International Nuclear Information System (INIS)

    Lee, W.-S.; Liu, C.-Y.

    2006-01-01

    A compressive type split-Hopkinson pressure bar is utilized to compare the impact plastic behaviour of three steels with different levels of carbon content. S15C low carbon steel, S50C medium alloy heat treatable steel (abbreviated hereafter to medium carbon steel) and SKS93 tool steel with a high carbon and low alloy content (abbreviated hereafter to high carbon steel) are tested under strain rates ranging from 1.1 x 10 3 s -1 to 5.5 x 10 3 s -1 and temperatures ranging from 25 to 800 deg. C. The effects of the carbon content, strain rate and temperature on the mechanical responses of the three steels are evaluated. The microstructures of the impacted specimens are studied using a transmission electron microscope (TEM). It is found that an increased carbon content enhances the dynamic flow resistance of the three steels. Additionally, the flow stress increases with strain and strain rate in every case. A thermal softening effect is identified in the plastic behaviour of the three steels. The activation energy, ΔG * , varies as a function of the strain rate and temperature, but is apparently insensitive to the carbon content level. The present study identifies maximum ΔG * values of 58 kJ/mol for the S15C low carbon steel, 54.9 kJ/mol for the S50C medium carbon steel, and 56.4 kJ/mol for the SKS93 high carbon steel. A Zerilli-Armstrong BCC constitutive model with appropriate coefficients is applied to describe the high strain rate plastic behaviours of the S15C, S50C and SKS93 steels. The errors between the calculated stress and the measured stress are found to be less than 5%. The microstructural observations reveal that the dislocation density and the degree of dislocation tangling increase with increasing strain rate in all three steels. Additionally, the TEM observations indicate that a higher strain rate reduces the size of the dislocation cells. The annihilation of dislocations occurs more readily at elevated temperatures. The square root of the dislocation

  4. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  5. Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Nunes, L C S [Laboratorio de Mecanica Teorica e Aplicada, Departamento de Engenharia Mecanica, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Brazil, Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber.

  6. Solvation behaviour of L-leucine in aqueous ionic liquid at different temperatures: Volumetric approach

    Science.gov (United States)

    Sharma, Samriti; Sandarve, Sharma, Amit K.; Sharma, Meena

    2018-05-01

    For the investigation of interactions of L-leucine in aqueous solutions of an ionic liquid (1-butyl-3-methylimidazolium tetra fluoroborate [Bmim][BF4]) at atmospheric pressure over a temperature range of (293.15K to 313.16K), we use the volumetric approach. By using the density data we have calculated the apparent molar volume, VΦ, limiting apparent molar volume, V0Φ, the slope, Sv, partial molar volume of transfer, V0Φ,tr. The values of these acoustical parameters have been used for the interpretation of different interactions like hydrophilic-hydrophilic, hydrophilic-hydrophobic, ion hydrophilic, solute-solvent and solute-solute interactions in the amino acid and ionic liquid solutions.

  7. Comparison of electromechanical properties and lattice distortions of different cuprate high temperature superconductors

    CERN Document Server

    Scheuerlein, C.; Grether, A; Rikel, M O; Hudspeth, J; Sugano, M; Ballarino, A; Bottura, L

    2016-01-01

    The electromechanical properties of different cuprate high-temperature superconductors, notably two ReBCO tapes, a reinforced and a nonreinforced Bi-2223 tape, and a Bi-2212 wire, have been studied. The axial tensile stress and strain, as well as the transverse compressive stress limits at which an irreversible critical current degradation occurs, are compared. The experimental setup has been integrated in a high-energy synchrotron beamline, and the self-field critical current and lattice parameter changes as a function of tensile stress and strain of a reinforced Bi-2223 tape have been measured simultaneously. Initially, the Bi-2223 filaments exhibit nearly linear elastic behavior up to the strain at which an irreversible degradation is observed. At 77 K, an axial Bi-2223 filament precompression of 0.09% in the composite tape and a Bi-2223 Poisson ratio ν = 0.21 have been determined.

  8. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number......, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers. Copyright © 2013 Taylor and Francis Group, LLC....

  9. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  10. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  11. ESTABLISHING EMPIRICAL RELATION TO PREDICT TEMPERATURE DIFFERENCE OF VORTEX TUBE USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    PRABAKARAN J.

    2012-12-01

    Full Text Available Vortex tube is a device that produces cold and hot air simultaneously from the source of compressed air. In this work an attempt has been made to investigate the effect of three controllable input variables namely diameter of the orifices, diameter of the nozzles and inlet pressure over the temperature difference in the cold side as output using Response Surface Methodology (RSM. Experiments are conducted using central composite design with three factors at three levels. The influence of vital parameters and interaction among these are investigated using analysis of variance (ANOVA. The proposed mathematical model in this study has proven to fit and in line with experimental values with a 95% confidence interval. It is found that the inlet pressure and diameter of nozzle are significant factors that affect the performance of vortex tube.

  12. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    OpenAIRE

    Angelica Garcia-Olivares; Cesar Garzon-Perez; Oscar Gutierrez-Perez; Alfredo Medrano

    2016-01-01

    Objective: To compare different cooling temperatures before ice formation on pig sperm quality, before and after cryopreservation. Methods: Semen diluted in BF5 was cooled from 23 °C to 5 °C (1% glycerol, 200 × 106 cells/mL). Sperm were packaged in plastic straws, and maintained at +5 °C per 16 h. 1. Freezing point of diluted spermatozoa was determined by exposing straws to nitrogen vapors. 2. Straws (at +5 °C) were further cooled to −3 °C, −5 °C, and −7 °C, and rewarmed. 3. Straws (at +5 ...

  13. The relationship between lateral differences in tympanic membrane temperature and behavioral impulsivity.

    Science.gov (United States)

    Helton, William S

    2010-11-01

    In this study lateral differences in tympanic membrane temperature (T(Ty)) were explored as a correlate of either impulsive or cautious responding in Go-No-Go tasks. Thirty-two women and men performed two sustained attention to response tasks (Go-No-Go tasks). Those with warmer right in comparison to left tympanic membranes were more cautious, and those with warmer left in comparison to right tympanic membranes were more impulsive. This finding is in line with previous research and theory indicating a hemispheric bias for active and passive behavior. T(Ty) may be a useful addition to the techniques employed by neuropsychologists. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Chemical and microbiological analysis of red wines during storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-11-01

    Full Text Available Overall, chemical and microbiological analyses are very important for the quality of wine during and after winemaking process. One of the most important factors during wine storage is the temperature of storage. During storage of red wines in tanks, barrique barrels or glass bottles underway many physical, chemical and biochemical changes, which have significant influence for the stabilize of taste, scent, colour and general character of wine. The aim of our study we used two different wines, specifically Cabernet Sauvignon and Blaufränkisch and chemically and microbiologically analysed these wines during storage at different temperatures. These wines were bottled in 2011 and 2013. We stored these samples at different temperatures. The first four samples were stored at 6-8°C in refrigerator, and the next four were stored at 20-25°C in room temperature. We had together eight wine samples. We had determined in all wine samples sequentially the free and total sulphur dioxide content, ethyl-alcohol content, extract, sugars, total and volatile acids. The wine sample Cabernet Sauvignon 2011 at 6-8°C had content 12,14% ethyl-alcohol, 2.3% sugars, 5.6% total acids, 0,444 g.L-1 volatile acids, 25.6 g.L-1 extract, 8 mg.L-1 free SO2 and 18 mg.L-1total SO2. The wine sample Cabernet Sauvignon 2011 at 20-25°C had content 12,05% ethyl-alcohol, 2.4% sugars, 5.6% total acids, 0,456 g.L-1 volatile acids, 27.4 g.L-1extract, 6 mg.L-1 free SO2 and 18 mg.L-1total SO2.The wine sample Cabernet Sauvignon 2013 at 6-8°C had content 11,98% ethyl-alcohol, 1.8% sugars, 5.9% total acids, 0,324 g.L-1 volatile acids, 25.7 g.L-1extract, 24 mg.L-1 free SO2 and 42 mg.L-1total SO2. The wine sample Cabernet Sauvignon 2013 at 20-25°C had content 11,98% ethyl-alcohol, 1.8% sugars, 5.9% total acids, 0,324 g.L-1 volatile acids, 25.7 g.L-1 extract, 24 mg.L-1 free SO2 and 42 mg.L-1total SO2.These results were collected from one measuring, but we had results from three measuring

  15. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  16. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  17. Resolving Rapid Variation in Energy for Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Haut, Terry Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Ahrens, Cory Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Jonko, Alexandra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Till, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Lowrie, Robert Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  18. Investigation of different modifications of the modular high temperature reactor for cost reduction

    International Nuclear Information System (INIS)

    Heek, A. van.

    1993-06-01

    Regarding the specific costs reactor with low power output have disadvantages compared to large reactors. In this study it was investigated for the HTR Module how to reduce the specific investment costs and consequently the electricity production costs by modification of the reactor and the power plant design. To reduce the investment costs different design changes were investigated, e.g. possible alternatives for the arrangement of the reactors and the steam generators and a different building layout. The cost reduction gained by a more compact type of construction and a reduction of the number of large components remains below 10%. The use of a gas turbine instead of a steam turbine with steam generator would result in a more efficient cost reduction. The increase in the power output has a much bigger potential to reduce the electricity production costs. The best way to realize this is the changing of the core geometry from cylindric to annular. A module concept with a power maximized under certain boundary conditions (limitation of the core temperatures in case of accident, use of proven technology) was worked out in detail. The optimum core geometry and power density, determined by tolerable accident temperatures and core pressure loss, make a thermal power of 350 MW possible. The physical properties and the accident behaviour in case of pressure release and water ingress were investigated. The specific investment costs and the electricity production costs of a 4-Modular Plant for pure electricity production are reduced about 28% resp. 19% compared with the 200 MWth-Module (KWU/Interatom). (orig.) [de

  19. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities

    Directory of Open Access Journals (Sweden)

    Martin Weigert

    2018-01-01

    Full Text Available Background: Studies showed, that changes in muscular metabolic-associated heat production and blood circulation during and after muscular work affect skin temperature (T but the results are inconsistent and the effect of exercise intensity is unclear. Objective: This study investigated the intensity-dependent reaction of T on resistance training. Methods: Ten male students participated. After acclimatization (15 min, the participants completed 3x10 repetitions of unilateral biceps curl with 30, 50 or 70% of their one-repetition-maximum (1RM in a randomized order. Skin temperature of the loaded and unloaded biceps was measured at rest (Trest, immediately following set 1, 2 and 3 (TS1,TS2,TS3 and 30 minutes post exercise (T1 - T30 with an infrared camera. Results: Two-way ANOVA detected a significant effect of the measuring time point on T (Trest to T30 of the loaded arm for 30% (Eta²=0.85, 50% (Eta²=0.88 and 70% 1RM (Eta²=0.85 and of the unloaded arm only for 30% 1RM (Eta²=0.41 (p0.05. The T values at the different measuring time points (Trest - T30 did not differ between the intensities at any time point. The loaded arm showed a mean maximum T rise to Trest of 1.8°C and on average, maximum T was reached approximately 5 minutes after the third set.  Conclusion: This study indicate a rise of T, which could be independent of the exercise intensity. Infrared thermography seems to be applicable to identify the primary used functional muscles in resistance training but this method seems not suitable to differentiate between exercise intensity from 30 to 70% 1RM.

  20. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  1. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: claudia_rbm@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)

    2011-09-15

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  2. Evaluation of evapotranspiration on paddy rice using non-weighting lysimeters under the different air temperature

    Science.gov (United States)

    Oh, D.; Ryu, J. H.; Cho, J.

    2017-12-01

    Estimation of the crop evapotranspiration (ETc), as a representative of crop water needs, is important for not only high crop productivity, but also improving irrigation water management. In farm lands crop coefficient (Kc), the ratio of ETc to potential ET, is often used to simply estiamte ETc. However, the traits of Kc under the global warming condition will different with current one because plant transpiration and surface evaporaiton will be changed by the alternative crop growth and evaporative energy. In this study, Non-Weighting Lysimeter (NWL) was used to directly estimate ETc under the warmed condition, particularly for paddy riace which has one of lower water use efficiency. The different air t emperature (Ta) conditions for the NWL were provided by Temperature Gradient Chamber (TGC), which was formed gradually warmed conditions. The water body evporation and paddy rice evapotransipiration in the NWL were at the two places of ambient Ta (AT) and AT+3° in the TGC. In addition, we installed Infra-Red thermometer (IRT) to understand the surface energy balance. The result was shown that the different partitioning of evaporation and transpiration of paddy rice at the AT+3°, comparing at AT. Further, the water use efficiency, the ratio of yield to total ET, was also decreased in the warmed condition. These experiments for paddy rice ET in the warmed conditions during growth period will be useful to understand the effect of global warming on the hydrological cycle and manamge the irrigation schedule for more efficient water use.

  3. Compatibility of different stainless steels in molten Pb-Bi eutectic at high temperatures

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Laik, A.; Sharma, B.P.; Bhattacharya, S.; Debnath, A.K.

    2005-10-01

    Advanced nuclear reactors and the accelerator driven subcritical (ADS) system require the structural materials to be in contact with the molten metals/lead-bismuth eutectic at 400 degC and higher temperatures. One of the primary concerns in using the molten lead-bismuth eutectic (LBE) as a coolant in the primary circuit of these systems is the degradation of structural materials in contact with LBE. An experimental setup has been fabricated to expose the materials in the molten LBE at high temperatures in stagnant condition under inert atmosphere. Samples from five different stainless steels (types 304L, 316L, 403, duplex SS SAF 2205 and super austenitic SS 2RK65) were exposed in this setup at 450 degC for 200h and at 500 degC for 600 and 2100 h under argon atmosphere. A different setup was prepared in which type 316L SS tube in the as-welded condition was exposed in molten LBE at 500 degC for 1200 h in rotating condition. All the samples showed formation of oxide on their surfaces. The thickness and compositional profiles of these oxides analyzed by EPMA confirmed formation of a double layer oxide on type 316L SS. The oxide thickness was highest on SS 403, while it was lowest on 304L and 316L SS. SEM results showed dissolution of materials at the surface in Sandvik 2RK65 and preferential dissolution of austenite phase in duplex SS. None of the stainless steels, except the duplex and the super austenitic stainless steels, showed any localized or selective corrosion. The composition of LBE before and after the exposure tests was analyzed by XRF technique. The result showed presence of Fe, Cr and Ni in the used LBE but these elements were not present in the virgin Pb-Ei alloy. This showed that the corrosion of stainless steels in LBE at temperatures upto 500 degC is due to oxidation and dissolution of alloying elements through the oxide on stainless steels. (author)

  4. Comparative analysis of Bacillus weihenstephanensis KBAB4 spores obtained at different temperatures

    NARCIS (Netherlands)

    Garcia, D.; Voort, van der M.; Abee, T.

    2010-01-01

    The impact of Bacillus weihenstephanensis KBAB4 sporulation temperature history was assessed on spore heat resistance, germination and outgrowth capacity at a temperature range from 7 to 30 °C. Sporulation rate and efficiency decreased at low temperature, as cells sporulated at 12, 20 and 30 °C with

  5. Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay

    DEFF Research Database (Denmark)

    Mon, Ei Ei; Hamamoto, Shoichiro; Kawamoto, Ken

    2016-01-01

    Effects of soil temperature on the solute diffusion process in soils are important since subsurface temperature variation affects solute transport such as a fertilizer movement, leaching of salt, and pollutant movement to groundwater aquifers. However, the temperature dependency on the solute dif...

  6. Spatially resolved photoluminescence and AFM measurements on Cu(In,Ga)Se{sub 2}-based thin film absorbers prepared with different throughput speeds

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Max; Neumann, Oliver; Heise, Stephan J.; Brueggemann, Rudolf; Bauer, Gottfried H. [Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2011-07-01

    We study the behavior and interdependence of quantities such as photoluminescence (PL) yield, quasi-Fermi level splitting and AFM-determined surface roughness on CIGS thin-film absorbers with different thicknesses between 0.25 and 3 {mu}m achieved by varying the throughput speed in an in-line physical vapor deposition (PVD) process. These quantities are studied on the macroscopic as well as on the microscopic scale with a resolution of approximately 1 {mu}m. It is shown that the structural sizes of the inhomogeneities of the absorber layer itself and its lateral photoluminescence properties decrease with decreasing absorber thickness. These results are compared to those on samples thinned by bromine-methanol etching. Furthermore, we show that varying the thickness of the CdS buffer layer on top of the absorber influences surface recombination and thereby PL yield and quasi-Fermi level splitting. A decrease in surface recombination at higher buffer thicknesses has to be weighed against the increase in absorption in the buffer layer, which in turn decreases carrier generation in the absorber layer.

  7. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  8. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Xiaoying Chen

    2014-01-01

    Full Text Available The effect of four different arbuscular mycorrhizal fungi (AMF on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.

  9. Study on temperature field airborne remote sensing survey along shore nuclear power station in different tide status

    International Nuclear Information System (INIS)

    Liang Chunli; Li Mingsong

    2010-01-01

    Nuclear Power Station needs to let large quantity of cooling water to the near sea area when it is running. Whether the cooling water has effect to surrounding environment and the running of Nuclear Power Station needs further research. Temperature Drainage Mathematic Model and Physical Analogue Model need to acquire the distribution characteristic of near Station sea surface temperature field in different seasons and different tide status. Airborne Remote Sending Technique has a advantage in gaining high resolution sea surface temperature in different tide status, and any other manual method with discrete point survey can not reach it. After a successful implementation of airborne remote sensing survey to gain the near-shore temperature drainage information in Qinshan Nuclear Power Station, it provides the reference methods and ideas for temperature drainage remote sensing survey of Nuclear Power Station. (authors)

  10. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  11. Paradoxical dissociation between heart rate and heart rate variability following different modalities of exercise in individuals with metabolic syndrome: The RESOLVE study.

    Science.gov (United States)

    Boudet, Gil; Walther, Guillaume; Courteix, Daniel; Obert, Philippe; Lesourd, Bruno; Pereira, Bruno; Chapier, Robert; Vinet, Agnès; Chamoux, Alain; Naughton, Geraldine; Poirier, Paul; Dutheil, Frédéric

    2017-02-01

    Aims To analyse the effects of different modalities of exercise training on heart rate variability (HRV) in individuals with metabolic syndrome (MetS). Methods and results Eighty MetS participants (aged 50-70 years) were housed and managed in an inpatient medical centre for 21 days, including weekends. Physical activity and food intake/diet were intensively monitored. Participants were randomly assigned into three training groups, differing only by intensity of exercise: moderate-endurance-moderate-resistance ( re), high-resistance-moderate-endurance ( Re), and moderate-resistance-high-endurance ( rE). HRV was recorded before and after the intervention by 24-hour Holter electrocardiogram. Although mean 24-hour heart rate decreased more in Re than re (-11.6 ± 1.6 vs. -4.8 ± 2.1%; P = 0.010), low frequency/high frequency decreased more in re than Re (-20.4 ± 5.5% vs. + 20.4 ± 9.1%; P = 0.002) and rE (-20.4 ± 5.5% vs. -0.3 ± 11.1%; P = 0.003). Very low frequency increased more in Re than re (+121.2 ± 35.7 vs. 42.9 ± 11.3%; P = 0.004). For all HRV parameters, rE ranged between re and Re values. Low frequency/high frequency changes were linked with visceral fat loss only in re (coefficient 5.9, 95% CI 1.9-10.0; P = 0.004). By day 21, HRV parameters of MetS groups (heart rate -8.6 ± 1.0%, standard deviation of R-R intervals + 34.0 ± 6.6%, total power + 63.3 ± 11.1%; P < 0.001) became closer to values of 50 aged-matched healthy controls. Conclusions A 3-week residential programme with intensive volumes of physical activity (15-20 hours per week) enhanced HRV in individuals with MetS. Participants with moderate intensity of training had greater improvements in sympathovagal balance, whereas those with high intensity in resistance training had greater decreases in heart rate and greater increases in very low frequency. Modality-specific relationships were observed between enhanced HRV

  12. Ecophysiological behavior of Caquetaia kraussii (Steindachner, 1878 (Pisces: Cichlidae exposed to different temperatures and salinities

    Directory of Open Access Journals (Sweden)

    M.I. Segnini de Bravo

    2001-03-01

    Full Text Available Tropical river sardine, Caquetaia kraussii, captured from La Aguá lagoon (Sucre State, Venezuela were acclimatized for four weeks at 22, 24, 30 and 32ºC and at 0, 5, 10, 15 and 17 ‰ salinity. To evaluate effects of thermal response to acclimatization level, the fish were transferred suddenly from lower temperatures (22 and 24ºC to higher ones (32 and 30ºC respectively. Then thermal resistance time was measured at the lethal temperature of 40.9ºC for 30 days. We considered that acclimatization process completed when resistance time was stabilized at the new temperature regime. For the saline effect, the concentrations of sodium and potassium were measured in the tissues at each treatment: gills, white muscle, gut and heart. The results showed that thermal tolerance increased rapidly in 3 h with a 6ºC rise in temperature (from 24 to 30ºC and in 24 h with a 10ºC rise (22 to 32ºC. With decreasing temperatures, the acclimatization level reached its lowest in 11 days with a 6ºC decreases (from 30 to 24ºC and in 14 days with a 10ºC decrease (32 to 22ºC. Caquetaia kraussii regulates as much sodium as potassium in gills and white muscle tissues at all salinity levels tested; however, gut and heart tissues showed significantly different regulations among salinities examined.La sardina tropical de río, Caquetaia kraussii, capturada en la laguna La Aguá (Estado Sucre, Venezuela fue aclimatada durante cuatro semanas a la temperatura de 22, 24, 30 y 32ºC y a 0, 5, 10, 15 y 17 ‰ de salinidad. Para evaluar los efectos de respuestas térmicas a los niveles de aclimatación, los peces fueron transferidos abruptamente desde las temperaturas bajas (22 y 24ºC hasta las altas (32 y 30ºC respectivamente. Se midió entonces la resistencia térmica a la temperatura letal de 40.9ºC durante 30 días. Se consideró que los peces habían alcanzado completamente su aclimatación cuando se estabilizaba al nuevo régimen de temperatura. Para el efecto

  13. Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathi Bai J. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)], E-mail: bharathi@css.nal.res.in; Vasantharajan, N. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)

    2008-10-15

    The temperature dependence of the luminescence lifetime of temperature sensor films based on europium (III) thenoyltrifluoroacetonate (EuTTA) as sensor dye in various polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA), polyurethane (PU) and model airplane dope was studied and compared. The luminescence lifetime of EuTTA was found to depend on the polymer matrix. The temperature sensitivity of lifetime was maximum for EuTTA-PS coating in the temperature range of 10-60 deg. C. The effect of concentration of the sensor dye in the polymer on the lifetime and temperature sensitivity was also studied.

  14. Differences in the physiological responses to temperature among stonechats from three populations reared in a common environment

    NARCIS (Netherlands)

    Tieleman, B. Irene

    The physiological response to variation in air temperature (T-a) can provide insights into how animals are adapted to different environments. I measured metabolic rate, total evaporative water loss (TEWL) and body temperature (T-b) as a function of T. in stonechats from equatorial Kenya, temperate

  15. The role of specimen temperature difference in the elevated temperature pitting/transfer of PE16 and 20/25/Nb SS during impact wear

    International Nuclear Information System (INIS)

    Morri, J.

    1989-01-01

    A previous study of the impact fretting wear characteristics of PE16 + impacting 20/25 Nb SS (carried out on the BNL twin vibrator rig) identified a pitting-transfer form of wear at 480 0 C. This behaviour was thought to be dependent upon the temperature difference ΔT(ΔT = T 20/25 -T PE 16 ) between the two specimens. In that series of tests, however, no localised temperature control over the specimens was possible and specimen temperature effects could only be assessed by interchanging their positions in the rig. The introduction of locally positioned auxilliary heaters permitted a degree of control over the specimen temperature difference. The effect of ΔT upon pitting and transfer of the PE16 and 20/25 was then assessed and is reported in this paper. The study confirmed that the pitting transfer process was dependent on the temperature difference between the two surfaces. The direction and size of the transfer/pitting effect was independent of the material. Under the particular set of conditions employed in the test, pitting occurred only when the magnitude of ΔT exceeded 20 0 C. At high ΔT the initial period of high friction was extended and was associated with the tendency for gross transfer and pitting. (author)

  16. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  17. Urban Imperviousness Effects on Summer Surface Temperatures Nearby Residential Buildings in Different Urban Zones of Parma

    Directory of Open Access Journals (Sweden)

    Marco Morabito

    2017-12-01

    Full Text Available Rapid and unplanned urban growth is responsible for the continuous conversion of green or generally natural spaces into artificial surfaces. The high degree of imperviousness modifies the urban microclimate and no studies have quantified its influence on the surface temperature (ST nearby residential building. This topic represents the aim of this study carried out during summer in different urban zones (densely urbanized or park/rural areas of Parma (Northern Italy. Daytime and nighttime ASTER images, the local urban cartography and the Italian imperviousness databases were used. A reproducible/replicable framework was implemented named “Building Thermal Functional Area” (BTFA useful to lead building-proxy thermal analyses by using remote sensing data. For each residential building (n = 8898, the BTFA was assessed and the correspondent ASTER-LST value (ST_BTFA and the imperviousness density were calculated. Both daytime and nighttime ST_BTFA significantly (p < 0.001 increased when high levels of imperviousness density surrounded the residential buildings. These relationships were mostly consistent during daytime and in densely urbanized areas. ST_BTFA differences between urban and park/rural areas were higher during nighttime (above 1 °C than daytime (about 0.5 °C. These results could help to identify “urban thermal Hot-Spots” that would benefit most from mitigation actions.

  18. Thermomechanical behavior of different Ni-base superalloys during cyclic loading at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Huber Daniel

    2014-01-01

    Full Text Available The material behavior of three Ni-base superalloys (Inconel® 718, Allvac® 718PlusTM and Haynes® 282® during in-phase cyclic mechanical and thermal loading was investigated. Stress controlled thermo-mechanical tests were carried out at temperatures above 700 ∘C and different levels of maximum compressive stress using a Gleeble® 3800 testing system. Microstructure investigations via light optical microscopy (LOM and field emission gun scanning electron microscopy (FEG-SEM as well as numerical precipitation kinetics simulations were performed to interpret the obtained results. For all alloys, the predominant deformation mechanism during deformation up to low plastic strains was identified as dislocation creep. The main softening mechanism causing progressive increase of plastic strain after preceding linear behavior is suggested to be recrystallization facilitated by coarsening of grain boundary precipitates. Furthermore, coarsening and partial transformation of strengthening phases was observed. At all stress levels, Haynes® 282® showed best performance which is attributable to its stable microstructure containing a high phase fraction of small, intermetallic precipitates inside grains and different carbides evenly distributed along grain boundaries.

  19. Utilization Efficiency of Yolk Egg on Maanvis (Pterophyllum scalare Embryos and Larvae in Different Incubation Temperatures

    Directory of Open Access Journals (Sweden)

    T. Budiardi

    2007-01-01

    Full Text Available This study was performed to determine the efficiency of yolk egg utilization in embryos and larvae, hatching rate, incubation time to hatch, and growth rate of maanvis (Pterophyllum scalare larvae incubated at room remperature, 27oC, and 30oC.  Results of study showed that yolk egg utilization efficiency of embryos and larvae incubated at 30oC was 73.70% and 0,18%, respectively, and no different with that of room and 27oC incubation temperatures.  Hatching rate of eggs incubated at 30oC (84.75% was also same with that of other treatments.  However, incubation time to hatch (27.41 hours was shorter than that of other treatments.  The growth rate by length of larvae (2.16% and survival rate (75.28% incubated at 30oC was also higher compared with that of other treatments.  Thus, in general, optimum temperature for egg hatching and larval rearing of maanvis was 30oC. Keywords: maanvis, Pterophyllum scalare, egg yolk, larvae, embryo, temperature   ABSTRAK Penelitian ini dilakukan untuk mengetahui efisiensi pemanfaatan kuning telur pada embrio dan larva, derajat penetasan, lama inkubasi telur hingga menetas, dan laju pertumbuhan serta kelangsungan hidup larva ikan maanvis (Pterophyllum scalare yang diinkubasi pada suhu ruang, 27oC dan 30oC.  Hasil penelitian menunjukkan bahwa nilai efisiensi pemanfaatan kuning telur bila diinkubasi pada suhu 30oCsebesar 73,70% pada fase embrio dan 0,18% pada fase larva, dan tidak berbeda dengan suhu ruang dan 27oC.  Demikian juga dengan derajat penetasan telur  (84,75% tidak berbeda dengan perlakuan lainnya.  Sementara itu, lama inkubasi telur hingga menetas (27,41 jam lebih cepat dibandingkan dengan suhu inkubasi perlakuan lainnya. Demikian juga dengan laju pertumbuhan panjang (2,16% dan kelangsungan hidup larva (75,28% lebih tinggi dibandingkan dengan perlakuan lainnya. Dengan demikian, secara umum suhu optimal untuk penetasan dan pemeliharaan larva ikan maanvis adalah 30°C. Kata kunci: ikan maanvis

  20. Effect of different ions on the anodic behaviour of alloy 800 chloride solutions at high temperature

    International Nuclear Information System (INIS)

    Lafont, C.J.; Alvarez, M.G.

    1993-01-01

    The anodic behaviour and passivity breakdown of alloy 800 in sodium bicarbonate and sodium phosphate aqueous solutions were studied in the temperature range from 100 degrees C to 280 degrees C by means of electrochemical techniques. The effect of phosphate or bicarbonate additions on the pitting susceptibility and pitting morphology of the alloy in chloride solutions was also examined. Experiments were performed in the following solutions: 0.1M NaHCO 3 , at 100 degrees C, 200 degrees C, 280 degrees C; 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 , at 100 degrees C, 200 degrees C and 280 degrees C, and 0.1M NaCl with different additions of bicarbonate ion (0.02M, 0.05M and 0.1M) and phosphate ion (0.01M, 0.05M and 0.1M) at 100 degrees C and 280 degrees C. The anodic polarization curves of alloy 800 in deaerated 0.1M NaHCO 3 and 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 solutions exhibited a similar shape at all the tested temperatures. No localized or generalized corrosion was detected on the metallic surface after polarization. The results obtained in chloride plus bicarbonate and chloride plus phosphate mixtures showed that the pitting potential of alloy 800 in chloride solutions was increased by the presence of bicarbonate or phosphate ions. In those solutions where the inhibitor concentration in the mixture is equal or higher than the chloride concentration , the behaviour of the alloy is similar to the one observed in the absence of chlorides. Changes in pitting morphology were found in phosphate containing solutions, while the pits found in bicarbonate containing solutions were similar to those formed in pure chloride solutions. (author). 3 refs., 4 figs

  1. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature.

    Science.gov (United States)

    Jeon, Seunghwan; Kim, Ki-Tae; Choi, Kyungho

    2016-03-15

    Phthalates are important endocrine disrupting chemicals that have been linked to various adverse human health effects. Phthalates are ubiquitously present in indoor environment and could enter humans. Vinyl or PVC floorings have been recognized as one of important sources of phthalate release to indoor environment including house dust. In the present study, we estimated the migration of di(2-ethylhexyl)phthalate (DEHP) and di-isononyl phthalate (DINP) from the flooring materials into the dust under different heating conditions. For this purpose, a small chamber specifically designed for the present study and a Field and Laboratory Emission Cell (FLEC) were used, and four major types of PVC flooring samples including two UV curing paint coated, an uncoated residential, and a wax-coated commercial type were tested. Migration of DEHP was observed for an uncoated residential type and a wax-coated commercial type flooring. After 14 days of incubation, the levels of DEHP in the dust sample was determined at room temperature on average (standard deviation) at 384 ± 19 and 481 ± 53 μg/g, respectively. In contrast, migration of DINP was not observed. The migration of DEHP was strongly influenced by surface characteristics such as UV curing coating. In the residential flooring coated with UV curing paint, migration of DEHP was not observed at room temperature. But under the heated condition, the release of DEHP was observed in the dust in the FLEC. Migration of DEHP from flooring materials increased when the flooring was heated (50 °C). In Korea, heated flooring system, or 'ondol', is very common mode of heating in residential setting, therefore the contribution of PVC flooring to the total indoor DEHP exposure among general population is expected to be greater especially during winter season when the floor is heated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Effect of Different Water Temperatures on Retention Loss and Material Degradation of Locator Attachments.

    Science.gov (United States)

    Chiu, Lillian Pui Yuk; Vitale, Nicola Di; Petridis, Haralampos; McDonald, Ailbhe

    2017-08-01

    To examine the changes in Locator attachments after exposure to different water temperatures and cyclic loading. Four groups of pink Locator attachments (3.0 lb. light retention replacement patrix attachments; 10 per group) were soaked for the equivalent of 5 years of use in distilled water at the following temperatures: 20°C, 37°C, 60°C. One group was kept dry to test the effect of water. A universal testing machine was used to measure the retention force of each treated attachment during 5500 insertion and removal cycles, simulating approximately 5 years of use. The results were compared using Kruskal-Wallis one-way ANOVA by ranks. Surface changes of tested attachments were examined using scanning electron microscopy (SEM). The exposure to 60°C water significantly increased the percentage of retention loss in Locator attachments (p < 0.05) compared to the 20°C water group and significantly reduced the final retention force compared to the other groups (p < 0.05). SEM examinations revealed severe cracking and material degradation in Locator attachments after exposure to 60°C water and cyclic loading, which were not evident in other groups. Cracking was observed after exposure to 60˚C water before cyclic loading. Exposure to 60°C water, potentially similar to denture cleansing procedures, could cause cracking in Locator attachments. Cracking is associated with hydrolytic degradation of nylon at 60°C. The change in structure could result in a significant loss of retention. © 2016 by the American College of Prosthodontists.

  3. [Correlation between five RNA markers of rat's skin and PMI at different temperatures].

    Science.gov (United States)

    Pan, Hui; Zhang, Heng; Lü, Ye-hui; Ma, Jian-long; Ma, Kai-jun; Chen, Long

    2014-08-01

    To explore the correlation between postmortem interval (PMI) and five RNA markers of rat's skin--β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S ribosomal RNA(18S rRNA), 5S ribosomal RNA (5S rRNA), and microRNA-203 (miR-203), at different temperatures. Eighteen SD rats were randomly divided into three environmental temperature groups: 4 °C, 15 °C and 35 °C, respectively. Skin samples were taken at 11 time points from 0 h to 120 h post-mortem. The total RNA was extracted from the skin samples and the five RNA levels were detected by real-time fluorescent quantitative PCR. Proper internal reference was selected by geNorm software. Regression analysis of the RNA markers was conducted by GraphPad software. 5S rRNA and miR-203 were most suitable internal references. A good linear relationship between PMI and RNA levels (β-actin and GAPDH) was observed in two groups (4 °C and 15 °C), whereas the S type curve relationship between the expression levels of the two markers (β-actin and GAPDH) and PMI was observed in the 35 °C group. The partial linear relationship between 18S rRNA and PMI was observed in the groups (15 °C and 35 °C). Skin could be a suitable material for extracting RNA. The RNA expression levels of β-actin and GAPDH correlate well with PMI, and these RNA markers of skin tissue could be additional indice for the estimation of PMI.

  4. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; Hasif, W. M. K. A. A.; Taib, H., E-mail: hariati@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-07-19

    Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was of Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.

  5. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    Science.gov (United States)

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-3