WorldWideScience

Sample records for resolution remotely sensed

  1. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  2. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    Science.gov (United States)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  3. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  4. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  5. Analysis of smear in high-resolution remote sensing satellites

    Science.gov (United States)

    Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud

    2016-10-01

    High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.

  6. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  7. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  8. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    Directory of Open Access Journals (Sweden)

    Linyi Li

    2017-01-01

    Full Text Available In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  9. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  10. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  11. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  12. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  13. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  14. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified

  15. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    Science.gov (United States)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  16. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    Science.gov (United States)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  17. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  18. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  19. Quantification of upland thermokarst features with high resolution remote sensing

    International Nuclear Information System (INIS)

    Belshe, E F; Schuur, E A G; Grosse, G

    2013-01-01

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km 2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil. (letter)

  20. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  1. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery.

    Science.gov (United States)

    Sánchez-Azofeifa, Arturo; Rivard, Benoit; Wright, Joseph; Feng, Ji-Lu; Li, Peijun; Chong, Mei Mei; Bohlman, Stephanie A

    2011-01-01

    Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.

  2. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

    Science.gov (United States)

    Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien

    2018-06-01

    In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.

  3. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2018-03-01

    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  4. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    Science.gov (United States)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  5. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  6. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  7. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    Science.gov (United States)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  8. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  9. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    Science.gov (United States)

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  10. High-Resolution Remotely Sensed Small Target Detection by Imitating Fly Visual Perception Mechanism

    Directory of Open Access Journals (Sweden)

    Fengchen Huang

    2012-01-01

    Full Text Available The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  11. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  12. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  13. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters

    Directory of Open Access Journals (Sweden)

    Yongyang Xu

    2018-01-01

    Full Text Available Very high resolution (VHR remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.

  14. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    Science.gov (United States)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  15. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LIN Xiangguo

    2017-06-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.

  16. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  17. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    Science.gov (United States)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  18. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  19. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  20. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Hou

    2016-08-01

    Full Text Available Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD methods have been developed to solve them by utilizing remote sensing (RS images. The advent of high resolution (HR remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC segmentation. Then, saliency and morphological building index (MBI extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF. Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  1. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    Science.gov (United States)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  2. Object-Based Change Detection Using High-Resolution Remotely Sensed Data and GIS

    Science.gov (United States)

    Sofina, N.; Ehlers, M.

    2012-08-01

    High resolution remotely sensed images provide current, detailed, and accurate information for large areas of the earth surface which can be used for change detection analyses. Conventional methods of image processing permit detection of changes by comparing remotely sensed multitemporal images. However, for performing a successful analysis it is desirable to take images from the same sensor which should be acquired at the same time of season, at the same time of a day, and - for electro-optical sensors - in cloudless conditions. Thus, a change detection analysis could be problematic especially for sudden catastrophic events. A promising alternative is the use of vector-based maps containing information about the original urban layout which can be related to a single image obtained after the catastrophe. The paper describes a methodology for an object-based search of destroyed buildings as a consequence of a natural or man-made catastrophe (e.g., earthquakes, flooding, civil war). The analysis is based on remotely sensed and vector GIS data. It includes three main steps: (i) generation of features describing the state of buildings; (ii) classification of building conditions; and (iii) data import into a GIS. One of the proposed features is a newly developed 'Detected Part of Contour' (DPC). Additionally, several features based on the analysis of textural information corresponding to the investigated vector objects are calculated. The method is applied to remotely sensed images of areas that have been subjected to an earthquake. The results show the high reliability of the DPC feature as an indicator for change.

  3. Remotely Sensed Data for High Resolution Agro-Environmental Policy Analysis

    Science.gov (United States)

    Welle, Paul

    Policy analyses of agricultural and environmental systems are often limited due to data constraints. Measurement campaigns can be costly, especially when the area of interest includes oceans, forests, agricultural regions or other dispersed spatial domains. Satellite based remote sensing offers a way to increase the spatial and temporal resolution of policy analysis concerning these systems. However, there are key limitations to the implementation of satellite data. Uncertainty in data derived from remote-sensing can be significant, and traditional methods of policy analysis for managing uncertainty on large datasets can be computationally expensive. Moreover, while satellite data can increasingly offer estimates of some parameters such as weather or crop use, other information regarding demographic or economic data is unlikely to be estimated using these techniques. Managing these challenges in practical policy analysis remains a challenge. In this dissertation, I conduct five case studies which rely heavily on data sourced from orbital sensors. First, I assess the magnitude of climate and anthropogenic stress on coral reef ecosystems. Second, I conduct an impact assessment of soil salinity on California agriculture. Third, I measure the propensity of growers to adapt their cropping practices to soil salinization in agriculture. Fourth, I analyze whether small-scale desalination units could be applied on farms in California in order mitigate the effects of drought and salinization as well as prevent agricultural drainage from entering vulnerable ecosystems. And fifth, I assess the feasibility of satellite-based remote sensing for salinity measurement at global scale. Through these case studies, I confront both the challenges and benefits associated with implementing satellite based-remote sensing for improved policy analysis.

  4. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites

  5. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  6. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    International Nuclear Information System (INIS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-01-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of ''different objects same image'' or ''different images same object'' affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and

  7. Object-based vegetation classification with high resolution remote sensing imagery

    Science.gov (United States)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  8. Extraction Method for Earthquake-Collapsed Building Information Based on High-Resolution Remote Sensing

    International Nuclear Information System (INIS)

    Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing

    2014-01-01

    At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing

  9. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  10. Joint Multi-scale Convolution Neural Network for Scene Classification of High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    ZHENG Zhuo

    2018-05-01

    Full Text Available High resolution remote sensing imagery scene classification is important for automatic complex scene recognition, which is the key technology for military and disaster relief, etc. In this paper, we propose a novel joint multi-scale convolution neural network (JMCNN method using a limited amount of image data for high resolution remote sensing imagery scene classification. Different from traditional convolutional neural network, the proposed JMCNN is an end-to-end training model with joint enhanced high-level feature representation, which includes multi-channel feature extractor, joint multi-scale feature fusion and Softmax classifier. Multi-channel and scale convolutional extractors are used to extract scene middle features, firstly. Then, in order to achieve enhanced high-level feature representation in a limit dataset, joint multi-scale feature fusion is proposed to combine multi-channel and scale features using two feature fusions. Finally, enhanced high-level feature representation can be used for classification by Softmax. Experiments were conducted using two limit public UCM and SIRI datasets. Compared to state-of-the-art methods, the JMCNN achieved improved performance and great robustness with average accuracies of 89.3% and 88.3% on the two datasets.

  11. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  12. Monitoring crop leaf area index time variation from higher resolution remotely sensed data

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    The leaf area index (LAI) is significant for research on global climate change and ecological environment. China HJ-1 satellite has a revisit cycle of four days, providing CCD data (HJ-1 CCD) with a resolution of 30 m. However, the HJ-1 CCD is incapable of obtaining observations at multiple angles. This is problematic because single angle observations provide insufficient data for determining the LAI. This article proposes a new method for determining LAI using HJ-1 CCD data. The proposed method uses background knowledge of dynamic land surface processes that are extracted from MODerate resolution Imaging Spectroradiometer (MODIS) LAI 1-km resolution data. To process the uncertainties that arise from using two data sources with different spatial resolutions, the proposed method is implemented in a dynamitic Bayesian network scheme by integrating a LAI dynamic process model and a canopy reflectance model with remotely sensed data. Validation results showed that the determination coefficient between estimated and measured LAI was 0.791, and the RMSE was 0.61. This method can enhance the accuracy of the retrieval results while retaining the time series variation characteristics of the vegetation LAI. The results suggest that this algorithm can be widely applied to determining high-resolution leaf area indices using data from China HJ-1 satellite even if information from single angle observations are insufficient for quantitative application

  13. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    Science.gov (United States)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  14. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  15. High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.

    Science.gov (United States)

    Nichol, Janet E; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.

  16. A research of road centerline extraction algorithm from high resolution remote sensing images

    Science.gov (United States)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  17. A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features

    Directory of Open Access Journals (Sweden)

    LEI Xiaoqi

    2016-02-01

    Full Text Available Road extraction from high-resolution remote sensing image is an important and difficult task.Since remote sensing images include complicated information,the methods that extract roads by spectral,texture and linear features have certain limitations.Also,many methods need human-intervention to get the road seeds(semi-automatic extraction,which have the great human-dependence and low efficiency.The road-extraction method,which uses the image segmentation based on principle of local gray consistency and integration shape features,is proposed in this paper.Firstly,the image is segmented,and then the linear and curve roads are obtained by using several object shape features,so the method that just only extract linear roads are rectified.Secondly,the step of road extraction is carried out based on the region growth,the road seeds are automatic selected and the road network is extracted.Finally,the extracted roads are regulated by combining the edge information.In experiments,the images that including the better gray uniform of road and the worse illuminated of road surface were chosen,and the results prove that the method of this study is promising.

  18. High Resolution Satellite Remote Sensing of the 2013-2014 Eruption of Sinabung Volcano, Sumatra, Indonesia

    Science.gov (United States)

    Wessels, R. L.; Griswold, J. P.

    2014-12-01

    Satellite remote sensing provided timely observations of the volcanic unrest and several months-long eruption at Sinabung Volcano, Indonesia. Visible to thermal optical and synthetic aperture radar (SAR) systems provided frequent observations of Sinabung. High resolution image data with spatial resolutions from 0.5 to 1.5m offered detailed measurements of early summit deformation and subsequent lava dome and lava flow extrusion. The high resolution data were captured by commercial satellites such as WorldView-1 and -2 visible to near-infrared (VNIR) sensors and by CosmoSkyMed, Radarsat-2, and TerraSar-X SAR systems. Less frequent 90 to 100m spatial resolution night time thermal infrared (TIR) observations were provided by ASTER and Landsat-8. The combination of data from multiple sensors allowed us to construct a more complete timeline of volcanic activity than was available via only ground-based observations. This satellite observation timeline documents estimates of lava volume and effusion rates and major explosive and lava collapse events. Frequent, repeat volume estimates suggest at least three high effusion rate pulses of up to 20 m3/s occurred during the first three months of lava effusion with an average effusion rate of 6m3/s from January 2014 to August 2014. Many of these rates and events show some correlation to variations in the Real-time Seismic-Amplitude Measurement (RSAM) documented by the Indonesian Center for Volcanology and Geologic Hazard Mitigation (CVGHM).

  19. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  20. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    2014-12-01

    Full Text Available Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

  1. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  2. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  3. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels

    Directory of Open Access Journals (Sweden)

    Ovidiu Csillik

    2017-03-01

    Full Text Available Speed and accuracy are important factors when dealing with time-constraint events for disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming task in extracting information from large images because most of the segmentation algorithms use the pixel-grid for the initial object representation. It would be more natural and efficient to work with perceptually meaningful entities that are derived from pixels using a low-level grouping process (superpixels. Firstly, we tested a new workflow for image segmentation of remote sensing data, starting the multiresolution segmentation (MRS, using ESP2 tool from the superpixel level and aiming at reducing the amount of time needed to automatically partition relatively large datasets of very high resolution remote sensing data. Secondly, we examined whether a Random Forest classification based on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC superpixel algorithm performs similarly with reference to a traditional object-based classification regarding accuracy. Tests were applied on QuickBird and WorldView-2 data with different extents, scene content complexities, and number of bands to assess how the computational time and classification accuracy are affected by these factors. The proposed segmentation approach is compared with the traditional one, starting the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time. The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar or better overall accuracy values when compared to MRS-based classification, but the results were obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches

  4. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Advancing Atmosphere-Ocean Remote Sensing with Spaceborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, C. A.; Behrenfeld, M. J.; Chepfer, H.; Hu, Y.; Hair, J. W.; Trepte, C. R.; Winker, D. M.; Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Powell, K. A.; Michaud, J.

    2016-12-01

    More than 1600 publications employing observations from the CALIOP lidar on CALIPSO testify to the value of spaceborne lidar for aerosol and cloud remote sensing. Recent publications have shown the value of CALIOP data for retrievals of key ocean carbon cycle stocks. In this presentation we focus on the advantages of a more advanced technique, High Spectral Resolution Lidar (HSRL), for aerosol, cloud, and ocean remote sensing. An atmosphere-ocean optimized HSRL achieves greater accuracy over the standard backscatter lidar technique for retrievals of aerosol and cloud extinction and backscatter profiles, provides additional capability to retrieve aerosol and cloud microphysical parameters, and enables vertically-resolved characterization of scattering and absorption properties of suspended and dissolved materials in the ocean. Numerous publications highlight the synergy of coincident CALIOP and passive A-train observations for studies of aerosol-cloud radiative effects and cloud-climate feedback. Less appreciated is the complementarity that would exist between an optimized spaceborne lidar and passive ocean color. An optimized HSRL flown in formation with the Plankton, Aerosol, and ocean Ecosystem (PACE) mission would provide phytoplankton vertical distribution, which is needed for accurately estimating net primary productivity but absent in the PACE ocean color data. The HSRL would also provide data needed to improve atmospheric correction schemes in ocean color retrievals. Because lidar provides measurements both night and day, through tenuous clouds and aerosol layers, and in holes between clouds, the sampling achieved is highly complementary to passive radiometry, providing data in important high latitude regions where ocean color data are sparse or nonexistent. In this presentation we will discuss 1) relevant aerosol, cloud, and ocean retrievals from airborne HSRL field missions; 2) the advantages of an optimized spaceborne HSRL for aerosol, cloud, and ocean

  6. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu

    2015-11-01

    Full Text Available Learning efficient image representations is at the core of the scene classification task of remote sensing imagery. The existing methods for solving the scene classification task, based on either feature coding approaches with low-level hand-engineered features or unsupervised feature learning, can only generate mid-level image features with limited representative ability, which essentially prevents them from achieving better performance. Recently, the deep convolutional neural networks (CNNs, which are hierarchical architectures trained on large-scale datasets, have shown astounding performance in object recognition and detection. However, it is still not clear how to use these deep convolutional neural networks for high-resolution remote sensing (HRRS scene classification. In this paper, we investigate how to transfer features from these successfully pre-trained CNNs for HRRS scene classification. We propose two scenarios for generating image features via extracting CNN features from different layers. In the first scenario, the activation vectors extracted from fully-connected layers are regarded as the final image features; in the second scenario, we extract dense features from the last convolutional layer at multiple scales and then encode the dense features into global image features through commonly used feature coding approaches. Extensive experiments on two public scene classification datasets demonstrate that the image features obtained by the two proposed scenarios, even with a simple linear classifier, can result in remarkable performance and improve the state-of-the-art by a significant margin. The results reveal that the features from pre-trained CNNs generalize well to HRRS datasets and are more expressive than the low- and mid-level features. Moreover, we tentatively combine features extracted from different CNN models for better performance.

  7. Fast Binary Coding for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu

    2016-06-01

    Full Text Available Scene classification of high-resolution remote sensing (HRRS imagery is an important task in the intelligent processing of remote sensing images and has attracted much attention in recent years. Although the existing scene classification methods, e.g., the bag-of-words (BOW model and its variants, can achieve acceptable performance, these approaches strongly rely on the extraction of local features and the complicated coding strategy, which are usually time consuming and demand much expert effort. In this paper, we propose a fast binary coding (FBC method, to effectively generate efficient discriminative scene representations of HRRS images. The main idea is inspired by the unsupervised feature learning technique and the binary feature descriptions. More precisely, equipped with the unsupervised feature learning technique, we first learn a set of optimal “filters” from large quantities of randomly-sampled image patches and then obtain feature maps by convolving the image scene with the learned filters. After binarizing the feature maps, we perform a simple hashing step to convert the binary-valued feature map to the integer-valued feature map. Finally, statistical histograms computed on the integer-valued feature map are used as global feature representations of the scenes of HRRS images, similar to the conventional BOW model. The analysis of the algorithm complexity and experiments on HRRS image datasets demonstrate that, in contrast with existing scene classification approaches, the proposed FBC has much faster computational speed and achieves comparable classification performance. In addition, we also propose two extensions to FBC, i.e., the spatial co-occurrence matrix and different visual saliency maps, for further improving its final classification accuracy.

  8. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  9. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  10. High time resolution boundary layer description using combined remote sensing instruments

    Directory of Open Access Journals (Sweden)

    C. Gaffard

    2008-09-01

    Full Text Available Ground based remote sensing systems for future observation operations will allow continuous monitoring of the lower troposphere at temporal resolutions much better than every 30 min. Observations which may be considered spurious from an individual instrument can be validated or eliminated when considered in conjunction with measurements from other instruments observing at the same location. Thus, improved quality control of atmospheric profiles from microwave radiometers and wind profilers should be sought by considering the measurements from different systems together rather than individually. In future test bed deployments for future operational observing systems, this should be aided by observations from laser ceilometers and cloud radars. Observations of changes in atmospheric profiles at high temporal resolution in the lower troposphere are presented from a 12 channel microwave radiometer and 1290 MHz UHF wind profiler deployed in southern England during the CSIP field experiment in July/August 2005. The observations chosen were from days when thunderstorms occurred in southern England. Rapid changes near the surface in dry layers are considered, both when rain/hail may be falling from above and where the dry air is associated with cold pools behind organised thunderstorms. Also, short term variations in atmospheric profiles and vertical stability are presented on a day with occasional low cloud, when thunderstorms triggered 50 km down wind of the observing site Improved quality control of the individual remote sensing systems need to be implemented, examining the basic quality of the underlying observations as well as the final outputs, and so for instance eliminating ground clutter as far as possible from the basic Doppler spectra measurements of the wind profiler. In this study, this was performed manually. The potential of incorporating these types of instruments in future upper air observational networks leads to the challenge to

  11. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  12. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  13. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  14. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  15. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    Science.gov (United States)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  16. A method for geological hazard extraction using high-resolution remote sensing

    International Nuclear Information System (INIS)

    Wang, Q J; Chen, Y; Bi, J T; Lin, Q Z; Li, M X

    2014-01-01

    Taking Yingxiu, the epicentre of the Wenchuan earthquake, as the study area, a method for geological disaster extraction using high-resolution remote sensing imagery was proposed in this study. A high-resolution Digital Elevation Model (DEM) was used to create mask imagery to remove interfering factors such as buildings and water at low altitudes. Then, the mask imagery was diced into several small parts to reduce the large images' inconsistency, and they were used as the sources to be classified. After that, vector conversion was done on the classified imagery in ArcGIS. Finally, to ensure accuracy, other interfering factors such as buildings at high altitudes, bare land, and land covered by little vegetation were removed manually. Because the method can extract geological hazards in a short time, it is of great importance for decision-makers and rescuers who need to know the degree of damage in the disaster area, especially within 72 hours after an earthquake. Therefore, the method will play an important role in decision making, rescue, and disaster response planning

  17. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image

    OpenAIRE

    Wang, Jianhua; Qin, Qiming; Zhao, Jianghua; Ye, Xin; Feng, Xiao; Qin, Xuebin; Yang, Xiucheng

    2015-01-01

    Road damage detection and assessment from high-resolution remote sensing image is critical for natural disaster investigation and disaster relief. In a disaster context, the pairing of pre-disaster and post-disaster road data for change detection and assessment is difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster data (i.e., remote sensing imagery or vector map) are hard to obtain. In this study, a knowledge-based method for ...

  18. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  19. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  20. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    Science.gov (United States)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  1. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    Directory of Open Access Journals (Sweden)

    Adam M Wilson

    2016-03-01

    Full Text Available Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  2. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  3. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  4. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Science.gov (United States)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  5. Modeling residential lawn fertilization practices: integrating high resolution remote sensing with socioeconomic data

    Science.gov (United States)

    Weiqi Zhou; Austin Troy; Morgan. Grove

    2008-01-01

    This article investigates how remotely sensed lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict household lawn fertilization practices on private residential lands. This study involves two watersheds, Glyndon and Baisman's Run, in Baltimore County, Maryland, USA. Parcel lawn...

  6. Self-Calibrating High Resolution Tunable Filter for Remote Gas Sensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for local and remote sensing of oxygen (O2) at 1.26 µm, carbon dioxide (CO2) at 1.56 µm and other...

  7. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    Full Text Available A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST of the change algorithms is applied to calculate the probability of change for a particular location. CEST

  8. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  9. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  10. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  11. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Zhiyong Lv

    2018-03-01

    Full Text Available In recent decades, land cover change detection (LCCD using very high-spatial resolution (VHR remote sensing images has been a major research topic. However, VHR remote sensing images usually lead to a large amount of noises in spectra, thereby reducing the reliability of the detected results. To solve this problem, this study proposes an object-based expectation maximization (OBEM post-processing approach for enhancing raw LCCD results. OBEM defines a refinement of the labeling in a detected map to enhance its raw detection accuracies. Current mainstream change detection (preprocessing techniques concentrate on proposing a change magnitude measurement or considering image spatial features to obtain a change detection map. The proposed OBEM approach is a new solution to enhance change detection accuracy by refining the raw result. Post-processing approaches can achieve competitive accuracies to the preprocessing methods, but in a direct and succinct manner. The proposed OBEM post-processing method synthetically considers multi-scale segmentation and expectation maximum algorithms to refine the raw change detection result. Then, the influence of the scale of segmentation on the LCCD accuracy of the proposed OBEM is investigated. Four pairs of remote sensing images, one of two pairs (aerial image with 0.5 m/pixel resolution which depict two landslide sites on Landtau Island, Hong Kong, China, are used in the experiments to evaluate the effectiveness of the proposed approach. In addition, the proposed approach is applied, and validated by two case studies, LCCD in Tianjin City China (SPOT-5 satellite image with 2.5 m/pixel resolution and Mexico forest fire case (Landsat TM images with 30 m/pixel resolution, respectively. Quantitative evaluations show that the proposed OBEM post-processing approach can achieve better performance and higher accuracies than several commonly used preprocessing methods. To the best of the authors’ knowledge, this type

  12. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  13. Study on the Coastline Change of Jiaozhou Bay Based on High Resolution Remote Sensing Image

    Science.gov (United States)

    Zhu, H.; Xing, B.; Ni, S.; Wei, P.

    2018-05-01

    In recent years, with the rapid development of the Jiaozhou Bay area of Qingdao, the influence of human activities on the coastline of Jiaozhou Bay is becoming more and more serious. Based on the high resolution remote sensing image data of 10 periods from 2001 to 2017 in the Jiaozhou Bay area, and combined with the data of on-the-spot survey and expert knowledge, this paper have completed the interpretation and extraction of coastline data of each year, and analyzed the distribution, size, rate of change, and trend of the increase and decrease of the coastal area of Jiaozhou Bay in different time periods, combined with the economic construction and the marine hydrodynamic environment of the region to analyze the reasons for the change of the coastline of Jiaozhou Bay. The results show that the increase and reduction of the coastal area of Jiaozhou Bay was mainly affected by human activities such as sea reclamation and marine aquaculture, resulting in a gradual change in the rate of increase and decrease with human development. For coastal advance part,2001-2013, the average increase rate on the coastal area of Jiaozhou Bay was 2.30 km2/a, showing a trend of rapid growth, 2013-2017 the average increase rate of 0.53 km2/a, and the growth rate slowed down. For coastal retreat part, 2001-2013, the average decrease rate was 2.58 × 10-3 km2/a. 2013-2014, the decrease rate reached a peak value of 1.11 km2/a. 2014-2017, the average decrease rate was 0.14 km2/a. The decrease rate shows a trend of increasing first and then slowing down.

  14. An efficient cloud detection method for high resolution remote sensing panchromatic imagery

    Science.gov (United States)

    Li, Chaowei; Lin, Zaiping; Deng, Xinpu

    2018-04-01

    In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.

  15. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  16. Geographic information system for fusion and analysis of high-resolution remote sensing and ground data

    Science.gov (United States)

    Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz

    1993-01-01

    We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System (GIS), integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a boreal forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case 1) calibrated DC-8 SAR (Synthetic Aperture Radar) data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case 2) will produce calibrated DC-8 SAR

  17. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  18. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  19. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  20. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  1. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  2. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  3. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  4. [Changes of wetland landscape pattern in Dayang River Estuary based on high-resolution remote sensing image].

    Science.gov (United States)

    Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan

    2011-07-01

    Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.

  5. A novel airport extraction model based on saliency region detection for high spatial resolution remote sensing images

    Science.gov (United States)

    Lv, Wen; Zhang, Libao; Zhu, Yongchun

    2017-06-01

    The airport is one of the most crucial traffic facilities in military and civil fields. Automatic airport extraction in high spatial resolution remote sensing images has many applications such as regional planning and military reconnaissance. Traditional airport extraction strategies usually base on prior knowledge and locate the airport target by template matching and classification, which will cause high computation complexity and large costs of computing resources for high spatial resolution remote sensing images. In this paper, we propose a novel automatic airport extraction model based on saliency region detection, airport runway extraction and adaptive threshold segmentation. In saliency region detection, we choose frequency-tuned (FT) model for computing airport saliency using low level features of color and luminance that is easy and fast to implement and can provide full-resolution saliency maps. In airport runway extraction, Hough transform is adopted to count the number of parallel line segments. In adaptive threshold segmentation, the Otsu threshold segmentation algorithm is proposed to obtain more accurate airport regions. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and shows good performance in the extraction of the airport.

  6. A Residential Area Extraction Method for High Resolution Remote Sensing Imagery by Using Visual Saliency and Perceptual Organization

    Directory of Open Access Journals (Sweden)

    CHEN Yixiang

    2017-12-01

    Full Text Available Inspired by human visual cognitive mechanism,a method of residential area extraction from high-resolution remote sensing images was proposed based on visual saliency and perceptual organization. Firstly,the data field theory of cognitive physics was introduced to model the visual saliency and the candidate residential areas were produced by adaptive thresholding. Then,the exact residential areas were obtained and refined by perceptual organization based on the high-frequency features of multi-scale wavelet transform. Finally,the validity of the proposed method was verified by experiments conducted on ZY-3 and Quickbird image data sets.

  7. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    Science.gov (United States)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and

  8. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  9. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    Science.gov (United States)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  10. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    Science.gov (United States)

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  11. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  12. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  13. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  14. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  15. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  16. FAST OCCLUSION AND SHADOW DETECTION FOR HIGH RESOLUTION REMOTE SENSING IMAGE COMBINED WITH LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    X. Hu

    2012-08-01

    Full Text Available The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU is much more powerful than central processing unit (CPU. We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.

  17. Fast Occlusion and Shadow Detection for High Resolution Remote Sensing Image Combined with LIDAR Point Cloud

    Science.gov (United States)

    Hu, X.; Li, X.

    2012-08-01

    The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM) directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU) is much more powerful than central processing unit (CPU). We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.

  18. Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution Remote Sense Imagery: A Coastal Area Case Study

    Directory of Open Access Journals (Sweden)

    Helingjie Huang

    2017-03-01

    Full Text Available Image interpretation is a major topic in the remote sensing community. With the increasing acquisition of high spatial resolution (HSR remotely sensed images, incorporating geographic object-based image analysis (GEOBIA is becoming an important sub-discipline for improving remote sensing applications. The idea of integrating the human ability to understand images inspires research related to introducing expert knowledge into image object–based interpretation. The relevant work involved three parts: (1 identification and formalization of domain knowledge; (2 image segmentation and feature extraction; and (3 matching image objects with geographic concepts. This paper presents a novel way that combines multi-scaled segmented image objects with geographic concepts to express context in an ontology-guided image interpretation. Spectral features and geometric features of a single object are extracted after segmentation and topological relationships are also used in the interpretation. Web ontology language–query language (OWL-QL formalize domain knowledge. Then the interpretation matching procedure is implemented by the OWL-QL query-answering. Compared with a supervised classification, which does not consider context, the proposed method validates two HSR images of coastal areas in China. Both the number of interpreted classes increased (19 classes over 10 classes in Case 1 and 12 classes over seven in Case 2, and the overall accuracy improved (0.77 over 0.55 in Case 1 and 0.86 over 0.65 in Case 2. The additional context of the image objects improved accuracy during image classification. The proposed approach shows the pivotal role of ontology for knowledge-guided interpretation.

  19. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  20. Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    ZHANG Zhiqiang

    2018-01-01

    Full Text Available Timely and accurate change detection of buildings provides important information for urban planning and management.Accompanying with the rapid development of satellite remote sensing technology,detecting building changes from high-resolution remote sensing images have received wide attention.Given that pixel-based methods of change detection often lead to low accuracy while object-based methods are complicated for uses,this research proposes a method that combines pixel-based and object-based methods for detecting building changes from high-resolution remote sensing images.First,based on the multiple features extracted from the high-resolution images,a random forest classifier is applied to detect changed building at the pixel level.Then,a segmentation method is applied to segement the post-phase remote sensing image and to get post-phase image objects.Finally,both changed building at the pixel level and post-phase image objects are fused to recognize the changed building objects.Multi-temporal QuickBird images are used as experiment data for building change detection with high-resolution remote sensing images,the results indicate that the proposed method could reduce the influence of environmental difference,such as light intensity and view angle,on building change detection,and effectively improve the accuracies of building change detection.

  1. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  2. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Science.gov (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  3. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  4. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  5. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  6. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  7. Urban Boundary Extraction and Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: a Case Study of China's Provincial

    Science.gov (United States)

    Wang, H.; Ning, X.; Zhang, H.; Liu, Y.; Yu, F.

    2018-04-01

    Urban boundary is an important indicator for urban sprawl analysis. However, methods of urban boundary extraction were inconsistent, and construction land or urban impervious surfaces was usually used to represent urban areas with coarse-resolution images, resulting in lower precision and incomparable urban boundary products. To solve above problems, a semi-automatic method of urban boundary extraction was proposed by using high-resolution image and geographic information data. Urban landscape and form characteristics, geographical knowledge were combined to generate a series of standardized rules for urban boundary extraction. Urban boundaries of China's 31 provincial capitals in year 2000, 2005, 2010 and 2015 were extracted with above-mentioned method. Compared with other two open urban boundary products, accuracy of urban boundary in this study was the highest. Urban boundary, together with other thematic data, were integrated to measure and analyse urban sprawl. Results showed that China's provincial capitals had undergone a rapid urbanization from year 2000 to 2015, with the area change from 6520 square kilometres to 12398 square kilometres. Urban area of provincial capital had a remarkable region difference and a high degree of concentration. Urban land became more intensive in general. Urban sprawl rate showed inharmonious with population growth rate. About sixty percent of the new urban areas came from cultivated land. The paper provided a consistent method of urban boundary extraction and urban sprawl measurement using high-resolution remote sensing images. The result of urban sprawl of China's provincial capital provided valuable urbanization information for government and public.

  8. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

    Science.gov (United States)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya

    2018-04-01

    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  9. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  10. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  11. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    Science.gov (United States)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  12. High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015

    Science.gov (United States)

    Lin, C. Q.; Liu, G.; Lau, A. K. H.; Li, Y.; Li, C. C.; Fung, J. C. H.; Lao, X. Q.

    2018-05-01

    Given the vast territory of China, the long-term PM2.5 trends may substantially differ among the provinces. In this study, we aim to assess the provincial PM2.5 trends in China during the past few Five-Year Plan (FYP) periods. The lack of long-term PM2.5 measurements, however, makes such assessment difficult. Satellite remote sensing of PM2.5 concentration is an important step toward filling this data gap. In this study, a PM2.5 data set was built over China at a resolution of 1 km from 2001 to 2015 using satellite remote sensing. Analyses show that the national average of PM2.5 concentration increased by 0.04 μg·m-3·yr-1 during the 10th FYP period (2001-2005) and started to decline by -0.65 μg·m-3·yr-1 and -2.33 μg·m-3·yr-1 during the 11th (2006-2010) and the 12th (2011-2015) FYP period, respectively. In addition, substantial differences in the PM2.5 trends were observed among the provinces. Provinces in the Beijing-Tianjin-Hebei (BTH) region had the largest reduction of PM2.5 concentrations during the 10th and 12th FYP period. The greatest reduction rate of PM2.5 concentration during the 10th and 12th FYP period was observed in Beijing (-3.68 μg·m-3·yr-1) and Tianjin (-6.62 μg·m-3·yr-1), respectively. In contrast, PM2.5 concentrations remained steady for provinces in eastern and southeastern China (e.g., Shanghai) during the 12th FYP period. In overall, great efforts are still required to effectively reduce the PM2.5 concentrations in future.

  13. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  14. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  15. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  16. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  17. The use of high-resolution remote sensing for plague surveillance in Kazakhstan

    DEFF Research Database (Denmark)

    Addink, E A; De Jong, S M; Davis, S A

    2010-01-01

    to demonstrate the automatic classification of burrow systems in satellite images using object-oriented analysis. We performed field campaigns in September 2007 and May and September 2008 and acquired corresponding QuickBird images of the first two periods. User's and producer's accuracy values...... of the classification reached 60 and 86%, respectively, providing proof of concept that automatic mapping of burrow systems using high-resolution satellite images is possible. Such maps, by better defining great gerbil foci, locating new or expanding foci and measuring the density of great gerbil burrow systems could...

  18. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  19. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  20. Object-oriented Method of Hierarchical Urban Building Extraction from High-resolution Remote-Sensing Imagery

    Directory of Open Access Journals (Sweden)

    TAO Chao

    2016-02-01

    Full Text Available An automatic urban building extraction method for high-resolution remote-sensing imagery,which combines building segmentation based on neighbor total variations with object-oriented analysis,is presented in this paper. Aimed at different extraction complexity from various buildings in the segmented image,a hierarchical building extraction strategy with multi-feature fusion is adopted. Firstly,we extract some rectangle buildings which remain intact after segmentation through shape analysis. Secondly,in order to ensure each candidate building target to be independent,multidirectional morphological road-filtering algorithm is designed which can separate buildings from the neighboring roads with similar spectrum. Finally,we take the extracted buildings and the excluded non-buildings as samples to establish probability model respectively,and Bayesian discriminating classifier is used for making judgment of the other candidate building objects to get the ultimate extraction result. The experimental results have shown that the approach is able to detect buildings with different structure and spectral features in the same image. The results of performance evaluation also support the robustness and precision of the approach developed.

  1. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging

  2. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    Science.gov (United States)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  3. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  4. Assessment of Acacia koa forest health across environmental gradients in Hawai'i using fine resolution remote sensing and GIS.

    Science.gov (United States)

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai'ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600-1,000 m asl in the island of Kaua'i, which correspond to gradients of temperature and rainfall ranging from 17-20 °C mean annual temperature and 750-1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai'i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species.

  5. Assessment of Acacia Koa Forest Health across Environmental Gradients in Hawai‘i Using Fine Resolution Remote Sensing and GIS

    Science.gov (United States)

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B.

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai‘ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600–1,000 m asl in the island of Kaua‘i, which correspond to gradients of temperature and rainfall ranging from 17–20 °C mean annual temperature and 750–1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai‘i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species. PMID:22163920

  6. TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk

    Directory of Open Access Journals (Sweden)

    Cécile Vignolles

    2010-11-01

    Full Text Available In the vicinity of the Barkedji village (in the Ferlo region of Senegal, the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels, Synthetic Aperture Radar satellite (TerraSAR-X produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images, which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM, NASA/JAXA joint mission, the filling-up and flushingout rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km2 can thus be assessed. This new operational approach (which is independent of weather conditions is an important development in the mapping of risk components (i.e. hazards plus vulnerability related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system.

  7. TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk.

    Science.gov (United States)

    Vignolles, Cécile; Tourre, Yves M; Mora, Oscar; Imanache, Laurent; Lafaye, Murielle

    2010-11-01

    In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushing-out rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km(2)) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system.

  8. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    Science.gov (United States)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  9. Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection, Journal of Applied Remote Sensing Vol.3

    Science.gov (United States)

    W. Wang; J.J. Qu; X. Hao; Y. Liu

    2009-01-01

    In the southeastern United States, most wildland fires are of low intensity. A substantial number of these fires cannot be detected by the MODIS contextual algorithm. To improve the accuracy of fire detection for this region, the remote-sensed characteristics of these fires have to be...

  10. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  11. Remote sensing-based Information for crop monitoring: contribution of SAR and Moderate resolution optical data on Asian rice production

    Science.gov (United States)

    Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew

    2013-04-01

    Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of

  12. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  13. Drought assessment for cropland of Central America using course-resolution remote sensing data

    Science.gov (United States)

    Chen, C. F.; Nguyen, S. T.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Drought is one of the most frequent and costliest natural disasters, which imposes enormous effects to human societies and ecosystems. Agricultural drought is referred to an interval of time, such as weeks or months, when the soil moisture supply of a region consistently falls below the appropriate moisture supply leading to negative impacts on agricultural production. Millions of households in Central America were dependent upon major food crops, including maize, beans, and sorghum, for their daily subsistence. In recent years, impacts of climate change through global warming in forms of higher temperature and widespread rainfall deficits have however triggered severe drought during the primera cropping season (April-August) in the study region, causing profound impacts on agriculture, crop production losses, increased market food prices, as well as food security issues. This study focuses on investigating agricultural droughts for cropland of Central America using the Moderate Resolution Imaging Spectroradiometer (MODIS) data. We processed the data for a normal year 2013 and an abnormal year 2014 using a simple vegetation health index (VHI) that is developed based on the temperature condition index (TCI) and vegetation condition index (VCI). The VHI results were validated using the Advanced Microwave Scanning Radiometer 2 (AMSR2) precipitation data and temperature vegetation dryness index (TVDI) that is developed based on the empirical analysis of TCI and VCI data. The correlation coefficients (r) obtained by comparisons between the VHI data and the AMSR2 precipitation and TVDI data were higher than 0.62 and -0.61, respectively. The severe drought was intensive during the dry season (January-April) and likely backed to normal conditions in May with the onset of rainy season. The larger area of serve drought was observed for the 2014 primera season, especially during April-July. When investigating the cultivated areas affected by severe drought in the primera

  14. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  15. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    Science.gov (United States)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  16. Remote Sensing of River Delta Inundation: Exploiting the Potential of Coarse Spatial Resolution, Temporally-Dense MODIS Time Series

    Directory of Open Access Journals (Sweden)

    Claudia Kuenzer

    2015-07-01

    Full Text Available River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta’s general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas—namely the Yellow River Delta (China, the Mekong Delta (Vietnam, the Irrawaddy Delta (Myanmar, and the Ganges-Brahmaputra (Bangladesh, India—as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013. A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid

  17. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  18. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  19. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  20. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  1. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  2. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  3. Remote Sensing Image in the Application of Agricultural Tourism Planning

    Directory of Open Access Journals (Sweden)

    Guojing Fan

    2013-06-01

    Full Text Available This paper introduces the processing technology of high resolution remote sensing image, the specific making process of tourism map and different remote sensing data in the key application of tourism planning and so on. Remote sensing extracts agricultural tourism planning information, improving the scientificalness and operability of agricultural tourism planning. Therefore remote sensing image in the application of agricultural tourism planning will be the inevitable trend of tourism development.

  4. Geographic information system for fusion and analysis of high-resolution remote sensing and ground truth data

    Science.gov (United States)

    Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz

    1992-01-01

    We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System, integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a bore Al forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case I) calibrated DC-8 SAR data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case II) will produce calibrated DC-8 SAR and AVIRIS data, together with

  5. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  6. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  7. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  8. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images.

    Science.gov (United States)

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-06-22

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.

  9. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  10. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  11. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  12. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  13. High resolution land surface modeling utilizing remote sensing parameters and the Noah-UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-07-01

    In the current work we investigate the utility of remote sensing based surface parameters in the Noah-UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter datasets are directly substituted for the land-use/lookup-table values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in-situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite derived parameter maps, particularly GVF, enhance the Noah-UCM capability to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model capability to predict the LST differences between fully vegetated pixels and highly developed areas. However, the model still underestimates remotely sensed LST values over highly developed areas. We hypothesize that the LST underestimation is due to structural formulation in the UCM and cannot be immediately solved with available parameter choices.

  14. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  15. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  16. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  17. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  18. The Identification of Land Utilization in Coastal Reclamation Areas in Tianjin Using High Resolution Remote Sensing Images

    Science.gov (United States)

    Meng, Y.; Cao, Y.; Tian, H.; Han, Z.

    2018-04-01

    In recent decades, land reclamation activities have been developed rapidly in Chinese coastal regions, especially in Bohai Bay. The land reclamation areas can effectively alleviate the contradiction between land resources shortage and human needs, but some idle lands that left unused after the government making approval the usage of sea areas are also supposed to pay attention to. Due to the particular features of land coverage identification in large regions, traditional monitoring approaches are unable to perfectly meet the needs of effectively and quickly land use classification. In this paper, Gaofen-1 remotely sensed satellite imagery data together with sea area usage ownership data were used to identify the land use classifications and find out the idle land resources. It can be seen from the result that most of the land use types and idle land resources can be identified precisely.

  19. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    Science.gov (United States)

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the

  20. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  1. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  2. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  3. Advanced mineral and lithological mapping using high spectral resolution TIR data from the active CO2 remote sensing system; CO2 laser wo mochiita kosupekutoru bunkaino netsusekigai remote sensing data no ganseki kobutsu shikibetsu eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Cudahy, T; Tapley, I

    1997-05-27

    A study was conducted on rock/mineral mapping technology for the metal ore deposit survey using MIRACO2LAS, an active type thermal infrared ray remote sensing system which was developed by CSIRO of Australia and is now the highest in spectral resolution in the world, and TIMS of NASA which is a passive type system. The area for the survey is the area of Olary/Broken Hill and Mt. Fitton of Australia. A good correlation is seen between the ground reflectance measured by MIRACO2LAS and the value measured by the chamber CO2 laser of rocks sampled at the above-mentioned area. In case that the width of spectral characteristics is below 300nm, the inspection ability by MIRACO2LAS`s high spectral resolution is more determined in mineral mapping as compared with TIMS which is large in band width. Minerals mapped using MIRACO2LAS are quartz, talc, amphibole, hornblende, garnet, supessartine, dolomite, magnesite, etc. 4 refs., 3 figs.

  4. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, Jesslyn F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  5. People and pixels in the Sahel: a study linking coarse-resolution remote sensing observations to land users' perceptions of their changing environment in Senegal

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2014-09-01

    Full Text Available Mounting evidence from satellite observations of a re-greening across much of the Sahel and Sudan zones over the past three decades has raised questions about the extent and reversibility of desertification. Historical ground data that could help in interpreting the re-greening are scarce. To fill that void, we tapped into the collective memories of local land users from central and western Senegal in 39 focus groups and assessed the spatial association between their perceptions of vegetation changes over time and remote sensing-derived trends. To provide context to the vegetation changes, we also explored the land users' perspective on the evolution of other environmental and human variables that are potentially related to the greening, using participatory research methods. While increases in vegetation were confirmed by the study participants for certain areas, which spatially corresponded to satellite-observed re-greening, vegetation degradation dominated their perceptions of change. This degradation, although spatially extensive according to land users, flies under the radar of coarse-resolution remote sensing data because it is not necessarily associated with a decrease in biomass but rather with undesired changes in species composition. Few significant differences were found in the perceived trends of population pressure, environmental, and livelihood variables between communities that have greened up according to satellite data and those that have not. Our findings challenge the prevailing chain of assumptions of the satellite-observed greening trend indicating an improvement of environmental conditions in the sense of a rehabilitation of the vegetation cover after the great droughts of the 1970s and 1980s, and the improvement of environmental conditions possibly translating into more stable livelihoods and greater well-being of the populations. For monitoring desertification and rehabilitation, there is a need to develop remote sensing

  6. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  7. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    Science.gov (United States)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  8. Linking terrace geomorphology and canopy characteristics in the Peruvian Amazon using high resolution airborne remote sensing (Invited)

    Science.gov (United States)

    Chadwick, K.; Asner, G. P.

    2013-12-01

    The Peruvian Amazon is home to over half a million square kilometers of forest, nearly three quarters of which is supported by terrace landforms with variable histories. Characteristics of these terrace ecosystems have been contrasted with neighboring floodplain systems along riverine transportation corridors, but the ecological complexity within these terrace landscapes has remained largely unexplored. Airborne remote measurements provide an opportunity to consider the relationship between forest canopy characteristics and geomorphic gradients at high resolution over large spatial extents. In 2011 the Carnegie Airborne Observatory (CAO) was used to map a large section of intact lowland humid tropical forest in the southwestern Peruvian Amazon, including over nine thousand hectares of terrace forest. The CAO collected high-fidelity imaging spectroscopy data with its Visible-Shortwave Imaging Spectrometer (VSWIR) and digital elevation and canopy structure data with its high-resolution dual waveform LiDAR. These data, supplemented with field data collection, were used to quantify relationships between forest canopy traits and geomorphic gradients. Results suggest that both spectral properties of the canopy with known relationships to canopy chemistry, including pigment and nutrient concentrations, and canopy structural traits, including vegetation height and leaf area, are associated with geomorphic characteristics of this terrace landscape.

  9. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  10. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  11. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  12. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  13. Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jihui Tu

    2017-04-01

    Full Text Available The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-use variation at the semantic level. In this paper, a novel method is proposed for detecting damaged building regions based on semantic scene change in a visual Bag-of-Words model. Pre- and post-disaster scene change in building regions are represented by a uniform visual codebook frequency. The scene change of damaged and non-damaged building regions is discriminated using the Support Vector Machine (SVM classifier. An evaluation of experimental results, for a selected study site of the Longtou hill town of Yunnan, China, which was heavily damaged in the Ludian earthquake of 14 March 2013, shows that this method is feasible and effective for detecting damaged building regions. For the experiments, WorldView-2 optical imagery and aerial imagery is used.

  14. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  15. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  16. High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-12-01

    In the current work we investigate the utility of remote-sensing-based surface parameters in the Noah UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high-resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter data sets are directly substituted for the land-use/lookup-table-based values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite-derived parameter maps, particularly GVF, enhance the capability of the Noah UCM to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model's capability to predict the LST differences between fully vegetated pixels and highly developed areas.

  17. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  18. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  19. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    Science.gov (United States)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  20. It's all in the pixels: high resolution remote sensing data and the mapping and analysis of the archaeological and historical landscape

    Directory of Open Access Journals (Sweden)

    Erwin Meylemans

    2017-03-01

    Full Text Available In Flanders (Belgium a large amount of remote-sensing data has been acquired and processed over the past few years, including high-resolution lidar and multi/hyperspectral aerial photography. These new data are contributing to the detection of archaeological sites and the characterisation of the cultural/historical landscape. Of particular use in historically stable areas under forest and pasture, lidar demonstrates the presence of a large number of previously unknown features and sites. The analysis and modelling of these data, combined with other landscape data such as soil maps, augering data, geological and historical maps, and aerial photographs, also provide possible new instruments for the characterisation and evaluation of prehistoric and historic landscapes. This vast amount of new remote-sensing data, plus the information it delivers, however, presents not only obvious opportunities but also a number of challenges. A centralised online system was developed by the 'GIS-Flanders agency', storing both processed and raw data from multispectral recordings, airborne lidar, mobile mapping images etc., and presenting several download and visualisation possibilities and tools. A new system has also been set up to handle specific archaeological and cultural historical data (historical images and aerial photographs, archaeological field data. Dialogue is needed so that the preservation and management needs of the archaeological heritage are also included.

  1. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  2. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    Science.gov (United States)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.

    2012-01-01

    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement

  3. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  4. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  5. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  6. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  7. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  8. Use of Openly Available Satellite Images for Remote Sensing Education

    Science.gov (United States)

    Wang, C.-K.

    2011-09-01

    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  9. Operational Use of Remote Sensing within USDA

    Science.gov (United States)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  10. Using Very High Resolution Remotely Sensed Imagery to Estimate Agricultural Production: A comparison of food insecure and secure growing areas in Kenya

    Science.gov (United States)

    Grace, K.; Husak, G. J.; Bogle, S.

    2013-12-01

    Determining the amount of food produced in a food insecure, isolated, subsistence farming community can be used to help identify households or communities who may be in need of additional food resources. Measuring annual food production in developing countries, much less at a sub-national level, is complicated by lack of data. It can be difficult and costly to access all of the farming households engaged in subsistence farming. However, recent research has focused on the use of remotely sensed data to aid in the estimation of area under cultivation and because food production is the measure of yield (production per hectare) multiplied by area (number of hectares), we can use the area measure to reduce uncertainty in food production estimates. One strategy for estimating cultivated area relies on a fairly time intensive manual interpretation of very high resolution data. Due to the availability of very high resolution data it is possible to construct estimates of cultivated area, even in communities where fields are small. While this strategy has been used to effectively estimate cultivated area in a timely manner, questions remain about the spatial and temporal generalizability of this approach. The purpose of this paper is to produce and compare estimates of cultivated area in two very different agricultural areas of Kenya, a highly food insecure country in East Africa, during two different agricultural seasons. The areas selected represent two different livelihood zones: a marginal growing area where poor farmers rely on inconsistent rainfall and a lush growing area near the mountainous region of the middle-West area of the country where rainfall is consistent and therefore more suited to cultivation. The overarching goal is to determine the effectiveness of very high resolution remotely sensed imagery in calculating estimates of cultivated area in areas where food production strategies are different. Additionally the results of this research will explore the

  11. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  12. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  13. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  14. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  15. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Science.gov (United States)

    Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness

  16. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Directory of Open Access Journals (Sweden)

    Gerald Forkuor

    Full Text Available Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat, terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC, soil organic carbon (SOC and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR, random forest regression (RFR, support vector machine (SVM, stochastic gradient boosting (SGB-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices

  17. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  18. Ambiguity of Quality in Remote Sensing Data

    Science.gov (United States)

    Lynnes, Christopher; Leptoukh, Greg

    2010-01-01

    This slide presentation reviews some of the issues in quality of remote sensing data. Data "quality" is used in several different contexts in remote sensing data, with quite different meanings. At the pixel level, quality typically refers to a quality control process exercised by the processing algorithm, not an explicit declaration of accuracy or precision. File level quality is usually a statistical summary of the pixel-level quality but is of doubtful use for scenes covering large areal extents. Quality at the dataset or product level, on the other hand, usually refers to how accurately the dataset is believed to represent the physical quantities it purports to measure. This assessment often bears but an indirect relationship at best to pixel level quality. In addition to ambiguity at different levels of granularity, ambiguity is endemic within levels. Pixel-level quality terms vary widely, as do recommendations for use of these flags. At the dataset/product level, quality for low-resolution gridded products is often extrapolated from validation campaigns using high spatial resolution swath data, a suspect practice at best. Making use of quality at all levels is complicated by the dependence on application needs. We will present examples of the various meanings of quality in remote sensing data and possible ways forward toward a more unified and usable quality framework.

  19. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    Science.gov (United States)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  20. Optimization of the resolution of remotely sensed digital elevation model to facilitate the simulation and spatial propagation of flood events in flat areas

    Science.gov (United States)

    Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas

    2013-04-01

    The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared

  1. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  2. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  4. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  5. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  6. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  7. Upgraded airborne scanner for commercial remote sensing

    Science.gov (United States)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  8. Remote sensing of CO2 and CH4 using solar absorption spectrometry with a low resolution spectrometer

    Directory of Open Access Journals (Sweden)

    J. Notholt

    2012-07-01

    Full Text Available Throughout the last few years solar absorption Fourier Transform Spectrometry (FTS has been further developed to measure the total columns of CO2 and CH4. The observations are performed at high spectral resolution, typically at 0.02 cm−1. The precision currently achieved is generally better than 0.25%. However, these high resolution instruments are quite large and need a dedicated room or container for installation. We performed these observations using a smaller commercial interferometer at its maximum possible resolution of 0.11 cm−1. The measurements have been performed at Bremen and have been compared to observations using our high resolution instrument also situated at the same location. The high resolution instrument has been successfully operated as part of the Total Carbon Column Observing Network (TCCON. The precision of the low resolution instrument is 0.32% for XCO2 and 0.46% for XCH4. A comparison of the measurements of both instruments yields an average deviation in the retrieved daily means of ≤0.2% for CO2. For CH4 an average bias between the instruments of 0.47% was observed. For test cases, spectra recorded by the high resolution instrument have been truncated to the resolution of 0.11 cm−1. This study gives an offset of 0.03% for CO2 and 0.26% for CH4. These results indicate that for CH4 more than 50% of the difference between the instruments results from the resolution dependent retrieval. We tentatively assign the offset to an incorrect a-priori concentration profile or the effect of interfering gases, which may not be treated correctly.

  9. Spatial and temporal remote sensing data fusion for vegetation monitoring

    Science.gov (United States)

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  10. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  11. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France

    1979-02-01

    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  12. Combining high resolution water use data from smart meters with remote sensing and geospatial datasets to investigate outdoor water demand and greenness changes during drought

    Science.gov (United States)

    Quesnel, K.; Ajami, N.; Urata, J.; Marx, A.

    2017-12-01

    Infrastructure modernization, information technology, and the internet of things are impacting urban water use. Advanced metering infrastructure (AMI), also known as smart meters, is one forthcoming technology that holds the potential to fundamentally shift the way customers use water and utilities manage their water resources. Broadly defined, AMI is a system and process used to measure, communicate, and analyze water use data at high resolution intervals at the customer or sub-customer level. There are many promising benefits of AMI systems, but there are also many challenges; consequently, AMI in the water sector is still in its infancy. In this study we provide insights into this emerging technology by taking advantage of the higher temporal and spatial resolution of water use data provided by these systems. We couple daily water use observations from AMI with monthly and bimonthly billing records to investigate water use trends, patterns, and drivers using a case study of the City of Redwood City, CA from 2007 through 2016. We look across sectors, with a particular focus on water use for urban irrigation. Almost half of Redwood City's irrigation accounts use recycled water, and we take this unique opportunity to investigate if the behavioral response for recycled water follows the water and energy efficiency paradox in which customers who have upgraded to more efficient devices end up using more of the commodity. We model potable and recycled water demand using geospatially explicit climate, demographic, and economic factors to gain insight into various water use drivers. Additionally, we use high resolution remote sensing data from the National Agricultural Imaging Program (NAIP) to observe how changes in greenness and impervious surface are related to water use. Using a series of statistical and unsupervised machine learning techniques, we find that water use has changed dramatically over the past decade corresponding to varying climatic regimes and drought

  13. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Michelle E. Miro

    2018-01-01

    Full Text Available NASA’s Gravity Recovery and Climate Experiment (GRACE has already proven to be a powerful data source for regional groundwater assessments in many areas around the world. However, the applicability of GRACE data products to more localized studies and their utility to water management authorities have been constrained by their limited spatial resolution (~200,000 km2. Researchers have begun to address these shortcomings with data assimilation approaches that integrate GRACE-derived total water storage estimates into complex regional models, producing higher-resolution estimates of hydrologic variables (~2500 km2. Here we take those approaches one step further by developing an empirically based model capable of downscaling GRACE data to a high-resolution (~16 km2 dataset of groundwater storage changes over a portion of California’s Central Valley. The model utilizes an artificial neural network to generate a series of high-resolution maps of groundwater storage change from 2002 to 2010 using GRACE estimates of variations in total water storage and a series of widely available hydrologic variables (PRISM precipitation and temperature data, digital elevation model (DEM-derived slope, and Natural Resources Conservation Service (NRCS soil type. The neural network downscaling model is able to accurately reproduce local groundwater behavior, with acceptable Nash-Sutcliffe efficiency (NSE values for calibration and validation (ranging from 0.2445 to 0.9577 and 0.0391 to 0.7511, respectively. Ultimately, the model generates maps of local groundwater storage change at a 100-fold higher resolution than GRACE gridded data products without the use of computationally intensive physical models. The model’s simulated maps have the potential for application to local groundwater management initiatives in the region.

  14. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo

    2011-01-01

    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  15. Hyperspectral remote sensing of wild oyster reefs

    Science.gov (United States)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  16. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery.

    Science.gov (United States)

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi

    2017-09-15

    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

  17. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features

    Science.gov (United States)

    Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian

    2017-01-01

    In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.

  18. Urban Shanty Town Recognition Based on High-Resolution Remote Sensing Images and National Geographical Monitoring Features - a Case Study of Nanning City

    Science.gov (United States)

    He, Y.; He, Y.

    2018-04-01

    Urban shanty towns are communities that has contiguous old and dilapidated houses with more than 2000 square meters built-up area or more than 50 households. This study makes attempts to extract shanty towns in Nanning City using the product of Census and TripleSat satellite images. With 0.8-meter high-resolution remote sensing images, five texture characteristics (energy, contrast, maximum probability, and inverse difference moment) of shanty towns are trained and analyzed through GLCM. In this study, samples of shanty town are well classified with 98.2 % producer accuracy of unsupervised classification and 73.2 % supervised classification correctness. Low-rise and mid-rise residential blocks in Nanning City are classified into 4 different types by using k-means clustering and nearest neighbour classification respectively. This study initially establish texture feature descriptions of different types of residential areas, especially low-rise and mid-rise buildings, which would help city administrator evaluate residential blocks and reconstruction shanty towns.

  19. Quantifying the carbon uptake by vegetation for Europe on a 1 km2 resolution using a remote sensing driven vegetation model

    Science.gov (United States)

    Wißkirchen, K.; Tum, M.; Günther, K. P.; Niklaus, M.; Eisfelder, C.; Knorr, W.

    2013-04-01

    In this study we compare monthly gross primary productivity (GPP) time series (2000-2007), computed for Europe with the Biosphere Energy Transfer Hydrology (BETHY/DLR) model with monthly data from the eddy covariance measurements network FLUXNET. BETHY/DLR with a spatial resolution of 1 km2 is designed for regional and continental applications (here Europe) and operated at the German Aerospace Center (DLR). It was adapted from the BETHY scheme to be driven by remote sensing data and meteorology. Time series of Leaf Area Index (LAI) are used to control the development of vegetation. These are taken from the CYCLOPES database. Meteorological time series are used to regulate meteorological seasonality. These comprise daily information on temperature, precipitation, wind-speed and radiation. Additionally, static maps such as land cover, elevation, and soil type are used. To validate our model results we used eddy covariance measurements from the FLUXNET network of 74 towers across Europe. For forest sites we found that our model predicts between 20% and 40% higher annual GPP sums. In contrast, for cropland sites BETHY/DLR results show about 18% less GPP than eddy covariance measurements. For grassland sites, between 10% more and 16% less GPP was calculated with BETHY/DLR. A mean total carbon uptake of 2.5 Pg C yr-1 (±0.17 Pg) was found for Europe. In addition, this study states on risks that arise from the comparison of modeled data to FLUXNET measurements and their interpretation width.

  20. Parallelizing remote sensing image geometric correction

    OpenAIRE

    Bernabeu i Altayó, Gerard; Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius

    2012-01-01

    Remote sensing spatial, spectral, and temporal resolutions of images, acquired Les resolucions espacials, espectrals i temporals d'imatges de teledetecci ó, adquirides a una mida raonable, donen com a resultat imatges que es poden processar per a representar grans àrees de terreny amb un nivell de detall espacial que es Las resoluciones espaciales, espectrales y temporales de imágenes de teledetección, adquiridas a un tamaño razonable, dan como resultado imágenes que se pueden procesar ...

  1. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-10-22

    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  2. Land-use Scene Classification in High-Resolution Remote Sensing Images by Multiscale Deeply Described Correlatons

    Science.gov (United States)

    Qi, K.; Qingfeng, G.

    2017-12-01

    With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.

  3. Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Ayman Abdel-Hamid

    2018-02-01

    Full Text Available Mangroves ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They are among the most productive forest ecosystems. They provide various ecological and economic ecosystem services. Despite of their economic and ecological importance, mangroves experience high yearly loss rates. There is a growing demand for mapping and assessing changes in mangroves extents especially in the context of climate change, land use change, and related threats to coastal ecosystems. The main objective of this study is to develop an approach for mapping of mangroves extents on the Red Sea coastline in Egypt, through the integration of both L-band SAR data of ALOS/PALSAR, and high resolution optical data of RapidEye. This was achieved via using object-based image analysis method, through applying different machine learning algorithms, and evaluating various features such as spectral properties, texture features, and SAR derived parameters for discrimination of mangroves ecosystem classes. Three non-parametric machine learning algorithms were tested for mangroves mapping; random forest (RF, support vector machine (SVM, and classification and regression trees (CART. As an input for the classifiers, we tested various features including vegetation indices (VIs and texture analysis using the gray-level co-occurrence matrix (GLCM. The object-based analysis method allowed clearly discriminating the different land cover classes within mangroves ecosystem. The highest overall accuracy (92.15% was achieved by the integrated SAR and optical data. Among all classifiers tested, RF performed better than other classifiers. Using L-band SAR data integrated with high resolution optical data was beneficial for mapping and characterization of mangroves growing in small patches. The maps produced represents an important updated reference suitable for developing a regional action plan for conservation and management of mangroves resources along

  4. Recreational-Grade Sidescan Sonar: Transforming a Low-Cost Leisure Gadget into a High Resolution Riverbed Remote Sensing Tool

    Science.gov (United States)

    Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.

    2016-12-01

    The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort

  5. Thermal signatures of urban land cover types: High-resolution thermal infrared remote sensing of urban heat island in Huntsville, AL

    Science.gov (United States)

    Lo, Chor Pang

    1996-01-01

    The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.

  6. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  7. Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution aerial photographs

    NARCIS (Netherlands)

    Hantson, W.P.R.; Kooistra, L.; Slim, P.A.

    2012-01-01

    Questions Does remote sensing improve classification of invasive woody species in dunes, useful for shrub management? Does additional height information and an object-based classifier increase woody species classification accuracy? Location The dunes of Vlieland, one of the Wadden Sea Islands, the

  8. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  9. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  10. Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations

    Directory of Open Access Journals (Sweden)

    Lei Fan

    2015-10-01

    Full Text Available High spatial resolution soil moisture (SM data are crucial in agricultural applications, river-basin management, and understanding hydrological processes. Merging multi-resource observations is one of the ways to improve the accuracy of high spatial resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum Entropy (BME methodology is implemented to merge the following four types of observed data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by wireless sensor network (WSN, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER-derived soil evaporative efficiency (SEE, irrigation statistics, and Polarimetric L-band Multi-beam Radiometer (PLMR-derived SM products (~700 m. From the poor BME predictions obtained by merging only WSN and SEE data, we observed that the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to the merged datasets, the overall RMSD of the BME predictions during the low-vegetated periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of determination (R2 and slope between the predicted and in situ measured SM data increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and the slope = 0.41. Further adding the downscaled SM information from PLMR SM products to the merged datasets, the predictions were satisfactorily accurate with an RMSD of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. Overall, the results demonstrated that merging multi-resource observations into SM estimations can yield improved accuracy in heterogeneous cropland.

  11. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    Science.gov (United States)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  12. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    International Nuclear Information System (INIS)

    Kamiran, N; Sarker, M L R

    2014-01-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach ''multi-scale and multi-texture algorithms'' was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier A rtificial Neural Network (ANN) . Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm

  13. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  14. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  15. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  16. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  17. [Characteristic study on village landscape patterns in Sichuan Basin hilly region based on high resolution IKONOS remote sensing].

    Science.gov (United States)

    Li, Shoucheng; Liu, Wenquan; Cheng, Xu; Ellis, Erle C

    2005-10-01

    To realize the landscape programming of agro-ecosystem management, landscape-stratification can provide us the best understanding of landscape ecosystem at very detailed scales. For this purpose, the village landscapes in densely populated Jintang and Jianyang Counties of Sichuan Basin hilly region were mapped from high resolution (1 m) IKONOS satellite imagery by using a standardized 4 level ecological landscape classification and mapping system in a regionally-representative sample of five 500 x 500 m2 landscape quadrats (sample plots). Based on these maps, the spatial patterns were analyzed by landscape indicators, which demonstrated a large variety of landscape types or ecotopes across the village landscape of this region, with diversity indexes ranging from 1.08 to 2.26 at different levels of the landscape classification system. The richness indices ranged from 42.2% to 58.6 %, except that for the landcover at 85 %. About 12.5 % of the ecotopes were distributed in the same way in each landscape sample, and the remaining 87.5% were distributed differently. The landscape fragmentation indices varied from 2.93 to 4.27 across sample plots, and from 2.86 to 5.63 across classification levels. The population density and the road and hamlet areas had strong linear correlations with some landscape indicators, and especially, the correlation coefficients of hamlet areas with fractal indexes and fragmental dimensions were 0.957* and 0.991**, respectively. The differences in most landscape pattern indices across sample plots and landscape classes were statistically significant, indicating that cross-scale mapping and classification of village landscapes could provide more detailed information on landscape patterns than those from a single level of classification.

  18. Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing

    Science.gov (United States)

    Anderson, Grant; van Aardt, Jan; Bajorski, Peter; Vanden Heuvel, Justine

    2016-05-01

    The grape industry relies on regular crop assessment to aid in the day-to-day and seasonal management of their crop. More specifically, there are six key nutrients of interest to viticulturists in the growing of wine grapes, namely nitrogen, potassium, phosphorous, magnesium, zinc and boron. Traditional methods of determining the levels of these nutrients are through collection and chemical analysis of petiole samples from the grape vines themselves. We collected ground-level observations of the spectra of the grape vines, using a hyperspectral spectrometer (0.4-2.5um), at the same time that petioles samples were harvested. We then interpolated the data into a consistent 1 nm spectral resolution before comparing it to the nutrient data collected. This nutrient data came from both the industry standard petiole analysis, as well as an additional leaf-level analysis. The data were collected for two different grape cultivars, both during bloom and veraison periods to provide variability, while also considering the impact of temporal/seasonal change. A narrow-band NDI (Normalized Difference Index) approach, as well as a simple ratio index, was used to determine the correlation of the reflectance data to the nutrient data. This analysis was limited to the silicon photodiode range to increase the utility of our approach for wavelength-specific cameras (via spectral filters) in a low cost drone platform. The NDI generated correlation coefficients were as high as 0.80 and 0.88 for bloom and veraison, respectively. The ratio index produced correlation coefficient results that are the same at two decimal places with 0.80 and 0.88. These results bode well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status.

  19. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    Science.gov (United States)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  20. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  1. National-scale crop type mapping and area estimation using multi-resolution remote sensing and field survey

    Science.gov (United States)

    Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.

    2016-12-01

    Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in

  2. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  3. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  4. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Science.gov (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  5. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  6. Energy and remote sensing applications

    Science.gov (United States)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  7. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  8. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  9. Project THEMIS: A Center for Remote Sensing.

    Science.gov (United States)

    This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.

  10. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    Science.gov (United States)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  11. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  12. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth

    2012-01-01

    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... be expected from remote sensing imagery and the provided information shall help to better anticipate problems that will be encountered when acquiring, analyzing and interpreting remote sensing data. Beyond remote sensing, it may be a good point of departure for a large group of scientists with a diverse...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...

  13. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  14. Suppression of Instability on Sensing Signal of Optical Pulse Correlation Measurement in Remote Fiber Sensing

    Directory of Open Access Journals (Sweden)

    Hirokazu Kobayashi

    2012-01-01

    response and improve the accuracy of signals at the focused sensing regions. We also experimentally demonstrate remote temperature monitoring over a 30 km-long distance using a remote reference technique, and we estimate the resolution and the measurable span of the temperature variation as (1.1/L∘C and (5.9×10/L°C, respectively, where L is the length of the fiber in the sensing region.

  15. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  16. Remote sensing application for property tax evaluation

    Science.gov (United States)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  17. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia

    2017-12-01

    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  18. Satellite remote sensing in epidemiological studies.

    Science.gov (United States)

    Sorek-Hamer, Meytar; Just, Allan C; Kloog, Itai

    2016-04-01

    Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.

  19. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  20. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  1. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  2. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  3. 1999 IEEE international geoscience and remote sensing symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The theme of IGARSS'99, ``Remote Sensing of the System Earth--A Challenge for the 21st Century,'' shows how earth observation based on satellite remote sensing can significantly contribute to the future study of the environment and the changes it is undergoing, whether from natural causes or human activities. The wide range of topics offers an interdisciplinary approach and suggests integrated techniques and theory in remote sensing are essential for modeling and understanding the environment. Topics covered include: new instrumentation and future systems; high resolution SAR/InSAR; earth system science educational initiative; data fusion; radar sensing of ice sheets; image processing techniques; clouds and ice particles; internal waves; natural hazards and disaster monitoring; advanced passive and active sensors and sensor calibration; radar assessment of rain, oil spills and natural slicks; data standards and distribution; and vegetation monitoring using BRDF approaches.

  4. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  5. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests

    Science.gov (United States)

    Kimberly M. Carlson; Gregory P. Asner; R. Flint Hughes; Rebecca Ostertag; Roberta E. Martin

    2007-01-01

    Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawaii. Hyperspectral signatures spanning...

  6. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  7. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  8. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  9. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  10. NOAA Coastal Mapping Remote Sensing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  11. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  12. Comprehensive, integrated, remote sensing at DOE sites

    International Nuclear Information System (INIS)

    Lackey, J.G.; Burson, Z.G.

    1985-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective of the program is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided, at present, consist of the following: large format aerial photography, video from aerial platforms, multispectral scanning, and airborne nuclear radiometric surveys. Implementation of the CIRS Program by EG and G Energy Measurements, Inc. began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in this summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis

  13. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  14. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  15. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  16. Retrieval operators of remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Shah, A.

    2014-01-01

    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  17. Freeware for GIS and Remote Sensing

    OpenAIRE

    Lena Halounová

    2007-01-01

    Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  18. Satellite Remote Sensing of Cropland Characteristics in 30m Resolution: The First North American Continental-Scale Classification on High Performance Computing Platforms

    Science.gov (United States)

    Massey, Richard

    Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a

  19. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  20. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  1. Remote Sensing Best Paper Award for the Year 2014

    OpenAIRE

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  2. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  3. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  4. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  5. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  6. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  7. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  8. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  9. Multiscale and Multitemporal Urban Remote Sensing

    Science.gov (United States)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  10. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  11. Water Column Correction for Coral Reef Studies by Remote Sensing

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  12. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli

    2014-09-01

    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  13. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  14. Image Fusion Technologies In Commercial Remote Sensing Packages

    OpenAIRE

    Al-Wassai, Firouz Abdullah; Kalyankar, N. V.

    2013-01-01

    Several remote sensing software packages are used to the explicit purpose of analyzing and visualizing remotely sensed data, with the developing of remote sensing sensor technologies from last ten years. Accord-ing to literature, the remote sensing is still the lack of software tools for effective information extraction from remote sensing data. So, this paper provides a state-of-art of multi-sensor image fusion technologies as well as review on the quality evaluation of the single image or f...

  15. An integrated approach to the remote sensing of floating ice

    Science.gov (United States)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  16. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.

  17. PHOTOGRAMMETRY – REMOTE SENSING AND GEOINFORMATION

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2012-07-01

    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  18. Photogrammetry and remote sensing education subjects

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  19. Remote Sensing of Landslides—A Review

    Directory of Open Access Journals (Sweden)

    Chaoying Zhao

    2018-02-01

    Full Text Available Triggered by earthquakes, rainfall, or anthropogenic activities, landslides represent widespread and problematic geohazards worldwide. In recent years, multiple remote sensing techniques, including synthetic aperture radar, optical, and light detection and ranging measurements from spaceborne, airborne, and ground-based platforms, have been widely applied for the analysis of landslide processes. Current techniques include landslide detection, inventory mapping, surface deformation monitoring, trigger factor analysis and mechanism inversion. In addition, landslide susceptibility modelling, hazard assessment, and risk evaluation can be further analyzed using a synergic fusion of multiple remote sensing data and other factors affecting landslides. We summarize the 19 articles collected in this special issue of Remote Sensing of Landslide, in the terms of data, methods and applications used in the papers.

  20. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  3. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  4. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  5. Autonomous Coral Reef Survey in Support of Remote Sensing

    Directory of Open Access Journals (Sweden)

    Steven G. Ackleson

    2017-10-01

    Full Text Available An autonomous surface vehicle instrumented with optical and acoustical sensors was deployed in Kane'ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of coral reef reflectance with minimal human presence. The data represented a wide range in bottom type, water depth, and illumination and supported more thorough investigations of remote sensing methods for identifying and mapping shallow reef features. The in situ data were used to compute spectral bottom reflectance and remote sensing reflectance, Rrs,λ, as a function of water depth and benthic features. The signals were used to distinguish between live coral and uncolonized sediment within the depth range of the measurements (2.5–5 m. In situRrs, λ were found to compare well with remotely sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS, deployed on an aircraft at high altitude. Cloud cover and in situ sensor orientation were found to have minimal impact on in situRrs, λ, suggesting that valid reflectance data may be collected using autonomous surveys even when atmospheric conditions are not favorable for remote sensing operations. The use of reflectance in the red and near infrared portions of the spectrum, expressed as the red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass, including coral symbionts and turf algae. The REHλ signal from live coral was detected in Kane'ohe Bay to a depth of approximately 4 m with in situ measurements. A remote sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery of the entire bay and was found to reveal areas of shallow, dense coral and algal cover. The peak wavelength of REHλ decreased with increasing water depth, indicating that a more complete examination of the red edge signal may potentially yield a remote sensing approach to simultaneously estimate vegetative biomass and bathymetry in shallow water.

  6. Remote sensing of water and nitrogen stress in broccoli

    Science.gov (United States)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  7. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  8. A Review of Oil Spill Remote Sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl E

    2017-12-30

    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.

  9. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  10. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    Science.gov (United States)

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  11. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  12. Remote sensing of environmental pollution on teesside

    NARCIS (Netherlands)

    van Genderen, J.L.

    1974-01-01

    A preliminary reconnaissance is being carried out to study the methods and procedures most useful for the detection of vegetation stress resulting from the various forms of environmental pollution, in the industrial area of Teesside, NE England, by means of a multiband remote sensing programme.

  13. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  14. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  15. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  16. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  17. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  18. Applications of quantitative remote sensing to hydrology

    NARCIS (Netherlands)

    Su, Z.; Troch, P.A.A.

    2003-01-01

    In order to quantify the rates of the exchanges of energy and matter among hydrosphere, biosphere and atmosphere, quantitative description of land surface processes by means of measurements at different scales are essential. Quantitative remote sensing plays an important role in this respect. The

  19. Integrated remotely sensed datasets for disaster management

    Science.gov (United States)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  20. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  1. Semiconductor laser technology for remote sensing experiments

    Science.gov (United States)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  2. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  3. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Fujun Niu

    2018-02-01

    Full Text Available Permafrost distribution in the Qinghai-Tibet Engineering Corridor (QTEC is of growing interest due to the increase in infrastructure development in this remote area. Empirical models of mountain permafrost distribution have been established based on field sampled data, as a tool for regional-scale assessments of its distribution. This kind of model approach has never been applied for a large portion of this engineering corridor. In the present study, this methodology is applied to map permafrost distribution throughout the QTEC. After spatial modelling of the mean annual air temperature distribution from MODIS-LST and DEM, using high-resolution satellite image to interpret land surface type, a permafrost probability index was obtained. The evaluation results indicate that the model has an acceptable performance. Conditions highly favorable to permafrost presence (≥70% are predicted for 60.3% of the study area, declaring a discontinuous permafrost distribution in the QTEC. This map is useful for the infrastructure development along the QTEC. In the future, local ground-truth observations will be required to confirm permafrost presence in favorable areas and to monitor permafrost evolution under the influence of climate change.

  4. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  5. High Data Rate Satellite Communications for Environmental Remote Sensing

    Science.gov (United States)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  6. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  7. Quaternary landscape evolution of the Helmand Basin, Afghanistan: Insights from staircase terraces, deltas, and paleoshorelines using high-resolution remote sensing analysis

    Science.gov (United States)

    Evenstar, L. A.; Sparks, R. S. J.; Cooper, F. J.; Lawton, M. N.

    2018-06-01

    The Helmand Basin in southern Afghanistan is a large (310,000 km2), structurally controlled, endorheically drained basin with a hyperarid climate. The basin hosts a high elevation ( 200 m) plateau (the Dasht-i Margo), 11 fluvial staircase terraces (T11 to T1), 7 delta systems (D1 to D7), and 6 paleolake shorelines (SL1 to SL6) within the Sistan Depression on the western side of the basin. Mapping and surveying of these features by remote sensing is integrated with geological observations to reconstruct Quaternary landscape evolution of the basin. The fluvial systems, deltas, and paleolake shorelines are correlated with one another and with the younger terraces (T7 to T1). The shape of fluvial longitudinal profiles changes depending on whether they formed pre-, syn-, or post-growth of the Koh-i Khannesin volcano on the southern margin of the Helmand River. The age of the volcano ( 0.6 Ma) and correlation of the terraces with the global history of glacial-interglacial cycles constrain the age of the younger terraces to the late Pleistocene and indicates that the older terraces are middle Pleistocene (dating back to 800 ka). The Helmand Basin once hosted a large lake, called here the Sistan paleolake, which at SL6 times and before had a surface area >50,000 km2. Since that time the lake elevation and area have decreased, evolving to the present-day dried out Sistan Depression with small ephemeral playa lakes. Episodic formation of terraces, deltas, and paleolake shorelines is attributed to changes in base level modulated by climate change related to Milankovitch cycles.

  8. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  9. Mapping Water Use and Drought with Satellite Remote Sensing

    OpenAIRE

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  10. Opportunities for Increasing Societal Value of Remote Sensing Data ...

    African Journals Online (AJOL)

    Opportunities for Increasing Societal Value of Remote Sensing Data in South Africa's Strategic Development Priorities: A Review. ... Despite the enormous capital required to fund remote sensing initiatives, governments ... HOW TO USE AJOL.

  11. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.

  12. Forest structural assessment using remote sensing technologies: an ...

    African Journals Online (AJOL)

    -Natal and MONDI Business Paper have recently embarked on a remote sensing cooperative. The primary focus of this cooperative is to explore the potential benefits associated with using remote sensing for forestry-related activities.

  13. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  14. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  15. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2012-10-01

    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  16. Economic optimization and evolutionary programming when using remote sensing data

    OpenAIRE

    Shamin Roman; Alberto Gabriel Enrike; Uryngaliyeva Ayzhana; Semenov Aleksandr

    2018-01-01

    The article considers the issues of optimizing the use of remote sensing data. Built a mathematical model to describe the economic effect of the use of remote sensing data. It is shown that this model is incorrect optimisation task. Given a numerical method of solving this problem. Also discusses how to optimize organizational structure by using genetic algorithm based on remote sensing. The methods considered allow the use of remote sensing data in an optimal way. The proposed mathematical m...

  17. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  18. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)

    2009-07-01

    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  19. Sub-metric Resolution FWI of Ultra-High-Frequency Marine Reflection Seismograms. A Remote Sensing Tool for the Characterisation of Shallow Marine Geohazard

    Science.gov (United States)

    Provenzano, G.; Vardy, M. E.; Henstock, T.; Zervos, A.

    2017-12-01

    A quantitative high-resolution physical model of the top 100 meters of the sub-seabed is of key importance for a wide range of shallow geohazard scenarios: identification of potential shallow landsliding, monitoring of gas storage sites, and assessment of offshore structures stability. Cur- rently, engineering-scale sediment characterisation relies heavily on direct sampling of the seabed and in-situ measurements. Such an approach is expensive and time-consuming, as well as liable to alter the sediment properties during the coring process. As opposed to reservoir-scale seismic exploration, ultra-high-frequency (UHF, 0.2-4.0 kHz) multi-channel marine reflection seismic data are most often limited to a to semi-quantitative interpretation of the reflection amplitudes and facies geometries, leaving largely unexploited its intrinsic value as a remote characterisation tool. In this work, we develop a seismic inversion methodology to obtain a robust sub-metric resolution elastic model from limited-offset, limited-bandwidth UHF seismic reflection data, with minimal pre-processing and limited a priori information. The Full Waveform Inversion is implemented as a stochastic optimiser based upon a Genetic Algorithm, modified in order to improve the robustness against inaccurate starting model populations. Multiple independent runs are used to create a robust posterior model distribution and quantify the uncertainties on the solution. The methodology has been applied to complex synthetic examples and to real datasets acquired in areas prone to shallow landsliding. The inverted elastic models show a satisfactory match with the ground-truths and a good sensitivity to relevant variations in the sediment texture and saturation state. We apply the methodology to a range of synthetic consolidating slopes under different loading conditions and sediment properties distributions. Our work demonstrates that the seismic inversion of UHF data has the potential to become an important

  20. Extending remote sensing estimates of Greenland ice sheet melting

    Science.gov (United States)

    Heavner, M.; Loveland, R.

    2010-12-01

    The Melt Area Detection Index (MADI), a remote sensing algorithm to discriminate between dry and wet snow, has been previously developed and applied to the western portion of the Greenland ice sheet for the years 2000-2006, using Moderate Resolution Imaging Radiospectrometer (MODIS) data (Chylek et al, 2007). We extend that work both spatially and temporally by taking advantage of newly available data, and developing algorithms that facilitate the sensing of cloud cover and the automated inference of wet snow regions. The automated methods allow the development of a composite melt area data product with 0.25 km^2 spatial resolution and approximately two week temporal resolution. We discuss melt area dynamics that are inferred from this high resolution composite melt area. Chylek, P., M. McCabe, M. K. Dubey, and J. Dozier (2007), Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances, J. Geophys. Res., 112, D24S20, doi:10.1029/2007JD008742.

  1. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  2. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  3. History and future of remote sensing technology and education

    Science.gov (United States)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  4. Remote Sensing and Quantization of Analog Sensors

    Science.gov (United States)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  5. Remote sensing of sulphur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P M [Central Electricity Research Lab., Leatherhead, England; Varey, R H; Millan, M M

    1978-01-01

    A discussion showed that only correlation spectrometry and differential lidar are sensitive enough to measure trace amounts of SO/sub 2/. The correlation spectrometer measures line integrals of concentration, or burdens, by analyzing incident uv radiation for absorption by SO/sub 2/. It has been widely used to measure vertical burdens against a skylight background and emission rates from traverses of a plume near its source, which are limited by the accuracy of the associated wind speed rather than by the spectrometer. Comprehensive measurements of horizontal dispersion and its dependence on times of travel and sampling have also been obtained from traverses farther downwind. The differential lidar provides range-resolved measurements of concentration by reflecting pulses of laser light at two wavelengths with different absorption coefficients from particles along the line of sight. It offers a sensitivity of a few ppB to ranges over 1 km with resolution in space and time of 1000 m and 10 sec. The instrument has already been demonstrated in prototype form and is now being developed for operational use. Table, graphs, and 39 references are included.

  6. Infrared signatures for remote sensing

    International Nuclear Information System (INIS)

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL's capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm -1 at 2 laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at ∼10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl 4 at 770--800 cm -1 . This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO 2 laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks

  7. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus

    2015-07-09

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis.

  8. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  9. Review of oil spill remote sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Longhenry, Ryan

    2018-06-13

    The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.

  11. The 1997 remote sensing mission to Kazakhstan

    International Nuclear Information System (INIS)

    Steinmaus, K.; Robert, B.; Berezin, S.A.

    1997-01-01

    In June and July of 1997, the US Department of Energy, in cooperation with the Republic of Kazakhstan Ministry of Science - Academy of Science conducted a remote sensing mission to Kazakhstan. The mission was conducted as a technology demonstration under a Memorandum of Understanding between the United States Department of Energy and the Republic of Kazakhstan's Ministry of science - Academy of Science. The mission was performed using a US Navy P-3 Orion aircraft and imaging capabilities developed by the Department of Energy's Office of Non-proliferation and National Security. The imaging capabilities consisted of two imaging pods - a synthetic aperture radar (SAR) pod and a multi sensor imaging pod (MSI). Seven experiments were conducted to demonstrate how remote sensing can be used to support city planning, land cover mapping, mineral exploration, and non-proliferation monitoring. Results of the mission will be presented

  12. Surveillance and remote sensing: ITOPF participation

    International Nuclear Information System (INIS)

    Nichols, J.A.

    1992-01-01

    Although the Federation does not sponsor or undertake surveillance and remote sensing research and development projects, it is a potential user of remote sensing equipment when responding to oil spills. Indeed, the Federation has already made use of suitably equipped aircraft on a number of occasions in Europe. Several countries in north west Europe, viz. France, Germany, Netherlands, Norway, Sweden and the U.K., operate aircraft fitted with broadly similar systems comprising side-looking airborne radar (SLAR), infra-red line scanners (IRLS) and ultra-violet line scanners (UVLS). These aircraft are used routinely for the detection of operational discharges of oil from ships in violation of the International Convention on the Prevention of Pollution from Ships 73/78 (MARPOL 73/78)

  13. High-Resolution Remote Sensing and Stable Isotope Patterns Across Heath-Shrub-Forest Ecotone at Abisko and Vassijaure, Northern Sweden

    Science.gov (United States)

    Schwan, M. R.; Herrick, C.; Hobbie, E. A.; Chen, J.; Varner, R. K.; Palace, M. W.; Marek, E.; Kashi, N. N.; Smith, S. L.

    2015-12-01

    Rapid warming in arctic and sub-arctic environments shifts plant community structure which in turn can alter carbon cycling by releasing large stocks of carbon sequestered in arctic soils. Much work has been done in sub-arctic peatlands to understand how shifts in dominant vegetation cover can ultimately affect global carbon balances, but less focus has been given to upland environments where similar changes are occurring. Recent circumpolar expansion of deciduous shrubs and trees in sub-arctic upland environments may alter carbon cycling due to shrubs and trees sequestering less C in soils than the heath plants they typically replace. In this study we explored the relationship between nutrient and carbon cycling and above-ground vegetation on six transects which traverse an ecotone gradient from heath tundra (dominated by ericoid mycorrhizal plants) through deciduous shrubs to deciduous trees (dominated by ectomycorrhizal plants) in upland environments of sub-arctic Sweden near Vassijaure (~850 mm precipitation) and Abisko (~300 mm precipitation). We collected soil and foliage for analysis of natural abundances of stable carbon and nitrogen isotopes (δ13C and δ15N), which can be a sensitive indicator of C and N dynamics. We also took high-resolution remote aerial imagery over the transects to calculate percent cover of vegetation types using GIS software. We concurrently estimated percent cover in smaller plots on the ground of three dominant species, Empetrum nigrum, Betula nana, and Betula pubescens, to serve as ground-truthing for the aerial imagery. Analysis of vegetation cover data shows significant differences in vegetation types along the transects. Preliminary multiple regression analysis of isotopes shows that δ13C in organic soil at the Vassijaure site is mostly controlled by distance along the transect, an interaction term between transect distance and soil depth, and δ15N (adjusted r2 = 0.85, p regression analyses, δ15N was primarily controlled by

  14. An Overview of GNSS Remote Sensing

    Science.gov (United States)

    2014-08-27

    Aplicaciones Cientificas-C (SAC-C) satellites. CHAMP provided 8 years of radio oc- cultation data consisting of around 440,000 measurements from February...applications, various modifi- cations of terrestrial receivers are required, including hardware and software modifications to enhance surviv- ability in a...Dop- pler shifts. On the other hand, special hardware and software is required to support non-navigation remote sensing applications in space, such

  15. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  16. Remote Sensing using Signals of Opportunity

    OpenAIRE

    Yertay, Alibek; Garrison, James L

    2013-01-01

    Today, there are more than eight thousand satellites in space. Therefore, Radio Frequency (RF) signals broadcast from satellites can be accessed from almost every point on the earth. There will be number of satellites available at most points on earth with different frequency bands. These satellite signals can be used for remote sensing, therefore software that visualizes footprints of satellites and shows characteristics of every satellite available at any point would be useful in determinin...

  17. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  18. Integrated remotely sensed datasets for disaster management

    OpenAIRE

    McCarthy, Tim; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-01-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North...

  19. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  20. Remote sensing for oil spill detection and response

    International Nuclear Information System (INIS)

    Engelhardt, F.R.

    1999-01-01

    This paper focuses on the use of remote sensing for marine oil spill detection and response. The surveillance and monitoring of discharges, and the main elements of effective surveillance are discussed. Tactical emergency response and the requirements for selecting a suitable remote sensing approach, airborne remote sensing systems, and the integration of satellite and airborne imaging are examined. Specifications of satellite surveillance systems potentially usable for oil spill detection, and specifications of airborne remote sensing systems suitable for oil spill detection, monitoring and supplemental actions are tabulated, and a schema of integrated satellite-airborne remote sensing (ISARS) is presented. (UK)

  1. Remote Sensing of Landscapes with Spectral Images

    Science.gov (United States)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  2. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  3. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  4. Hyperspectral remote sensing of plant pigments.

    Science.gov (United States)

    Blackburn, George Alan

    2007-01-01

    The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.

  5. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  6. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  7. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  8. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements

    Directory of Open Access Journals (Sweden)

    S. Saadi

    2018-04-01

    Full Text Available In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET, one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI and water availability under water stress (through the surface temperature Tsurf, which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE in the Kairouan plain (central Tunisia were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE model fed by low-resolution remote sensing data (Terra and Aqua MODIS. The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i sensible heat flux (H and (ii daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables. SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2  =  0.60 and 0.63 and RMSE  =  57.89 and 53.85 W m−2 for Terra and Aqua, respectively between instantaneous H estimates and large aperture scintillometer (XLAS H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE  =  47.20 and 43.20 W m−2 for Terra and Aqua, respectively, and R2  =  0.55 for both satellites. Additionally, water stress was investigated by comparing modeled (SPARSE and observed (XLAS water stress values; we found that

  9. Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements

    Science.gov (United States)

    Saadi, Sameh; Boulet, Gilles; Bahir, Malik; Brut, Aurore; Delogu, Émilie; Fanise, Pascal; Mougenot, Bernard; Simonneaux, Vincent; Lili Chabaane, Zohra

    2018-04-01

    In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI) and water availability under water stress (through the surface temperature Tsurf), which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the Kairouan plain (central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low-resolution remote sensing data (Terra and Aqua MODIS). The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i) sensible heat flux (H) and (ii) daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables). SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2 = 0.60 and 0.63 and RMSE = 57.89 and 53.85 W m-2 for Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE = 47.20 and 43.20 W m-2 for Terra and Aqua, respectively, and R2 = 0.55 for both satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress values; we found that most points were located within a 0.2 confidence interval, thus the

  10. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  11. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    Science.gov (United States)

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  12. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  13. Crowdsourcing earthquake damage assessment using remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Stuart Gill

    2011-06-01

    Full Text Available This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN. The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a web-based interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.

  14. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    Science.gov (United States)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  15. Site-characterization information using LANDSAT satellite and other remote-sensing data: integration of remote-sensing data with geographic information systems. A case study in Pennsylvania

    International Nuclear Information System (INIS)

    Campbell, W.J.; Imhoff, M.L.; Robinson, J.; Gunther, F.; Boyd, R.; Anuta, M.

    1983-06-01

    The utility and cost effectiveness of incorporating digitized aircraft and satellite remote sensing data into a geographic information system for facility siting and environmental impact assessments was evaluated. This research focused on the evaluation of several types of multisource remotely sensed data representing a variety of spectral band widths and spatial resolution. High resolution aircraft photography, Landsat MSS, and 7 band Thematic Mapper Simulator (TMS) data were acquired, analyzed, and evaluated for their suitability as input to an operational geographic information system (GIS). 78 references, 59 figures, 74 tables

  16. Advances on application of remote sensing technology to uranium prospecting in northwest of China

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Zhang Jielin; Fang Maolong

    2012-01-01

    Some advances on application of remote sensing technology to uranium prospecting in northwest of China since 21st century are presented in this paper. They included: (1) application of ETM multi-spectral remote sensing technology to identify the sandstone-type uranium ore-controlling structure in north of Ordos Basin and investigate the uranium metallogenetic geological conditions in Qiangtang Basin, Tibet, (2) application of ASTER multi-spectral and QuickBird high spatial resolution remote sensing technology to extract and analyze the oil-gas reduced alteration in Bashibulake uranium ore district, Xinjiang, (3) discovery of Salamubulake uranium metallogenetic belt in Keping, Xinjiang, using ASTER multi-spectral, QuickBird high spatial resolution, and CASI/SASI airborne hyper-spectral remote sensing comprehensively, and (4) application of CASI/SASI airborne hyper-spectral remote sensing technology to extract volcanicrock type uranium mineralization alteration in Baiyanghe area, Xinjiang. These application advances show the good application effects of remote sensing technology to uranium exploration in northwest of China, which provides important references for making further uranium prospecting using remote sensing technology. (authors)

  17. Scaling of surface energy fluxes using remotely sensed data

    Science.gov (United States)

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  18. NASA Fluid Lensing & MiDAR - Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    Piti's Tepungan Bay and Tumon Bay, two of five marine preserves in Guam, have not been mapped to a level of detail sufficient to support proposed management strategies. This project addresses this gap by providing high resolution maps to promote sustainable, responsible use of the area while protecting natural resources. Dr. Chirayath, a research scientist at the NASA Ames Laboratory, developed a theoretical model and algorithm called 'Fluid Lensing'. Fluid lensing removes optical distortions caused by moving water, improving the clarity of the images taken of the corals below the surface. We will also be using MiDAR, a next-generation remote sensing instrument that provides real-time multispectral video using an array of LED emitters coupled with NASA's FluidCam Imaging System, which may assist Guam's coral reef response team in understanding the severity and magnitude of coral bleaching events. This project will produce a 3D orthorectified model of the shallow water coral reef ecosystems in Tumon Bay and Piti marine preserves. These 3D models may be printed, creating a tactile diorama and increasing understanding of coral reefs among various audiences, including key decision makers. More importantly, the final data products can enable accurate and quantitative health assessment capabilities for coral reef ecosystems.

  19. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  20. USDOE Remote Sensing Laboratory multisensor surveys

    International Nuclear Information System (INIS)

    Tinney, L.; Christel, L.; Clark, H.; Mackey, H.

    1996-01-01

    The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and routine environmental assessments of nuclear facilities. The unique suite of equipment used by RSL for multisensor surveys of nuclear facilities include gamma radiation sensors, mapping quality aerial cameras, video cameras, thermal imagers, and multispectral scanners. Results for RSL multisensor surveys that have been conducted at the Savannah River Site (SRS) located in South Carolina are presented

  1. Remote sensing and communications in random media

    Science.gov (United States)

    Papanicolaou, George

    2003-04-01

    Reliable, high-capacity communications in scattering media can be effectively established with some basic remote sensing techniques involving time reversal. I will formulate these problems and discuss the various mathematical approaches that can be used for analysis. It turns out that stochastic analysis plays an important role and, in some cases, gives very satisfactory results. One such result is the spectacular increase in communications capacity in a richly scattering environment. I will end with a discussion of applications and computational issues that arise in the realistic simulation of communication systems.

  2. Application of remote sensing to environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Handley, J F

    1980-01-01

    The contribution of remote sensing to environmental management procedures at the sub-regional scale is examined in relation to the County Structure environmental management plan for Merseyside County, England. The various seasons, scales and emulsions used for aerial photography in the county are indicated, and results of aerial surveys of the distribution of derelict and despoiled land and of natural environments are presented and compared with ground surveys. The use of color infrared and panchromatic aerial photographs indicating areas of environmental stress and land use in the formulation, implementation and monitoring of environmental management activities is then discussed.

  3. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  4. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  5. A temporal and spatial scaling method for quantifying daily photosynthesis using remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Chen, W.; Sarich, M. [Intermap Technologies Ltd., Nepean, ON (Canada); Cihlar, J. [Canada Centre for Remote Sensing, Ottawa, ON (Canada); Goulden, M. [California Univ., Irvine, CA (United States)

    1998-06-01

    Remote sensing to monitor the behaviour of terrestrial ecosystems over large areas was discussed. For this type of application the boreal ecosystem productivity simulator (BEPS) was developed, with the subsequent incorporation of the more advanced photosynthetic model. The new model improves the methodology through analytical spatial and temporal integration of canopy photosynthesis processes, and is suitable for regional remote sensing applications at moderate resolutions of 250 to 1000 m. 10 refs., 1 tab., 3 figs.

  6. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  7. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Science.gov (United States)

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  8. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  9. Remote sensing programs and courses in engineering and water resources

    Science.gov (United States)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  10. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  11. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  12. Preface to: Pan Ocean Remote Sensing Conference (PORSEC)

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.; Brown, R.; Shenoi, S.S.C.; Joseph, G.

    Conference (PORSEC), earlier known as the Paci c Ocean Remote Sensing Conference (PORSEC), was formed in 1992 to provide a venue for international cooperation in the increasingly important area of remote sensing of the ocean. Many countries that border... and ocean dynamics, and modeling with satellite sensor (mainly microwave) data. Some of the presentations are of regional interest, while others will nd an audience beyond the satellite remote sensing community. These rst results through their simple...

  13. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  14. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  15. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren

    2015-06-01

    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  16. Remote sensing applied in uranium exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.

    1985-01-01

    A research project, aiming at investigation the use of remote sensing in uranium exploration, has been accomplished on data from South Greenland. During the project, analyses have been done on pure remote sensing data (Landsat MSS) and on integrated data of various types, including geochemical, aeromagnetic, radiometric and geological data in addition to the MSS data. Ratioing, factor analysis and discriminant analysis were used for enhancement of colour anomalies which correspond to oxidation zones. Some of the anomalies coincide with U and Nb mineralizations. Lineaments were mapped visually from photoprints, digitized and analysed statistically. A sinusoidal model could be applied to the general directional frequency distribution and was used to define ten classes of significant directions. Three of these directions were of major geological significance. Thus some of the major alkaline intrusions are situated at the intersections of some of the lineaments, a particular NE-SW trending lineament coincides with a geochemical boundary and pitchblende occurrences may be related to a WNW-ESE direction. The various types of data set were brought onto format of the Landsat images and collected in a data base. Representing three different types of data (Landsat MSS-band 7, aeromagnetic data and the geochemical Fe-content of stream sediments) on basis of intensity, hue and saturation revealed new features among which can be mentioned a possible indication of a subsurface continuation of one of the major alkaline intrusions. (author)

  17. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué

    2018-01-01

    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  18. Support for global science: Remote sensing's challenge

    Science.gov (United States)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  19. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  20. Domestic parking estimation using remotely sensed data

    Science.gov (United States)

    Ramzi, Ahmed

    2012-10-01

    Parking is an integral part of the traffic system everywhere. Provision of parking facilities to meet peak of demands parking in cities of millions is always a real challenge for traffic and transport experts. Parking demand is a function of population and car ownership which is obtained from traffic statistics. Parking supply in an area is the number of legal parking stalls available in that area. The traditional treatment of the parking studies utilizes data collected either directly from on street counting and inquiries or indirectly from local and national traffic censuses. Both methods consume time, efforts, and funds. Alternatively, it is reasonable to make use of the eventually available data based on remotely sensed data which might be flown for other purposes. The objective of this work is to develop a new approach based on utilization of integration of remotely sensed data, field measurements, censuses and traffic records of the studied area for studying domestic parking problems in residential areas especially in informal areas. Expected outcomes from the research project establish a methodology to manage the issue and to find the reasons caused the shortage in domestics and the solutions to overcome this problems.

  1. Land remote sensing commercialization: A status report

    Science.gov (United States)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  2. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  3. The use of the Space Shuttle for land remote sensing

    Science.gov (United States)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  4. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  5. Physics teaching by infrared remote sensing of vegetation

    Science.gov (United States)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund

    2018-05-01

    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  6. Improvements in agricultural water decision support using remote sensing

    Science.gov (United States)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  7. Advances in the application of remote sensing and GIS for surveying mountainous land

    NARCIS (Netherlands)

    Mulders, M.A.

    2001-01-01

    Satellite remote sensing has been practised since 1972, starting with broad channels and moderate ground resolution (Landsat MSS). In the 1980s, Landsat TM and SPOT provided for improved spatial and spectral resolutions. Many satellite images were produced in these two decades, offering a synoptic

  8. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  9. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    Science.gov (United States)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  10. Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content of a Temperate Humid Forest Using Multi Resolution Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Hamed Adab

    2016-11-01

    Full Text Available Vegetation moisture and dry matter content are important indicators in predicting the behavior of fire and it is widely used in fire spread models. In this study, leaf fuel moisture content such as Live Fuel Moisture Content (LFMC, Leaf Relative Water Content (RWC, Dead Fuel Moisture Content (DFMC, and Leaf Dry Matter Content (LDMC (hereinafter known as moisture content indices (MCI were calculated in the field for different forest species at 32 sites in a temperate humid forest (Zaringol forest located in northeastern Iran. These data and several relevant vegetation-biophysical indices and atmospheric variables calculated using Landsat 7 Enhanced Thematic Mapper Plus (ETM+ data with moderate spatial resolution (30 m were used to estimate MCI of the Zaringol forest using Artificial Neural Network (ANN and Multiple Linear Regression (MLR methods. The prediction of MCI using ANN showed that ETM+ predicted MCI slightly better (Mean Absolute Percentage Error (MAPE of 6%–12% than MLR (MAPE between 8% and 17%. Once satisfactory results in estimating MCI were obtained by using ANN from ETM+ data, these data were then upscaled to estimate MCI using MODIS data for daily monitoring of leaf water and leaf dry matter content at 500 m spatial resolution. For MODIS derived LFMC, LDMC, RWC, and DLMC, the ANN produced a MAPE between 11% and 29% for the indices compared to MLR which produced an MAPE of 14%–33%. In conclusion, we suggest that upscaling is necessary for solving the scale discrepancy problems between the indicators and low spatial resolution MODIS data. The scaling up of MCI could be used for pre-fire alert system and thereby can detect fire prone areas in near real time for fire-fighting operations.

  11. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    Science.gov (United States)

    Stryker, Timothy

    In recent years, there has been much discussion about U.S. commercial remoteUnder the Act, the Secretary of Commerce sensing policies and how effectively theylicenses the operations of private U.S. address U.S. national security, foreignremote sensing satellite systems, in policy, commercial, and public interests.consultation with the Secretaries of Defense, This paper will provide an overview of U.S.State, and Interior. PDD-23 provided further commercial remote sensing laws,details concerning the operation of advanced regulations, and policies, and describe recentsystems, as well as criteria for the export of NOAA initiatives. It will also addressturnkey systems and/or components. In July related foreign practices, and the overall2000, pursuant to the authority delegated to legal context for trade and investment in thisit by the Secretary of Commerce, NOAA critical industry.iss ued new regulations for the industry. Licensing and Regulationsatellite systems. NOAA's program is The 1992 Land Remote Sensing Policy Act ("the Act"), and the 1994 policy on Foreign Access to Remote Sensing Space Capabilities (known as Presidential Decision Directive-23, or PDD-23) put into place an ambitious legal and policy framework for the U.S. Government's licensing of privately-owned, high-resolution satellite systems. Previously, capabilities afforded national security and observes the international obligations of the United States; maintain positive control of spacecraft operations; maintain a tasking record in conjunction with other record-keeping requirements; provide U.S. Government access to and use of data when required for national security or foreign policy purposes; provide for U.S. Government review of all significant foreign agreements; obtain U.S. Government approval for any encryption devices used; make available unenhanced data to a "sensed state" as soon as such data are available and on reasonable cost terms and conditions; make available unenhanced data as requested

  12. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Science.gov (United States)

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  13. Kingfisher: a system for remote sensing image database management

    Science.gov (United States)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  14. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    Science.gov (United States)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  15. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.

  16. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  17. Exploitation of commercial remote sensing images: reality ignored?

    Science.gov (United States)

    Allen, Paul C.

    1999-12-01

    The remote sensing market is on the verge of being awash in commercial high-resolution images. Market estimates are based on the growing numbers of planned commercial remote sensing electro-optical, radar, and hyperspectral satellites and aircraft. EarthWatch, Space Imaging, SPOT, and RDL among others are all working towards launch and service of one to five meter panchromatic or radar-imaging satellites. Additionally, new advances in digital air surveillance and reconnaissance systems, both manned and unmanned, are also expected to expand the geospatial customer base. Regardless of platform, image type, or location, each system promises images with some combination of increased resolution, greater spectral coverage, reduced turn-around time (request-to- delivery), and/or reduced image cost. For the most part, however, market estimates for these new sources focus on the raw digital images (from collection to the ground station) while ignoring the requirements for a processing and exploitation infrastructure comprised of exploitation tools, exploitation training, library systems, and image management systems. From this it would appear the commercial imaging community has failed to learn the hard lessons of national government experience choosing instead to ignore reality and replicate the bias of collection over processing and exploitation. While this trend may be not impact the small quantity users that exist today it will certainly adversely affect the mid- to large-sized users of the future.

  18. Geometric registration of remotely sensed data with SAMIR

    Science.gov (United States)

    Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto

    2015-06-01

    The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.

  19. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  20. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA and tabu search (TS is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy.

  1. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    Science.gov (United States)

    Shi, Lei; Wan, Youchuan; Gao, Xianjun

    2018-01-01

    In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy. PMID:29581721

  2. Benefits to world agriculture through remote sensing

    Science.gov (United States)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  3. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  4. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  5. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  6. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  7. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  8. Toward interactive search in remote sensing imagery

    Science.gov (United States)

    Porter, Reid; Hush, Don; Harvey, Neal; Theiler, James

    2010-04-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  9. Public Good or Commercial Opportunity: Case Studies in Remote Sensing Commercialization

    Science.gov (United States)

    Johnston, Shaida; Cordes, Joseph

    2002-01-01

    The U.S. Government is once again attempting to commercialize the Landsat program and is asking the private sector to develop a next generation mid-resolution remote sensing system that will provide continuity with the thirty-year data archive of Landsat data. Much of the case for commercializing the Landsat program rests on the apparently successful commercialization of high-resolution remote sensing activities coupled with the belief that conditions have changed since the failed attempt to commercialize Landsat in the 1980s. This paper analyzes the economic, political and technical conditions that prevailed in the 1980s as well as conditions that might account for the apparent success of the emerging high-resolution remote sensing industry today. Lessons are gleaned for the future of the Landsat program.

  10. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  11. TRACKING FARM MANAGEMENT PRACTICES WITH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. P. Stals

    2017-11-01

    Full Text Available Earth observation (EO data is effective in monitoring agricultural cropping activity over large areas. An example of such an application is the GeoTerraImage crop type classification for the South African Crop Estimates Committee (CEC. The satellite based classification of crop types in South Africa provides a large scale, spatial and historical record of agricultural practices in the main crop growing areas. The results from these classifications provides data for the analysis of trends over time, in order to extract valuable information that can aid decision making in the agricultural sector. Crop cultivation practices change over time as farmers adapt to demand, exchange rate and new technology. Through the use of remote sensing, grain crop types have been identified at field level since 2008, providing a historical data set of cropping activity for the three most important grain producing provinces of Mpumalanga, Freestate and North West province in South Africa. This historical information allows the analysis of farm management practices to identify changes and trends in crop rotation and irrigation practices. Analysis of crop type classification over time highlighted practices such as: frequency of cultivation of the same crop on a field, intensified cultivation on centre pivot irrigated fields with double cropping of a winter grain followed by a summer grain in the same year and increasing cultivation of certain types of crops over time such as soyabeans. All these practices can be analysed in a quantitative spatial and temporal manner through the use of the remote sensing based crop type classifications.

  12. Data Fusion for Earth Science Remote Sensing

    Science.gov (United States)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  13. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    Directory of Open Access Journals (Sweden)

    Weerapong Thanapongtharm

    2013-11-01

    Full Text Available Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7- Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3 geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  14. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    Dozier J 1989a Remote sensing of snow in the visible and near-infrared wavelengths; In: Theory and Applications of. Optical Remote Sensing (ed.) Asrar G (New York: John. Wiley and Sons), pp. 527–547. Dozier J 1989b Spectral signature of alpine snow cover from the Landsat Thematic Mapper; Rem. Sens. Environ. 28.

  15. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  16. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used. Remotely sensed .... growing stock in Tahno range of Dehradun Forest Division. Okhandiara (2008) .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral signatures to ...

  17. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.

    2012-01-01

    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  18. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  19. Recent developments in remote sensing for coastal and marine applications

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2017-01-01

    Full Text Available at the coast is that it is in a permanent state of change. Remote sensing, whether from orbiting (space-borne) or air-borne platforms, can greatly assist in the task of monitoring coastal environments. In particular, remote sensing enables simultaneous or near...

  20. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  1. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  2. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  3. Potential benefits of remote sensing: Theoretical framework and empirical estimate

    Science.gov (United States)

    Eisgruber, L. M.

    1972-01-01

    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  4. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  5. Remote Sensing Data Visualization, Fusion and Analysis via Giovanni

    Science.gov (United States)

    Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.

    2007-01-01

    We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.

  6. Landsat's role in ecological applications of remote sensing.

    Science.gov (United States)

    Warren B. Cohen; Samuel N. Goward

    2004-01-01

    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  7. The potential of remote sensing technology for the detection and ...

    African Journals Online (AJOL)

    Internationally, a number of studies have successfully used remote sensing technology to monitor forest damage. Remote sensing technology allows for instantaneous methods of assessments whereby ground assessments would be impossible on a regular basis. This paper provides an overview of how advances in ...

  8. Remote sensing and change detection in rangelands | Palmer ...

    African Journals Online (AJOL)

    To most land managers, remote sensing has remained illusive, seldom allowing the manager to use it to its full potential. In contrast, the policy maker, backed by GIS laboratories and remote sensing specialists, is confronted by plausible scenarios of degradation and transformation. After intervening, he is seldom active long ...

  9. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    Science.gov (United States)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel

  10. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    Science.gov (United States)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  11. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  12. Online catalog access and distribution of remotely sensed information

    Science.gov (United States)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  13. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  14. The function of remote sensing in support of environmental policy

    OpenAIRE

    de Leeuw, Jan; Georgiadou, P.Y.; Georgiadou, Yola; Kerle, Norman; de Gier, Alfred; Inoue, Yoshio; Ferwerda, Jelle; Smies, Maarten; Narantuya, Davaa

    2010-01-01

    Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1), there is apparently lit...

  15. Regional Analysis of Remote Sensing Based Evapotranspiration Information

    Science.gov (United States)

    Geli, H. M. E.; Hain, C.; Anderson, M. C.; Senay, G. B.

    2017-12-01

    Recent research findings on modeling actual evapotranspiration (ET) using remote sensing data and methods have proven the ability of these methods to address wide range of hydrological and water resources issues including river basin water balance for improved water resources management, drought monitoring, drought impact and socioeconomic responses, agricultural water management, optimization of land-use for water conservations, water allocation agreement among others. However, there is still a critical need to identify appropriate type of ET information that can address each of these issues. The current trend of increasing demand for water due to population growth coupled with variable and limited water supply due to drought especially in arid and semiarid regions with limited water supply have highlighted the need for such information. To properly address these issues different spatial and temporal resolutions of ET information will need to be used. For example, agricultural water management applications require ET information at field (30-m) and daily time scales while for river basin hydrologic analysis relatively coarser spatial and temporal scales can be adequate for such regional applications. The objective of this analysis is to evaluate the potential of using an integrated ET information that can be used to address some of these issues collectively. This analysis will highlight efforts to address some of the issues that are applicable to New Mexico including assessment of statewide water budget as well as drought impact and socioeconomic responses which all require ET information but at different spatial and temporal scales. This analysis will provide an evaluation of four remote sensing based ET models including ALEXI, DisALEXI, SSEBop, and SEBAL3.0. The models will be compared with ground-based observations from eddy covariance towers and water balance calculations. Remote sensing data from Landsat, MODIS, and VIIRS sensors will be used to provide ET

  16. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Science.gov (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  17. Commercial future: making remote sensing a media event

    Science.gov (United States)

    Lurie, Ian

    1999-12-01

    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  18. Mapping wood density globally using remote sensing and climatological data

    Science.gov (United States)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  19. Operational programs in forest management and priority in the utilization of remote sensing

    Science.gov (United States)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  20. Ten ways remote sensing can contribute to conservation

    Science.gov (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  1. Ten ways remote sensing can contribute to conservation.

    Science.gov (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  2. Application of a crop model forced with remote sensing data at high spatio-temporal resolution to estimate evaporation and yields of irrigated grasslands in the South Eastern France

    Science.gov (United States)

    Couralt, D.; Hadria, R.; Ruget, F.; Duchemin, B.; Hagolle, O.

    2009-09-01

    This study focused on the feasibility of using remote sensing data acquired at high spatial and temporal resolution (FORMOSAT-2 images(http://www.spotimage.fr/web/en/977--formosat-2-images.php) for crop monitoring at regional scale. The monitoring of agricultural practices such as grassland mowing and irrigation is essential to simulate accurately all processes related to crop system. This information is needed for example in crop simulation models to estimate production, water and fertilizer consumption and can thus serve to better understand the interactions between agriculture and climate. The analysis of these interactions is especially important in Mediterranean region where the effects of climate changes and crop management modifications are increasingly marked. In this context, an experiment was conducted in 2006 in Crau region in the South-Eastern France. In this area, permanent grassland represents 67 % of the usable agricultural area, and it is often used with irrigation (47 % of the permanent grassland). A time series of 36 FORMOSAT-2 images was acquired with a three days frequency from March to October 2006. Information concerning grassland mowing and irrigation was collected through a survey over 120 fields. The high FORMOSAT-2 revisit frequency allowed replicating the dynamics of Leaf Area index (LAI), and detecting to some extents cultural practices like vegetation cut. Simple automatic algorithms were developed to obtain daily values of LAI for each grasslands field linked with the main agricultural practices performed (cut and irrigation dates). This information was then used in a crop model called STICS (http://147.100.66.194/stics/) to estimate the spatial variability of evapotranspiration and drainage associated with the aerial biomass productions. Comparisons between simulated and observed yields gave satisfactory results. The great spatial variations of evapotranspiration were strongly related to the crop and water management. Such

  3. Analysis of remote sensing data for evaluation of vegetation resources

    Science.gov (United States)

    1970-01-01

    Research has centered around: (1) completion of a study on the use of remote sensing techniques as an aid to multiple use management; (2) determination of the information transfer at various image resolution levels for wildland areas; and (3) determination of the value of small scale multiband, multidate photography for the analysis of vegetation resources. In addition, a substantial effort was made to upgrade the automatic image classification and spectral signature acquisition capabilities of the laboratory. It was found that: (1) Remote sensing techniques should be useful in multiple use management to provide a first-cut analysis of an area. (2) Imagery with 400-500 feet ground resolvable distance (GRD), such as that expected from ERTS-1, should allow discriminations to be made between woody vegetation, grassland, and water bodies with approximately 80% accuracy. (3) Barley and wheat acreages in Maricopa County, Arizona could be estimated with acceptable accuracies using small scale multiband, multidate photography. Sampling errors for acreages of wheat, barley, small grains (wheat and barley combined), and all cropland were 13%, 11%, 8% and 3% respectively.

  4. STANDARDIZING QUALITY ASSESSMENT OF FUSED REMOTELY SENSED IMAGES

    Directory of Open Access Journals (Sweden)

    C. Pohl

    2017-09-01

    Full Text Available The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  5. Standardizing Quality Assessment of Fused Remotely Sensed Images

    Science.gov (United States)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  6. Developing Particle Emission Inventories Using Remote Sensing (PEIRS)

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A.; Schwartz, Joel; Lyapustin, Alexei I.; Di, Qian; Koutrakis, Petros

    2016-01-01

    Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  7. Assessing diversity of prairie plants using remote sensing

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (Pguide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  8. Future opportunities and challenges in remote sensing of drought

    Science.gov (United States)

    Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt; Wardlow, Brian D.; Anderson, Martha C.; Verdin, James P.

    2012-01-01

    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and

  9. The study of active tectonic based on hyperspectral remote sensing

    Science.gov (United States)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown th