WorldWideScience

Sample records for resolution radiometer normalized

  1. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible Infrared Imaging Radiometer Suite (VIIRS) Smoothed Normalized Difference Vegetation Index (NDVI) from NDE is a weekly product derived from the VIIRS...

  3. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook With subsections for derivative instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR)

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Gary B. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Michalsky, Joseph J. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-03-01

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere’s aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  4. Nimbus-2 Level 2 Medium Resolution Infrared Radiometer (MRIR) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus II Medium Resolution Infrared Radiometer (MRIR) was designed to measure electromagnetic radiation emitted and reflected from the earth and its atmosphere...

  5. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  6. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  7. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    Science.gov (United States)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  8. Nimbus-2 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN2IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-2 High-Resolution Infrared Radiometer. The images contain...

  9. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  10. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  11. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  12. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A platform...

  13. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  14. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  15. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  16. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  17. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    Science.gov (United States)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  18. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    Science.gov (United States)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  19. PHOCUS radiometer

    Directory of Open Access Journals (Sweden)

    O. Nyström

    2012-06-01

    Full Text Available PHOCUS – Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50–110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems.

    The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS backends with 67 kHz resolution.

    The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler.

    The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable

  20. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  1. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  2. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  3. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  4. The measurement of climate change using data from the Advanced Very High Resolution and Along Track Scanning Radiometers

    Science.gov (United States)

    Lawrence, S. P.; Llewellyn-Jones, D. T.; Smith, S. J.

    2004-08-01

    Global sea-surface temperature is an important indicator of climate change, with the ability to reflect warming/cooling climate trends. The detection of such trends requires rigorous measurements that are global, accurate, and consistent. Space instruments can provide the means to achieve these required attributes in sea-surface temperature data. Analyses of two independent data sets from the Advanced Very High Resolution and Along Track Scanning Radiometers series of space sensors during the period 1985 to 2000 reveal trends of increasing global temperature with magnitudes of 0.09°C and 0.13°C per decade, respectively, closely matching that expected due to current levels of greenhouse gas exchange. In addition, an analysis based upon singular value decomposition, allowing the removal of El Niño in order to examine areas of change other than the tropical Pacific region, indicates that the 1997 El Niño event affected sea-surface temperature globally. The methodology demonstrated here can be applied to other data sets, which cover long time series observations of geophysical observations in order to characterize long-term change. The conclusion is that satellite sea-surface temperature provides an important means to quantify and explore the processes of climate change.

  5. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  6. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-10-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  7. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  8. Forest canopy height from Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar

    Science.gov (United States)

    Mark Chopping; Anne Nolin; Gretchen G. Moisen; John V. Martonchik; Michael Bull

    2009-01-01

    In this study retrievals of forest canopy height were obtained through adjustment of a simple geometricoptical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression...

  9. Relationship between herbaceous biomass and 1km (2) advanced very high resolution radiometer (AVHRR) NDVI in Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2006-03-01

    Full Text Available biomass and 1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa K. J. WESSELS*{, S. D. PRINCE{, N. ZAMBATIS{, S. MACFADYEN{, P. E. FROST§" and D. VAN ZYL§ {Department of Geography, University of Maryland... production (Prince and Justice 1991, Tucker et al. 1991a,b, Myneni et al. *Corresponding author. Email: wessels@geog.umd.edu International Journal of Remote Sensing Vol. 27, No. 5, 10 March 2006, 951–973 International Journal of Remote Sensing ISSN 0143...

  10. [Performance of normal young adults in two temporal resolution tests].

    Science.gov (United States)

    Zaidan, Elena; Garcia, Adriana Pontin; Tedesco, Maria Lucy Fraga; Baran, Jane A

    2008-01-01

    temporal auditory processing is defined as the perception of sound or of sound alteration within a restricted time interval and is considered a fundamental ability for the auditory perception of verbal and non verbal sounds, for the perception of music, rhythm, periodicity and in the discrimination of pitch, duration and of phonemes. to compare the performance of normal Brazilian adults in two temporal resolution tests: the Gaps-in-Noise Test (GIN) and the Random Gap Detection Test (RGDT), and to analyze potential differences of performance in these two tests. twenty-five college students with normal hearing (11 males and 14 females) and no history of educational, neurological and/or language problems, underwent the GIN and RGDT at 40dB SL. statistically significant gender effects for both tests were found, with female participants showing poorer performance on both temporal processing tests. In addition, a comparative analysis of the results obtained in the GIN and RGDT revealed significant differences in the threshold measures derived for these two tests. In general, significantly better gap detection thresholds were observed for both male and female participants on the GIN test when compared to the results obtained for the RGDT. male participants presented better performances on both RGDT and GIN, when compared to the females. There were no differences in performance between right and left ears on the GIN test. Participants of the present investigation, males and females, performed better on the GIN when compared to the RGDT. The GIN presented advantages over the RGDT, not only in terms of clinical validity and sensibility, but also in terms of application and scoring.

  11. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    Science.gov (United States)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  12. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery

    Science.gov (United States)

    Denman, Kenneth L.; Abbott, Mark R.

    1994-01-01

    We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the

  13. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR/Normal Incidence Multifilter Radiometer (NIMFR Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM North Slope of Alaska (NSA and Southern Great Plains (SGP Sites

    Directory of Open Access Journals (Sweden)

    James Barnard

    2013-09-01

    Full Text Available Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD from Multifilter Rotating Shadowband Radiometer (MFRSR and Normal Incidence Multifilter Radiometer (NIMFR measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon and when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM North Slope of Alaska (NSA sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported MFRSR and NIMFR data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999–2012 aerosol product (AOD and its Angstrom exponent is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  14. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    Science.gov (United States)

    Riffler, M.; Wunderle, S.

    2014-05-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS) lists LWT as an Essential Climate Variable (ECV). Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs were

  15. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  16. Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak heights.

    Science.gov (United States)

    Davis, Joe M

    2011-10-28

    General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Novel multi-beam radiometers for accurate ocean surveillance

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2014-01-01

    Novel antenna architectures for real aperture multi-beam radiometers providing high resolution and high sensitivity for accurate sea surface temperature (SST) and ocean vector wind (OVW) measurements are investigated. On the basis of the radiometer requirements set for future SST/OVW missions...

  18. High-resolution computed tomography of the temporal bone. Part 1.: normal anatomy

    International Nuclear Information System (INIS)

    Grzegorzewski, M.; Boron, Z.; Burzynska-Makuch, M.

    1995-01-01

    Normal anatomy of the temporal bone in transverse and coronal sections was presented. CT studies were performed using high-resolution program. The images of an asymptomatic ear of 2 patients were selected from 68 cases examined on account of various otological diseases. All the sections showed as many as 68 anatomic structures. (author)

  19. The Hurricane Imaging Radiometer: Present and Future

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; hide

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  20. High-resolution computed tomography of the lungs: the borderlands of normality

    International Nuclear Information System (INIS)

    Dalal, P.U.; Hansell, D.M.

    2006-01-01

    High-resolution computed tomography (HRCT) is now widely used in the assessment of airways and diffuse lung disease. Considerable literature on pathologic correlation has increased the understanding of the signs of disease seen on HRCT. However, neither the significance of subtle individual signs nor the spectrum of HRCT appearances in healthy lungs is well documented. HRCT signs that cause diagnostic uncertainty and the spectrum of findings that exist between definite normality and definite abnormality are discussed. (orig.)

  1. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    A monitored background radiometer is described comprising: a thermally conductive housing; low conductivity support means mounted on the housing; a sensing plate mounted on the low conductivity support means and spaced from the housing so as to be thermally insulated from the housing and having an outwardly facing first surface; the sensing plate being disposed relative to the housing to receive direct electromagnetic radiation from sources exterior to the radiometer upon the first surface only; means for controllably heating the sensing plate; first temperature sensitive means to measure the temperature of the housing; and second temperature sensitive means to measure the temperature of the sensing plate, so that the heat flux at the sensing plate may be determined from the temperatures of the housing and sensing plate after calibration of the radiometer by measuring the temperatures of the housing and sensing plate while controllably heating the sensing plate

  2. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  3. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  4. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  5. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  6. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  7. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  8. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  9. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  10. LAMMR: A new generation satellite microwave radiometer - Its concepts and capabilities. [Large Antenna Multichannel Microwave Radiometer

    Science.gov (United States)

    Walton, W. T.; Wilheit, T. T.

    1981-01-01

    Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.

  11. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.

    1989-01-01

    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  12. Millimeter radiometer system technology

    Science.gov (United States)

    Wilson, W. J.; Swanson, P. N.

    1989-07-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  13. Hurricane Imaging Radiometer

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  14. Effect of visual cues on the resolution of perceptual ambiguity in Parkinson's disease and normal aging.

    Science.gov (United States)

    Díaz-Santos, Mirella; Cao, Bo; Mauro, Samantha A; Yazdanbakhsh, Arash; Neargarder, Sandy; Cronin-Golomb, Alice

    2015-02-01

    Parkinson's disease (PD) and normal aging have been associated with changes in visual perception, including reliance on external cues to guide behavior. This raises the question of the extent to which these groups use visual cues when disambiguating information. Twenty-seven individuals with PD, 23 normal control adults (NC), and 20 younger adults (YA) were presented a Necker cube in which one face was highlighted by thickening the lines defining the face. The hypothesis was that the visual cues would help PD and NC to exert better control over bistable perception. There were three conditions, including passive viewing and two volitional-control conditions (hold one percept in front; and switch: speed up the alternation between the two). In the Hold condition, the cue was either consistent or inconsistent with task instructions. Mean dominance durations (time spent on each percept) under passive viewing were comparable in PD and NC, and shorter in YA. PD and YA increased dominance durations in the Hold cue-consistent condition relative to NC, meaning that appropriate cues helped PD but not NC hold one perceptual interpretation. By contrast, in the Switch condition, NC and YA decreased dominance durations relative to PD, meaning that the use of cues helped NC but not PD in expediting the switch between percepts. Provision of low-level cues has effects on volitional control in PD that are different from in normal aging, and only under task-specific conditions does the use of such cues facilitate the resolution of perceptual ambiguity.

  15. High resolution photoacoustic imaging of microvasculature in normal and cancerous bladders

    Science.gov (United States)

    Xie, Zhixing; Roberts, William; Carson, Paul L.; Liu, Xiaojun; Tao, Chao; Wang, Xueding

    2013-03-01

    We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high resolution imaging of microvasculature in the interior bladder tissues. Images of ex vivo canine bladders demonstrated the excellent ability of PAI to map three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI in differentiating malignant from benign bladder tissues was explored. The reported distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way to that in conventional endoscopy, provides an opportunity for improved diagnosis, staging and treatment guidance of bladder cancer.

  16. Monitored background radiometer

    International Nuclear Information System (INIS)

    Ruel, C.

    1988-01-01

    This radiometer accurately measures IR and solar spectrum radiation in a vacuum, and accounts for radiation loss from its sensing plate by measuring the housing temperature. Calibration is performed by measuring the temperature of the sensing plate and housing while power to a heater attached to the sensing plate is varied. The square of the difference between the measured power dissipation of the heater and the heat absorbed by the sensing plate as determined from the heat balance equation of the sensing plate is minimized to obtain calibration factors for the heat balance equation

  17. A Multifrequency Radiometer System

    DEFF Research Database (Denmark)

    Skou, Niels

    1977-01-01

    A radiometer system having four channels: 5 GHz, l7 GHz, 34 GHz, all vertical polarization, and a 34 GHz sky horn, will be described. The system which is designed for collecting glaciological and oceanographic data is intended for airborne use and imaging is achieved by means of a multifrequency...... conically scanning antenna. Implementation of the noise-injection technique ensures the high absolute accuracy needed for oceanographic purposes. The collected data can be preprocessed in a microcomputer system and displayed in real time. Simultaneously, the data are recorded digitally on tape for more...

  18. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  19. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results

    Directory of Open Access Journals (Sweden)

    Siggberg Linda

    2012-09-01

    Full Text Available Abstract Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.

  20. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    Science.gov (United States)

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  1. Dual Microwave Radiometer Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-09-01

    Passive microwave radiometers (MWRs) are the most commonly used and accurate instruments the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility has to retrieve cloud liquid water path (LWP). The MWR measurements (microwave radiances or brightness temperatures) are often used to derive LWP using climatological constraints, but are frequently also combined with measurements from radar and other instruments for cloud microphysical retrievals. Nominally this latter approach improves the retrieval of LWP and other cloud microphysical quantities (such as effective radius or number concentration), but this also means that when MWR data are poor, other cloud microphysical quantities are also negatively affected. Unfortunately, current MWR data is often contaminated by water on the MWR radome. This water makes a substantial contribution to the measured radiance and typically results in retrievals of cloud liquid water and column water vapor that are biased high. While it is obvious when the contamination by standing water is large (and retrieval biases are large), much of the time it is difficult to know with confidence that there is no contamination. At present there is no attempt to estimate or correct for this source of error, and identification of problems is largely left to users. Typically users are advised to simply throw out all data when the MWR “wet-window” resistance-based sensor indicates water is present, but this sensor is adjusted by hand and is known to be temperamental. In order to address this problem, a pair of ARM microwave radiometers was deployed to the University of Washington (UW) in Seattle, Washington, USA. The radiometers were operated such that one radiometer was scanned under a cover that (nominally) prevents this radiometer radome from gathering water and permits measurements away from zenith; while the other radiometer is operated normally – open or uncovered - with the radome exposed to the sky

  2. Intersatellite Calibration of Microwave Radiometers for GPM

    Science.gov (United States)

    Wilheit, T. T.

    2010-12-01

    The aim of the GPM mission is to measure precipitation globally with high temporal resolution by using a constellation of satellites logically united by the GPM Core Satellite which will be in a non-sunsynchronous, medium inclination orbit. The usefulness of the combined product depends on the consistency of precipitation retrievals from the various microwave radiometers. The calibration requirements for this consistency are quite daunting requiring a multi-layered approach. The radiometers can vary considerably in their frequencies, view angles, polarizations and spatial resolutions depending on their primary application and other constraints. The planned parametric algorithms will correct for the varying viewing parameters, but they are still vulnerable to calibration errors, both relative and absolute. The GPM Intersatellite Calibration Working Group (aka X-CAL) will adjust the calibration of all the radiometers to a common consensus standard for the GPM Level 1C product to be used in precipitation retrievals. Finally, each Precipitation Algorithm Working Group must have its own strategy for removing the residual errors. If the final adjustments are small, the credibility of the precipitation retrievals will be enhanced. Before intercomparing, the radiometers must be self consistent on a scan-wise and orbit-wise basis. Pre-screening for this consistency constitutes the first step in the intercomparison. The radiometers are then compared pair-wise with the microwave radiometer (GMI) on the GPM Core Satellite. Two distinct approaches are used for sake of cross-checking the results. On the one hand, nearly simultaneous observations are collected at the cross-over points of the orbits and the observations of one are converted to virtual observations of the other using a radiative transfer model to permit comparisons. The complementary approach collects histograms of brightness temperature from each instrument. In each case a model is needed to translate the

  3. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  4. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index Land Reflectance Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  5. Double-polarizating scanning radiometer

    International Nuclear Information System (INIS)

    Mishev, D.N.; Nazyrski, T.G.

    1986-01-01

    The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls

  6. Radiometer Testbed Development for SWOT

    Science.gov (United States)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  7. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  8. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    Science.gov (United States)

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-03-19

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  9. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  10. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  11. High-resolution magnetic resonance imaging (HR-MRI) of the pleura and chest wall: Normal findings and pathological changes

    International Nuclear Information System (INIS)

    Bittner, R.C.; Schnoy, N.; Schoenfeld, N.; Grassot, A.; Loddenkemper, R.; Lode, H.; Kaiser, D.; Krumhaar, D.; Felix, R.

    1995-01-01

    To determine the value of high-resolution MRI in pleural and chest wall diseases, the normal and pathologic costal pleura and adjacent chest wall between paravertebral and the axillar region were examined with contrast enhanced high-resolution T 1 -weighted MRI images using a surface coil. Normal anatomy was evaluated in 5 healthy volunteers and a normal specimen of the thoracic wall, and correlation was made with corresponding HR-CT and histologic sections. CT-proved focal and diffuse changes of the pleura and the chest wall in 36 patients underwent HR-MRI, and visual comparison of MRI and CT was done retrospectively. Especially sagittal T 1 -weighted HR-MRI images allowed accurate delineation of the peripleural fat layer (PFL) and the innermost intercostal muscle (IIM), which served as landmarks of the intact inner chest wall. PFL and IIM were well delineated in 3/4 patients with tuberculous pleuritis, and in all 7 patients with non-specific pleuritis, as opposed to impairment of the PFL and/or the IIM, which was detected in 15/18 malignancies as a pattern of malignant chest wall involvement. In one case of tuberculous pleural empyema with edema of the inner chest wall HR-MRI produced false positive diagnosis of malignant disease. HR-MRI images improved non-invasive evaluation of pleural and chest wall diseases, and allowed for differentiation of bengin and malignant changes. (orig./MG) [de

  12. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  13. Elevated intrabolus pressure identifies obstructive processes when integrated relaxation pressure is normal on esophageal high-resolution manometry.

    Science.gov (United States)

    Quader, Farhan; Reddy, Chanakyaram; Patel, Amit; Gyawali, C Prakash

    2017-07-01

    Elevated integrated relaxation pressure (IRP) on esophageal high-resolution manometry (HRM) identifies obstructive processes at the esophagogastric junction (EGJ). Our aim was to determine whether intrabolus pressure (IBP) can identify structural EGJ processes when IRP is normal. In this observational cohort study, adult patients with dysphagia and undergoing HRM were evaluated for endoscopic evidence of structural EGJ processes (strictures, rings, hiatus hernia) in the setting of normal IRP. HRM metrics [IRP, distal contractile integral (DCI), distal latency (DL), IBP, and EGJ contractile integral (EGJ-CI)] were compared among 74 patients with structural EGJ findings (62.8 ± 1.6 yr, 67.6% women), 27 patients with normal EGD (52.9 ± 3.2 yr, 70.3% women), and 21 healthy controls (27.6 ± 0.6 yr, 52.4% women). Findings were validated in 85 consecutive symptomatic patients to address clinical utility. In the primary cohort, mean IBP (18.4 ± 0.9 mmHg) was higher with structural EGJ findings compared with dysphagia with normal EGD (13.5 ± 1.1 mmHg, P = 0.002) and healthy controls (10.9 ± 0.9 mmHg, P 0.05 for each comparison). During multiple rapid swallows, IBP remained higher in the structural findings group compared with controls ( P = 0.02). Similar analysis of the prospective validation cohort confirmed IBP elevation in structural EGJ processes, but correlation with dysphagia could not be demonstrated. We conclude that elevated IBP predicts the presence of structural EGJ processes even when IRP is normal, but correlation with dysphagia is suboptimal. NEW & NOTEWORTHY Integrated relaxation pressure (IRP) above the upper limit of normal defines esophageal outflow obstruction using high-resolution manometry. In patients with normal IRP, elevated intrabolus pressure (IBP) can be a surrogate marker for a structural restrictive or obstructive process at the esophagogastric junction (EGJ). This has the potential to augment the clinical value of

  14. High-resolution magnetic resonance imaging of the wrist: Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Baker, L.L.; Hajek, P.C.; Bjoerkengren, A.; Sartoris, D.J.; Resnick, D.; Galbraith, R.; Gelberman, R.H.

    1987-02-01

    Magnetic resonance imaging (MRI) provided adequate depiction of carpal soft tissue structures in normal volunteers, as well as accurate anatomic correlation with cadaveric specimens. Using a high field strength system and surface coil techniques, the intricate anatomy of the wrist was best defined on long TR short TE images. However, from a practical view, T1 weighted images (TR 600 ms, TE 25 ms) were most useful because of short imaging times, satisfactory image quality, and the absence of motion artifacts. The coronal plane provided the clearest definition of important structures. Potential diagnostic limitations exist due to the inability of MRI to clearly delineate articular cartilage, joint capsules, and small interosseous ligaments. The presence of intra-articular fluid in both living subjects and cadaveric specimens, however, allowed for fine depiction of these structures on T2 weighted images.

  15. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  16. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  17. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  18. Volume measurement of thalami in normal Chinese Han nationality adults by the high-resolution MRI

    International Nuclear Information System (INIS)

    Ma Shuai; Chen Nan; Guo Yulin

    2012-01-01

    Objective: To measure the volume of thalamus in 1000 healthy Chinese Han nationality adults, and to analyze the relationship between thalamic volume and age, sex, weight and cerebral volume, to provide reliable data for the construction of database of Chinese adults' digital standard brain. Methods: Totally 1000 healthy Chinese adults of Han nationality aged from 18 to 80 years were recruited.They were divided into 5 groups by age: 18-30, 31-40, 41-50, 51-60 and 61-80 years. Each group included 100 males and 100 females. Brain images were obtained on a 1.5 T MR, and the outline of thalami was drawn with Aquariusws software. Then the thalamic volume was calculated automatically. The volumes of left and right thalamus were compared by paired sample t-test. Thalamic volumes of the same side were compared between males and females by independent sample t-test. And thalamic volumes of different age groups were compared by one-way ANOVA. The relationships between thalamic volume and age, sex, weight and cerebral volume were analyzed respectively. Results: The males' standardized volumes of left and right thalamus of healthy Chinese Han nationality adults were (5776 ± 780), (5655 ± 759) mm 3 , and they were (5464 ±573), (5360 ± 542) mm 3 for female. The males' thalamic volume was more than the females' on the same side (t=2.245, 2.200, P<0.01). The left thalamic volumes of various age groups were (6180 ± 534), (6047 ± 562), (5426 ± 471), (5552 ± 526), (4866 ± 552) mm 3 , respectively, while the right thalamic volumes of the 5 groups were (6069 ± 532), (5895 ± 539), (5357 ± 480), (5396 ± 445),(4791 ± 558)mm 3 , respectively. There were statistically significant difference among the 5 groups (F=165.686, 165.235, P<0.01). The left and right thalamic volume were all negatively correlated with age (r=-0.633, -0.645, P<0.05). Conclusions: With high resolution 1.5 T MR scanner,grey matter and white matter can be depicted clearly and the outline

  19. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  20. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    Science.gov (United States)

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  1. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Arakawa, Naoko; Oshima, Susumu; Shibata, Naohisa; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa

    2012-01-01

    To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO). AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (Poptical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (Pfiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  2. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2017-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  3. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed

    2017-08-28

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  4. GHRSST Level 2P Global Skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by EUMETSAT (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  5. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  6. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  7. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  8. GHRSST Level 2P Regional 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  9. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  10. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  11. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  12. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  13. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  14. Mediastinal and extrapleural fat hypertrophy in idiopathic pulmonary fibrosis on high-resolution CT: comparison with normal individuals

    International Nuclear Information System (INIS)

    Son, Kyu Ri; Lee, Hyun Ju; Lim, Kun Young; Lee, Chang Hyun; Goo, Jin Mo; Im, Jung Gi

    2004-01-01

    We wished to compare the amount of mediastinal and extrapleural fat on high resolution CT for patients with idiopathic pulmonary fibrosis (IPF) with that of normal individuals, and we wished to evaluate the correlation between the amount of fat and the degree of pulmonary fibrosis. We selected a group of 25 patients with radiologically and clinically diagnosed IPF and we also selected another group of 25 age and gender-matched patients having no abnormalities on pulmonary function testing as well as HRCT as controls from our radiologic database search (mean age: 59 years, M:F= 11:14). We measured the area of mediastinal and extrapleural fat at the levels of the aortic arch and at the origin of the right pulmonary artery and right inferior pulmonary vein on three sections of HRCT by using software (Rapidia; 3DMED, Seoul, Korea). The total amount of fat was calculated by summing up the areas of the mediastinal and extrapleural fat, which is corrected by the body mass index; we also evaluated statistical differences between the two groups. At same sections of CT, the ratio (%) of the honeycombing area to the total areas of the lung was calculated. We evaluated the relationship between the amount of extrapleural or mediastinal fat with the ratio (%) of the honeycombing area. The total amount of fat in patients with IPF and normal individuals were 67.24±19.03 cm 2 and 32.55±11.91 cm 2 , respectively. The fat amount corrected by body mass index was 280.48±74.43 mm 2 /kg/m 2 in the IPF patients and 137.06±41.76 mm 2 /kg/m 2 in normal individuals. The differences between two groups for the total amount of fat and fat amount, as corrected for by the body mass index, were statistically significant (p<0.0001). The ratio (%) of the honeycombing area and the total amount of fat showed a moderate correlation (rho= 0.43, p=0.032). Patients with IPF have a larger amount of mediastinal and extrapleural fat than normal individuals. The hypertrophy of mediastinal and extrapleural

  15. Mediastinal and extrapleural fat hypertrophy in idiopathic pulmonary fibrosis on high-resolution CT: comparison with normal individuals

    Energy Technology Data Exchange (ETDEWEB)

    Son, Kyu Ri; Lee, Hyun Ju; Lim, Kun Young; Lee, Chang Hyun; Goo, Jin Mo; Im, Jung Gi [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-12-01

    We wished to compare the amount of mediastinal and extrapleural fat on high resolution CT for patients with idiopathic pulmonary fibrosis (IPF) with that of normal individuals, and we wished to evaluate the correlation between the amount of fat and the degree of pulmonary fibrosis. We selected a group of 25 patients with radiologically and clinically diagnosed IPF and we also selected another group of 25 age and gender-matched patients having no abnormalities on pulmonary function testing as well as HRCT as controls from our radiologic database search (mean age: 59 years, M:F= 11:14). We measured the area of mediastinal and extrapleural fat at the levels of the aortic arch and at the origin of the right pulmonary artery and right inferior pulmonary vein on three sections of HRCT by using software (Rapidia; 3DMED, Seoul, Korea). The total amount of fat was calculated by summing up the areas of the mediastinal and extrapleural fat, which is corrected by the body mass index; we also evaluated statistical differences between the two groups. At same sections of CT, the ratio (%) of the honeycombing area to the total areas of the lung was calculated. We evaluated the relationship between the amount of extrapleural or mediastinal fat with the ratio (%) of the honeycombing area. The total amount of fat in patients with IPF and normal individuals were 67.24{+-}19.03 cm{sup 2} and 32.55{+-}11.91 cm{sup 2}, respectively. The fat amount corrected by body mass index was 280.48{+-}74.43 mm{sup 2}/kg/m{sup 2} in the IPF patients and 137.06{+-}41.76 mm{sup 2}/kg/m{sup 2} in normal individuals. The differences between two groups for the total amount of fat and fat amount, as corrected for by the body mass index, were statistically significant (p<0.0001). The ratio (%) of the honeycombing area and the total amount of fat showed a moderate correlation (rho= 0.43, p=0.032). Patients with IPF have a larger amount of mediastinal and extrapleural fat than normal individuals. The

  16. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  17. Habilidades de resolução de conflito e ocorrência de disfluências comuns em crianças em desenvolvimento normal de linguagem Conflict resolution abilities and normal disfluencies in normally developing children

    Directory of Open Access Journals (Sweden)

    Debora Maria Befi-Lopes

    2008-01-01

    Full Text Available OBJETIVOS: (1 Investigar as habilidades de resolução de conflito (RC de crianças em idade escolar; (2 Verificar a relação entre a ocorrência de disfluências comuns (DC e o desenvolvimento das habilidades de RC. MÉTODOS: Participaram do estudo 20 crianças em desenvolvimento normal de linguagem, com idades entre sete e dez anos. As crianças foram submetidas a uma triagem, na qual foram realizadas as provas de Fonologia, Consciência Fonológica e Leitura e Escrita; aquelas que obtiveram desempenho esperado para sua faixa etária passaram por avaliação, sendo realizadas as provas de RC e de Fluência. Na prova de RC, as respostas foram categorizadas em 28 categorias, para então, serem pontuadas. Na prova de fluência, foi verificada a ocorrência de DC. RESULTADOS: Na prova de RC, as crianças obtiveram entre 5 e 14 pontos (M=10,7, porém não se observou correlação entre a pontuação total e a idade cronológica (p=0,361. Na prova de Fluência, a ocorrência de DC variou de 4 a 24 (M=10. Observou-se que não há correlação estatística significante entre a pontuação na prova de RC e a ocorrência de DC (p=0,899. CONCLUSÕES: Na prova de RC, as crianças utilizaram principalmente estratégias unilaterais para a resolução dos conflitos e as estratégias não se tornaram mais sofisticadas com o passar da idade. Ao comparar o desempenho das crianças na prova de RC à ocorrência de DC, não foi possível estabelecer relação direta entre as duas variáveis.PURPOSE: The aims of this study were: (1 to investigate conflict resolution (CR abilities in normally developing school-aged children; (2 to verify whether there is a relationship between the occurrence of normal disfluencies (ND and the development of conflict resolution abilities. METHODS: Twenty normally developing children, whose ages ranged between seven and ten, participated in this study. The participants underwent a language screening test, covering the following

  18. CAMEX-3 POLARIMETRIC SCANNING RADIOMETER (PSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA...

  19. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  20. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    The microwave radiometer system measures, within its bandwidth, the naturally emitted radiation – the brightness temperature – of substances within its antenna’s field of view. Thus a radiometer is really a sensitive and calibrated microwave receiver. The radiometer can be a basic total power....../antenna size, and the problem: scanning antenna/space- craft stability. In many cases good compromises have been reached, as evident recalling the many successful missions throughout the recent 30 years. But in some cases the situation calls for special solutions, like the push-broom system or the synthetic...

  1. Measuring the volume of cingulate cortex in Chinese normal adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Zhang Chao; Chen Nan; Wang Xing; Li Kuncheng; Zhou Xin; Zhuo Yan; Chen Lin

    2010-01-01

    correlated with age (r=-0.330, -0.324, -0.169, -0.243, P<0.05), though the correlation coefficient is not high. Conclusions: Cingulate cortex volume could be accurately measured on the high-resolution MRI with 3D volume analysis software, which can provide morphological data for the construction of database for Chinese Standard Brain. The results may provide normal range for the diagnosis of the volumetric deficits of cingulate cortex. (authors)

  2. Documentation of normal and leukemic myelopoietic progenitor cells with high-resolution phase-contrast time-lapse cinematography.

    Science.gov (United States)

    Boll, I T

    2001-08-01

    The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg

  3. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  4. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  5. A brief comparison of radiometers at NSIDC and their potential to generate long ESDRs

    Science.gov (United States)

    Moth, P.; Johnston, T.; Haran, T. M.; Fowler, D. K.

    2017-12-01

    Radiometers have played a big part in Earth observing science. In this poster we compare three such instruments: the Advanced Very-High-resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). The NASA National Snow and Ice Distributed Active Archive Center (NSIDC DAAC) has archived cryospheric data from all three of these instruments. AVHRR was a 4-channel radiometer that was first launched in 1978 aboard the TIROS-N satellite. Subsequent missions launched improved versions of AVHRR with five and six channels, observing Earth in frequencies ranging from 0.58 μm to 12.5 μm with a resolution at nadir of 1.09 km. MODIS instruments fly onboard NASA's Earth Observing System (EOS) Terra and Aqua satellites. Launched in 1999 and 2002, respectively, they still produce much sought after data observed in 36 spectral bands ranging from 0.4 μm to 14.4 μm. Two bands image Earth at a nominal resolution of 250 m at nadir, five at 500 m, and the remaining 29 bands at 1 km. A ±55-degree scanning pattern at the sun-synchronous orbit of 705 km achieves a 2,330 km swath and provides global coverage every one to two days VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership satellite on October 28, 2011. Working collaboratively, NASA and NOAA are producing data that is archived and distributed via NASA DAACs. The VIIRS radiometer comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. Although these instruments are configured with different spectral bands, each was designed with an eye to the future. MODIS can be thought of as a successor to the AVHRR mission, adding capabilities that yielded better data

  6. Measurement of optic tracts in normal Chinese adults of the Han nationality based on the high-resolution MRI

    International Nuclear Information System (INIS)

    Li Changying; Shi Linping; Zhang Yang; Wang Jian; Chen Nan; Wang Xing; Li Kuncheng; Zhuo Yan; Chen Lin

    2010-01-01

    [(3.33 ± 0.45), (3.34 ± 0.41), ( 3.33 ± 0.36), (3.23 ± 0.38), (3.23 ± 0.39) mm] had statistical differences (F=3.458, 2.735,4.711, P= 0.008, 0.028,0.001). The LSD analysis found that the 50 years old group was the watershed with significant differences (P 0.05). (3) Comparisons of the measurements between left and right optic tracts: TD1 of bilateral optic tracts were (4.52 ± 0.57) and (4.72 ± 0.60) mm respectively; H1 of bilateral optic tracts were (2.56 ± 0.30)and (2.61 ± 0.30) mm respectively; H2 of bilateral optic tracts were (2.66 ± 0.30 )and (2.70 ± 0.30) mm respectively; and L of bilateral optic tracts were (11.14 ± 1.47)and (10.98±1.50)mm respectively. There were significant differences in these measurements between left and right optic tracts (t= 12.460, -6.013,5.595,4.784, P=0.000), while there were no significant differences in TD2, H3, H4 and H5 (P>0.05). Conclusions: With high-resolution MRI and 3D reconstruction, optic tract can be displayed clearly and measured accurately. There are definite differences in anterior segments of optic tracts between sexualities, sides and among ages in normal Chinese Hah adults, while the posterior segments of optic tracts keep stable. Normal reference values of optic tracts in Chinese Han adults are provided to clinical practices and scientific researches, which are valuable for building of Chinese standard brain. (authors)

  7. Boreal Inundation Mapping with SMAP Radiometer Data for Methane Studies

    Science.gov (United States)

    Kim, Seungbum; Brisco, Brian; Poncos, Valentin

    2017-04-01

    Inundation and consequent anoxic condition induce methane release, which is one of the most potent greenhouse gases. Boreal regions contain large amounts of organic carbon, which is a potentially major methane emission source under climatic warming conditions. Boreal wetlands in particular are one of the largest sources of uncertainties in global methane budget. Wetland spatial extent together with the gas release rate remains highly unknown. Characterization of the existing inundation database is poor, because of the inundation under clouds and dense vegetation. In this work, the inundation extent is derived using brightness temperature data acquired by the L-band Soil Moisture Active Passive (SMAP) satellite, which offers the L-band capabilities to penetrate clouds and vegetation at 3-day revisit. The fidelity of the SMAP watermask is assessed as a first step in this investigation by comparing with the following data sets: 3-m resolution maps derived using Radarsat synthetic aperture radar (SAR) data in northern Canada and multi-sensor climatology over Siberia. Because Radarsat coverages are limited despite its high spatial resolution, at the time and location where Radarsats are not available, we also compare with 3-km resolution SMAP SAR data that are concurrent with the SMAP radiometer data globally until July 2015. Inundation extents were derived with Radarsat, SMAP SAR, and SMAP radiometer over the 60 km x 60km area at Peace Athabasca Delta (PAD), Canada on 6 days in spring and summer 2015. The SMAP SAR results match the locations of Radarsat waterbodies. However, the SMAP SAR underestimates the water extent, mainly over mixed pixels that have subpixel land presence. The threshold value (-3 dB) applied to the SMAP SAR was determined previously over the global domain. The threshold is dependent on the type of local landcover within a mixed pixel. Further analysis is needed to locally optimize the threshold. The SMAP radiometer water fraction over Peace

  8. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    Science.gov (United States)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of vegetated land surface as good as in situ radiometric measurements. Future studies that address biophysical or physiological interpretations

  9. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    Science.gov (United States)

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  10. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  11. GHRSST Level 2P 1 m Depth Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  12. Novel Cyclotron-Based Radiometal Production

    International Nuclear Information System (INIS)

    DeGrado, Timothy R.

    2013-01-01

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started

  13. A multi-sample based method for identifying common CNVs in normal human genomic structure using high-resolution aCGH data.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: It is difficult to identify copy number variations (CNV in normal human genomic data due to noise and non-linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic hybridization (aCGH containing 42 million probes, which is very large compared to previous arrays, was recently published. Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data and because most of the current methods were not designed to analyze normal human samples. Normal human genome analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only identify CNVs from a single sample. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a multi-sample-based genomic variations detector (MGVD that uses segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs and CNV zones (CNVZs; CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR. CONCLUSIONS AND SIGNIFICANCE: We designed a specialized algorithm to detect common CNVs from extremely high-resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set, and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL library. It is freely available at: http://embio.yonsei.ac.kr/~Park/mgvd.php.

  14. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  15. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  16. Balloon-borne radiometer profiler: Field observations

    International Nuclear Information System (INIS)

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given

  17. The JET ECE heterodyne radiometer and investigations of fast phenomena

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Porte, L.

    1993-01-01

    In this paper, the design and performance characteristics of the JET heterodyne radiometer are reviewed, and some novel aspects of the instrument are described. Areas where the radiometer could benefit from further improvement are highlighted, and those improvements currently in progress are discussed. Some measurements which demonstrate the radiometer's power as a diagnostic of fast phenomena are presented. (orig.)

  18. Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects.

    Science.gov (United States)

    Kolar, Radim; Tornow, Ralf P; Laemmer, Robert; Odstrcilik, Jan; Mayer, Markus A; Gazarek, Jiri; Jan, Jiri; Kubena, Tomas; Cernosek, Pavel

    2013-01-01

    The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  19. Analysis of Visual Appearance of Retinal Nerve Fibers in High Resolution Fundus Images: A Study on Normal Subjects

    Directory of Open Access Journals (Sweden)

    Radim Kolar

    2013-01-01

    Full Text Available The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL. This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  20. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  1. Microfluidic radiolabeling of biomolecules with PET radiometals

    International Nuclear Information System (INIS)

    Zeng Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J.A.; Reichert, David E.

    2013-01-01

    Introduction: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64 Cu and 68 Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results: Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64 Cu/ 68 Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions: A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.

  2. Microfluidic radiolabeling of biomolecules with PET radiometals.

    Science.gov (United States)

    Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E

    2013-01-01

    A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    International Nuclear Information System (INIS)

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-01-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C

  4. A strand specific high resolution normalization method for chip-sequencing data employing multiple experimental control measurements

    DEFF Research Database (Denmark)

    Enroth, Stefan; Andersson, Claes; Andersson, Robin

    2012-01-01

    High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form of a backg......, the background is only used to adjust peak calling and not as a pre-processing step that aims at discerning the signal from the background noise. A normalization procedure that extracts the signal of interest would be of universal use when investigating genomic patterns....

  5. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band

    Directory of Open Access Journals (Sweden)

    Yun Du

    2016-04-01

    Full Text Available Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI calculated from the green and Shortwave-Infrared (SWIR bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can provide fine spatial resolution multispectral images. This new dataset is potentially of important significance for regional water bodies’ mapping, due to its free access and frequent revisit capabilities. It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however, wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis (PCA, Intensity Hue Saturation (IHS, High Pass Filter (HPF and À Trous Wavelet Transform (ATWT, were applied in this study. The performance of the proposed method was assessed experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening algorithms, were compared. Three levels of results, including the sharpened images, the produced MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results showed that MNDWI can enhance water bodies and suppressbuilt

  6. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  7. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  8. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes

    Science.gov (United States)

    Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.

    2011-04-01

    X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.

  9. Skull-base foramina of the middle cranial fossa : assessment of normal variation with high-resolution CT

    International Nuclear Information System (INIS)

    Kim, Hyae Young; Chung, Eun Chul; Suh, Jeong Soo; Choi, Hye Young; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    To recognize foraminal variants of the foraminae of the skull base in the middle cranial fossa, and to thus understand and distinguish normal and potentially abnormal structures. We analysed 163 patients without intracranial disease who had undergone CT scanning. These comprised 82 men and 81 women with a mean age of 39 years (range, 4-73 years). HRCT was performed, using a GE 9800 scanner. All CT scans were obtained 6-7 slices at the base of the skull, with 1.5mm collimation at 1.5mm intervals parallel to the infraorbital line. We analysed the foraminae by closesly correlating imaging findings and established anatomic knowledge. In 45 cases (27.6%) the foramen ovale was 5-10mm in diameter and asymmetrical. Deficiency of the medial bony wall including persistent foramen lacerum medius was seen in five cases (3.1%). Confluence of the foramen ovale and the foramen spinosum was seen in 13 cases (8%) and confluence of the foramen ovale and the foramen of Vesalius in 23 (14.1%). Posterolateral groove for the accessory meningeal artery was observed in 36 cases (22%). The foramen spinosum was asymmetrical in 42 cases (25.8%). A small or absent foramen spinosum with a larger ipsilateral foramen ovale was observed in 11 cases (6.7%). Medial bony defect was seen in 16 cases (9.8%). The foramen spinosum was absent in four cases (2.5%). In 74 cases (45.4%), the foramen of Vesalius was absent; it was present unilaterally and bilaterally in 55 (33.7%) and 34 cases (20.9%), respectively. Five cases showed duplicated foramina. Canaliculus innominatus was seen in 14 cases (8.9%) and was present bilaterally in three (1.8%). HRCT clearly delineates bony structure and is well able to display the rich spectrum of anatomic variation found in the base of the skull. The recognition of these normal variants will result in a better understanding of skull base neurovascular anatomy and diminish speculation as to their true nature during the interpretation of CT images

  10. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  11. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  12. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    Science.gov (United States)

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  14. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  15. Comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane between normal and preeclampsia pregnancies with high-resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Preeclampsia is a serious complication of pregnancy, which affects 2-8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.

  16. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Science.gov (United States)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  17. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  18. Improved characterization of scenes with a combination of MMW radar and radiometer information

    Science.gov (United States)

    Dill, Stephan; Peichl, Markus; Schreiber, Eric; Anglberger, Harald

    2017-05-01

    For security related applications MMW radar and radiometer systems in remote sensing or stand-off configurations are well established techniques. The range of development stages extends from experimental to commercial systems on the civil and military market. Typical examples are systems for personnel screening at airports for concealed object detection under clothing, enhanced vision or landing aid for helicopter and vehicle based systems for suspicious object or IED detection along roads. Due to the physical principle of active (radar) and passive (radiometer) MMW measurement techniques the appearance of single objects and thus the complete scenario is rather different for radar and radiometer images. A reasonable combination of both measurement techniques could lead to enhanced object information. However, some technical requirements should be taken into account. The imaging geometry for both sensors should be nearly identical, the geometrical resolution and the wavelength should be similar and at best the imaging process should be carried out simultaneously. Therefore theoretical and experimental investigations on a suitable combination of MMW radar and radiometer information have been conducted. First experiments in 2016 have been done with an imaging linescanner based on a cylindrical imaging geometry [1]. It combines a horizontal line scan in azimuth with a linear motion in vertical direction for the second image dimension. The main drawback of the system is the limited number of pixel in vertical dimension at a certain distance. Nevertheless the near range imaging results where promising. Therefore the combination of radar and radiometer sensor was assembled on the DLR wide-field-of-view linescanner ABOSCA which is based on a spherical imaging geometry [2]. A comparison of both imaging systems is discussed. The investigations concentrate on rather basic scenarios with canonical targets like flat plates, spheres, corner reflectors and cylinders. First

  19. High-resolution computed tomography evaluation of the bronchial lumen to vertebral body diameter and pulmonary artery to vertebral body diameter ratios in anesthetized ventilated normal cats.

    Science.gov (United States)

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron

    2017-10-01

    Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.

  20. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    Science.gov (United States)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  1. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  2. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  3. Comparative Proteomic Profile of the Human Umbilical Cord Blood Exosomes between Normal and Preeclampsia Pregnancies with High-Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ruizhe Jia

    2015-07-01

    Full Text Available Background/Aims: Exosomes are extracellular vesicles that are involved in several biological processes. The roles of proteins from human umbilical cord blood exosomes in the pathogenesis of preeclampsia remains poorly understood. Methods: In this study, we used high-resolution LC-MS/MS technologies to construct a comparative proteomic profiling of human umbilical cord blood exosomes between normal and preeclamptic pregnancies. Results: A total of 221 proteins were detected in human umbilical cord blood exosomes, with 14 upregulated and 15 downregulated proteins were definitively identified between preeclamptic and control pregnancies. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed proteins correlate with enzyme regulator activity, binding, extracellular region, cell part, biological regulation, cellular process and complement and coagulation cascades occurring during pathological changes of preeclampsia. Conclusion: Our results show significantly altered expression profiles of proteins in human umbilical cord blood exosomes between normal and preeclampsia pregnancies. These proteins may be involved in the etiology of preeclampsia.

  4. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  5. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  6. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, follo...

  7. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  8. L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling

    DEFF Research Database (Denmark)

    Rotbøll, Jesper; Søbjærg, Sten Schmidl; Skou, Niels

    2001-01-01

    A novel L-band radiometer trading analog complexity for digital ditto has been designed and built. It is a fully polarimetric radiometer of the correlation type and it is based on the sub-harmonic sampling principle in which the L-band signal is directly sampled by a fast A to D converter...

  9. A novel L-band polarimetric radiometer featuring subharmonic sampling

    DEFF Research Database (Denmark)

    Rotbøll, J.; Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A novel L-band radiometer trading analog components for digital circuits has been designed, built and operated. It is a fully polarimetric radiometer of the correlation type, and it is based on the subharmonic sampling principle in which the L-band signal is directly sampled by a fast A to D...

  10. Evaluation of the CPU time for solving the radiative transfer equation with high-order resolution schemes applying the normalized weighting-factor method

    Science.gov (United States)

    Xamán, J.; Zavala-Guillén, I.; Hernández-López, I.; Uriarte-Flores, J.; Hernández-Pérez, I.; Macías-Melo, E. V.; Aguilar-Castro, K. M.

    2018-03-01

    In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High-Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized Weighting-Factor (NWF) method and it is adopted here. The NWF method is used to incorporate the high-order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer time needed to obtain a converged solution, with the widely used deferred-correction (DC) technique for the calculations of a two-dimensional cavity with emitting-absorbing-scattering gray media using the discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption coefficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo are considered to evaluate ten schemes. The results showed that using the DC method, in general, the scheme that had the lowest CPU time is the SOU. In contrast, with the results of theDC procedure the CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time consuming when theNWFis used instead of the DC method. Additionally, a second test case was presented and the results showed that depending on the problem under consideration, the NWF procedure may be computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test case. Finally, future researches to explore the computational cost of the NWF method in more complex problems are required.

  11. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  12. Etched track radiometers in radon measurements: a review

    CERN Document Server

    Nikolaev, V A

    1999-01-01

    Passive radon radiometers, based on alpha particle etched track detectors, are very attractive for the assessment of radon exposure. The present review considers various devices used for measurement of the volume activity of radon isotopes and their daughters and determination of equilibrium coefficients. Such devices can be classified into 8 groups: (i) open or 'bare' detectors, (ii) open chambers, (iii) sup 2 sup 2 sup 2 Rn chambers with an inlet filter, (iv) advanced sup 2 sup 2 sup 2 Rn radiometers, (v) multipurpose radiometers, (vi) radiometers based on a combination of etched track detectors and an electrostatic field, (vii) radiometers based on etched track detectors and activated charcoal and (viii) devices for the measurement of radon isotopes and/or radon daughters by means of track parameter measurements. Some of them such as the open detector and the chamber with an inlet filter have a variety of modifications and are applied widely both in geophysical research and radon dosimetric surveys. At the...

  13. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  14. Diviner lunar radiometer gridded brightness temperatures from geodesic binning of modeled fields of view

    Science.gov (United States)

    Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B. T.; Aye, K.-M.; Paige, D. A.

    2017-12-01

    An approach is presented to efficiently produce high quality gridded data records from the large, global point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter. The need to minimize data volume and processing time in production of science-ready map products is increasingly important with the growth in data volume of planetary datasets. Diviner makes on average >1400 observations per second of radiance that is reflected and emitted from the lunar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bottlenecks are amplified by modeling every observation as a probability distribution function over the field of view, which can increase the required processing time by 2-3 orders of magnitude. Geometric corrections, such as projection of data points onto a digital elevation model, are numerically intensive and therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel binning and efficient storage of a pre-processed database of observations. Database construction is via subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field of view of the observing instrument. Global geodesic grids with high spatial resolution are normally impractically memory intensive. We therefore demonstrate a minimum storage and highly parallel method to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned points is then used for production of mapped data products that is significantly faster than if unprocessed points were used. We explore quality controls in the production of gridded data records by conditional interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes based on trades between the

  15. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  16. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Conte, Giorgio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Boito, Simona; Persico, Nicola [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Obstetrics and Gynaecology ' L. Mangiagalli' , Milan (Italy); Rizzuti, Tommaso [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Pathology Unit, Milan (Italy); Triulzi, Fabio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan (Italy)

    2018-01-15

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  17. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    International Nuclear Information System (INIS)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria; Conte, Giorgio; Boito, Simona; Persico, Nicola; Rizzuti, Tommaso; Triulzi, Fabio

    2018-01-01

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  18. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  19. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  20. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    Science.gov (United States)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  1. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  2. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  3. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  4. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  5. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  6. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... to a FPA feeding a torus reflector antenna (designed under the contract with the European Space Agency) and tested for multiple beams. The results demonstrate an improved performance in terms of the optimized beam characteristics, yielding much higher spatial and radiometric resolution as well as much...

  7. Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes

    Directory of Open Access Journals (Sweden)

    Rene Acevo-Herrera

    2010-06-01

    Full Text Available UAV (unmanned Aerial Vehicle platforms represent a challenging opportunity for the deployment of a number of remote sensors. These vehicles are a cost-effective option in front of manned aerial vehicles (planes and helicopters, are easy to deploy due to the short runways needed, and they allow users to meet the critical requirements of the spatial and temporal resolutions imposed by the instruments. L-band radiometers are an interesting option for obtaining soil moisture maps over local areas with relatively high spatial resolution for precision agriculture, coastal monitoring, estimation of the risk of fires, flood prevention, etc. This paper presents the design of a light-weight, airborne L-band radiometer for deployment in a small UAV, including the hardware and specific software developed for calibration, geo-referencing, and soil moisture retrieval. First results and soil moisture retrievals from different field experiments are presented.

  8. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed ...

  9. Construction and calibration of solar radiometers: pyranometer and pyrheliometer

    International Nuclear Information System (INIS)

    Escobedo, J.F.; Passos, E.F.; Souza, M.F. de

    1988-01-01

    This paper reports the construction and development of solar radiometers and discusses some characteristic parameters such as linearity, sensitivity and time constant, using an Eppley black-and-white pyranometer as reference. (author) [pt

  10. The development of the advanced cryogenic radiometer facility at NRC

    Science.gov (United States)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  11. Effect of Chamber Wall Proximity on Radiometer Force Production (Preprint)

    National Research Council Canada - National Science Library

    Selden, N. P; Gimelshein, N. E; Gimelshein, S. F; Ketsdever, A. D

    2008-01-01

    ... on a given radiometer configuration in both the free molecule and transitional regimes. The contribution of the chamber walls to both the flowfield structure and radiometric force production were examined for helium, argon, and nitrogen test gases...

  12. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  13. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  14. Sources of errors in the measurements of underwater profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Silveira, N.; Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.

    to meet the stringent quality requirements of marine optical data for satellite ocean color sensor validation, development of algorithms and other related applications, it is very essential to take great care while measuring these parameters. There are two... of the pelican hook. The radiometer dives vertically and the cable is paid out with less tension, keeping in tandem with the descent of the radiometer while taking care to release only the required amount of cable. The operation of the release mechanism lever...

  15. Measurement of radiosity coefficient by means of an infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni

    1991-02-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  16. Measurement of radiosity coefficient by means of an infrared radiometer

    International Nuclear Information System (INIS)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni.

    1991-01-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  17. A cost effective total power radiometer package for atmospheric research

    International Nuclear Information System (INIS)

    Lyons, B.N.; Kelly, W.M.; Vizard, D.R.; Lidholm, U.S.

    1993-01-01

    Millimeter wave radiometers are being increasingly used for plasma diagnostics and remote sensing applications. To date however the widespread use of such systems, particularly for applications requiring frequency coverage above 100 GHz, have been inhibited by the lack of availability of an appropriately specified commercial package. This paper outlines the design and construction of such a radiometer package and gives details of results obtained to date

  18. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  19. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-06-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  20. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  1. Optimization of procedure for calibration with radiometer/photometer

    International Nuclear Information System (INIS)

    Detilly, Isabelle

    2009-01-01

    A test procedure for the radiometer/photometer calibrations mark International Light at the Laboratorio de Fotometria y Tecnologia Laser (LAFTA) de la Escuela de Ingenieria Electrica de la Universidad de Costa Rica is established. Two photometric banks are used as experimental set and two calibrations were performed of the International Light. A basic procedure established in the laboratory, is used for calibration from measurements of illuminance and luminous intensity. Some dependent variations of photometric banks used in the calibration process, the programming of the radiometer/photometer and the applied methodology showed the results. The procedure for calibration with radiometer/photometer can be improved by optimizing the programming process of the measurement instrument and possible errors can be minimized by using the recommended procedure. (author) [es

  2. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  3. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  4. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  5. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2016-06-01

    Full Text Available This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows.

  6. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  7. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  8. The design of an in-water optical radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A; De

    insights into the role playEd. by absorption and scattering processes in the optical properties of water masses. In this paper, we shall describe our design approach to current development effort on a profiling optical radiometer that will measure upwelling...

  9. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.; Jokela, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1996-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  10. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  11. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  12. Improved noise-adding radiometer for microwave receivers

    Science.gov (United States)

    Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.

    1973-01-01

    Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.

  13. Calibration OGSE for a multichannel radiometer for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; Álvarez, F. J.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martin, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2017-09-01

    This work describes several OGSEs (Optical Ground Support Equipment) developed by INTA (Spanish Institute of Aerospace Technology - Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (Solar Irradiance Sensors - SIS) for planetary atmospheric studies in the frame of some Martian missions at which INTA is participating.

  14. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K; Jokela, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1997-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  15. Characterisation of optical filters for broadband UVA radiometer

    Science.gov (United States)

    Alves, Luciana C.; Coelho, Carla T.; Corrêa, Jaqueline S. P. M.; Menegotto, Thiago; Ferreira da Silva, Thiago; Aparecida de Souza, Muriel; Melo da Silva, Elisama; Simões de Lima, Maurício; Dornelles de Alvarenga, Ana Paula

    2016-07-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied.

  16. A New Way to Demonstrate the Radiometer as a Heat Engine

    Science.gov (United States)

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  17. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  18. Design and Development of the SMAP Microwave Radiometer Electronics

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  19. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    Directory of Open Access Journals (Sweden)

    Eva Buck

    Full Text Available Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD, one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111 as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  20. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    Science.gov (United States)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  1. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    International Nuclear Information System (INIS)

    Edamatsu, Hideo; Uechi, Yoko; Honjyo, Shiro; Yamashita, Koichi; Tonami, Hisao.

    1997-01-01

    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ''common cavity''. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  2. Prelaunch Performance of the 118 GHz Polarcube 3U Cubesat Temperature Sounding Radiometer

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Gallaher, D. W.; Sanders, B. T.; Belter, R.; Kraft, D.; Castillo, J.; Gordon, J. A.; Hurowitz, M.

    2017-12-01

    The low cost PolarCube 3U CubeSat supports a 118.75 GHz imaging spectrometer for temperature profiling of the troposphere and surface temperature. It is a demonstrator for a constellation of LEO passive microwave sensors at V-band and other frequencies using 3U/6U CubeSats. Such a satellite constellation for weather forecasting will provide data at high spatial and temporal resolution to observe rapidly evolving mesoscale weather. The satellite's payload is an eight channel, double sideband passive microwave temperature sounder with cross-track scanning and will provide 18 km surface resolution from a 400 km orbit. The radiometer implements a two-point calibration using an internal PIN switch and view of cold space. Although the instrument is based on a well established classical design, the challenges lie in developing a sensitive spectrometer that fits in a 1.5U volume, is low cost, consumes 4 W power and satisfies the CubeSat weight and envelope constraints. PolarCube is scheduled for launch on a Virgin Galactic flight in summer, 2018. The estimated radiometer sensitivity, ΔTrms varies from 0.3 to 2 K across the eight channels. The 50 MHz to 7 GHz 8-channel filter bank (designed with surface mount capacitors and inductors) fits on a 9x5 cm2 RO4350B PCB and includes 2-stage amplification and detector circuitry. The scanning reflector with an 8 cm2 main aperture uses a 3D printed corrugated feed that includes a WR8 to WC8 waveguide transition with a 17° bend. Initial performance results from the instrument using the 3D printed feed and IF/VA board obtained from airborne measurements over Antarctica on the NASA DC8 in early November 2016 indicate a well-functioning radiometer. The end-to-end characterization of the payload with the satellite bus, performance results from vibration and thermal-vacuum tests and roof-top measurements will be presented.

  3. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  4. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  5. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  6. High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.

    Directory of Open Access Journals (Sweden)

    Fabian Hezel

    Full Text Available Myocardial tissue characterization using T(2(* relaxation mapping techniques is an emerging application of (preclinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2(* mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2(* imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2(* mapping. In phantom experiments single cardiac phase and dynamic (CINE gradient echo imaging techniques provided similar T(2(* maps. In vivo studies showed that the peak-to-peak B(0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2(* weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2(* values were found for anterior (T(2(* = 14.0 ms, anteroseptal (T(2(* = 17.2 ms and inferoseptal (T(2(* = 16.5 ms myocardial segments. Shorter T(2(* values were observed for inferior (T(2(* = 10.6 ms and inferolateral (T(2(* = 11.4 ms segments. A significant difference (p = 0.002 in T(2(* values was observed between end-diastole and end-systole with T(2(* changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2(* mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.

  7. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375

  8. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data

  9. The Along Track Scanning Radiometer (ATSR) for ERS1

    Science.gov (United States)

    Delderfield, J.; Llewellyn-Jones, D. T.; Bernard, R.; de Javel, Y.; Williamson, E. J.

    1986-01-01

    The ATSR is an infrared imaging radiometer which has been selected to fly aboard the ESA Remote Sensing Satellite No. 1 (ERS1) with the specific objective of accurately determining global Sea Surface Temperature (SST). Novel features, including the technique of 'along track' scanning, a closed Stirling cycle cooler, and the precision on-board blackbodies are described. Instrument subsystems are identified and their design trade-offs discussed.

  10. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    Science.gov (United States)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when

  11. A new real time infrared background discrimination radiometer (BDR)

    International Nuclear Information System (INIS)

    Kopolovich, Z.; Cabib, D.; Buckwald, R.A.

    1989-01-01

    This paper reports on a new radiometer (BDR) that has been developed, which discriminates small differences between an object and its surrounding background, and is able to measure an object's changing contrast when the contrast of a moving object is to be measured against a changing background. The difference in radiant emittance of a small object against its background or of two objects with respect to each other and this difference is small compared to the emittance itself. Practical examples of such measurements are contrast measurements of airplanes and missiles in flight, contrast measurements of small, weak objects on a warm background and uniformity measurements of radiant emittance from an object's surface. Previous instruments were unable to make such measurements since the process of contrast measurement with a fixed field of view radiometer is too slow for implementation on flying objects; detection of a small difference between two large DC signals is impossible in a traditional fixed field of view radiometer when the instrument itself is saturated

  12. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  13. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  14. Manual of program operation for data analysis from radiometer system

    International Nuclear Information System (INIS)

    Silva Mello, L.A.R. da; Migliora, C.G.S.

    1987-12-01

    This manual describes how to use the software to retrieve and analyse data from radiometer systems and raingauges used in the 12 GHz PROPAGATION MEASUREMENTS/CANADA - TELEBRAS COOPERATION PROGRAM. The data retrieval and analisys is being carried out by CETUC, as part of the activities of the project Simulacao de Enlaces Satelite (SES). The software for these tasks has been supplied by the Canadian Research Centre (CRC), together with the measurement equipment. The two following sections describe the use of the data retrieval routines and the data analysis routines of program ATTEN. Also, a quick reference guide for commands that can be used when a microcomputer is local or remotely connected to a radiometer indoor unit is included as a last section. A more detailed description of these commands, their objectives and cautions that should de taken when using them can be found in the manual ''12 GHz Propagation Measurements System - Volume 1 - Dual Slope Radiometer and Data Aquisition System'', supplied by Diversitel Communications Inc. (author) [pt

  15. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  16. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  17. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  18. Upgraded ECE radiometer on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S.; Kraemer-Flecken, A.

    2004-01-01

    An upgraded 32-channel heterodyne radiometer, 1 GHz spaced, is used on the Tore-Supra tokamak to measure the electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O1) and 94-126.5 GHz for the extraordinary mode (X2). From now radial resolution is essentially limited by ECE relativistic effects related to electron temperature and density, not by the channels frequency spacing. For example, this leads to precise electron temperature mapping during magneto hydrodynamic activities (MHD). In the equatorial plane, we use a dual polarisation Gaussian optics lens antenna. It has low spreading and a perpendicular line-of-sight that gives ECE measurements very low refraction and Doppler effects. Assuming that the plasma is a black body and there is no overlap between ECE harmonics, one can deduce the electron temperature profile by using the first harmonic ordinary mode (O1) or the second harmonic extraordinary mode (X2). The principle radio frequency emitter (RF) has its frequencies down shifted into intermediary frequencies (IF) that span from 2 to 18 GHz in the single side band mode (SSB). It is amplified by low noise IF amplifiers before forming channels. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This gives the potentiality of simultaneous O/X mode measurements in the 94-110 GHz. RF and IF filters reject the gyrotron frequency (118 GHz) in order to perform electron temperature measurements during electron cyclotron resonance heated plasmas. A precise absolute spectral calibration is performed outside the tokamak vacuum vessel by using a 600 deg C black body hot source, a double coherent digital signal averaging (trigger, turn and clock) on the waveform generated by a mechanical chopper, and a simulated tokamak window. The use of differential electronics and strong electromagnetic shielding improves also the calibration precision. The fast and slow data acquisition systems are free of aliasing

  19. Upgraded ECE radiometer on the Tore Supra Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Segui, J.L.; Molina, D.; Goniche, M.; Maget, P.; Udintsev, V.S. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Antar, G.Y. [Center for Energy Research, UCSD, La Jolla CA (United States); Kraemer-Flecken, A. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik

    2004-07-01

    An upgraded 32-channel heterodyne radiometer, 1 GHz spaced, is used on the Tore-Supra tokamak to measure the electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O1) and 94-126.5 GHz for the extraordinary mode (X2). From now radial resolution is essentially limited by ECE relativistic effects related to electron temperature and density, not by the channels frequency spacing. For example, this leads to precise electron temperature mapping during magneto hydrodynamic activities (MHD). In the equatorial plane, we use a dual polarisation Gaussian optics lens antenna. It has low spreading and a perpendicular line-of-sight that gives ECE measurements very low refraction and Doppler effects. Assuming that the plasma is a black body and there is no overlap between ECE harmonics, one can deduce the electron temperature profile by using the first harmonic ordinary mode (O1) or the second harmonic extraordinary mode (X2). The principle radio frequency emitter (RF) has its frequencies down shifted into intermediary frequencies (IF) that span from 2 to 18 GHz in the single side band mode (SSB). It is amplified by low noise IF amplifiers before forming channels. A separate O/X mode RF front-end allows the use of an IF electronic mode selector. This gives the potentiality of simultaneous O/X mode measurements in the 94-110 GHz. RF and IF filters reject the gyrotron frequency (118 GHz) in order to perform electron temperature measurements during electron cyclotron resonance heated plasmas. A precise absolute spectral calibration is performed outside the tokamak vacuum vessel by using a 600 deg C black body hot source, a double coherent digital signal averaging (trigger, turn and clock) on the waveform generated by a mechanical chopper, and a simulated tokamak window. The use of differential electronics and strong electromagnetic shielding improves also the calibration precision. The fast and slow data acquisition systems are free of aliasing

  20. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  1. Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade

    Science.gov (United States)

    Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.

    2009-04-01

    The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.

  2. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  3. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  4. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  5. Application of microwave radiometers for wetlands and estuaries monitoring

    International Nuclear Information System (INIS)

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-01-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface

  6. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    Science.gov (United States)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; hide

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  7. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    Science.gov (United States)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  8. Deep neural network convolution (NNC) for three-class classification of diffuse lung disease opacities in high-resolution CT (HRCT): consolidation, ground-glass opacity (GGO), and normal opacity

    Science.gov (United States)

    Hashimoto, Noriaki; Suzuki, Kenji; Liu, Junchi; Hirano, Yasushi; MacMahon, Heber; Kido, Shoji

    2018-02-01

    Consolidation and ground-glass opacity (GGO) are two major types of opacities associated with diffuse lung diseases. Accurate detection and classification of such opacities are crucially important in the diagnosis of lung diseases, but the process is subjective, and suffers from interobserver variability. Our study purpose was to develop a deep neural network convolution (NNC) system for distinguishing among consolidation, GGO, and normal lung tissue in high-resolution CT (HRCT). We developed ensemble of two deep NNC models, each of which was composed of neural network regression (NNR) with an input layer, a convolution layer, a fully-connected hidden layer, and a fully-connected output layer followed by a thresholding layer. The output layer of each NNC provided a map for the likelihood of being each corresponding lung opacity of interest. The two NNC models in the ensemble were connected in a class-selection layer. We trained our NNC ensemble with pairs of input 2D axial slices and "teaching" probability maps for the corresponding lung opacity, which were obtained by combining three radiologists' annotations. We randomly selected 10 and 40 slices from HRCT scans of 172 patients for each class as a training and test set, respectively. Our NNC ensemble achieved an area under the receiver-operating-characteristic (ROC) curve (AUC) of 0.981 and 0.958 in distinction of consolidation and GGO, respectively, from normal opacity, yielding a classification accuracy of 93.3% among 3 classes. Thus, our deep-NNC-based system for classifying diffuse lung diseases achieved high accuracies for classification of consolidation, GGO, and normal opacity.

  9. Validation of ocean color sensors using a profiling hyperspectral radiometer

    Science.gov (United States)

    Ondrusek, M. E.; Stengel, E.; Rella, M. A.; Goode, W.; Ladner, S.; Feinholz, M.

    2014-05-01

    Validation measurements of satellite ocean color sensors require in situ measurements that are accurate, repeatable and traceable enough to distinguish variability between in situ measurements and variability in the signal being observed on orbit. The utility of using a Satlantic Profiler II equipped with HyperOCR radiometers (Hyperpro) for validating ocean color sensors is tested by assessing the stability of the calibration coefficients and by comparing Hyperpro in situ measurements to other instruments and between different Hyperpros in a variety of water types. Calibration and characterization of the NOAA Satlantic Hyperpro instrument is described and concurrent measurements of water-leaving radiances conducted during cruises are presented between this profiling instrument and other profiling, above-water and moored instruments. The moored optical instruments are the US operated Marine Optical BuoY (MOBY) and the French operated Boussole Buoy. In addition, Satlantic processing versions are described in terms of accuracy and consistency. A new multi-cast approach is compared to the most commonly used single cast method. Analysis comparisons are conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection and analysis, the Satlantic Hyperpro profiling radiometer has proven to be a reliable and consistent tool for satellite ocean color validation.

  10. Modeling the frequency response of microwave radiometers with QUCS

    International Nuclear Information System (INIS)

    Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P; Roucaries, B; D'Arcangelo, O; Franceschet, C; Mennella, A; Bersanelli, M; Jahn, S

    2010-01-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  11. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  12. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  13. The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data

    Directory of Open Access Journals (Sweden)

    Vittorio E. Brando

    2016-02-01

    Full Text Available Calibration and validation of satellite observations are essential and on-going tasks to ensure compliance with mission accuracy requirements. An automated above water hyperspectral radiometer significantly augmented Australia’s ability to contribute to global and regional ocean color validation and algorithm design activities. The hyperspectral data can be re-sampled for comparison with current and future sensor wavebands. The continuous spectral acquisition along the ship track enables spatial resampling to match satellite footprint. This study reports spectral comparisons of the radiometer data with Visible Infrared Imaging Radiometer Suite (VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua for contrasting water types in tropical waters off northern Australia based on the standard NIR atmospheric correction implemented in SeaDAS. Consistent match-ups are shown for transects of up to 50 km over a range of reflectance values. The MODIS and VIIRS satellite reflectance data consistently underestimated the in situ spectra in the blue with a bias relative to the “dynamic above water radiance and irradiance collector” (DALEC at 443 nm ranging from 9.8 × 10−4 to 3.1 × 10−3 sr−1. Automated acquisition has produced good quality data under standard operating and maintenance procedures. A sensitivity analysis explored the effects of some assumptions in the data reduction methods, indicating the need for a comprehensive investigation and quantification of each source of uncertainty in the estimate of the DALEC reflectances. Deployment on a Research Vessel provides the potential for the radiometric data to be combined with other sampling and observational activities to contribute to algorithm development in the wider bio-optical research community.

  14. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 1999 on board the Terra satellite platform (a...

  15. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 2002 on board the Aqua satellite platform (a...

  16. Physical, biological, and chemical data from radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution as part of the SeaWiFS/SIMBIOS project from 13 September 1981 to 16 December 1999 (NODC Accession 0000632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, biological, and chemical data were collected using radiometer, profiling reflectance radiometer, and CTD casts in a world-wide distribution from 13...

  17. Compact Front-end Prototype for Next Generation RFI-rejecting Polarimetric L-band Radiometer

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Søbjærg, Sten Schmidl; Skou, Niels

    2009-01-01

    Realizing the need for lower noise figure and smaller physical size in todays higly sensitive radiometers, this paper presents a new compact analog front-end (AFE) for use with the existing L-band (1400-1427 MHz) radiometer designed and operated by the Technical University of Denmark. Using subha...

  18. A simple method to minimize orientation effects in a profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; SrinivasaKumar, T.; Lotlikar, A.

    -fall radiometer is found to be a better option for measuring underwater light parameters as it avoids the effects of ship shadow and is easy to operate, the measurements demand profiling the radiometer vertical in water with minimum tilt. Here we present...

  19. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  20. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  1. Clarifying Normalization

    Science.gov (United States)

    Carpenter, Donald A.

    2008-01-01

    Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. This author's industry and classroom experiences indicate such simplification yields quicker…

  2. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  3. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  4. ATSR - The Along Track Scanning Radiometer For ERS-1

    Science.gov (United States)

    Llewellyn-Jones, David T.; Mutlow, C. T.

    1990-04-01

    The ATSR instrument is an advanced imaging radiometer designed to measure global sea surface temperature to an accuracy of the order of 0.3C from the ESA's ERS-1 satellite, due to be launched in late 1990. The instrument is designed to achieve a very precise correction for atmospheric effects through the use of carefully selected spectral bands, and a new "along-track" scanning technique. This involves viewing the same geophysical scene at two different angles, hence using two different atmospheric paths, so that the difference in radiative signal from the two scenes is due only to atmospheric effects, which can then be quantitatively estimated. ATSR is also a high performance radiometer, and embodies two important technological features; the first of these is the use of closed-cycle coolers, especially developed for space applications, and which were used to cool the sensitive infrared detectors. The radiometer also incorporates two purpose-designed on-board blackbody calibration targets which will also be described in detail. These two features enable the instrument to meet the stringent requirements of sensitivity and absolute radiometric accuracy demanded by this application. ATSR also incorporates a passive nadir-viewing two-channel microwave sounder. Measurements from this instrument will enable total atmospheric water vapour to be inferred, which will not only lead to improved SST retrievals, but will also considerably improve the atmospheric range correction required by the ERS-1 radar altimeter. ATSR is provided by a consortium of research institutes including the University of Oxford, Department of Atmospheric Oceanic and Planetary Physics, who are primarily responsible for scientific calibration of the instrument; University College London's Mullard Space Science Laboratory, who are responsible for the development of the blackbodies; the UK Meteorological Office, whose contributions include the focal plane assembly; the French laboratory CRPE, who are

  5. Accurate frequency measurements on gyrotrons using a ''gyro-radiometer''

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1986-08-01

    Using an heterodyne system, called ''Gyro-radiometer'', accurated frequency measurements have been carried out on VARIAN 60 GHz gyrotrons. Changing the principal tuning parameters of a gyrotron, we have detected frequency variations up to 100 MHz, ∼ 40 MHz frequency jumps and smaller jumps (∼ 10 MHz) when mismatches in the transmission line were present. FWHM bandwidth of 300 KHz, parasitic frequencies and frequency drift during 100 msec pulses have also been observed. An efficient method to find a stable-, high power-, long pulse-working point of a gyrotron loaded by a transmission line, has been derived. In general, for any power value it is possible to find stable working conditions tuning the principal parameters of the tube in correspondance of a maximum of the emitted frequency

  6. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  7. High-resolution VUV spectra of carbon, neon and argon in a wavelength range of 250 to 2300 A for plasma diagnostics observed with a 3 m normal incidence spectrometer in LHD

    International Nuclear Information System (INIS)

    Katai, Ryuji; Morita, Shigeru; Goto, Motoshi

    2007-01-01

    Intrinsic impurities have been much reduced in toroidal fusion devices through the development of several wall-conditioning techniques as well as by the use of carbon materials in the first wall and divertor plates. Impurity elements useful for passive plasma spectroscopy have been then extremely limited. At present, only carbon is a subject for spectroscopic diagnostics in most discharges except for fuel atoms. The use of rare gas as a brighter light source is a method to overcome the present difficulty in passive spectroscopy. Recently, rare gases have also been used for edge cooling to reduce the divertor heat flux. Therefore, high-resolution spectra (Δλ - 0.2 A) from neon and argon in a 250 to 2300 A wavelength range have been measured using a 3 m normal incidence spectrometer in Large Helical Device (LHD) and the measured spectra were precisely analyzed. The VUV spectra of carbon, neon and argon are presented for spectroscopic use and their wavelengths are tabulated with their relative intensities. The spectral profiles of almost all the spectral lines measured here are formed by the Doppler broadening and self-absorption processes. The Doppler broadening of neon and argon spectra are plotted against the ionization energies and Doppler spectra from carbon lines are presented. The self-absorption spectra of the hydrogen Lyman-α line, which are found in the LHD high-density discharge, are also presented and the neutral density is analytically estimated. (author)

  8. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    International Nuclear Information System (INIS)

    Nakamura, Miyako

    1988-01-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone. (author)

  9. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  10. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Science.gov (United States)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  11. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    Science.gov (United States)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  12. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  13. Birkhoff normalization

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for

  14. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  15. Spectro-radiometers ASTER and MODIS - character of data, their accessibility and exploitability in area of environment

    International Nuclear Information System (INIS)

    Hlasny, T.; Bucha, T.; Rasi, R.

    2005-01-01

    In this presentation some basic information about spectro-radiometers ASTER and MODIS are presented. Relative wide opportunities of exploitation of these products in area of environment, their high spectral and in case of MODIS time resolution are discussed. These parameters create starting-point for building-up of regional monitoring systems of different biophysical characteristics of terrestrial ecosystems and monitoring of time and spatial variability. Next effort in this area should be aimed on development and optimisation of regional models based on monitoring of time and spatial changes of vegetable and foliar indexes (NDVI, EVI, LAI), photosynthetically active part of radiation absorbed by vegetation (FPAR) and likewise, as well as detail analyses of these data in context of global climatic changes. Perspectives of remote sensing earth in the Slovak republic are discussed

  16. Sea Surface Temperature Records from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Mutlow, C. T.; Smith, D. L.; Delderfield, J.; Llewellyn-Jones, D.

    2006-12-01

    Since the early 1990s ESA has flown Along Track Scanning Radiometer (ATSR) instruments on its ERS-1 and -2 satellites and is currently flying the Advanced ATSR instrument (AATSR) on its very successful Envisat mission; each successive sensor has been an incremental improvement over the last. The sensors have been specifically designed to provide the information urgently needed for the debate on climate change and global warming, as well as to produce properly calibrated image data sets for use in a wide range of EO studies. The ATSR instruments are a series of second generation space radiometers which build on the long heritage of the NOAA Advanced Very High Resolution Radiometers (AVHRR). Each ATSR exploits the multi-channel method pioneered in AVHRR but also uses new technology to improve instrument stability and calibration, detector signal to noise, and to provide observations of the same surface scene at two different angles. The novel feature of each ATSR, from which the sensor is derives its name, is its use of along-track scanning to reduce the effects of the atmosphere on surface measurements. This method obtains two observations of the scene through differing amounts of atmosphere; the "along track" view passes through a longer atmospheric path so is more affected by the atmosphere than the nadir view. ATSR-1 was launched on the ESA ERS-1 satellite on 17th July 1991, as the test-bed for the along track scanning concept using infrared channels at 1.6, 3.7, 10.8 and 12.0um. ATSR-1 continued to operate until the ERS-1 spacecraft was lost some 10 years after launch. The ATSR-2 and Advanced ATSR (AATSR) instruments are developments from the original ATSR-1, which in addition to the infrared channels; carry extra visible channels at 0.55, 0.67 and 0.87um for vegetation, cloud and aerosol remote sensing. ATSR-2 has operating on the ESA ERS-2 satellite since April 1995 and has provided over 10 years of data. The current operational sensor is AATSR flying on ESA

  17. Application of RUB-01P beta radiometer to control contamination of milk and dairy produce

    International Nuclear Information System (INIS)

    Bachurin, A.V.; Donskaya, G.A.; Koroleva, M.S.; Titov, S.K.

    1990-01-01

    RUB-01P beta-radiometer to control radioactive contamination of milk and dairy produce characterized by a number of advantages as compared to RKB-4-1eM manufactured earlier is described. Device is designed using a new element base, simgle-action, characterized by increased reliability, can operate on-line with ELEKTRONIKA MK-64 programmed microcalculater. Radiometer output is printed out to a void operator errors and to record measurement results. Radiometer main error is maximum 50 %. Data on device sensitivity at measurements using BDZhB-05P, BDZhB-06P1, BDZhB-06P detection units are given

  18. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa

    2015-01-01

    Radio Frequency Interference (RFI) is an increasing threat to proper operation of space-borne Earth viewing microwave radiometer systems. There is a steady growth in active services, and tougher requirements to sensitivity and fidelity of future radiometer systems. Thus it has been decided...... that the next generation MetOp satellites must include some kind of RFI detection and mitigation system at Ku band. This paper describes a breadboard processor that detects and mitigates RFI on-board the satellite. Thus cleaned data can be generated in real time, and following suitable integration, downloaded...... to ground at the modest data rate usually associated with radiometer systems....

  19. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  20. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  1. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Directory of Open Access Journals (Sweden)

    F. De Angelis

    2017-10-01

    Full Text Available Ground-based microwave radiometers (MWRs offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes require an accurate representation of the differences between model (background and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O–B. Monitoring of O–B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O–B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O–B monitoring can effectively detect instrument malfunctions. O–B statistics (bias, standard deviation, and root mean square for water vapour channels (22.24–30.0 GHz are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ∼  2–2.5 K towards the high-frequency wing ( ∼  0.8–1.3 K. Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O

  2. An optical scanning subsystem for a UAS-enabled hyperspectral radiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral radiometers will be integrated with an optical scanning subsystem to measure remote sensing reflectance spectra over the ocean.  The entire scanning...

  3. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of snow cover from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Detection Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of suspended matter from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sensor Data Records (SDRs), or Level 1b data, from the Visible Infrared Imaging Radiometer Suite (VIIRS) are the calibrated and geolocated radiance and reflectance...

  7. Low level beta-activity radiometer with compensation of the background

    Energy Technology Data Exchange (ETDEWEB)

    Vankov, I [and others

    1996-12-31

    New type of the low level beta-activity scintillation detector system is developed. The procedure of finding the beta activity and the operation of the recording unit of the radiometer are considered. 3 refs.; 5 figs.

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of cloud masks from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard...

  9. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers

    International Nuclear Information System (INIS)

    Wang, J.R.

    1985-01-01

    The microwave radiometric measurements made by the Skylab 1.4 GHz radiometer and by the 6.6 GHz and 10.7 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer were analyzed to study the large-area soil moisture variations of land surfaces. Two regions in Texas, one with sparse and the other with dense vegetation covers, were selected for the study. The results gave a confirmation of the vegetation effect observed by ground-level microwave radiometers. Based on the statistics of the satellite data, it was possible to estimate surface soil moisture in about five different levels from dry to wet conditions with a 1.4 GHz radiometer, provided that the biomass of the vegetation cover could be independently measured. At frequencies greater than about 6.6 GHz, the radiometric measurements showed little sensitivity to moisture variation for vegetation-covered soils. The effects of polarization in microwave emission were studied also. (author)

  10. Calibration of IR test chambers with the missile defense transfer radiometer

    Science.gov (United States)

    Kaplan, Simon G.; Woods, Solomon I.; Carter, Adriaan C.; Jung, Timothy M.

    2013-05-01

    The Missile Defense Transfer Radiometer (MDXR) is designed to calibrate infrared collimated and flood sources over the fW/cm2 to W/cm2 power range from 3 μm to 28μ m in wavelength. The MDXR operates in three different modes: as a filter radiometer, a Fourier-transform spectrometer (FTS)-based spectroradiometer, and as an absolute cryogenic radiometer (ACR). Since 2010, the MDXR has made measurements of the collimated infrared irradiance at the output port of seven different infrared test chambers at several facilities. We present a selection of results from these calibration efforts compared to signal predictions from the respective chamber models for the three different MDXR calibration modes. We also compare the results to previous measurements made of the same chambers with a legacy transfer radiometer, the NIST BXR. In general, the results are found to agree within their combined uncertainties, with the MDXR having 30 % lower uncertainty and greater spectral coverage.

  11. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  12. Next-Generation Thermal Infrared Multi-Body Radiometer Experiment (TIMBRE)

    Science.gov (United States)

    Kenyon, M.; Mariani, G.; Johnson, B.; Brageot, E.; Hayne, P.

    2016-10-01

    We have developed an instrument concept called TIMBRE which belongs to the important class of instruments called thermal imaging radiometers (TIRs). TIMBRE is the next-generation TIR with unparalleled performance compared to the state-of-the-art.

  13. The Planck-LFI Radiometer Electronics Box Assembly

    International Nuclear Information System (INIS)

    Herreros, J M; Gomez, M F; Rebolo, R; Chulani, H; Rubino-Martin, J A; Hildebrandt, S R; Bersanelli, M; Franceschet, C; Butler, R C; Miccolis, M; Pena, A; Pereira, M; Torrero, F; Lopez, M; Alcala, C

    2009-01-01

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  14. The Planck-LFI Radiometer Electronics Box Assembly

    Science.gov (United States)

    Herreros, J. M.; Gómez, M. F.; Rebolo, R.; Chulani, H.; Rubiño-Martin, J. A.; Hildebrandt, S. R.; Bersanelli, M.; Butler, R. C.; Miccolis, M.; Peña, A.; Pereira, M.; Torrero, F.; Franceschet, C.; López, M.; Alcalá, C.

    2009-12-01

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  15. CIRiS: Compact Infrared Radiometer in Space

    Science.gov (United States)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  16. The Planck-LFI Radiometer Electronics Box Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, J M; Gomez, M F; Rebolo, R; Chulani, H; Rubino-Martin, J A; Hildebrandt, S R [Instituto de Astrofisica de Canarias (IAC), 38200 La Laguna, Tenerife (Spain); Bersanelli, M; Franceschet, C [Universita di Milano, Dipartamento di Fisica, Via G. Celoria 16, 20133 Milano (Italy); Butler, R C [INAF-IASF Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Miccolis, M [Thales Alenia Space Italia S.p.A., IUEL - Scientific Instruments, S.S. Padana Superiore 290, 20090 Vimodrone (Italy); Pena, A; Pereira, M; Torrero, F; Lopez, M; Alcala, C, E-mail: rrl@iac.e [EADS Astrium CRISA, C/Torres Quevedo, 9, 28760 Tres Cantos (Spain)

    2009-12-15

    The Radiometer Electronics Box Assembly (REBA) is the control and data processing on board computer of the Low Frequency Instrument (LFI) of the Planck mission (ESA). The REBA was designed and built incorporating state of the art processors, communication interfaces and real time operating system software in order to meet the scientific performance of the LFI. We present a technical summary of the REBA, including a physical, functional, electrical, mechanical and thermal description. Aspects of the design and development, the assembly, the integration and the verification of the equipment are provided. A brief description of the LFI on board software is given including the Low-Level Software and the main functionalities and architecture of the Application Software. The compressor module, which has been developed as an independent product, later integrated in the application, is also described in this paper. Two identical engineering models EM and AVM, the engineering qualification model EQM, the flight model FM and flight spare have been manufactured and tested. Low-level and Application software have been developed. Verification activities demonstrated that the REBA hardware and software fulfil all the specifications and perform as required for flight operation.

  17. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  18. Daily quality assurance software for a satellite radiometer system

    Science.gov (United States)

    Keegstra, P. B.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Jackson, P. D.; Kogut, A.; Lineweaver, C.

    1992-01-01

    Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.

  19. A cryogenic electrical substitution radiometer for hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G.

    2007-01-01

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 μm in thickness, inclined by 30 deg., and a cylindrical shell made of copper 80 μm in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%

  20. A cryogenic electrical substitution radiometer for hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)], E-mail: Martin.Gerlach@ptb.de; Krumrey, M.; Cibik, L.; Mueller, P.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2007-09-21

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 {mu}m in thickness, inclined by 30 deg., and a cylindrical shell made of copper 80 {mu}m in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%.

  1. A cryogenic electrical substitution radiometer for hard X-rays

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Ulm, G.

    2007-09-01

    Cryogenic electrical substitution radiometers (ESR) are well established in radiometry to determine radiant power with low uncertainties from the infrared to the soft X-ray region. The absorbers are made of copper to achieve a small time constant. At higher photon energies, the use of copper prevents the operation of ESR due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at BESSY II. In the first place, extensive simulations were performed for a variety of materials and absorber geometries using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a 7 T wavelength shifter beamline at BESSY II. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in an absorber with a gold base 500 μm in thickness, inclined by 30°, and a cylindrical shell made of copper 80 μm in thickness to reduce losses caused mainly by fluorescence. The absorber was manufactured at PTB by means of electroforming and was implemented into an existing ESR. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative uncertainties below 1%.

  2. Determination of total ozone from DMSP multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Luther, F.M.; Weichel, R.L.

    1992-01-01

    The multichannel filter radiometer (MFR) infrared sensor was first flown in 1977 on a Defense Meteorological Satellite Program (DMSP) Block 5D series satellite operated by the US Air Force. The first four satellites in this series carried MFR sensors from which total atmospheric column ozone amounts may be derived. The MFR sensor was the first cross-track scanning sensor capable of measuring ozone. MFR sensor infrared measurements are taken day and night. The satellites are in polar sun-synchronous orbits providing daily global coverage. The series of four sensors spans a data period of nearly three years. The MFR sensor measures infrared radiances for 16 channels. Total ozone amounts are determined from sets of radiance measurements using an empirical relationship that is developed using linear regression analysis. Total ozone is modeled as a linear combination of terms involving functions of the MFR radiances for four channels (1, 3, 7 and 16) and the secant of the zenith angle. The MFR scans side to side in discrete steps of 40. The MFR sensor takes infrared radiance measurements at 25 cross-track scanning locations every 32 seconds. The instrument could take a theoretical maximum of 67,500 measurements per day, although typically 35,000 - 45,000 measurements are taken per day

  3. PERBANDINGAN PENGUKURAN RADIOMETER DAN RADIOSONDE PADA MUSIM HUJAN DI DRAMAGA BOGOR

    OpenAIRE

    Athoillah, Ibnu; Dewi, Saraswati; Renggono, Findy

    2016-01-01

    IntisariBalai Besar Teknologi Modifikasi Cuaca (BB-TMC) BPPT bekerjasama dengan Badan Meteorologi Klimatologi dan Geofisika (BMKG) melakukan kegiatan Intensive Observation Period (IOP) selama puncak musim hujan pada tanggal 18 Januari - 16 Februari 2016 di wilayah Jabodetabek. Salah satu peralatan yang digunakan untuk observasi adalah Radiometer dan Radiosonde. Pada penelitian ini akan difokuskan bagaimana perbandingan hasil dari pengukuran Radiometer dan Radiosonde selama kegiatan IOP teruta...

  4. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1999-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted

  5. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    International Nuclear Information System (INIS)

    Edgeworth R. Westwater; Yong Han

    1997-01-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma

  6. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  7. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Science.gov (United States)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  8. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Baeza

    2011-01-01

    Full Text Available The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera. Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  9. Pushbroom microwave radiometer results from HAPEX-MOBILHY

    International Nuclear Information System (INIS)

    Nichols, W.E.; Cuenca, R.H.; Schmugge, T.J.; Wang, J.R.

    1993-01-01

    The NASA C-130 remote sensing aircraft was in Toulouse, France from 25 May through 4 July 1986, for participation in the HAPEX-MOBILHY program. Spectral and radiometric data were collected by C-130 borne sensors in the visible, infrared, and microwave wavelengths. These data provided information on the spatial and temporal variations of surface parameters such as vegetation indices, surface temperature, and surface soil moisture. The Pushbroom Microwave Radiometer (PBMR) was used to collect passive microwave brightness temperature data. This four-beam sensor operates at the 21-cm wavelength, providing cross-track coverage approximately 1.2 times the aircraft altitude. Observed brightness temperatures for the period were high, ranging from above 240 K about 290 K. Brightness temperature images appeared to correspond well to spatial and temporal soil moisture variation. Previous research has demonstrated that an approximately linear relationship exists between the surface emissivity and surface soil moisture. For these data, however, regression analysis did not indicate a strong linear relationship (r 2 = 0.32 and r 2 = 0.42 respectively) because of the limited range of soil moisture conditions encountered and the small number of ground measurements. When results from wetter soil conditions encountered in another experiment were included, the regression improved dramatically. Based on similar research with the PBMR and an understanding of the ground data collection program, this result was examined to produce recommendations for improvements to future passive microwave research and data collection programs. Examples of surface soil moisture maps generated with PBMR data are presented which appear to be representative of the actual soil moisture conditions

  10. Nighttime Environmental Products from the Visible Infrared Imaging Radiometer Suite: Science Rationale

    Science.gov (United States)

    Roman, M. O.; Wang, Z.; Kalb, V.; Cole, T.; Oda, T.; Stokes, E.; Molthan, A.

    2016-12-01

    A new generation of satellite instruments, represented by the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), offer global measurements of nocturnal visible and near-infrared light suitable for urban science research. While many promising urban-focused applications have been developed using nighttime satellite imagery in the past 25 years, most studies to-date have been limited by the quality of the captured imagery and the retrieval methods used in heritage (DMSP/OLS) products. Instead, science-quality products that are temporally consistent, global in extent, and local in resolution were needed to monitor human settlements worldwide —particularly for studies within dense urban areas. Since the first-light images from the VIIRS were received in January 2012, the NASA Land Science Investigator-led Processing System (Land SIPS) team has worked on maximizing the capabilities of these low-light measurements to generate a wealth of new information useful for understanding urbanization processes, urban functions, and the vulnerability of urban areas to climate hazards. In a recent case study, our team demonstrated that tracking daily dynamic VIIRS nighttime measurements can provide valuable information about the character of the human activities and behaviors that shape energy consumption and vulnerability (Roman and Stokes, 2015). Moving beyond mapping the physical qualities of urban areas (e.g. land cover and impervious area), VIIRS measurements provide insight into the social, economic, and cultural activities that shape energy and infrastructure use. Furthermore, as this time series expands and is merged with other sources of optical remote sensing data (e.g., Landsat-8 and Sentinel 2), VIIRS has the potential to increase our understanding of changes in urban form, structure, and infrastructure—factors that may also influence urban resilience—and how the increasing frequency and severity of climate

  11. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  12. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    Science.gov (United States)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  13. Malware Normalization

    OpenAIRE

    Christodorescu, Mihai; Kinder, Johannes; Jha, Somesh; Katzenbeisser, Stefan; Veith, Helmut

    2005-01-01

    Malware is code designed for a malicious purpose, such as obtaining root privilege on a host. A malware detector identifies malware and thus prevents it from adversely affecting a host. In order to evade detection by malware detectors, malware writers use various obfuscation techniques to transform their malware. There is strong evidence that commercial malware detectors are susceptible to these evasion tactics. In this paper, we describe the design and implementation of a malware normalizer ...

  14. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  15. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    Science.gov (United States)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  16. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    Science.gov (United States)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E

  17. Improvement of shipborne sky radiometer and its demonstration aboard the Antarctic research vessel Shirase

    Directory of Open Access Journals (Sweden)

    Noriaki Tanaka

    2014-11-01

    Full Text Available The sun-tracking performance of a shipborne sky radiometer was improved to attain accurate aerosol optical thickness (AOT from direct solar measurements on a pitching and rolling vessel. Improvements were made in the accuracy of sun-pointing measurements, field-of-view expansion, sun-tracking speed, and measurement method. Radiometric measurements of direct solar and sky brightness distribution were performed using the shipborne sky radiometer onboard the Antarctic research vessel (R/V Shirase during JARE-51 (2009-2010 and JARE-52 (2010-2011. The temporal variation of signal intensity measured by the radiometer under cloudless conditions was smooth, demonstrating that the radiometer could measure direct sunlight onboard the R/V. AOT at 500 nm ranged from 0.01 to 0.34, and values over Southeast Asia and over the western Pacific Ocean in spring were higher than those over other regions. The Angstrom exponent ranged from -0.06 to 2.00, and values over Southeast Asia and off the coast near Sydney were the highest. The improved shipborne sky radiometer will contribute to a good understanding of the nature of aerosols over the ocean.

  18. Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites

  19. Reconstructing Normality

    DEFF Research Database (Denmark)

    Gildberg, Frederik Alkier; Bradley, Stephen K.; Fristed, Peter Billeskov

    2012-01-01

    Forensic psychiatry is an area of priority for the Danish Government. As the field expands, this calls for increased knowledge about mental health nursing practice, as this is part of the forensic psychiatry treatment offered. However, only sparse research exists in this area. The aim of this study...... was to investigate the characteristics of forensic mental health nursing staff interaction with forensic mental health inpatients and to explore how staff give meaning to these interactions. The project included 32 forensic mental health staff members, with over 307 hours of participant observations, 48 informal....... The intention is to establish a trusting relationship to form behaviour and perceptual-corrective care, which is characterized by staff's endeavours to change, halt, or support the patient's behaviour or perception in relation to staff's perception of normality. The intention is to support and teach the patient...

  20. Pursuing Normality

    DEFF Research Database (Denmark)

    Madsen, Louise Sofia; Handberg, Charlotte

    2018-01-01

    implying an influence on whether to participate in cancer survivorship care programs. Because of "pursuing normality," 8 of 9 participants opted out of cancer survivorship care programming due to prospects of "being cured" and perceptions of cancer survivorship care as "a continuation of the disease......BACKGROUND: The present study explored the reflections on cancer survivorship care of lymphoma survivors in active treatment. Lymphoma survivors have survivorship care needs, yet their participation in cancer survivorship care programs is still reported as low. OBJECTIVE: The aim of this study...... was to understand the reflections on cancer survivorship care of lymphoma survivors to aid the future planning of cancer survivorship care and overcome barriers to participation. METHODS: Data were generated in a hematological ward during 4 months of ethnographic fieldwork, including participant observation and 46...

  1. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin; Kostov, K. G.; Jonard, Franç ois; Jadoon, Khan; Schwank, Mike; Weihermü ller, Lutz; Hermes, Normen; Vanderborght, Jan P.; Vereecken, Harry

    2012-01-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  2. New improved algorithm for sky calibration of L-band radiometers JLBARA and ELBARA II

    KAUST Repository

    Dimitrov, Marin

    2012-03-01

    We propose a new algorithm for sky calibration of the L-band radiometers JLBARA and ELBARA II, introducing the effective transmissivities of the instruments. The suggested approach was tested using experimental data obtained at the Selhausen test site, Germany. It was shown that for JLBARA the effective transmissivities depend strongly on the air temperature and decrease with increasing air temperature, while for ELBARA II such strong dependence was not observed. It was also shown that the effective transmissivities account for the antenna and feed cable loss effects, and for the variations of the radiometer gain due to air temperature changes. The new calibration algorithm reduces significantly the bias of brightness temperature estimates for both radiometers, especially for JLBARA. © 2012 IEEE.

  3. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  4. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  5. Development of an improved Newtonian total radiometer, its evaluation and calibration

    International Nuclear Information System (INIS)

    Castrejon G, R.; Morales, A.

    1998-01-01

    Measuring of radiant energy by optical non intrusive means is an important topic of research in many areas of science and technology. Precise evaluation of thermal energy emitted by hot bodies leads to a better understanding of the energy interchange phenomena between the body and its surroundings. To this end, a wide spectrum optical radiometer was developed. In this article we describe the construction and evaluation of this instrument and the physical principles involved in its design and operation. Among other advantages, the linear response of the instrument allows easily a precise calibration. Additionally, we give a procedure to obtain a known source of radiation that was used to calibrate the radiometer. (Author)

  6. The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments

    Science.gov (United States)

    Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.

    1992-08-01

    The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.

  7. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    Science.gov (United States)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  8. On-board digital RFI and polarimetry processor for future spaceborne radiometer systems

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Ruokokoski, T.

    2012-01-01

    Man-made Radio Frequency Interference (RFI) is an increasingly threatening problem for passive microwave radiometry from space. The problem is presently very evident in L-band data from SMOS, but it is realized that it is already now a problem at other traditional radiometer bands at C, X, and Ku...

  9. Inspection of feasible calibration conditions for UV radiometer detectors with the KI/KIO3 actinometer.

    Science.gov (United States)

    Qiang, Zhimin; Li, Wentao; Li, Mengkai; Bolton, James R; Qu, Jiuhui

    2015-01-01

    UV radiometers are widely employed for irradiance measurements, but their periodical calibrations not only induce an extra cost but also are time-consuming. In this study, the KI/KIO3 actinometer was applied to calibrate UV radiometer detectors at 254 nm with a quasi-collimated beam apparatus equipped with a low-pressure UV lamp, and feasible calibration conditions were identified. Results indicate that a washer constraining the UV light was indispensable, while the size (10 or 50 mL) of a beaker containing the actinometer solution had little influence when a proper washer was used. The absorption or reflection of UV light by the internal beaker wall led to an underestimation or overestimation of the irradiance determined by the KI/KIO3 actinometer, respectively. The proper range of the washer internal diameter could be obtained via mathematical analysis. A radiometer with a longer service time showed a greater calibration factor. To minimize the interference from the inner wall reflection of the collimating tube, calibrations should be conducted at positions far enough away from the tube bottom. This study demonstrates that after the feasible calibration conditions are identified, the KI/KIO3 actinometer can be applied readily to calibrate UV radiometer detectors at 254 nm. © 2014 The American Society of Photobiology.

  10. Polarimetric Signatures from a Crop Covered Land Surface Measured by an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    This paper describes preliminary results from field measurements of polarimetric azimuth signatures with the EMIRAD L-band polarimetric radiometer, performed over a land test site at the Institut National de la Recherche Agronomique in Avignon, France. Scans of 180 degrees in azimuth were carried...

  11. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  12. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  13. Insolation measurements with a portable CuS-CdS radiometer

    Science.gov (United States)

    Windawi, H. M.

    1976-01-01

    Solar radiation measurements were carried out with a portable Cu2S-Cds radiometer. The measurements were found to be accurate to better than 5% (better than 3% when sophisticated metering is employed). Calibration to an Eppley precision pyranometer is discussed.

  14. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  15. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  16. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  17. Mapping of the DOME-C area in Antarctica by an airborne L-band radiometer

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2014-01-01

    A 350 × 350 km area near the Concordia station on the high plateau of Dome C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature close to the yearly mean temperature — well suited for calibration checks...

  18. Airborne L-band radiometer mapping of the dome-C area in Antarctica

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen Savstrup; Søbjærg, Sten Schmidl

    2015-01-01

    A 350 km × 350 km area near the Concordia station on the high plateau of Dome-C in Antarctica has been mapped by an airborne L-band radiometer system. The area was expected to display a rather uniform brightness temperature (TB) close to the yearly mean temperature-well suited for calibration...

  19. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  20. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-1) were validated against the in situ measurements from ship...

  1. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  2. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  3. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  4. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  5. Resolution propositions

    International Nuclear Information System (INIS)

    2003-05-01

    To put a resolution to the meeting in relation with the use of weapons made of depleted uranium is the purpose of this text. The situation of the use of depleted uranium by France during the Gulf war and other recent conflicts will be established. This resolution will give the most strict recommendations face to the eventual sanitary and environmental risks in the use of these kind of weapons. (N.C.)

  6. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    Science.gov (United States)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  7. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  8. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  9. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    Science.gov (United States)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  10. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  11. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    Science.gov (United States)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  12. Linear mixing model applied to coarse resolution satellite data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  13. Ozone, spectral irradiance and aerosol measurements with the Brewer spectro radiometer

    International Nuclear Information System (INIS)

    Marenco, F.; Di Sarra, A.

    2001-01-01

    In this technical report a detailed description of the Brewer spectro radiometer, a widespread instrument for ozone and ultraviolet radiation, is given. The methodologies used to measure these quantities and for instrument calibration are described in detail. Finally a new methodology, developed by ENEA to derive the aerosol optical depth from the Brewer routine total ozone measurements, is described. This methodology is based on Langley extrapolation, on the determination of the transmissivity of the Brewer neutral density filters, and on a statistically significant number of half days of measurements obtained in could-free conditions. Results of this method, obtained with the Brewer of the ENEA station for climate observations Roberto Sarao, located in the island of Lampedusa, are reported. These results confirm the validity of the method, thanks to independent measurements taken in 1999 with a Multi filter Rotating Shadow band Radiometer. This methodology allows researchers to obtain an aerosol climatology from ozone measurements obtained at several sites world-wide [it

  14. Measurement of synchrotron radiation from the NBS SURF II using a silicon radiometer

    International Nuclear Information System (INIS)

    Schaefer, A.R.

    1980-01-01

    A project is described in which the synchrotron radiation output from the NBS storage ring known as SURF II, is measured using a well characterized silicon based radiometer. This device consists of a silicon photodiode coupled with two interference filters to restrict the spectral response to a finite and convenient spectral region for the measurement. Considerations required for the characterization of the radiometer will be discussed. The absolute radiant flux from the storage ring is also calculable from various machine parameters. A measurement of the number of circulating electrons will be derived from electron counting techniques at low levels. This will yield an important intercomparison between the synchrotron flux measurements determined in two entirely different ways. (orig.)

  15. Design and first plasma measurements of the ITER-ECE prototype radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Austin, M. E.; Brookman, M. W.; Rowan, W. L. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Danani, S. [ITER-India/Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bryerton, E. W.; Dougherty, P. [Virginia Diodes, Inc., Charlottesville, Virginia 22902 (United States)

    2016-11-15

    On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T{sub e}). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T{sub e} plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.

  16. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  17. Wide-band Millimeter and Sub-Millimeter Wave Radiometer Instrument to Measure Tropospheric Water and Cloud ICE

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop, fabricate and test a new, multi-frequency millimeter and sub-millimeter-wave radiometer instrument to provide critically-needed measurements...

  18. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Near Constant Contrast (NCC) Imagery Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Base Heights (CBH) from the Visible Infrared Imaging Radiometer Suite...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Type and Phase Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud type and phase from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Land Surface Temperature (LST) from the Visible Infrared Imaging Radiometer Suite...

  3. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Cover Layer (CCL) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality Environmental Data Record (EDR) of Cloud Cover Layers (CCL) from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  5. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Thickness and Age Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ice Thickness and Age from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Surface Temperature (IST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Height (CTH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  8. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Temperature (CTT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  9. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    International Nuclear Information System (INIS)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Effective Particle Size (CEPS) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Effective Particle Size (CEPS) from the Visible Infrared Imaging Radiometer...

  11. JPSS NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Top Pressure (CTP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Ice Characterization (SIC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an Environmental Data Record (EDR) of Sea Ice Characterization (SIC) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Height (Top and Base) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud height (top and base) from the Visible Infrared Imaging Radiometer Suite...

  14. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color/Chlorophyll (OCC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ocean Color/Chlorophyll (OCC) from the Visible Infrared Imaging Radiometer Suite...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Volcanic Ash Detection and Height Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of volcanic ash from the Visible Infrared Imaging Radiometer (VIIRS) instrument...

  16. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery (not Near Constant Contrast) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the...

  17. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) datasets include measurements gathered by the HAMSR...

  18. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates

    NARCIS (Netherlands)

    Lievens, H.; Martens, B.; Verhoest, N.E.C.; Hahn, S.; Reichle, R.H.; Gonzalez Miralles, D.

    2016-01-01

    Active radar backscatter (σ°) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model

  19. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    Science.gov (United States)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  20. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

    Science.gov (United States)

    Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A

    2010-12-21

    Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

  1. A General Analysis of the Impact of Digitization in Microwave Correlation Radiometers

    Directory of Open Access Journals (Sweden)

    Hyuk Park

    2011-06-01

    Full Text Available This study provides a general framework to analyze the effects on correlation radiometers of a generic quantization scheme and sampling process. It reviews, unifies and expands several previous works that focused on these effects separately. In addition, it provides a general theoretical background that allows analyzing any digitization scheme including any number of quantization levels, irregular quantization steps, gain compression, clipping, jitter and skew effects of the sampling period.

  2. Atmospheric water distribution in cyclones as seen with Scanning Multichannel Microwave Radiometers (SMMR)

    Science.gov (United States)

    Katsaros, K. B.; Mcmurdie, L. A.

    1983-01-01

    Passive microwave measurements are used to study the distribution of atmospheric water in midlatitude cyclones. The integrated water vapor, integrated liquid water, and rainfall rate are deduced from the brightness temperatures at microwave frequencies measured by the Scanning Multichannel Microwave Radiometer (SMRR) flown on both the Seasat and Nimbus 7 satellites. The practical application of locating fronts by the cyclone moisture pattern over oceans is shown, and the relationship between the quantity of coastal rainfall and atmospheric water content is explored.

  3. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  4. Preparation and quality control of radiometal-DOTARituximab

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Kamali-dehghan, M.; Moradkhani, S.; Saddadi, F.; Mirsadeghi, L.

    2008-01-01

    In this work Rituximab has been labeled by Ga-67 using a new one-step method for in-situ preparation of macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTANHS). DOTA-NHS was prepared at 25 deg. C using DOTA, Nhydroxy succinimide (NHS) in CH Cl in one step. DOTA- 2 2 Rituximab was obtained by the addition of 1 ml of a Rituximab pharmaceutical solution (5 mg/ml, in phosphate buffer, pH=7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 deg. C with continuous mild stirring for 15 hours. Radiolabeling was performed at 37 deg. C in 3 hrs using Ga-67 Chlorides or Cu-64 Acetate. Thin layer radiochromatography demonstrated an overall radiochemical purity of 90-95% at optimized conditions (specific activity =30 GBq/mg, labeling efficacy= 82%). The final isotonic radio-metal-DOTA-Rituximab complex was checked by gel electrophoresis for radiolysis. TLC was performed to ensure that only one species was present after filtration through a 0.22 μm filter. Preliminary bio-distribution studies of the Ga-67 immunoconjugate in normal rat model performed to determine complex distribution of the radioimmunoconjugate up to 28hrs by imaging and organ counting after sacrificing the rats. In this study a facile method for incorporation of metal chelating moiety into peptides and antibody structure is presented. (author)

  5. Advanced Very High Resolution Radiometer (AVHRR) data evaluation for use in monitoring vegetation. Volume 1: Channels 1 and 2

    Science.gov (United States)

    Horvath, N. C.; Gray, T. I.; Mccrary, D. G. (Principal Investigator)

    1982-01-01

    Data from the National Oceanic and Atmospheric Administration satellite system (NOAA-6 satellite) were analyzed to study their nonmeteorological uses. A file of charts, graphs, and tables was created form the products generated. It was found that the most useful data lie between pixel numbers 400 and 2000 on a given scan line. The analysis of the generated products indicates that the Gray-McCrary Index can discern vegetation and associated daily and seasonal changes. The solar zenith-angle correction used in previous studies was found to be a useful adjustment to the index. The METSAT system seems best suited for providing large-area analyses of surface features on a daily basis.

  6. Linear and non-linear enhancement for sun glint reduction in advanced very high resolution radiometer (AVHRR) image

    International Nuclear Information System (INIS)

    Roslan, N; Reba, M N M; Askari, M; Halim, M K A

    2014-01-01

    Cloud detection over water surfaces is difficult due to the sun glint effect. The mixed pixels between both features may introduce inaccurate cloud classification. This problem generally occurs because of less contrast between the glint and the cloud. Both features have almost the same reflectance in the visible wavelength. The piecewise contrast stretch technique shows preservation capability on the reflectance of the cloud. The result of a band ratio was smoothed by applying the Sobel edge detection to provide better cloud feature detection. The study achieved an accuracy of about 77.5% in cloud pixels detection

  7. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  8. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  9. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  10. Vitamin D synthesis measured with a multiband filter radiometer in Río Gallegos, Argentina

    Science.gov (United States)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Bulnes, Daniela; Leme, N. Paes; Quel, Eduardo

    2013-05-01

    Vitamin D plays an important role in human health. Vitamin D production from the sun is affected by UVB solar radiation. This paper presents a simple method for retrieving vitamin D-weighted UV by using a multiband filter radiometer GUV-541 installed at the Atmospheric Observatory of Southern Patagonia (OAPA) (51 ° 33' S, 69° 19' W), Río Gallegos. The methodology used combines irradiance measurements from a multiband filter radiometer with spectral irradiance modeled by the SOS radiative transfer code (developed by Lille University of Science and Technology (USTL)). The spectrum modeled is weighted with vitamin D action spectra published by the International Commission on Illumination (CIE), which describes the relative effectiveness of different wavelengths in the generation of this particular biological response. This method is validated using the vitamin D-weighted UV derived from a Brewer MKIII spectrophotometer (SN 124) belonging to the National Institute for Spatial Research (INPE), Brazil, which is able to measure solar spectra between 290 and 325nm. The method presents a good correlation between the two independent instruments. This procedure increases the instrumental capabilities of the multiband filter radiometer. Moreover, it evaluates the annual variation of vitamin D-weighted UV doses from exposure to ultraviolet radiation. These values are likely to be lower than suitable levels of vitamin D during winter and part of spring and autumn at these latitudes.

  11. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  12. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  13. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  14. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    Directory of Open Access Journals (Sweden)

    J. Delamere

    2011-09-01

    Full Text Available We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM facility at the Southern Great Plains (SGP site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs, four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated can be identified. A normalized difference vegetation index (NDVI is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  15. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  16. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  17. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  18. Spatiotemporal Variability of Earth's Radiation Balance Components from Russian Radiometer IKOR-M

    Science.gov (United States)

    Cherviakov, M.

    2016-12-01

    The radiometer IKOR-M was created in National Research Saratov State University for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurement in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. The scale relationship of the IKOR-M radiometers on "Meteor - M" No 1 and No 2 satellites found by comparing of the global distribution maps for monthly averaged albedo values. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. The reported study was funded by

  19. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  20. A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers

    Science.gov (United States)

    Merchant, Christopher J.; Embury, Owen; Rayner, Nick A.; Berry, David I.; Corlett, Gary K.; Lean, Katie; Veal, Karen L.; Kent, Elizabeth C.; Llewellyn-Jones, David T.; Remedios, John J.; Saunders, Roger

    2012-12-01

    A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr-1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.

  1. Normalization: A Preprocessing Stage

    OpenAIRE

    Patro, S. Gopal Krishna; Sahu, Kishore Kumar

    2015-01-01

    As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are ...

  2. Towards a long-term Science Exploitation Plan for the Sea and Land Surface Temperature Radiometer on Sentinel-3 and the Along-Track Scanning Radiometers

    Science.gov (United States)

    Remedios, John J.; Llewellyn-Jones, David

    2014-05-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3 is the latest satellite instrument in a series of dual-angle optical and thermal sensors, the Along-Track Scanning Radiometers (ATSRs). Operating on Sentinel-3, the SLSTR has a number of significant improvements compared to the original ATSRs including wider swaths for nadir and dual angles, emphasis on all surface temperature domains, dedicated fire channels and additional cloud channels. The SLSTR therefore provides some excellent opportunities to extend science undertaken with the ATSRs whilst also providing long-term data sets to investigate climate change. The European Space Agency, together with the Department of Energy and Climate Change, sponsored the production of an Exploitation Plan for the ATSRs. In the last year, this been extended to cover the SLSTR also. The plan enables UK and European member states to plan activities related to SLSTR in a long-term context. Covering climate change, oceanography, land surface, atmosphere and cryosphere science, particular attention is paid to the exploitation of long-term data sets. In the case of SLSTR, relevant products include sea, land, lake and ice surface temperatures; aerosols and clouds; fires and gas flares; land surface reflectances. In this presentation, the SLSTR and ATSR science Exploitation Plan will be outlined with emphasis on SLSTR science opportunities, on appropriate co-ordinating mechanisms and on example implementation plans. Particular attention will be paid to the challenges of linking ATSR records with SLSTR to provide consistent long-term data sets, and on the international context of such data sets. The exploitation plan approach to science may prove relevant and useful for other Sentinel instruments.

  3. Gap Resolution

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-25

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.

  4. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius

    Science.gov (United States)

    Epeloa, Javier; Meza, Amalia

    2018-02-01

    The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.

  5. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  6. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Directory of Open Access Journals (Sweden)

    F. Navas-Guzmán

    2017-11-01

    Full Text Available In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016 from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland. In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9 in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  7. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  8. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    Science.gov (United States)

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  9. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  10. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  11. Experimental verification of self-calibration radiometer based on spontaneous parametric downconversion

    Science.gov (United States)

    Gao, Dongyang; Zheng, Xiaobing; Li, Jianjun; Hu, Youbo; Xia, Maopeng; Salam, Abdul; Zhang, Peng

    2018-03-01

    Based on spontaneous parametric downconversion process, we propose a novel self-calibration radiometer scheme which can self-calibrate the degradation of its own response and ultimately monitor the fluctuation of a target radiation. Monitor results were independent of its degradation and not linked to the primary standard detector scale. The principle and feasibility of the proposed scheme were verified by observing bromine-tungsten lamp. A relative standard deviation of 0.39 % was obtained for stable bromine-tungsten lamp. Results show that the proposed scheme is advanced of its principle. The proposed scheme could make a significant breakthrough in the self-calibration issue on the space platform.

  12. Intercomparison of characterization techniques of filter radiometers in the ultraviolet region

    International Nuclear Information System (INIS)

    Abu-Kassem, I.; Karha, P.; Harrison, N. J.; Nevas, S.; Hartree, W. S.

    2008-01-01

    Narrow-band filter radiometers at 248 nm, 313 nm, 330 nm and 368 nm wavelengths were used to compare calibration facilities of spectral (irradiance) responsivity at HUT, NPL and BNM-INM. The results are partly in agreement within the stated uncertainties. Use of demanding artefacts in the intercomparison revealed that the wavelength scales of the participating institutes deviate more than expected. Such effects cannot be seen in typical intercomparisons of spectral responsivity or spectral transmittance, where spectrally neutral samples are used.(author)

  13. Measurement of radiosity coefficient by using an infrared radiometer and its application

    International Nuclear Information System (INIS)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ohoka, Norikazu; Eto, Motokuni.

    1989-01-01

    An infrared radiometer has been used for measuring and visualizing radiation temperature distribution of a surface in many fields as a remote sensing devices. Measured radiation flux is a summation of a emitted radiation and a reflection, which is called as a radiosity flux. The present paper shows characteristics of the radiosity of tested materials. And the infrared sensor is used to detect the small surface flaw and to measure the erosion rare of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  14. Measurement of radiosity coefficient by using an infrared radiometer and its application

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ohoka, Norikazu; Eto, Motokuni

    1989-12-01

    An infrared radiometer has been used for measuring and visualizing radiation temperature distribution of a surface in many fields as a remote sensing devices. Measured radiation flux is a summation of a emitted radiation and a reflection, which is called as a radiosity flux. The present paper shows characteristics of the radiosity of tested materials. And the infrared sensor is used to detect the small surface flaw and to measure the erosion rare of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  15. Sentinel-3 MWR Microwave Radiometer – Our contribution to the success of the Copernicus programme

    Directory of Open Access Journals (Sweden)

    M.A. Palacios

    2014-06-01

    Full Text Available The MWR builds, together with the SRAL altimeter, the S3 topography mission. The MWR, developed by EADS CASA Espacio as prime contractor, provides information for tropospheric path correction of SRAL measurements. MWR data can also be used for determining surface emissivity and soil moisture over land, surface energy budget investigations and ice characterization. The MWR instrument is a Noise Injection Radiometer (NIR, working at two frequencies (23.8/36.5 GHz, embarking a dual frequency horn antenna pointing to the cold sky for embedded autonomous calibration.

  16. The along track scanning radiometer for ERS-1 - Scan geometry and data simulation

    Science.gov (United States)

    Prata, A. J. Fred; Cechet, Robert P.; Barton, Ian J.; Llewellyn-Jones, David T.

    1990-01-01

    The first European remote-sensing satellite (ERS-1), due to be launched in 1990, will carry the along track scanning radiometer (ATSR), which has been specifically designed to give accurate satellite measurements of sea surface temperature (SST). Details of the novel scanning technique used by the ATSR are given, and data from the NOAA-9 AVHRR instrument are used to simulate raw ATSR imagery. Because of the high precision of the onboard blackbodies, the active cooling of the detectors, 12-b digitization, and dual-angle capability, the ATSR promises to achieve higher-accuracy satellite-derived SSTs than are currently available.

  17. Construction of a radiometer for pyroelectric detector and presentation of a model for detector design

    International Nuclear Information System (INIS)

    Siqueira, C.A. de.

    1987-01-01

    An expression has been developed for the pyroelectric voltage as a function of electric and thermal parameters of the detector. It has also been developed expressions for determination of unknown parameters from the experimentally obtained pyroelectric voltage curve as function of time and some other known information. It has also been shown figures of merit for characterization of the detectors, a study showing the detector performance dependence on each electric and thermal parameter and some illustrative experimental results. The radiometer designed and built for this work, is described. (author) [pt

  18. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    International Nuclear Information System (INIS)

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-01-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval

  19. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  20. Newly devised infrared radiometer (ERI type IR ground scanner) and the surface temperature of the Mihara crater, O-shima

    Energy Technology Data Exchange (ETDEWEB)

    Shimozuru, D [Earthquake Res. Inst., Univ. of Tokyo; Kagiyama, T

    1976-10-01

    The infrared radiometer, a remote sensing tool, can be successfully used to measure the surface temperature of a volcanic or geothermal area. Many of these devices are available commercially for industrial use but their application to volcano observations is limited due to a wide field of view which prohibits detailed examination of specific points. A commercial radiometer was mounted on a balloon theodolite with an electrically driven rotating base. A telescope was attached to the radiometer to permit monitoring of the field of view. Radiometer output can be recorded either on a magnetic tape data recorder or a strip chart recorder. The device is also useful for continuous monitoring of the temperature of a vent or fumarole. The observed temperatures are dependent upon the wave length of actual spatial temperature distribution, the field of view and the scanning speed. Detailed information of both a theoretical and an experimental nature is provided. The improved radiometer was utilized to observe surface temperature in the caldera of Miharayama, Oshima in March, 1976. It was found that the vent temperature was markedly lower than had previously been recorded, as was the average surface temperature.

  1. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  2. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  3. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Crouch, B.; Barnden, L.R.; Kwiatek, R.

    2010-01-01

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T 1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  4. A Resolution Prover for Coalition Logic

    OpenAIRE

    Nalon, Cláudia; Zhang, Lan; Dixon, Clare; Hustadt, Ullrich

    2014-01-01

    We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and prese...

  5. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  6. The Effect of Atmospheric Scattering as Inferred from the Rocket-Borne UV Radiometer Measurements

    Directory of Open Access Journals (Sweden)

    Jhoon Kim

    1997-06-01

    Full Text Available Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25§° where the signals are not perturbed by atmospheric scattering effects.

  7. Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Science.gov (United States)

    Kazadzis, Stelios; Kouremeti, Natalia; Diémoz, Henri; Gröbner, Julian; Forgan, Bruce W.; Campanelli, Monica; Estellés, Victor; Lantz, Kathleen; Michalsky, Joseph; Carlund, Thomas; Cuevas, Emilio; Toledano, Carlos; Becker, Ralf; Nyeki, Stephan; Kosmopoulos, Panagiotis G.; Tatsiankou, Viktar; Vuilleumier, Laurent; Denn, Frederick M.; Ohkawara, Nozomu; Ijima, Osamu; Goloub, Philippe; Raptis, Panagiotis I.; Milner, Michael; Behrens, Klaus; Barreto, Africa; Martucci, Giovanni; Hall, Emiel; Wendell, James; Fabbri, Bryan E.; Wehrli, Christoph

    2018-03-01

    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001/m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.

  8. Development of electronics and data acquisition system for independent calibration of electron cyclotron emission radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Praveena, E-mail: praveena@ipr.res.in; Raulji, Vismaysinh; Mandaliya, Hitesh; Patel, Jignesh; Siju, Varsha; Pathak, S.K.; Rajpal, Rachana; Jha, R.

    2016-11-15

    Highlights: • Indigenous development of an electronics and data acquisition system to digitize signals for a desired time and automatization of calibration process. • 16 bit DAQ board with form factor of 90 × 89 mm. • VHDL Codes written for generating control signals for PC104 Bus, ADC and RAM. • Averaging process is done in two ways single point averaging and additive averaging. - Abstract: Signal conditioning units (SCU) along with Multichannel Data acquisition system (DAS) are developed and installed for automatization and frequent requirement of absolute calibration of ECE radiometer system. The DAS is an indigenously developed economical system which is based on Single Board Computer (SBC). The onboard RAM memory of 64 K for each channel enables the DAS for simultaneous and continuous acquisition. A Labview based graphical user interface provides commands locally or remotely to acquire, process, plot and finally save the data in binary format. The microscopic signals received from radiometer are strengthened, filtered by SCU and acquired through DAS for the set time and at set sampling frequency. Stored data are processed and analyzed offline with Labview utility. The calibration process has been performed for two hours continuously at different sampling frequency (100 Hz to 1 KHz) at two set of temperature like hot body and the room temperature. The detailed hardware and software design and testing results are explained in the paper.

  9. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  10. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  11. The advanced along track scanning radiometer (aatsr) on esa's envisat satellite - an early assessment

    Science.gov (United States)

    Llewellyn-Jones, D.; Mutlow, C.; Smith, D.; Edwards, M.

    The AATSR sensor is an imaging radiometer designed to measure top-of-the- atmosphere brightness temperature in seven thermal infrared, reflected infrared and visible wavelength channels. The main objective of the AATSR mission is to generate fields of global sea-surface temperature to the high levels of accuracy required for the monitoring and detection of climate change, and to support a broad range of associated research into the marine, terrestrial, cryospheric and atmospheric environments. An essential component of this objective is maintain continuity with the high-quality data-sets already collected form the two predecessor sensors, ATSR1 and 2 on ESA's ERS-1 and -2 satellites respectively. Following the successful launch of ENVISAT on March 1 2002, the AATSR sensor was activated and systematically brought up to full operating configuration in accordance with the agreed Switch-On and Data Acquisition Plan (SODAP). The early images form AATSR are of a quality that is consistent with its objective of effective data continuity. Since the instrument has been returning data, a programme of quality assessment has been taking place. This has included a systematic assessment of instrumental aspects such as signal-to-noise performance and image stability as well as the initial observations in the AATSR validation programme. In this programme, AATSR data-products are compared with correlative observations from other sources, which include, sea-borne radiometers, meteorological analysis fields and data from other satellites. This paper reports early results from some of the activities.

  12. Precision, accuracy and linearity of radiometer EML 105 whole blood metabolite biosensors.

    Science.gov (United States)

    Cobbaert, C; Morales, C; van Fessem, M; Kemperman, H

    1999-11-01

    The analytical performance of a new, whole blood glucose and lactate electrode system (EML 105 analyser. Radiometer Medical A/S. Copenhagen, Denmark) was evaluated. Between-day coefficients of variation were glucose and lactate, respectively. Recoveries of glucose were 100 +/- 10% using either aqueous or protein-based standards. Recoveries of lactate depended on the matrix, being underestimated in aqueous standards (approximately -10%) and 95-100% in standards containing 40 g/L albumin at lactate concentrations of 15 and 30 mmol/L. However, recoveries were high (up to 180%) at low lactate concentrations in protein-based standards. Carry-over, investigated according to National Clinical Chemistry Laboratory Standards EP10-T2, was negligible (alpha = 0.01). Glucose and lactate biosensors equipped with new membranes were linear up to 60 and 30 mmol/L, respectively. However, linearity fell upon daily use with increasing membrane lifetime. We conclude that the Radiometer metabolite biosensor results are reproducible and do not suffer from specimen-related carry-over. However, lactate recovery depends on the protein content and the lactate concentration.

  13. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  14. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Science.gov (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  15. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission

    Science.gov (United States)

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael

    2017-01-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  16. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  17. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  18. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  19. Production of Y-86 and other radiometals for research purposes using a solution target system

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J.; Ruth, Thomas J.; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-01-01

    Introduction: Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of 89 Zr, 68 Ga and for the first time 86 Y are discussed. Methods: Aqueous solutions containing 1.35–1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. Results: We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, 89 Zr (A sat = 360 MBq/μA and yield = 3.17 MBq/μA), 86 Y (A sat = 31 MBq/μA and yield = 1.44 MBq/μA), and 68 Ga (A sat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. 68 Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, 68 Ga and 86 Y were successfully used to radiolabel DOTA-based chelators while

  20. Sibling Conflict Resolution Skills: Assessment and Training

    Science.gov (United States)

    Thomas, Brett W.; Roberts, Mark W.

    2009-01-01

    Sibling conflict can rise to the level of a clinical problem. In Phase 1 a lengthy behavioral role-play analog sampling child reactions to normal sibling conflicts was successfully shortened. In Phase 2 normal children who lacked sibling conflict resolution skills were randomly assigned to a Training or Measurement Only condition. Training…

  1. Normal foot and ankle

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The foot may be thought of as a bag of bones tied tightly together and functioning as a unit. The bones re expected to maintain their alignment without causing symptomatology to the patient. The author discusses a normal radiograph. The bones must have normal shape and normal alignment. The density of the soft tissues should be normal and there should be no fractures, tumors, or foreign bodies

  2. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  3. Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign

    Science.gov (United States)

    In this paper we investigate retrieval of soil moisture based on L-band brightness temperature under diverse conditions and land cover types. We apply the PALS (Passive Active L-band System) radiometer data collected in the SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) field ex...

  4. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat

    NARCIS (Netherlands)

    Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.

    2006-01-01

    The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are

  5. Diagnostics of the SMOS radiometer antenna system at the DTU-ESA spherical near-field antenna test facility

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey

    2007-01-01

    The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...

  6. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  7. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  8. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pazmany, Andrew

    2006-11-09

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  9. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  10. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  11. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  12. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0

  13. A Tissue Propagation Model for Validating Close-Proximity Biomedical Radiometer Measurements

    Science.gov (United States)

    Bonds, Q.; Herzig, P.; Weller, T.

    2016-01-01

    The propagation of thermally-generated electromagnetic emissions through stratified human tissue is studied herein using a non-coherent mathematical model. The model is developed to complement subsurface body temperature measurements performed using a close proximity microwave radiometer. The model takes into account losses and reflections as thermal emissions propagate through the body, before being emitted at the skin surface. The derivation is presented in four stages and applied to the human core phantom, a physical representation of a stomach volume of skin, muscle, and blood-fatty tissue. A drop in core body temperature is simulated via the human core phantom and the response of the propagation model is correlated to the radiometric measurement. The results are comparable, with differences on the order of 1.5 - 3%. Hence the plausibility of core body temperature extraction via close proximity radiometry is demonstrated, given that the electromagnetic characteristics of the stratified tissue layers are known.

  14. An optimal estimation algorithm to derive Ice and Ocean parameters from AMSR Microwave radiometer observations

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob

    channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...

  15. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  16. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    Science.gov (United States)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  17. Application of automatic gain control for radiometer diagnostic in SST-1 tokamak.

    Science.gov (United States)

    Makwana, Foram R; Siju, Varsha; Edappala, Praveenlal; Pathak, S K

    2017-12-01

    This paper describes the characterisation of a negative feedback type of automatic gain control (AGC) circuit that will be an integral part of the heterodyne radiometer system operating at a frequency range of 75-86 GHz at SST-1 tokamak. The developed AGC circuit is a combination of variable gain amplifier and log amplifier which provides both gain and attenuation typically up to 15 dB and 45 dB, respectively, at a fixed set point voltage and it has been explored for the first time in tokamak radiometry application. The other important characteristics are that it exhibits a very fast response time of 390 ns to understand the fast dynamics of electron cyclotron emission and can operate at very wide input RF power dynamic range of around 60 dB that ensures signal level within the dynamic range of the detection system.

  18. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  19. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  20. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals

    International Nuclear Information System (INIS)

    Storch, D.; Schmitt, J.S.; Waldherr, C.; Maecke, H.R.; Waser, B.; Reubi, J.C.

    2007-01-01

    Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity. We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid = DOTA) to the bioactive peptide [Tyr 3 ,Thr 8 ]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N'-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar 5 ) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In 3+ and Y 3+ salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE. Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [ 111/nat In-DOTA]-TATE except for [( 111/nat In-DOTA) 2 -Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [( 111/nat In-DOTA)-Lys( 111/nat In-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [ 111/nat In-DOTA]-TATE. (orig.)

  1. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to

  2. Scintillation camera with second order resolution

    International Nuclear Information System (INIS)

    Muehllehner, G.

    1976-01-01

    A scintillation camera for use in radioisotope imaging to determine the concentration of radionuclides in a two-dimensional area is described in which means is provided for second order positional resolution. The phototubes, which normally provide only a single order of resolution, are modified to provide second order positional resolution of radiation within an object positioned for viewing by the scintillation camera. The phototubes are modified in that multiple anodes are provided to receive signals from the photocathode in a manner such that each anode is particularly responsive to photoemissions from a limited portion of the photocathode. Resolution of radioactive events appearing as an output of this scintillation camera is thereby improved

  3. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  4. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  5. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  6. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  7. Baby Poop: What's Normal?

    Science.gov (United States)

    ... I'm breast-feeding my newborn and her bowel movements are yellow and mushy. Is this normal for baby poop? Answers from Jay L. Hoecker, M.D. Yellow, mushy bowel movements are perfectly normal for breast-fed babies. Still, ...

  8. Visual Memories Bypass Normalization.

    Science.gov (United States)

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  9. An alternative method for calibration of narrow band radiometer using a radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)

    2011-01-01

    The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the

  10. Icecube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.

    2014-12-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified

  11. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  12. Making nuclear 'normal'

    International Nuclear Information System (INIS)

    Haehlen, Peter; Elmiger, Bruno

    2000-01-01

    The mechanics of the Swiss NPPs' 'come and see' programme 1995-1999 were illustrated in our contributions to all PIME workshops since 1996. Now, after four annual 'waves', all the country has been covered by the NPPs' invitation to dialogue. This makes PIME 2000 the right time to shed some light on one particular objective of this initiative: making nuclear 'normal'. The principal aim of the 'come and see' programme, namely to give the Swiss NPPs 'a voice of their own' by the end of the nuclear moratorium 1990-2000, has clearly been attained and was commented on during earlier PIMEs. It is, however, equally important that Swiss nuclear energy not only made progress in terms of public 'presence', but also in terms of being perceived as a normal part of industry, as a normal branch of the economy. The message that Swiss nuclear energy is nothing but a normal business involving normal people, was stressed by several components of the multi-prong campaign: - The speakers in the TV ads were real - 'normal' - visitors' guides and not actors; - The testimonials in the print ads were all real NPP visitors - 'normal' people - and not models; - The mailings inviting a very large number of associations to 'come and see' activated a typical channel of 'normal' Swiss social life; - Spending money on ads (a new activity for Swiss NPPs) appears to have resulted in being perceived by the media as a normal branch of the economy. Today we feel that the 'normality' message has well been received by the media. In the controversy dealing with antinuclear arguments brought forward by environmental organisations journalists nowadays as a rule give nuclear energy a voice - a normal right to be heard. As in a 'normal' controversy, the media again actively ask themselves questions about specific antinuclear claims, much more than before 1990 when the moratorium started. The result is that in many cases such arguments are discarded by journalists, because they are, e.g., found to be

  13. Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

    International Nuclear Information System (INIS)

    Chan, P W; Wong, K H

    2008-01-01

    Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour

  14. GHRSST Level 2P Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  15. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  16. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  17. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  18. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  19. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Snow Fraction Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Snow Cover/Depth Fraction (SCF) from the Visible Infrared Imaging Radiometer...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Binary Map Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Binary Snow Cover (BSC) from the Visible Infrared Imaging Radiometer Suite...

  2. An Airborne Campaign Measuring Wind Signatures from the Sea Surface using an L-band Polarimetric Radiometer

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Skou, Niels

    2003-01-01

    A series of circle flights have been carried out over the sea surface, using the EMIRAD L-band polarimetric radiometer. Motion compensation is applied, and polarimetric azimuth signatures are generated. Single tracks show geophysical noise, typically about 2 K, but averaging decreases the noise, ......, but a comparison of the signature to the downwelling galactic background radiation indicates, that the signature may not origin from the wind driven sea surface pattern....

  3. A simple algorithm for identifying periods of snow accumulation on a radiometer

    Science.gov (United States)

    Lapo, Karl E.; Hinkelman, Laura M.; Landry, Christopher C.; Massmann, Adam K.; Lundquist, Jessica D.

    2015-09-01

    Downwelling solar, Qsi, and longwave, Qli, irradiances at the earth's surface are the primary energy inputs for many hydrologic processes, and uncertainties in measurements of these two terms confound evaluations of estimated irradiances and negatively impact hydrologic modeling. Observations of Qsi and Qli in cold environments are subject to conditions that create additional uncertainties not encountered in other climates, specifically the accumulation of snow on uplooking radiometers. To address this issue, we present an automated method for estimating these periods of snow accumulation. Our method is based on forest interception of snow and uses common meteorological observations. In this algorithm, snow accumulation must exceed a threshold to obscure the sensor and is only removed through scouring by wind or melting. The algorithm is evaluated at two sites representing different mountain climates: (1) Snoqualmie Pass, Washington (maritime) and (2) the Senator Beck Basin Study Area, Colorado (continental). The algorithm agrees well with time-lapse camera observations at the Washington site and with multiple measurements at the Colorado site, with 70-80% of observed snow accumulation events correctly identified. We suggest using the method for quality controlling irradiance observations in snow-dominated climates where regular, daily maintenance is not possible.

  4. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    Science.gov (United States)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  5. Preliminary feasibility analysis of a pressure modulator radiometer for remote sensing of tropospheric constituents

    Science.gov (United States)

    Orr, H. D., III; Rarig, P. L.

    1981-01-01

    A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.

  6. UV dosimetry in Antarctica (Baia Terranova): analysis of data from polysulphone films and GUV 511 radiometer

    Science.gov (United States)

    Mariutti, Gianni F.; Bortolin, Emanuela; Polichetti, Alessandro; Anav, Andrea; Casale, Giuseppe R.; Di Menno, Massimo; Rafanelli, Claudio

    2003-11-01

    This paper shows the results of measurements carried out in November 2002 in the Italian Antarctic Base of Baia Terranova (74.07°S, 164.08°E) to test polysulphone film badges as possible UV personal dosimeters in such extreme environmental conditions. In the Italian Antarctic Base a multichannel radiometer GUV 511 (Biospherical Inc.) is routinely used by the Italian National Research Council (CNR) for UV irradiance at sea level. This instrument measures the intensity of the solar UV spectrum at four different wavelengths: 305, 320, 340, 380 nm, respectively. Data obtained from polysulphone badges exposed in the horizontal and the vertical configurations during diverse time lapses of the day, and from polysulphone badges worn by three volunteers of the base staff during several outdoors activities, have been compared with the irradiance data calculated from the measured values of GUV 511. A preliminary analysis of the whole data, also in the light of other recorded atmospheric and climatic parameters, shows a reasonable consistency. As also shown by previous measurements, carried out in June 2002 in the locality of Ny Alesund (Svalbard -- Artic Region), the calibration of the above mentioned personal dosimeters by means of another instrument operating in the same locality is a crucial step. Further work is required to demonstrate this approach is suitable for an acceptable evaluation of personal radiant exposures.

  7. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  8. Total solar irradiance as measured by the SOVAP radiometer onboard PICARD

    Directory of Open Access Journals (Sweden)

    Meftah Mustapha

    2016-01-01

    Full Text Available From the SOlar VAriability PICARD (SOVAP space-based radiometer, we obtained a new time series of the total solar irradiance (TSI during Solar Cycle 24. Based on SOVAP data, we obtained that the TSI input at the top of the Earth’s atmosphere at a distance of one astronomical unit from the Sun is 1361.8 ± 2.4 W m−2 (1σ representative of the 2008 solar minimum period. From 2010 to 2014, the amplitude of the changes has been of the order of ± 0.1%, corresponding to a range of about 2.7 W m−2. To determine the TSI from SOVAP, we present here an improved instrument equation. A parameter was integrated from a theoretical analysis that highlighted the thermo-electrical non-equivalence of the radiometric cavity. From this approach, we obtained values that are lower than those previously provided with the same type of instrument. The results in this paper supersede the previous SOVAP analysis and provide the best SOVAP-based TSI-value estimate and its temporal variation.

  9. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    Science.gov (United States)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  10. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  11. Geostationary Coastal and Air Pollution Events (GeoCAPE) Filter Radiometer (FR)

    Science.gov (United States)

    Kotecki, Carl; Chu, Martha; Wilson, Mark; Clark, Mike; Nanan, Bobby; Matson, Liz; McBirney, Dick; Smith, Jay; Earle, Paul; Choi, Mike; hide

    2014-01-01

    The GeoCAPE Filter Radiometer (FR) Study is a different instrument type than all of the previous IDL GeoCape studies. The customer primary goals are to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Minimize total mission costs by riding on a commercial GEO satellite. For this instrument type, the coverage rate, km 2 min, was significantly increased while reducing the nadir ground sample size to 250m. This was accomplished by analyzing a large 2d area for each integration period. The field of view will be imaged on a 4k x 4k detector array of 15 micrometer pixels. Each ground pixel is spread over 2 x 2 detector pixels so the instantaneous field of view (IFOV) is 2048 X 2048 ground pixels. The baseline is, for each field of view 50 sequential snapshot images are taken, each with a different filter, before indexing the scan mirror to the next IFOV. A delta would be to add additional filters.

  12. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    Science.gov (United States)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  13. A brief history of 25 years (or more) of infrared imaging radiometers

    Science.gov (United States)

    Lyon, Bernard R., Jr.; Orlove, Gary L.

    2003-04-01

    Modern thermal imaging radiometers are infrared systems usually endowed with some means of making surface temperature measurements of objects, as well as providing an image. These devices have evolved considerably over the past few decades, and are continuing to do so at an accelerating rate. Changes are not confined to merely camera size and user interface, but also include critical parameters, such as sensitivity, accuracy, dynamic range, spectral response, capture rates, storage media, and numerous other features, options, and accessories. Familiarity with this changing technology is much more than an academic topic. A misunderstanding or false assumption concerning system differences, could lead to misinterpretation of data, inaccurate temperature measurements, or disappointing, ambiguous results. Marketing demands have had considerable influence in the design and operation of these systems. In the past, many thermographers were scientists, engineers and researchers. Today, however, the majorities of people using these instruments work in the industrial sector and are involved in highly technical skilled trades. This change of operating personnel has effectively changed the status of these devices from a 'scientific instrument', to an 'essential tool'. Manufacturers have recognized this trend and responded accordingly, as seen in their product designs. This paper explores the history of commercial infrared imaging systems and accessories. Emphasis is placed on, but not confined to, real time systems with video output, capable of temperature measurements.

  14. Use of radiometer to reform and repair an old living house to passive solar one

    Science.gov (United States)

    Okamoto, Yoshizo; Inagaki, Terumi; Suzuki, Takakazu; Kurokawa, Takashi

    1994-03-01

    Japanese living houses mainly consist of wooden elements in high-temperature and moist conditions. To modify the hot and humid environment, a conventional old house was partially rebuilt and repaired. Especially in the winter season, a diagnostic thermographic test was used to find deteriorated and leaking parts of interior and exterior walls. Macroscopic deteriorated parts were checked again in detail. The deteriorated element was then removed. During the reconstruction process, a new solar heat and air conditioning system using a silica-gel adsorber and underground water was installed to cool and warm up the living room. Thermography tests of this remodeled house show that room temperature is always constant and mild to human beings, especially in the winter. Temperature and heat flow distribution of flowing air in the living room was measured using thermal net and wire methods. Leaking thermal streak flow of the gap was locally visualized by the IR radiometer and a highly sensitive video camera. It was verified that IR thermography is a useful measuring instrument to check thermal defects of a house.

  15. Re-thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals.

    Science.gov (United States)

    Notni, Johannes; Wester, Hans-Jürgen

    2018-03-01

    The potential and future role of certain metal radionuclides, for example, 44 Sc, 89 Zr, 86 Y, 64 Cu, 68 Ga, 177 Lu, 225 Ac, and 213 Bi, and several terbium isotopes has been controversially discussed in the past decades. Furthermore, the possible benefits of "matched pairs" of isotopes for tandem applications of diagnostics and therapeutics (theranostics) have been emphasized, while such approaches still have not made their way into routine clinical practice. Analysis of bibliographical data illustrates how popularity of certain nuclides has been promoted by cycles of availability and applications. We furthermore discuss the different practical requirements for diagnostic and therapeutic radiopharmaceuticals and the resulting consequences for efficient development of clinically useful pairs of radionuclide theranostics, with particular emphasis on the underlying economical factors. Based on an exemplary assessment of overall production costs for 68 Ga and 18 F radiopharmaceuticals, we venture a look into the future of theranostics and predict that high-throughput PET applications, that is, diagnosis of frequent conditions, will ultimately rely on 18 F tracers. PET radiometals will occupy a niche in the clinical low-throughput sector (diagnosis of rare diseases), but above all, dominate preclinical research and clinical translation. Matched isotope pairs will be of lesser relevance for theranostics but may become important for future PET-based therapeutic dosimetry. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Normal Pressure Hydrocephalus

    Science.gov (United States)

    ... improves the chance of a good recovery. Without treatment, symptoms may worsen and cause death. What research is being done? The NINDS conducts and supports research on neurological disorders, including normal pressure hydrocephalus. Research on disorders such ...

  17. Normality in Analytical Psychology

    Science.gov (United States)

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  18. Normal pressure hydrocephalus

    Science.gov (United States)

    Hydrocephalus - occult; Hydrocephalus - idiopathic; Hydrocephalus - adult; Hydrocephalus - communicating; Dementia - hydrocephalus; NPH ... Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. ... Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders ...

  19. Normal Functioning Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  20. Normal growth and development

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002456.htm Normal growth and development To use the sharing features on this page, please enable JavaScript. A child's growth and development can be divided into four periods: ...

  1. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  2. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  3. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-07-01

    Full Text Available The Passive Advanced Unit (PAU for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD and a GPS reflectometer (PAU-GNSS/R. These instruments in conjunction with an infra-red radiometer (PAU-IR will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR. PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR’s radiometer calibration algorithms and their performance.

  4. Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems

    Science.gov (United States)

    Price, D. C.; Greenhill, L. J.; Fialkov, A.; Bernardi, G.; Garsden, H.; Barsdell, B. R.; Kocz, J.; Anderson, M. M.; Bourke, S. A.; Craig, J.; Dexter, M. R.; Dowell, J.; Eastwood, M. W.; Eftekhari, T.; Ellingson, S. W.; Hallinan, G.; Hartman, J. M.; Kimberk, R.; Lazio, T. Joseph W.; Leiker, S.; MacMahon, D.; Monroe, R.; Schinzel, F.; Taylor, G. B.; Tong, E.; Werthimer, D.; Woody, D. P.

    2018-05-01

    The Large-Aperture Experiment to Detect the Dark Age (LEDA) was designed to detect the predicted O(100) mK sky-averaged absorption of the Cosmic Microwave Background by Hydrogen in the neutral pre- and intergalactic medium just after the cosmological Dark Age. The spectral signature would be associated with emergence of a diffuse Lyα background from starlight during `Cosmic Dawn'. Recently, Bowman et al. (2018) have reported detection of this predicted absorption feature, with an unexpectedly large amplitude of 530 mK, centered at 78 MHz. Verification of this result by an independent experiment, such as LEDA, is pressing. In this paper, we detail design and characterization of the LEDA radiometer systems, and a first-generation pipeline that instantiates a signal path model. Sited at the Owens Valley Radio Observatory Long Wavelength Array, LEDA systems include the station correlator, five well-separated redundant dual polarization radiometers and backend electronics. The radiometers deliver a 30-85 MHz band (16 z < 34) and operate as part of the larger interferometric array, for purposes ultimately of in situ calibration. Here, we report on the LEDA system design, calibration approach, and progress in characterization as of January 2016. The LEDA systems are currently being modified to improve performance near 78 MHz in order to verify the purported absorption feature.

  5. A Resolution Prover for Coalition Logic

    Directory of Open Access Journals (Sweden)

    Cláudia Nalon

    2014-04-01

    Full Text Available We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and present the results for a comparison with an existing tableau-based solver.

  6. Spatial resolution in visual memory.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.

  7. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  8. Spatial resolution in Micromegas detectors

    CERN Document Server

    Bayb, A; Giomataris, Ioanis; Zaccone, Henri; Bay, A; Perroud, Jean-Pierre; Ronga, F

    2001-01-01

    The performance of a telescope of Micromegas detectors has been studied in a pion beam at the CERN PS. With a gas filling of CF/sub 4 / and 20% isobutane and with a strip pitch of 100 mu m an accuracy of 14+or-3 mu m on the spatial resolution has been measured at normal incidence. A simulation demonstrates that the resolution is limited by the size of the holes of the mesh of the detector and could be reduced to 11 mu m in the same conditions with smaller holes. Even further improvement down to 8.5 mu m is feasible for the same gas with an optimized 75 mu m strip pitch. (5 refs).

  9. MR imaging of the ankle: Normal variants

    International Nuclear Information System (INIS)

    Noto, A.M.; Cheung, Y.; Rosenberg, Z.S.; Norman, A.; Leeds, N.E.

    1987-01-01

    Thirty asymptomatic ankles were studied with high-resolution surface coil MR imaging. The thirty ankles were reviewed for identification or normal structures. The MR appearance of the deltoid and posterior to talo-fibular ligaments, peroneous brevis and longus tendons, and posterior aspect of the tibial-talar joint demonstrated several normal variants not previously described. These should not be misinterpreted as pathologic processes. The specific findings included (1) cortical irregularity of the posterior tibial-talar joint in 27 of 30 cases which should not be mistaken for osteonecrois; (2) normal posterior talo-fibular ligament with irregular and frayed inhomogeneity, which represents a normal variant in seven of ten cases; and (3) fluid in the shared peroneal tendons sheath which may be confused for a longitudinal tendon tear in three of 30 cases. Ankle imaging with the use of MR is still a relatively new procedure. Further investigation is needed to better define normal anatomy as well as normal variants. The authors described several structures that normally present with variable MR imaging appearances. This is clinically significant in order to maintain a high sensitivity and specificity in MR imaging interpretation

  10. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  11. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    Science.gov (United States)

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  12. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  13. Monitoring the normal body

    DEFF Research Database (Denmark)

    Nissen, Nina Konstantin; Holm, Lotte; Baarts, Charlotte

    2015-01-01

    of practices for monitoring their bodies based on different kinds of calculations of weight and body size, observations of body shape, and measurements of bodily firmness. Biometric measurements are familiar to them as are health authorities' recommendations. Despite not belonging to an extreme BMI category...... provides us with knowledge about how to prevent future overweight or obesity. This paper investigates body size ideals and monitoring practices among normal-weight and moderately overweight people. Methods : The study is based on in-depth interviews combined with observations. 24 participants were...... recruited by strategic sampling based on self-reported BMI 18.5-29.9 kg/m2 and socio-demographic factors. Inductive analysis was conducted. Results : Normal-weight and moderately overweight people have clear ideals for their body size. Despite being normal weight or close to this, they construct a variety...

  14. Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)

    Science.gov (United States)

    Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles

    2016-04-01

    The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows

  15. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  16. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  17. The normal holonomy group

    International Nuclear Information System (INIS)

    Olmos, C.

    1990-05-01

    The restricted holonomy group of a Riemannian manifold is a compact Lie group and its representation on the tangent space is a product of irreducible representations and a trivial one. Each one of the non-trivial factors is either an orthogonal representation of a connected compact Lie group which acts transitively on the unit sphere or it is the isotropy representation of a single Riemannian symmetric space of rank ≥ 2. We prove that, all these properties are also true for the representation on the normal space of the restricted normal holonomy group of any submanifold of a space of constant curvature. 4 refs

  18. Rating the Effectiveness of Fishery Closures With Visible Infrared Imaging Radiometer Suite Boat Detection Data

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge

    2018-04-01

    Full Text Available Fishery closures are widely used to promote the sustainability of fish stocks. Fishery agencies typically have very little data relevant to planning closure enforcement actions and evaluating the effectiveness of closures, due in part to the vast expanse and remote nature of many closures. In some cases the effectiveness of closures can be evaluated using data from GPS based beacons, such as Automatic Identification System (AIS or Vessel Monitoring Systems (VMS installed on fishing boats. In fisheries where few boats are equipped with AIS or VMS, the rating of closures relies on other data sources capable of detecting or inferring fishing activity. One such source comes from low light imaging data collected by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS, which can detect fishing boats using lights to attract catch. This is a widely used practice in Asia and several other regions. NOAA has developed an automatic system for reporting the locations of VIIRS boat detections with a nominal 4 h temporal latency. VIIRS boat detection alerts are running for more than 900 fishery closures in the Philippines, with email and SMS transmission modes. These alerts are being actively used in the Philippines to plan enforcement actions and there is a growing list of apprehensions that occurred based on tip-offs from VIIRS. The VIIRS boat detection archive extends back to April 2012. A VIIRS closure index (VCI has been developed to rate the effectiveness of closures on monthly increments in terms of a percentage. The VCI analysis was performed on three types of closures: an ad hoc fishery closure associated with a toxic industrial discharge, a seasonal fishery closure and a permanent closure in restricted coastal waters. The VCI results indicate that it is possible to rank the effectiveness of different closure, year-to-year differences in compliance levels, and to identify closure encroachments which may warrant additional enforcement effort.

  19. Investigation of ground-based microwave radiometer calibration techniques at 530 hPa

    Directory of Open Access Journals (Sweden)

    G. Maschwitz

    2013-10-01

    Full Text Available Ground-based microwave radiometers (MWR are becoming more and more common for remotely sensing the atmospheric temperature and humidity profile as well as path-integrated cloud liquid water content. The calibration accuracy of the state-of-the-art MWR HATPRO-G2 (Humidity And Temperature Profiler – Generation 2 was investigated during the second phase of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II in northern Chile (5320 m above mean sea level, 530 hPa conducted by the Atmospheric Radiation Measurement (ARM program conducted between August and October 2009. This study assesses the quality of the two frequently used liquid nitrogen and tipping curve calibrations by performing a detailed error propagation study, which exploits the unique atmospheric conditions of RHUBC-II. Both methods are known to have open issues concerning systematic offsets and calibration repeatability. For the tipping curve calibration an uncertainty of ±0.1 to ±0.2 K (K-band and ±0.6 to ±0.7 K (V-band is found. The uncertainty in the tipping curve calibration is mainly due to atmospheric inhomogeneities and the assumed air mass correction for the Earth curvature. For the liquid nitrogen calibration the estimated uncertainty of ±0.3 to ±1.6 K is dominated by the uncertainty of the reflectivity of the liquid nitrogen target. A direct comparison between the two calibration techniques shows that for six of the nine channels that can be calibrated with both methods, they agree within the assessed uncertainties. For the other three channels the unexplained discrepancy is below 0.5 K. Systematic offsets, which may cause the disagreement of both methods within their estimated uncertainties, are discussed.

  20. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.