WorldWideScience

Sample records for resolution fast-neutron spectrometers

  1. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  2. A high resolution, low background fast neutron spectrometer

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S; Adams, J M; Nico, J S; Thompson, A K

    2002-01-01

    We discuss the possibility to create a spectrometer of full absorption based on liquid scintillator doped with enriched sup 6 Li. Of specific interest, the spectrometer will have energy resolution estimated to lie in the range 5-10% for 14 MeV neutrons. It will be sensitive to fluxes from 10 sup - sup 4 to 10 sup 6 cm sup - sup 2 s sup - sup 1 above a threshold of 1 MeV in a gamma-background of up to 10 sup 4 s sup - sup 1. The detector's efficiency will be determined by the volume of the scintillator only (approx 3 l) and is estimated to be 0.2-10%. The main reason for the poor resolution of an organic scintillator based spectrometer of full absorption is a non-linear light-yield of the scintillator for recoil protons. The neutron energy is occasionally distributed among recoil protons, and due to non-linear light-yield the total amount of light from all recoil protons ambiguously determines the initial neutron energy. The high-energy resolution will be achieved by compensation of the non-linear light-yield ...

  3. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  4. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  5. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  6. A Fast Neutron Spectrometer for Underground Science

    Science.gov (United States)

    Langford, Thomas; Beise, Elizabeth; Breuer, Herbert; Erwin, Dylan; Bass, Christopher; Heimbach, Craig; Nico, Jeff

    2010-02-01

    The characterization of the fast neutron fluence has become a critical issue for experiments that require extreme low-background environments, such as neutrino-less double-beta decay, dark matter searches, and solar neutrino experiments. In such experiments, fast neutrons may be the dominant and a potentially irreducible background, thus necessitating precise information about the fast neutron fluence and energy spectrum. The most reasonable approach to addressing the problem is through the complete characterization of the neutrons through both site-specific measurement and benchmarking of simulation codes. We will discuss the progress toward the development of a large-volume, segmented detector consisting of plastic scintillator and ^3He proportional counters. The detector will be placed in an underground environment to measure the fast neutron flux and energy spectrum. A prototype detector has been constructed and testing is in progress. We will discuss the status of the project and present data from the prototype detector. )

  7. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    Science.gov (United States)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  8. Design of a transportable high efficiency fast neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C., E-mail: calebroecker@berkeley.edu [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Bernstein, A.; Bowden, N.S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cabrera-Palmer, B. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Dazeley, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Gerling, M.; Marleau, P.; Sweany, M.D. [Radiation and Nuclear Detection Systems, Sandia National Laboratories, Livermore, CA 94550 (United States); Vetter, K. [Department of Nuclear Engineering, University of California at Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm{sup 2} rising to 5000 cm{sup 2}. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm{sup 2} and 2500 cm{sup 2}. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  9. Feasibility study of fast neutron energy spectrometer using magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Hideshi; Ara, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-09-01

    A feasibility study of a fast neutron energy spectrometer (NES) using magnetic field was performed for development of a spectrometer having a measuring range of 3 decades and a covered energy range of 8 decades. The NES that is a kind of proton recoil spectrometer consists of a proton radiator, a magnet and a screen to detect protons. The pass of each charge particle flying into the magnetic field is deflected with a certain angle depending on the velocity of the particle, and it reaches the screen of charged particle detection after passing through the magnetic field. The energy of the particle is measured from the position on the screen at which the particle collide with. In this paper, optimization of the magnet geometry and the magnetic field intensity of the NES are discussed. The NES that is designed with the optimized geometry provides the measuring range of 3 decades with an energy measuring error of less than {+-}9%. A neutron energy range of 9 decades from 0.1 (eV) to 100 (MeV) is covered by adjusting the magnetic flux density. (author)

  10. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    Science.gov (United States)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  11. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  12. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  13. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)

    CERN Document Server

    Langford, T J; Breuer, H; Heimbach, C R; Ji, G; Nico, J S

    2015-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and $^3$He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a $^3$He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated $^{252}$Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra...

  14. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Thorngate, J.H.

    1988-11-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.

  15. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  16. A study of possibility to design a fast neutron spectrometer based on the organic scintillator with surrounding materials

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2014-01-01

    Full Text Available This paper deals with the design of a novel spectrometer of fast neutrons in nuclear safeguards applications based on the liquid organic scintillator EJ-309 with materials of different thickness surrounding the detector. The investigation was performed on the simulated data obtained by the MCNPX-PoliMi numerical code based on the Monte Carlo method. Among the various materials (polyethylene, iron, aluminum, and graphite investigated as layers around the scintillator, polyethylene and iron have shown the most promising characteristics for evaluation of fast neutron energy spectra. The simulated pulse height distributions were summed up for each energy bin in the neutron energy range between 1 MeV and 15 MeV in order to obtain better counting statistics. The unfolded results for monoenergetic neutron sources obtained by a first order of Tikhonov regularization and non-linear neural network show very good agreement with the reference data while the evaluated spectra of neutron sources continuous in energy follow the trend of the reference spectra. The possible advantages of a novel spectrometer include a less number of input data for processing and a less sensitivity to the noise compared to the scintillation detector without surrounding materials.

  17. 6LiF Semiconductor Sandwich Spectrometer for Fast Neutron Spectrum Measurement%用于快中子能谱测量的6LiF夹心半导体谱仪

    Institute of Scientific and Technical Information of China (English)

    蒋勇; 李俊杰; 张涛; 范晓强; 郑春

    2012-01-01

    A detector of 6LiF semiconductor sandwich spectrometer was designed and manufactured. Characteristics of the spectrometer were tested in the fast neutron critical assembly. Measurement principle, configuration of detector and electronic circuit were introduced. Fast neutron spectrum was measured using the 6LiF semiconductor sandwich spectrometer. When the detector's 6 LiF mass thickness is 186 μg/cm2, the spectrometer's energy resolution is 363 keV in the thermal neutron field. For this spectrometer, the optimal fathomable neutron energy range is 0. 3-7. 5 MeV, and the background counts only take possession of 1 % in this area.%本文介绍了6 LiF夹心谱仪的测量原理、自行设计研制的6LiF夹心半导体谱仪探头结构及电子学系统组成等.在热中子场中测试了夹心谱仪的性能,获得了α粒子峰、T粒子峰及“和”峰在多道上的位置与能量分辨率,并用T粒子与“和”峰两个能量点的峰位对谱仪系统进行了能量刻度.分别用效应探头和本底探头测量了临界装置表面的效应谱和本底谱,当效应探头采用的6 LiF镀层质量厚度为186 μg/cm2时,6 LiF夹心谱仪对热中子的能量分辨率为363 keY,测量中子最佳能区为0.3~7.5 MeV,在该能区内,本底谱约占1%.

  18. Capture-Gated Fast Neutron Spectroscopy

    Science.gov (United States)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  19. Measurement of fast neutrons and secondary gamma rays in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; El-Asyd Abdo, A.; Kansouh, W.A. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Bashter, I.I. [Zagazig Univ. (Egypt). Faculty of Science

    1996-05-01

    The spatial fluxes and energy distributions of fast neutrons, total gamma rays and secondary gamma rays transmitted through different thicknesses of graphite have been measured. The graphite samples were arranged in front of one of the horizontal channels of the ET-RR-1 reactor. Gamma ray measurements were carried out for bare, cadmium filtered and boron carbide filtered reactor beams. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectrum of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to distinguish the proton pulses from the electron pulses. The total fast neutrons macroscopic cross section and the linear attenuation coefficient for gamma rays were derived both for the whole energy range and at different energies. The obtained values were used to calculate the relaxation lengths for fast neutrons and gamma rays. (Author).

  20. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  1. Improvements in apparatus and procedures for using an organic liquid scintillator as a fast-neutron spectrometer for radiation protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Thorngate, J.H.

    1987-05-15

    For use in radiation protection measurements, a neutron spectrometer must have a wide energy range, good sensitivity, medium resolution, and ease of taking and reducing data. No single spectrometer meets all of these requirements. Several experiments aimed at improving and characterizing the detector response to gamma rays and neutrons were conducted. A light pipe (25 mm) was needed between the scintillator cell and the photomultiplier tube to achieve the best resolution. The light output of the scintillator as a function of gamma-ray energy was measured. Three experiments were conducted to determine the light output as a function of neutron energy. Monte Carlo calculations were made to evaluate the effects of multiple neutron scattering and edge effects in the detector. The electronic systems associated with the detector were improved with a transistorized circuit providing the bias voltage for the photomultiplier tube dynodes. This circuit was needed to obtain pulse-height linearity over the wide range of signal sizes. A special live-time clock was built to compensate for the large amount of dead time generated by the pulse-shape discrimination circuit we chose to use. 64 refs., 58 figs., 9 tabs.

  2. Narcotics detection using fast-neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  3. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  4. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zaki Dizaji, H., E-mail: hz.dizaji@znu.ac.ir [Physics Department, Faculty of Science, Zanjan University, Zanjan (Iran, Islamic Republic of); Kakavand, T. [Physics Department, Faculty of Science, International Imam Khomeini University, Qazvin (Iran, Islamic Republic of); Abbasi Davani, F. [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-03-21

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter–degrader–pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an {sup 241}Am–Be neutron source. - Highlights: • Silicon pin diodes are applied to the fast neutron detection. • The technique of converter degrader pin diode is used for spectrometry of fast neutrons. • The method is used for dosimetry of fast neutron.

  5. System design considerations for fast-neutron interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-10-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system`s components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented.

  6. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  7. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  8. C7LYC Scintillators and Fast Neutron Spectroscopy

    Science.gov (United States)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2016-09-01

    Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  9. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  10. [Fast neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  11. Methods and Instruments for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Cooper, Matthew W.; McCormick, Kathleen R.; Peurrung, Anthony J.; Warren, Glen A.

    2005-05-01

    Pacific Northwest National Laboratory evaluated the performance of a large-area (~0.7 m2) plastic scintillator time-of-flight (TOF) sensor for direct detection of fast neutrons. This type of sensor is a readily area-scalable technology that provides broad-area geometrical coverage at a reasonably low cost. It can yield intrinsic detection efficiencies that compare favorably with moderator-based detection methods. The timing resolution achievable should permit substantially more precise time windowing of return neutron flux than would otherwise be possible with moderated detectors. The energy-deposition threshold imposed on each scintillator contributing to the event-definition trigger in a TOF system can be set to blind the sensor to direct emission from the neutron generator. The primary technical challenge addressed in the project was to understand the capabilities of a neutron TOF sensor in the limit of large scintillator area and small scintillator separation, a size regime in which the neutral particle’s flight path between the two scintillators is not tightly constrained.

  12. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  13. Ionization signals from diamond detectors in fast-neutron fields

    Science.gov (United States)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  14. nGEM fast neutron detectors for beam diagnostics

    Science.gov (United States)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-08-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σx=14.35 mm, σy=15.75 mm), nGEM counting efficiency (around 10-4 for 3 MeV

  15. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  16. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Shikhin, A A; Yants, V E; Zaborskaia, O S; Klimenko, A A; Osetrov, S B; Smolnikov, A A; Vasilev, S I

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron shielding properties of several commonly available natural materials were investigated too. The preliminary results obtained with a high-sensitive fast neutron spectrometer at the level of sensitivity of about 10^(-7) neutron/ (cm^2 sec) are presented and discussed.

  17. Comparison of Fast Neutron Detector Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies. This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.

  18. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    Science.gov (United States)

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  19. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  20. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    Science.gov (United States)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  1. Fast neutron measurements with {sup 7}Li and {sup 6}Li enriched CLYC scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Giaz, A., E-mail: agnese.giaz@mi.infn.it [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Blasi, N.; Boiano, C.; Brambilla, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Cattadori, C. [INFN sezione di Milano Bicocca, Piazza della Scienza 3, 20125 Milano (Italy); Ceruti, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Gramegna, F.; Marchi, T. [INFN Laboratori Nazionali di Legnaro, Viale dell’Università, 2, 35020 Legnaro, PD (Italy); Mattei, I. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Mentana, A. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Million, B.; Pellegri, L. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Rebai, M. [Università degli Studi di Milano Bicocca, Physics Department, Piazza della Scienza 3, 20126 Milano (Italy); Riboldi, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Salamida, F. [INFN sezione di Milano Bicocca, Piazza della Scienza 3, 20125 Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Via R. Cozzi 53, 2015 Milano (Italy)

    2016-07-21

    The recently developed Cs{sub 2}LiYCl{sub 6}:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the {sup 6}Li(n,α)t reaction while for the fast neutrons the {sup 35}Cl(n,p){sup 35}S and {sup 35}Cl(n,α){sup 32}P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9–3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on {sup 35}Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a {sup 7}LiF target. We tested a CLYC detector {sup 6}Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector {sup 7}Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  2. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  3. Fast neutron-induced damage in INTEGRAL n-type HPGe detectors

    CERN Document Server

    Borrel, V; Albernhe, F; Frabel, P; Cordier, B; Tauzin, G; Crespin, S; Coszach, R; Denis, J M; Leleux, P

    1999-01-01

    Several INTEGRAL n-type HPGe detectors have been irradiated by fast neutrons and their degradation studied through the analysis of line shapes. The availability of three different fast neutron beams (5, 16 and 6-70 MeV) allowed a quantitative analysis of the importance of the neutron energy on the amount of damage. A comparison is made with the degradation induced by high-energy proton irradiations. Transient effects on the measured resolution are reported after high voltage cut-off on degraded detectors.

  4. Fast neutron activation dosimetry with TLDS

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.W.; Moran, P.R.

    1975-01-01

    Fast neutron activation using threshold reactions is the only neutron dosimetry method which offers complete discrimination against gamma-rays and preserves some information about the neutron energy. Conventional activation foil technique requires sensitive radiation detectors to count the decay of the neutron induced activity. For extensive measurements at low neutron fluences, vast outlays of counting equipment are required. TL dosimeters are inexpensive, extremely sensitive radiation detectors. The work of Mayhugh et al. (Proc. Third Int. Conf. on Luminescence Dosimetry, Riso Report 249, 1040, (1971)) showed that CaSO/sub 4/: DyTLDs could be used to measure the integrated dose from the decay of the radioactivity produced in the dosimeters by exposure to thermal neutrons. This neatly combines the activation detector and counter functions in one solid state device. This work has been expanded to fast neutron exposures and other TL phosphors. The reactions /sup 19/F(n, 2n)/sup 18/F, /sup 32/S(n,p)/sup 32/P, /sup 24/Mg(n,p)/sup 24/, and /sup 64/Zn(n,p)/sup 64/Cu were found useful for fast neutron activation in commercial TLDs. As each TLD is its own integrating decay particle counter, many activation measurements can be made at the same time. The subsequent readings of the TL signals can be done serially after the induced radioactivity has decayed, using only one TL reader. The neutron detection sensitivity is limited mainly by the number statistics of the neutron activations. The precision of the neutron measurement is within a factor of two of conventional foil activation for comparable mass detectors. Commercially available TLDs can measure neutron fluences of 10/sup 9/n/cm/sup 2/ with 10 percent precision.

  5. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  6. MPACT Fast Neutron Multiplicity System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  7. (r) Mass Resolution versus Chamber Resolution in ALICE Dimuon Forward Spectrometer

    Institute of Scientific and Technical Information of China (English)

    WU Tao

    2007-01-01

    The precisions and its sources of spatial resolutions of tracking chambers and mass resolutions of dimuon signals in ALICE Dimuon Forward Spectrometer are explored by tracking and reconstruction of AliRoot software. The dependences of (r) mass resolution on spatial resolution of tracking chambers are presented with and without background events through simulations.

  8. Compositional terranes on Mercury: Information from fast neutrons

    Science.gov (United States)

    Lawrence, David J.; Peplowski, Patrick N.; Beck, Andrew W.; Feldman, William C.; Frank, Elizabeth A.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.

    2017-01-01

    We report measurements of the flux of fast neutrons at Mercury from 20ºS to the north pole. On the basis of neutron transport simulations and remotely sensed elemental compositions, cosmic-ray-induced fast neutrons are shown to provide a measure of average atomic mass, , a result consistent with earlier studies of the Moon and Vesta. The dynamic range of fast neutron flux at Mercury is 3%, which is smaller than the fast-neutron dynamic ranges of 30% and 6% at the Moon and Vesta, respectively. Fast-neutron data delineate compositional terranes on Mercury that are complementary to those identified with X-ray, gamma-ray, and slow-neutron data. Fast neutron measurements confirm the presence of a region with high , relative to the mean for the planet, that coincides with the previously identified high-Mg region and reveal the existence of at least two additional compositional terranes: a low- region within the northern smooth plains and a high- region near the equator centered near 90ºE longitude. Comparison of the fast-neutron map with elemental composition maps show that variations predicted from the combined element maps are not consistent with the measured variations in fast-neutron flux. This lack of consistency could be due to incomplete coverage for some elements or uncertainties in the interpretations of compositional and neutron data. Currently available data and analyses do not provide sufficient constraints to resolve these differences.

  9. Research of Fast Neutron Radiation Effect on Rats

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to research the fast neutron radiation effect on rats,the 8 weeks Wistar male rats were wholly irradiated by 14 MeV fast neutron with 5 Gy. In the experiment,the rats were divided into normal and irradiation group, and killed

  10. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  11. The effects of fast neutron irradiation on oxygen in Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Feng; Yan Wen-Bo; Chen Hong-Jian; Li Xing-Hua; Li Yang-Xian

    2009-01-01

    The effects of fast neutron irradiation on oxygen atoms in Czochralski silicon (CZ-Si) are investigated systemically by using Fourier transform infrared (FTIR) spectrometer and positron annihilation technique (PAT). Through isochronal annealing, it is found that the trend of variation in interstitial oxygen concentration ([Oi]) in fast neutrons irradiated CZ-Si fluctuates largely with temperature increasing, especially between 500 and 700℃. After the CZ-Si is annealed at 600℃, the V4 appearing as three-dimensional vacancy clusters causes the formation of the molecule-like oxygen clusters, and more importantly these dimers with small binding energies (0.1-1.0eV) can diffuse into the Si lattices more easily than single oxygen atoms, thereby leading to the strong oxygen agglomerations. When the CZ-Si is annealed at temperature increasing up to 700℃, three-dimensional vacancy clusters disappear and the oxygen agglomerations decompose into single oxygen atoms (O) at interstitial sites. Results from FTIR spectrometer and PAT provide an insight into the nature of the [Oi] at temperatures between 500 and 700℃. It turns out that the large fluctuation of [Oi] after short-time annealing from 500 to 700℃ results from the transformation of fast neutron irradiation defects.

  12. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  13. Current Amplification Characteristics of BJT on Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Hani [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    BJT (Bipolar Junction Transistor) is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. Fast neutron irradiation incurs lattice damage in bulk Si. The recombination rate of minority carriers and register are increased by the lattice damage. This study will investigate the current amplification characteristics of a pnp Si BJT through fast neutron irradiation experiments. In this paper, the current amplification characteristics of a pnp Si BJT were investigated for fast neutron irradiation. The experimental results show that base-tocollector current amplification ratio is decreased with an increase in the fast neutron irradiation. These indicate that the lattice damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistor.

  14. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.

    Science.gov (United States)

    Santos, J P; Fernandes, A C; Gonçalves, I C; Marques, J G; Carvalho, A F; Santos, L; Cardoso, J; Osvay, M

    2006-01-01

    Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.

  15. Removal cross sections and total mass attenuation coefficients of fast neutrons and gamma rays for steel

    CERN Document Server

    Elsayed, A A

    2003-01-01

    The present work deals with the study of the attenuation properties and determination of the cross sections of fast neutrons and gamma rays for structure steel used in different applications in nuclear power plants, particle accelerators, research reactors and different radiation attenuation fields. Investigation has been performed by measuring the transmitted fast neutron and gamma ray spectra behind cylindrical samples of steel (rho=7.87 gem sup - sup 3) of different thicknesses. A reactor collimated beam and neutron - gamma spectrometer with stiblbene scintillator were used for measurements. The pluse shape disriminate technique based on zero cross over method was used to discriminate between neutron and gamma ray pulses. Effective removal cross-section (sigma sub R) and total mass attenuation coefficient (mu) of neureons and gamma rays have been achieved using the attenuation relations. Microscopic removal cross sections sigma sup 9 sup 8 and mass removal cross sections sigma sub R sub / subrho of fast ne...

  16. Influence of rapid thermal process on intrinsic gettering in fast neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LI Xing-hua; CAI Li-li; MA Qiao-yun; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded zone (DZ) was investigated. Fourier transform infrared absorption spectrometer (FTIR) was used to measure the concentration of interstitial oxygen ([Oi]). Bulk microdefects were observed by optical microscope. The results show that,according to the variation of [Oi],it is found that RTP doesn't change the processes of oxygen precipitation in fast neutron irradiated Czochralski silicon. Perfect denuded zone,dense oxygen precipitates and defects form in the bulk of irradiated samples. With increasing temperature of RTP,the width of denuded zone decreases. Increasing RTP cooling rate,the density of Bulk microdefects increases. DZ forms in the sample that annealed in nitrogen atmosphere.

  17. Study on fast neutron dosimetry using electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.T. (National Tsing-Hua Univ., Hsin-Chu, Taiwan); Su, S.J.

    1981-03-01

    Registration of fast-neutron-induced-recoil tracks by electrochemical etching technique as applied to polycarbonate foils has provided a simple, sensitive, and inexpensive means of fast neutron personnel dosimetry. Etching parameters are carefully discussed and it was discovered a new method of stirring in KOH aqueous solution offered considerable improvement over previous procedures. Applied frequency can be decreased from 2kHz to regular 60Hz. The sensitivity of fast neutrons is 0.12-0.18 tracks/cm/sup 2/ per mrem with standard deviation of +/- 20.2%.

  18. Comparison of fast neutron rates for the NEOS experiment

    Science.gov (United States)

    Ko, Y. J.; Jang, C. H.; Siyeon, Kim; Kim, J. Y.; Kim, H. S.; Seo, K. M.; Han, B. Y.; Sun, G. M.; Jeon, E. J.; Lee, Jaison; Lee, M. H.; Oh, Y. M.; Park, K. S.; Joo, K. K.; Kim, B. R.; Kim, H. J.; Lee, J. Y.; Kim, Y. D.; Park, H. K.; Park, H. S.

    2016-12-01

    The fast neutron rates are compared at the site of the NEOS (Neutrino Experiment Oscillation Short baseline) experiment, a short-baseline neutrino experiment located in a tendon gallery of a commercial nuclear power plant using a 0.78-liter liquid scintillator detector. A pulse shape discrimination technique is used to identify neutron signals. The measurements are performed during the nuclear reactor-on and -off periods, and the fast neutron rates are found to be consistent with each other. The fast neutron rate is also measured at an overground site with a negligible overburden and is found to be 100 times higher than that at the site of the NEOS experiment.

  19. [Fast neutron cross section measurements]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  20. High-resolution wide-band Fast Fourier Transform spectrometers

    CERN Document Server

    Klein, Bernd; Krämer, Ingo; Bell, Andreas; Meyer, Klaus; Güsten, Rolf

    2012-01-01

    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 se...

  1. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  2. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  3. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    Science.gov (United States)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  4. Numerical study of point spread function of a fast neutron radiography system based on scintillating-fiber array

    Institute of Scientific and Technical Information of China (English)

    ZHANG; FaQiang

    2007-01-01

    For a scintillating-fiber array fast-neutron radiography system, a point-spread- function computing model was introduced, and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources, the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200μm×200μm, the size of neutron source as small as a few millimeters, the distance between the source and the scintillating fiber array greater than 1 m, and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.……

  5. Numerical study of point spread function of a fast neutron radiography system based on scintillating-fiber array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ For a scintillating-fiber array fast-neutron radiography system, a point-spread- function computing model was introduced, and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources, the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200μm×200μm, the size of neutron source as small as a few millimeters, the distance between the source and the scintillating fiber array greater than 1 m, and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.

  6. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Alexander N. Ionov

    2011-07-01

    Full Text Available The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS, High Resolution Transmission Electron Microscopy (HR-TEM and X-ray photoelectron spectroscopy (XPS. The irradiation of Ge- NC samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 8000C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of Ge-NC changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.

  7. A high-resolution Fourier-transform infrared spectrometer.

    Science.gov (United States)

    Johnson, H. L.; Forbes, F. F.; Thompson, R. I.; Steinmetz , D. L.; Harris, O.

    1973-01-01

    We have developed a Fourier-transform infrared spectrometer having a resolution of 0.5/cm over the range of wavelength from 1 to 5.5 microns. It has been used to observe the sun over this wavelength range from a Lear Jet flying at an altitude of 14 km, and to observe a number of stars from the ground, using the 229-cm telescope of the Steward Observatory and the 152-cm aluminum-mirror telescope at the Observatorio Astronomico Nacional in the Sierra de San Pedro Martir, Baja California, Mexico. The solar spectrum is given here, while the ground-based spectra are being published separately.

  8. Development and Characterization of a High Resolution Portable Gamma Spectrometer

    Science.gov (United States)

    Ali, Muhammad

    The recent disaster of Fukushima in Japan combined with the high demand to enhance nuclear safety and to minimize personal exposure to radioactive materials has a significant impact on research and development of radiation detection instrumentation. Currently, there is ample effort worldwide in the pursuit of radiation detection to maximize the accuracy and meet international standards in terms of size and specifications to enable radiation protection decision making. Among the requirements is the development of a portable, light-weight gamma-ray isotope identifier to be used by first responders in nuclear accidents as well as for radiation security and identification of illicit material isotopes. From nuclear security perspective, research into advanced screening technologies has become a high priority in all aspects, while for occupational safety, and environmental radiation protection, the regulatory authorities are requiring specific performance of radiation detection and measuring devices. At the applied radiation laboratory of the University of Ontario Institute of Technology, UOIT, the development of a high resolution spectrometer for medium and high energy gamma ray has been conducted. The spectrometer used a newly developed scintillator based on a LaBr3(Ce) crystal. The detector has been modeled using advanced Monte Carlo code (MCNP/X code) for the response function simulation and parameter characterization. The simulation results have been validated by experimental investigations using a wide range of gamma radiation energies. The developed spectrometer has been characterized in terms of resolution and response in different fields. It has also been compared with other crystals such as NaI(TI) and LiI(Eu).

  9. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  10. Characterization methods for an accelerator based fast-neutron facility

    Science.gov (United States)

    Franklyn, C.; Daniels, G. C.

    2012-02-01

    A fast neutron facility provides a number of complexities in both detection and shielding, the latter arising not only due to uncertainty in the behaviour of the scattered radiation (neutron and gamma-rays) from a fast neutron source, but also on shielding requirements that have to take into account internal and external factors, such as dose limitations, space availability for implementing bulky shielding and secondary interactions of the radiation with materials. This has possible influence on experimental measurements with a low signal to noise ratio. This paper reports on some of the investigations performed at a RFQ accelerator facility generating > 1011 neutrons per second with energies up to 14 MeV, which are used to perform fast neutron radiography studies. Areas highlighted are the neutron cross section libraries, where important data needs to be reviewed or updated.

  11. Superconducting High Energy Resolution Gamma-ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  12. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, J.; Barth, C.J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-07-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  13. Measurement of Fast Neutron Rate for NEOS Experiment

    CERN Document Server

    Ko, Y J; Han, B Y; Jang, C H; Jeon, E J; Joo, K K; Kim, B R; Kim, H J; Kim, H S; Kim, Y D; Lee, Jaison; Lee, J Y; Lee, M H; Oh, Y M; Park, H K; Park, H S; Park, K S; Seo, K M; Siyeon, Kim; Sun, G M

    2016-01-01

    The fast neutron rate is measured at the site of NEOS experiment, a short baseline neutrino experiment located in a tendon gallery of a commercial nuclear power plant, using a 0.78-liter liquid scintillator detector. A pulse shape discrimination technique is used to identify neutron signals. The measurements are performed during the nuclear reactor-on and off periods and found to be ~20 per day for both periods. The fast neutron rate is also measured at an overground site with a negligible overburden and is found to be ~100 times higher than that at the NEOS experiment site.

  14. [Fast neutrons in the treatment of soft tissue sarcomas].

    Science.gov (United States)

    Chernichenko, V A; Tolstopiatov, B A; Monich, A Iu; Konovalenko, V F; Galakhin, K A; Palivets, A Iu; Vorona, A M

    1990-01-01

    Results of treatment of 101 cases of soft tissue sarcoma are presented in the paper. Preoperative irradiation technique and radical program of treatment are described. Combined radiation and surgical treatment was given to 45 patients whereas conservative--to 56. Sixty-three cases received adjuvant combination chemotherapy. Response and three-year survival rates were compared to those in control group treated by photons. The results observed in patients of combined and conservative treatment groups who had been irradiated with fast neutrons proved significantly better than in controls. These data suggest vistas in application of fast neutron irradiation for the treatment of soft tissue sarcomas.

  15. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    CERN Document Server

    Tsumura, K; Battle, J; Bock, J; Brown, S; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lee, D H; Levenson, L R; Lykke, K; Mason, P; Matsumoto, T; Matsuura, S; Murata, K; Nam, U W; Renbarger, T; Smith, A; Sullivan, I; Suzuki, K; Wada, T; Zemcov, M

    2011-01-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 \\mu m to 2 \\mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a \\lambda / \\Delta \\lambda \\sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 \\mu m < \\lambda < 2.1 \\mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding a...

  16. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  17. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  18. Fast neutrons set the pace. [Radiobiological investigations with fast neutrons at the CSIR cyclotron in Pretoria

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J.H.; Slabbert, J.P. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Accelerator Centre)

    1985-01-01

    Radiobiological investigations with fast neutrons have been initiated at the CSIR cyclotron in Pretoria. It was proposed some years ago to create a neutron therapy facility using the CSIR cyclotron. Neutrons are classified as high linear energy transfer (LET) particles. Biological damage occurring in tissue is a direct function of the LET of the incident radiation. To quantify the biological effects of different types of radiation on mammalian cells, several procedures and concepts have evolved from radiobiological research. Probably the most significant laboratory techniques developed, were the derivation of cell survival curves which are obtained by determining the number of cell colonies that have survived a certain radiation dose. A semi-logarithmic plot of surviving fraction versus the absorbed dose yields the survival curve. Dose modifying factors such as the relative biological effectiveness (RBE) of the radiation can be quantified in terms of this relationship. A radiobiological programme has to be undertaken before patients can receive neutron therapy at the CSIR cyclotron. The article is a discussion of this programme.

  19. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  20. Fast neutron sensitivity of dry and germinating tomato seeds

    NARCIS (Netherlands)

    Contant, R.B.

    1970-01-01

    A study was made of changes in fast neutron effectiveness during the hydration and germination of tomato seeds. The main findings and conclusions are the following,

    Section 3.6

    Samples of unirradiated seeds and their constituent parts (seedcoat+endosperm and embryo) were taken at short

  1. RBE of fast neutrons for apoptosis in mouse thymocytes

    NARCIS (Netherlands)

    Warenius, HM; Down, JD

    1995-01-01

    We compared apoptosis in mouse thymocytes following exposure to low doses of high linear energy transfer (LET), 625-MeV (p-->Be+) fast neutrons and low LET, 4-MeV photons by flow cytometric analysis of hypodiploid cells. The incidence of apoptotic cell death rose steeply at very low radiation doses

  2. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    Science.gov (United States)

    Tsumura, K.; Arai, T.; Battle, J.; Bock, J.; Brown, S.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Lykke, K.; Mason, P.; Matsumoto, T.; Matsuura, S.; Murata, K.; Nam, U. W.; Renbarger, T.; Smith, A.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2013-08-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 μm to 2 μm are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a λ/Δλ ~ 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 μm <λ < 2.1 μm. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  3. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  4. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  5. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  6. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    CERN Document Server

    Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

    2011-01-01

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

  7. Accelerated oxygen precipitation in fast neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    Ma Qiao-Yun; Li Yang-Xian; Chen Gui-Feng; Yang Shuai; Liu Li-Li; Niu Ping-Juan; Chen Dong-Feng; Li Hong-Tao

    2005-01-01

    Annealing effect of the oxygen precipitation and the induced defects have been investigated on the fast neutron irradiated Czochralski silicon (CZ-Si) by infrared absorption spectrum and the optical microscopy. It is found that the fast neutron irradiation greatly accelerates the oxygen precipitation that leads to a sharp decrease of the interstitial oxygen with the annealing time. At room temperature (RT), the 1107cm-1 infrared absorption band of interstitial oxygen becomes weak and broadens to low energy side. At low temperature, the infrared absorption peaks appear at 1078cm-1, 1096cm-1, and 1182cm-1, related to different shapes of the oxygen precipitates. The bulk microdefects,including stacking faults, dislocations and dislocation loops, were observed by the optical microscopy. New or large stacking faults grow up when the silicon self-interstitial atoms are created and aggregate with oxygen precipitation.

  8. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...

  9. Computed Tomography with X-rays and Fast Neutrons for Restoration of Wooden Artwork

    Science.gov (United States)

    Osterloh, Kurt; Bellon, Carsten; Hohendorf, Stefan; Kolkoori, Sanjeevareddy; Wrobel, Norma; Nusser, Amélie; Freitag, Markus; Bücherl, Thomas; Bar, Doron; Mor, Ilan; Tamin, Noam; Weiss-Babai, Ruth; Bromberger, Benjamin; Dangendorf, Volker; Tittelmeier, Kai

    The objects of this investigation were sculptures taken from a ca. three hundred years old baroque epitaph of a church in Tönning, a town in Northern Germany. Around 1900 it was found in a disastrous state heavily damaged by wood-worm. At that time, the whole artwork was treated with the tar extract carbolineum as a remedy. Nowadays, this substance has been identified as carcinogenic, and its presence can be perceived by its stench and visually at certain spots on the surface where it has penetrated the covering paint. A gold-painted sculpture of a massive wooden skull was interrogated with X-rays and fast neutrons to investigate the internal distribution of the carbolineum. The X-ray tomography, with its excellent spatial resolution revealed galleries left over from the worm infestation in the outer areas and cracks in the central region. The golden color coating appeared as a thick and dense layer. In comparison the tomography with fast neutrons, though being of lower resolution and yet unresolved artefacts revealed sections of slightly different densities in the bulk of the wood. These differences we attribute to the differences in the distribution of the impregnant in the wood, visible due to its higher hydrogen content making it less transparent for neutrons.

  10. The Use of Fast Neutron Detection for Materials Accountability

    Science.gov (United States)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2014-02-01

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) inherent in man-portable systems. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross-sections, but more recently we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production timescales of fission and neutron-induced fission are preserved and measured instead of being lost in the thermalization of thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of high efficiency counters. Faster detector response times and sensitivity to neutron momentum show promise in measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed neutron sources (e.g., Pu oxide or Mixed Cm and Pu). Here we report on measured results with our existing liquid scintillator array and promote the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator becomes competitive and even surpasses the precision of 3He counters measuring correlated pairs in modest (kg) samples of plutonium.

  11. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  12. [A novel spatial modulation Fourier transform spectrometer with adjustable spectral resolution].

    Science.gov (United States)

    Lian, Yu-Sheng; Liao, Ning-Fang; Lü, Hang; Wu, Wen-Min; Dong, Zhi-Gang

    2014-11-01

    In the premise of fulfilling the application requirement, the adjustment of spectral resolution can improve efficiency of data acquisition, data processing and data saving. So, by adjusting the spectral resolution, the performance of spectrometer can be improved, and its application range can be extended. To avoid the problems of the fixed spectral resolution of classical Fourier transform spectrometer, a novel type of spatial modulation Fourier transform spectrometer with adjustable spectral resolution is proposed in this paper. The principle of the novel spectrometer and its interferometer is described. The general expressions of the optical path difference and the lateral shear are induced by a ray tracing procedure. The equivalent model of the novel interferometer is analyzed. Meanwhile, the principle of the adjustment of spectral resolution is analyzed. The result shows that the novel spectrometer has the merits of adjustable spectral resolution, high stability, easy assemblage and adjustment etc. This theoretical study will provide the theoretical basis for the design of the spectrometer with adjustable spectral resolution and expand the application range of Fourier transform spectrometer.

  13. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  14. Point Scattered Function (PScF) for fast neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohamed H. [Nuclear and Radiation Engineering Department, Alexandria University, Alexandria 21544 (Egypt)], E-mail: mhmheg@yahoo.com

    2009-08-01

    Fast neutron radiography opened up a new range of possibilities to image extremely dense objects. The removal of the scattering effect is one of the most challenging problems in neutron imaging. Neutron scattering in fast neutron radiography did not receive much attention compared with X-ray and thermal neutron radiography. The purpose of this work is to investigate the behavior of the Point Scattered Function (PScF) as applied in fast neutron radiography. The PScF was calculated using MCNP as a spatial distribution of scattered neutrons over the detector surface for one emitting source element. Armament and explosives materials, namely, Rifle steel, brass, aluminum and trinitrotoluene (TNT) were simulated. Effect of various sample thickness and sample-to-detector distance were considered. Simulated sample geometries included a slab with varying thickness, a sphere with varying radii, and a cylinder with varying base radii. Different neutron sources, namely, Cf-252, DT as well as DD neutron sources were considered. Neutron beams with zero degree divergence angle; and beams with varying angles related to the normal to the source plane were simulated. Curve fitting of the obtained PScF, in the form of Gaussian function, were given to be used in future work using image restoration codes. Analytical representation of the height as well as the Full Width at Half Maximum (FWHM) of the obtained Gaussian functions eliminates the need to calculate the PScF for sample parameters that were not investigated in this study.

  15. High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer

    Indian Academy of Sciences (India)

    N. Kameswara Rao; S. Sriram; K. Jayakumar; F. Gabriel

    2005-06-01

    The optical design and performance of the recently commissioned fiber fed echelle spectrometer of 2.34 meter Vainu Bappu Telescope are described. The use of it for stellar spectroscopic studies is discussed.

  16. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    Science.gov (United States)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  17. Compact high-resolution micro-spectrometer on chip: spectral calibration and first spectrum

    Science.gov (United States)

    Diard, Thomas; de la Barrière, Florence; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Le Coarer, Etienne; Martin, Guillermo

    2016-05-01

    Compact and hand-held spectrometers may be very interesting for the measurement of spectral signatures of chemicals or objects. To achieve this goal, ONERA and IPAG have developed a new on chip Fourier Transform Spectrometer operating in the visible spectral range with a high spectral resolution (near 2 cm-1), named visible HR SPOC (visible High Resolution Spectrometer On Chip). It is directly inspired from the MICROSPOC infrared spectrometer, studied at ONERA in the past years. This spectrometer is made of a stair-step two-wave interferometer directly glued on a CMOS detector making it a very compact prototype. After calibrating the optical path difference, measurements of experimental spectra are presented.

  18. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution

    Science.gov (United States)

    Zhou, Xinlei; Chen, Ke; Li, Li; Peng, Wei; Yu, Qingxu

    2017-01-01

    We design and manufacture an angle modulated surface plasmon resonance (SPR) spectrometer with high detection resolution for refractive index sensing. The presented SPR spectrometer is based on a five-layer Kretchmann configuration. To enhance the sensitivity and resolution of the SPR spectrometer, we introduce a reference beam into the system, which has improved the stability of the system by nearly one order of magnitude. Numerical simulation and experimental study are presented and the results show that a sensitivity of 85 degrees/RIU (refractive index unit) and a good repeatability (standard deviation=3.7×10-6 RIU) have been achieved.

  19. Inelastic scattering of fast neutrons from $^{56}$Fe

    CERN Document Server

    Beyer, R; Hannaske, R; Junghans, A R; Massarczyk, R; Anders, M; Bemmerer, D; Ferrari, A; Kögler, T; Röder, M; Schmidt, K; Wagner, A

    2014-01-01

    Inelastic scattering of fast neutrons from $^{56}$Fe was studied at the photoneutron source nELBE. The neutron energies were determined on the basis of a timeof- flight measurement. Gamma-ray spectra were measured with a high-purity germanium detector. The total scattering cross sections deduced from the present experiment in an energy range from 0.8 to 9.6 MeV agree within 15% with earlier data and with predictions of the statistical-reaction code Talys.

  20. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  1. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    Science.gov (United States)

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A Capture-gated Fast Neutron Detection Method

    CERN Document Server

    Liu, Yi; Tai, Yang; Zhang, Zhi

    2016-01-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm * 1 cm * 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture gamma-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register gamma-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66 +- 1.22% has been achieved with a 40.4 cm * 40.4 cm * 20 cm overall detector volume. This detector can measure both neutrons and gamma-rays simultaneously. A small detector (20.2 cm * 20.2 cm * 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutro...

  3. Cross-Section Measurements in the Fast Neutron Energy Range

    Science.gov (United States)

    Plompen, Arjan

    2006-04-01

    Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.

  4. The resolution of the tof-backscattering spectrometer OSIRIS: Monte Carlo simulations and analytical calculations

    Science.gov (United States)

    Demmel, F.; Pokhilchuk, K.

    2014-12-01

    The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.

  5. The resolution of the tof-backscattering spectrometer OSIRIS: Monte Carlo simulations and analytical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, F., E-mail: franz.demmel@stfc.ac.uk [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Pokhilchuk, K. [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Loughborough University, Loughborough (United Kingdom)

    2014-12-11

    The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.

  6. High-resolution proton energy-loss spectrometer for surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Kanasaki, Junichi; Matsunami, Noriaki; Matsuda, Kouji; Aoki, Masahiko.

    1988-11-01

    We describe a new ion-beam surface analyzer, proton energy loss spectrometer. It analyzes ions incident at 100 keV and scattered by 180degC at solid surfaces with a resolution of 5eV. The results of computer simulation of the energy spectra of scattered ions and the informations on surface electronic and atomic structures possibly derived by the analysis are described. Application of the spectrometer in several areas of science and technology is briefly discussed.

  7. R×B drift momentum spectrometer with high resolution and large phase space acceptance.

    Science.gov (United States)

    Wang, X; Konrad, G; Abele, H

    2013-02-11

    We propose a new type of momentum spectrometer, which uses the R×B drift effect to disperse the charged particles in a uniformly curved magnetic field, and measures the particles with large phase space acceptance and high resolution. This kind of R×B spectrometer is designed for the momentum analyses of the decay electrons and protons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the R×B spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the R×B spectrometer is especially ideal for the measurements of particles with low momenta and large incident angles. We present a design of the R×B spectrometer, which can be used in PERC. For the particles with solid angle smaller than 88 msr, the maximum aberration is below 10(-4). The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm.

  8. The pilot experimental study of 14 MeV fast neutron digital radiography

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample, whose shell is made of heavy metal and in which there are some hydrogen materials, and the study of fast neutron digital radiography just begins in China. By the use of a D-T accelerator, a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene, lens and a scientific grade CCD, the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield. Some 14 MeV fast neutron digital radiographs have been gotten. According to experimental radiographs and their data, the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed, and it is helpful for the further research.

  9. Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean

    Science.gov (United States)

    Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean (Glycine max (L.) Merrill) pl...

  10. The pilot experimental study of 14 MeV fast neutron digital radiography

    Institute of Scientific and Technical Information of China (English)

    TANG Bin; ZHOU ChangGen; HUO HeYong; WU Yang; LIU Bin; LOU BenChao; SUN Yong

    2009-01-01

    14 MeV Fast neutrons has good penetrability and the 14 MeV fast neutron radiography can meet the need of Non-Destructive Test of the structure and lacuna of heavy-massive sample,whose shell is made of heavy metal and in which there are some hydrogen materials,and the study of fast neutron digital radiography just begins in China.By the use of a D-T accelerator,a digital imaging system made up of a fast neutron scintillation screen made of ZnS(Ag) and polypropylene,lens and a scientific grade CCD,the experimental study of fast neutron radiography has been done between 4.3×1010-6.8×1010 n/s of neutron yield.Some 14 MeV fast neutron digital radiographs have been gotten.According to ex-perimental radiographs and their data,the performance of the fast neutron scintillation screen and the basic characters of 14 MeV fast neutron radiography are analyzed,and it is helpful for the further re-search.

  11. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  12. Fast Neutron Damage Studies on NdFeB Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Spencer, J.; Wolf, Z.; /SLAC; Baldwin, A.; Pellett, D.; Boussoufi, M.; /UC, Davis

    2005-05-17

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over the life of the facility [1]. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at PAC03 [2]. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC04 [3]. We have extended the doses, included other manufacturer's samples, and measured induced radioactivities which are discussed in detail.

  13. Fast Neutron Damage Studies on NdFeB Materials

    CERN Document Server

    Spencer, James; Baldwin, A; Boussoufi, Moe; Pellet, David; Volk, James T; Wolf, Zachary

    2005-01-01

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetizatio...

  14. Optimization of CR-39 for fast neutron dosimetry applications

    CERN Document Server

    Vilela, E; Giacomelli, G; Giorgini, M; Morelli, B; Patrizii, L; Serra, P; Togo, V

    1999-01-01

    We present the results of an experimental work aimed at improving the performances of the CR-39[reg] (Registered Trademark of PPG Industries Inc.) nuclear track detector for neutron dosimetry applications. The work was done in collaboration with the Intercast Europe S.p.A., producer of CR-39 for commercial and scientific applications. We compare the CR-39 made with different additives concentrations and different polymerization processes. We evaluate the response of the CR-39 to fast neutrons from three sources: sup 2 sup 4 sup 1 Am-Be, sup 2 sup 5 sup 2 Cf and sup 2 sup 3 sup 8 Pu-Li. Particular attention was paid to background fluctuations that limit the lower detectable dose.

  15. [The combination treatment of malignant bone tumors using fast neutrons].

    Science.gov (United States)

    Chernichenko, V A; Tolstopiatov, B A; Konovalenko, V F; Monich, A Iu; Palivets, A Iu

    1990-01-01

    The study deals with results of a clinical trial evaluating treatment efficacy of a 6 MeV neutron beam produced by Y-120 cyclotron (Kiev). Procedures of preoperative radiotherapy and radical treatment are discussed. Radiotherapy was administered to 52 patients suffering chondrosarcoma (30 cases), osteogenic sarcoma (15) or chordoma (7). Combined treatment (radiation + surgery) was given to 22 patients whereas neutron beam therapy--to 30. All patients with osteogenic sarcoma received adjuvant combination chemotherapy. Three-year survival rate was compared to that observed in controls in whom combined treatment had included gamma-therapy. A significant increase in three-year survival rate was observed for osteogenic sarcoma and chordoma whereas for chondrosarcoma the improvement in survival proved insignificant. The use of fast neutrons in combined treatment of bone tumors was considered promising.

  16. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  17. Resonant inelastic x-ray scattering spectrometer with 25 meV resolution at Cu K-edge

    CERN Document Server

    Ketenoglu, Didem; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavaş, Hasan

    2014-01-01

    An unparalleled resolution is reported with an inelastic x-ray scattering instrument at the Cu K-edge. Based on a segmented concave analyzer, featuring single crystal quartz (SiO_{2}) pixels, the spectrometer delivers a resolution near 25 meV (FWHM) at 8981 eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick-Baez optics. The measured resolution agrees with the ray tracing simulation of an ideal spectrometer. We demonstrated the performance of the spectrometer by reproducing the phonon dispersion curve of a beryllium (Be) single crystal.

  18. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    Science.gov (United States)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  19. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  20. The Effect of Combining Fast Neutron and Photon Irradiation on the Human Osteosarcoma OS-732 Cell Line

    Institute of Scientific and Technical Information of China (English)

    Linchun Feng; Lin Ma; Jingxiang Huang; Dong Yang; Yingxuan Wang; Mingxue Sun; Jinhua Tang; Weike Chang; Chengxiang Liu

    2005-01-01

    OBJECTIVE To determine the lethal effect of combining fast neutron with photon radiation on the OS-732 cell line.METHODS We examined the effect of irradiation by fast neutrons, photons and a mixed beam (fast neutrons plus photons) on the lethality and colony forming ability of the OS-732 cell line at different times.RESULTS Following a single irradiation close, the lethality was markedly strong at 24, 48 and 72 h in the group treated with fast neutrons alone and in the mixed beam group in which there was a high proportion of fast neutrons.CONCLUSION The lethal effect of a fast neutron and mixed beam with a high proportion of fast neutrons on the OS-732 cell line is highly significant. These studies provide guidance for the clinical application of fast neutrons for osteosarcoma treatment.

  1. High-resolution Laue-type DuMond curved crystal spectrometer.

    Science.gov (United States)

    Szlachetko, M; Berset, M; Dousse, J-Cl; Hoszowska, J; Szlachetko, J

    2013-09-01

    We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

  2. Study of high resolution x-ray spectrometer concepts for NIF experiments

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.

    2015-11-01

    Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  3. The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer

    Science.gov (United States)

    Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.

    2003-02-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  4. The Joint astrophysical Plasmadynamic EXperiment (J-PEX) A high-resolution rocket spectrometer

    CERN Document Server

    Barstow, M A; Cruddace, R G; Kowalski, M; Wood, K S; Yentis, D J; Gursky, H; Barbee, T W; Goldstein, W H; Kordas, J F; Fritz, G G; Culhane, J L; Lapingtone, J S

    2002-01-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245A spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  5. Time-resolved fast-neutron pinhole camera for studying thermonuclear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.W.; Weingart, R.C.

    1976-02-02

    A fast-neutron pinhole camera with high detection efficiency and nanosecond time-resolution has been developed and applied to the investigation of the spatial and temporal distributions of DD- and DT-neutrons produced by thermonuclear plasmas. The pinhole consists of a specially designed 1.15 m long copper collimator with an effective aperture of 1 mm diameter. Several different types of spatial resolution detectors have been used at the image plane: (1) a multi-element, scintillation-photomultiplier system used for time-resolved measurements consisting of sixty-one individual detectors, (2) a scintillation-fiber-chamber coupled to a gated image-intensifier tube used for direct photographing of the neutron image, and (3) a propane bubble chamber used for time-integrated recording with a capability to distinguish DD- from DT-neutrons. Pulsed neutron sources with typical dimensions of 1 cm emitting of the order of 10/sup 12/ neutrons over a time period of 10-100 nsec have been investigated. A spatial resolution of 1 mm and a time resolution of approximately 10 nsec was achieved in the investigations of dense plasma compression phenomena.

  6. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  7. A magnetic-free high-resolution parabolic mirror time-of-flight electron energy spectrometer

    Institute of Scientific and Technical Information of China (English)

    张戈; 沈鸿元; 曾瑞荣; 黄呈辉; 林文雄; 黄见洪

    2001-01-01

    The principle and structure of a magnetic-free high-resolution high-efficiency parabolic mirror time-offligght electron energy spectrometer are presented. The electron energy spectrum of Nz in a flight tube is measured using a 105 fs Ti:sappbire laser under different gas pressures.

  8. The mid-infrared instrument for the James Webb Space telescope, VI: the medium resolution spectrometer

    NARCIS (Netherlands)

    Wells, M.; Pel, J.W.; Glasse, A.; Wright, G.S.; Aitink-Kroes, G.; Azzollini, R.; Beard, S.; Brandl, B.R.; Gallie, A.; Geers, V.C.; Glauser, A.M.; Hastings, P.; Henning, T.; Jager, R.; Justtanont, K.; Kruizinga, B.; Lahuis, F.; Lee, D.; Martinez-Delgado, I.; Martínez-Galarza, J.R.; Meijers, M.; Morrison, J.E.; Müller, F.; Nakos, T.; O’Sullivan, B.; Oudenhuysen, A.; Parr-Burman, P.; Pauwels, E.; Rohloff, R.R.; Schmalzl, E.; Sykes, J.; Thelen, M.P.; Dishoeck, E.F. van; Vandenbussche, B.; Venema, L.B.; Visser, H.; Waters, L.B.F.M.; Wright, D.

    2015-01-01

    We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 × 7.7″ in extent and at spectral resol

  9. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer

    NARCIS (Netherlands)

    Wells, M.; Pel, J.-W.; Glasse, A.; Wright, G.S.; Aitink-Kroes, G.; Azzollini, R.; Beard, S.; Brandl, B.R.; Gallie, A.; Geers, V.C.; Glauser, A.M.; Hastings, P.; Henning, Th.; Jager, R.; Justtanont, K.; Kruizinga, B.; Lahuis, F.; Lee, D.; Martinez-Delgado, I.; Martínez-Galarza, J.R.; Meijers, M.; Morrison, J.E.; Müller, F.; Nakos, T.; O'Sullivan, B.; Oudenhuysen, A.; Parr-Burman, P.; Pauwels, E.; Rohloff, R.R.; Schmalzl, E.; Sykes, J.; Thelen, M.P.; van Dishoeck, E.F.; Vandenbussche, B.; Venema, L.B.; Visser, H.; Waters, L.B.F.M.; Wright, D.

    2015-01-01

    We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 × 7.7'' in extent and at spectral reso

  10. The High Time Resolution Spectrometer (HTRS) aboard the International X-ray Observatory (IXO)

    NARCIS (Netherlands)

    Barret, Didier; Ravera, Laurent; Bodin, Pierre; Amoros, Carine; Boutelier, Martin; Glorian, Jean-Michel; Godet, Olivier; Orttner, Guillaume; Lacombe, Karine; Pons, Roger; Rambaud, Damien; Ramon, Pascale; Ramchoun, Souad; Biffi, Jean-Marc; Belasic, Marielle; Clédassou, Rodolphe; Faye, Delphine; Pouilloux, Benjamin; Motch, Christian; Michel, Laurent; Lechner, Peter H.; Niculae, Adrian; Strueder, Lothar W.; Distratis, Giuseppe; Kendziorra, Eckhard; Santangelo, Andréa; Tenzer, Christoph; Wende, Henning; Wilms, Joern; Kreykenbohm, Ingo; Schmid, Christian; Paltani, Stéphane; Cadoux, Franck; Fiorini, Carlo; Bombelli, Luca; Méndez, Mariano; Mereghetti, Sandro

    2010-01-01

    The High Time Resolution Spectrometer (HTRS) is one of the five focal plane instruments of the International X-ray Observatory (IXO). The HTRS is the only instrument matching the top level mission requirement of handling a one Crab X-ray source with an efficiency greater than 10%. It will provide IX

  11. Monte-Carlo simulation of a high-resolution inverse geometry spectrometer on the SNS. Long Wavelength Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N. [Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL (United States); Herwig, K.W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2001-03-01

    Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)

  12. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  13. SHARAQ spectrometer for high-resolution studies for RI-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michimasa, S., E-mail: mitimasa@cns.s.u-tokyo.ac.jp [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Takaki, M.; Sasamoto, Y. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Dozono, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nishi, T. [Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Ota, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Baba, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Baba, T. [Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502 (Japan); Fujii, T.; Go, S.; Kawase, S.; Kikuchi, Y.; Kisamori, K.; Kobayashi, M.; Kubota, Y.; Lee, C.S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Miki, K. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Miya, H. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    Highlights: • Report on recent achievement of the SHARAQ spectrometer. • Demonstration of two ion optics modes for high-resolution spectroscopy. • Discussion on measured transport matrix elements by comparison with designed values. • Demonstration of event-by-event momentum tagging by the achromatic transport. • Achievement of momentum resolution of 1/8100 by the dispersion-matching transport. -- Abstract: The SHARAQ spectrometer and High-Resolution Beamline, which began operation in March 2009, have been put into use for six experiments using charge exchange reactions with radioactive isotope beams. For experiments at SHARAQ, detector developments and ion optics studies continue to improve performance in high-resolution nuclear spectroscopy. We have introduced improved timing resolution with CVD diamond detectors, high count-rate beamline tracking detectors and development of multi-particle detection by cathode-readout drift chambers. Ion-optics studies for the high-resolution achromatic (HA) and dispersion-matching (DM) transport modes are also reported here. Momentum tagging in the HA mode demonstrated an improvement in spectroscopic resolution with respect to the momentum spread of the radioactive beam. For the DM transportation mode, a momentum resolution of 1/8100 (FWHM) was achieved by taking into account the positions and angles of the beam at the third focal plane of BigRIPS.

  14. Improving the energy resolution of bent crystal X-ray spectrometers with position-sensitive detectors.

    Science.gov (United States)

    Honkanen, Ari Pekka; Verbeni, Roberto; Simonelli, Laura; Moretti Sala, Marco; Al-Zein, Ali; Krisch, Michael; Monaco, Giulio; Huotari, Simo

    2014-07-01

    Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanen et al. (2014). J. Synchrotron Rad. 21, 104-110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.

  15. Using a multimode fiber as a high resolution, low loss spectrometer

    CERN Document Server

    Redding, Brandon

    2015-01-01

    We propose and demonstrate that a conventional multimode fiber can function as a high resolution, low loss spectrometer. The proposed spectrometer consists only of the fiber and a camera that images the speckle pattern generated by interference among the fiber modes. While this speckle pattern is detrimental to many applications, it encodes information about the spectral content of the input signal which can be recovered using calibration data. We achieve a spectral resolution of 0.15 nm over 25 nm bandwidth using 1 meter long fiber, and 0.03 nm resolution over 5 nm bandwidth with a 5 meter fiber. The insertion loss is less than 10%, and the signal to noise ratio in the reconstructed spectra is over 1000.

  16. Simulation analysis and exp erimental verification of fast neutron radiography%快中子照相模拟分析与实验验证∗

    Institute of Scientific and Technical Information of China (English)

    鲁昌兵; 许鹏; 鲍杰; 王朝辉; 张凯; 任杰; 刘艳芬

    2015-01-01

    Expression for the formation of the pixel value of fast neutron radiography has been derived. The contrast inequality for the photograph has been established using the derived expression;then the relationships of the image contrast with the source intensity, the exposure time, and the scattering have therefore been obtained through the acquired inequality. A simulation on the process of fast neutron radiography is carried out based on the pixel value analysis, and the spatial resolution and image contrast have also been considered. Simulation results show that the spatial resolution is better than that from experiments and the effect of image contrast is equivalent to that of the experiments. Finally, various samples, such as Pb samples, with slits, Fe samples with square holes and multiple materials-combined samples, are used to test the performance of the simulation. Results demonstrate that the simulations are in agreement with the experiments, thus providing a reference to the future experimental design and engineering application.

  17. Mechanisms of fast neutron penetration in thick layers of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.Y.

    1975-01-01

    A series of computer experiments was carried out to elucidate the penetration mechanisms of fast neutrons through thick layers of sodium such as occur in LMFBR designs. As a one-dimensional approximation of the actual situation, the calculations concentrated mainly on the flux 5 meters from a plane isotropic fission source in an infinite sodium medium. Most of the transport calculations were made with the moments-method code BMT with a 496-energy point grid. Previously developed methods for reconstructing the flux from the spatial moments were used, except that a set of biorthogonal polynomials was constructed suitable for expansion of the flux in terms of a Gaussian weight function. The moments-method technique lends itself to easy and economical changes of the input cross section data. A large number of such modified cross section sets, built around the ENDF/B-III set, were used in separate calculations designed variously to emphasize or eliminate one or more particular transport processes. It was shown that, as the energy decreases below 190 keV, the flux spectrum at 5 m is increasingly dominated by an age-diffusion process that is quantitatively close to conventional age theory if the age is suitably chosen. Conclusions from this picture of neutron penetration in sodium are made as to the types of transport calculations that can be successfully made in shield design, and the accuracies needed in future cross section measurements. 37 figures, 30 tables.

  18. FNIT: the fast neutron imaging telescope for SNM detection

    Science.gov (United States)

    Bravar, Ulisse; Bruillard, Paul J.; Flückiger, Erwin O.; Macri, John R.; McConnell, Mark L.; Moser, Michael R.; Ryan, James M.

    2006-05-01

    We report on recent progress in the development of the Fast Neutron Imaging Telescope (FNIT), a detector with both imaging and energy measurement capabilities, sensitive to neutrons in the 2-20 MeV range. FNIT was initially conceived to study solar neutrons as a candidate design for the Solar Sentinels program under formulation at NASA. This instrument is now being configured to locate fission neutron sources for homeland security purposes. By accurately identifying the position of the neutron source with imaging techniques and reconstructing the energy spectrum of fission neutrons, FNIT can locate problematic amounts of Special Nuclear Material (SNM), including heavily shielded and masked samples. The detection principle is based on multiple elastic neutron-proton (n-p) scatterings in organic scintillators. By reconstructing the n-p event locations and sequence and measuring the recoil proton energies, the direction and energy spectrum of the primary neutron flux can be determined and neutron point sources identified. The performance of FNIT is being evaluated through a series of Monte Carlo simulations and lab tests of detector prototypes. The Science Model One (SM1) of this instrument was recently assembled and is presently undergoing performance testing.

  19. Tagged fast neutron beams En > 6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E., E-mail: chavez@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000 México (Mexico); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000 México (Mexico); INFN-Sezione di Catania, Via Santa Sofia 64 I-95123, Catania (Italy); Murillo, G.; Policroniades, R. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Edo. Méx., 52750 (Mexico); Varela, A. [Instituto de Ciencias de la Atmósfera, UNAM (Mexico)

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  20. A design study of VOR: A versatile optimal resolution chopper spectrometer for the ESS

    Directory of Open Access Journals (Sweden)

    Deen P.P.

    2015-01-01

    Full Text Available VOR, the versatile optimal resolution chopper spectrometer, is designed to probe dynamic phenomena that are currently inaccessible for inelastic neutron scattering due to flux limitations. VOR is a short instrument by the standards of the European Spallation Source (ESS, 30.2 m moderator to sample, and provides instantaneous access to a broad dynamic range, 1–120 meV within each ESS period. The short instrument length combined with the long ESS pulse width enables a quadratic flux increase, even at longer wavelengths, by relaxing energy resolution from ΔE/E = 1% up to ΔE/E = 7%. This is impossible both on a long chopper spectrometer at the ESS and with instruments at short pulsed sources. In comparison to current day chopper spectrometers, VOR can offer an order of magnitude improvement in flux for equivalent energy resolutions, ΔE/E = 1–3%. Further relaxing the energy resolution enables VOR to gain an extra order of magnitude in flux. In addition, VOR has been optimised for repetition rate multiplication (RRM and is therefore able to measure, in a single ESS period, 6–14 incident wavelengths, across a wavelength band of 9 Å with a novel chopper configuration that transmits all incident wavelengths with equivalent counting statistics. The characteristics of VOR make it a unique instrument with capabilities to access small, limited-lifetime samples and transient phenomena with inelastic neutron scattering.

  1. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, Christoph [GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt (Germany)

    2010-07-01

    A detector for momentum measurements of high-energy neutrons in the energy range 0.2-1 GeV is being developed for the R{sup 3}B (Reactions with Relativistic Radioactive Beams) experiment at FAIR. Based on the running LAND detector at GSI, the currently pursued concept for NeuLAND is a layered structure made of iron converters and charged particle detectors. As charged particle detectors Multigap Resistive Plate Chamber (MRPC) detectors will be used. The excellent time resolution of the MRPC units will allow for a very good time-of-flight resolution of NeuLAND. The design goal for the full detector is {sigma}{sub time} <100 ps. The full NeuLAND detector will consist of about 60 layers of the basic structure (converter+MRPC), leading to a detection efficiency of close to 100% for neutrons with energies higher than 200 MeV. Prototypes built at GSI and FZD were tested using MIPs at the ELBE electron beam facility at FZD. Here we present recent results from a first irradiation of the prototypes with fast neutrons. The TSL Uppsala monoenergetic neutron beam of E{sub n}=175 MeV is well-suited for such a study. These data will serve both for the validation of the basic detection scheme and as important input to refine GEANT4 and FLUKA simulations of the final detector.

  2. The preliminary results of fast neutron flux measurements in the DULB laboratory at Baksan

    OpenAIRE

    2000-01-01

    One of the main sources of a background in underground physics experiments (such as the investigation of solar neutrino flux, neutrino oscillations, neutrinoless double beta decay, and the search for annual and daily Cold Dark Matter particle flux modulation) are fast neutrons originating from the surrounding rocks. The measurements of fast neutron flux in the new DULB Laboratory situated at a depth of 4900 m w.e. in the Baksan Neutrino Observatory have been performed. The relative neutron sh...

  3. Fast neutron leakage in 18 MeV medical electron accelerator

    CERN Document Server

    Paredes, L; Balcazar, M; Tavera, L; Camacho, E

    1999-01-01

    In this work the neutron fluence of the Varian Clinac 2100C Medical Accelerator has been evaluated using CR39 track dosimeter. The assessment of fast neutron dose to a patient for typical treatment of 200 cGy with an 18 MV photons beam is performed at surface-source distance of 100 cm with a field size of 20x20 cm sup 2. Fast neutron leakage around of the accelerator head is evaluated.

  4. Development of fast neutron pinhole camera using nuclear emulsion for neutron emission profile measurement in KSTAR

    Science.gov (United States)

    Izumi, Y.; Tomita, H.; Nakayama, Y.; Hayashi, S.; Morishima, K.; Isobe, M.; Cheon, M. S.; Ogawa, K.; Nishitani, T.; Naka, T.; Nakano, T.; Nakamura, M.; Iguchi, T.

    2016-11-01

    We have developed a compact fast neutron camera based on a stack of nuclear emulsion plates and a pinhole collimator. The camera was installed at J-port of Korea superconducting tokamak advanced research at National Fusion Research Institute, Republic of Korea. Fast neutron images agreed better with calculated ones based on Monte Carlo neutron simulation using the uniform distribution of Deuterium-Deuterium (DD) neutron source in a torus of 40 cm radius.

  5. Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer

    Directory of Open Access Journals (Sweden)

    Granroth G.E.

    2015-01-01

    Full Text Available Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS of Oak Ridge National Laboratory (ORNL, has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores. This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.

  6. Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer

    Science.gov (United States)

    Granroth, G. E.; Hahn, S. E.

    2015-01-01

    Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (ORNL), has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores). This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.

  7. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    Science.gov (United States)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  8. High-resolution VUV spectrometer/detector investigations of rare-earth pulsed plasma source (abstract)

    Science.gov (United States)

    Roberts, J. R.; Cromer, C. L.; Bridges, J. M.; Lucatorto, T. B.

    1985-05-01

    A 1.5-m grazing incidence spectrometer with a channel electron multiplier (CEMA) and electronic readout detector has been incorporated with a rare-earth target, pulsed plasma, continuum source. The spectrometer is compact and portable while maintaining high resolution. The CEMA detector consists of a single multichannel plate (MCP) with coned-shaped input pores which are cut at a 15-degree bias to improve efficiency at grazing angles. The source is a rare-earth plasma generated by a 10-J ruby laser producing intense continuum emission for wavelengths from 170 to 5 nm. This system will be used for both stationary and transient high-resolution atomic photoabsorption spectroscopy. The pulsed plasma source itself will be investigated for suitability as a radiometric transfer standard source. Preliminary results obtained with this integrated system will be discussed.

  9. High-resolution XES and RIXS studies with a von Hamos Bragg crystal spectrometer

    CERN Document Server

    Hoszowska, J; 10.1016/j.elspec.2004.02.005

    2004-01-01

    The high-resolution von Hamos Bragg crystal spectrometer was constructed for the study of K X-ray emission from low-Z elements and L and M X-ray spectra of medium to high Z elements. Recently, this instrument was applied to high-resolution XES and RIXS studies using X-ray synchrotron radiation at the ID21 and BM5 beamlines at the ESRF. An outline of the spectrometer design and performance characteristics will be given. The studies deal with the energy dependent KL double photoexcitation of argon, the L3 and M1 atomic- level widths of elements 54

  10. A High-Resolution Time-of-Flight Mass Spectrometer for Experiments with Ultracold Gases

    CERN Document Server

    Kraft, S D; Staanum, P; Fioretti, A; Lange, J; Wester, R; Weidemüller, M; Kraft, Stephan D.; Mikosch, Jochen; Staanum, Peter; Fioretti, Andrea; Lange, Joerg; Wester, Roland; Weidemueller, Matthias

    2005-01-01

    We have realized a high-resolution time-of-flight mass spectrometer combined with a magneto-optical trap. The spectrometer enables excellent optical access to the trapped atomic cloud using properly devised acceleration and deflection electrodes. The ions are extracted along a laser axis and deflected onto an off axis detector. The setup is applied to detect atoms and molecules photoassociated from ultracold atoms. The detection is based on resonance-enhanced multi-photon ionization. The versatile setup can easily be implemented in more complex experiments with ultracold atomic and molecular gases. Mass resolution up to $m/\\Delta m_{rms} = 1000$ at the mass of $^{133}$Cs is achieved.

  11. A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Muir, C. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Department of Physics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2016-11-15

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  12. High resolution infrared spectroscopy of planetary molecules using diode lasers and Fourier transform spectrometers

    Science.gov (United States)

    Jennings, Donald E.

    1990-01-01

    Modern observations of infrared molecular lines in planets are performed at spectral resolutions which are as high as those available in the laboratory. Analysis of such data requires laboratory measurements at the highest possible resolution, which also yield accurate line positions and intensities. For planetary purposes the spectrometer must be coupled to sample cells which can be reduced in temperature and varied in pressure. An approach which produces the full range of required molecular line parameters uses a combination of tunable diode lasers and Fourier transform spectrometers (FTS). The FTS provides board spectral coverage and good calibration accuracy, while the diode laser can be used to study those regions which are not resolved by the FTS.

  13. Design and Performance of A High Resolution Micro-Spec: An Integrated Sub-Millimeter Spectrometer

    Science.gov (United States)

    Barrentine, Emily M.; Cataldo, Giuseppe; Brown, Ari D.; Ehsan, Negar; Noroozian, Omid; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2016-01-01

    Micro-Spec is a compact sub-millimeter (approximately 100 GHz--1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype Micro-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution Micro-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions.

  14. A pulse-front-tilt-compensated streaked optical spectrometer with high throughput and picosecond time resolution

    Science.gov (United States)

    Katz, J.; Boni, R.; Rivlis, R.; Muir, C.; Froula, D. H.

    2016-11-01

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  15. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  16. Characterization of a GEM-based fast neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B., E-mail: basilio.esposito@enea.it [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi, 45, I-00044 Frascati, Roma (Italy); Marocco, D.; Villari, R. [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi, 45, I-00044 Frascati, Roma (Italy); Murtas, F. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi, 40, I-00044 Frascati, Roma (Italy); Rodionov, R. [SRC RF TRINITI Troitsk, Moscow (Russian Federation)

    2014-03-21

    The neutron efficiency of a Gas Electron Multiplier (GEM)-based detector designed for fast neutron measurements in fusion devices was determined through the combined use of Monte Carlo (MCNPX) calculations and analysis of deuterium–deuterium and deuterium–tritium neutron irradiation experiments. The detector, characterized by a triple GEM structure flushed with a Ar/CO{sub 2}/CF{sub 4} – 45/15/40 gas mixture, features a digital read-out system and has two sub-units for the detection of 2.5+14 MeV neutrons and 14 MeV neutrons (U{sub DD} and U{sub DT}, respectively). The pulse height spectra (PHS) determined from the curves of experimental efficiency as a function of the detector's high voltage (HV) and the MCNPX-simulated PHS were compared using a fitting routine that finds the best match between the experimental and simulated PHS by assuming a parametric model for the relation between HV (that determines the detector's gain) and the energy deposited in the gas. This led to express the experimental neutron efficiency as a function of the discrimination level set on the deposited energy (energy threshold). The detector sensitivity to γ-rays was also analyzed and the operational range in which the γ-ray contribution to the signal is not negligible was determined. It is found that this detector can reach a maximum neutron efficiency of ∼1×10{sup −3} counts/n at 2.5 MeV (U{sub DD} sub-unit) and of ∼4×10{sup −3} counts/n at 14 MeV (U{sub DT} and U{sub DD} sub-units)

  17. Analysis of High-Resolution Spectra From a Hybrid Interferometric/Dispersive Spectrometer

    CERN Document Server

    Ko, P; Jovanovic, I

    2015-01-01

    To more fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a mathematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex spectral patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, leading to increased spectral resolution by more than an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682, which agreed well with an independent measurement and literature values. The doublet separation (29 pm) is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonproliferation activities. Additionally, the technique was applied to LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.682. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isoto...

  18. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  19. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, C.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, S.R., E-mail: yhkim@kriss.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, G.B. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Lee, H.J. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Lee, M.K.; Lee, J.H. [Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); So, J.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, Y.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an {sup 241}Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  20. Design and expected performance of a fast neutron attenuation probe for light element density measurements

    Science.gov (United States)

    Sweany, M.; Marleau, P.

    2016-10-01

    We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20-30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5-10% level for a two hour scan time.

  1. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m∕Δm > 2500. The system design...

  2. Development of high resolution x-ray spectrometers for the investigation of bioinorganic chemistry in metalloproteins

    Science.gov (United States)

    Drury, Owen Byron

    We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be

  3. Final report on graphite irradiation test OG-3. [Fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Price, R.J.; Beavan, L.A.

    1977-01-01

    The results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3 are presented. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P/sub 3/JHA/sub 2/N, P/sub 3/JHAN, and ASI2-500. Data were obtained in the temperature range 823/sup 0/K to 1673/sup 0/K. The peak fast neutron fluence in the experiment was 3 x 10/sup 25/ n/m/sup 3/ (E greater than 29 fJ)/sub HTGR/; the total accumulated fluence exceeded 9 x 10/sup 25/ n/m/sup 2/ on some H-451 specimens and 6 x 10/sup 25/ n/m/sup 2/ on some TS-1240 specimens. Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225/sup 0/K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10/sup 25/ n/m/sup 2/ at 1275/sup 0/K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on SO818 and ASI2-500 graphites showed similar behavior to H-451. P/sub 3/JHAN and P/sub 3/JHA/sub 2/N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240. The thermal expansivity of the near-isotropic graphites irradiated at 865-1045/sup 0/K first increased by 5 percent to 10 percent and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50 percent. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the

  4. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  5. A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy.

    Science.gov (United States)

    Warwick, Tony; Chuang, Yi De; Voronov, Dmitriy L; Padmore, Howard A

    2014-07-01

    The optical design of a two-dimensional imaging soft X-ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (∼2 µm wide by ∼2 mm tall) on a sample. The spectrometer will use inelastically scattered X-rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat-field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X-ray scattering measurement at high spectral resolution (∼30,000) over the energy bandwidth (∼5 eV) of a soft X-ray absorption resonance.

  6. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  7. A High Resolution Orbitrap Mass Spectrometer for In-Situ Analysis in Planetary Science

    Science.gov (United States)

    Briois, C.; Thirkell, L.; Boukrara, A.; Lebreton, J. P.; Thissen, R.; Puget, P.; Cottin, H.; Grand, N.; Pennanech, C.; Zapf, P.; Szopa, C.; Carrasco, N.; Chapuis, C.; Bouabdellah, A.; Berthelier, J. J.; Engrand, C.; Makarov, A.

    2012-04-01

    Solar System exploration is dealing more and more with chemically complex matter, potentially associated with astrobiology or prebiotic questions, requiring optimized methods of analysis. Due to its ability to reveal quantitatively almost any chemical element, mass spectrometry has served as an invaluable scientific analytical instruments. Nevertheless the best mass resolution (M/deltaM) currently achieved by mass spectrometers in space is about 3000 at mass 28 (ROSINA's DFMS on board ESA's comet chaser Rosetta). This resolution allows separation of peaks for only a limited number of isobaric species (e.g. N2 / CO at 28 Da). Yet, purely electrostatic orbital traps in laboratory are showing mass resolution above 100 000 for m/z <= 400 [1, 2], that provides separation for each detected isobaric species. Therefore it opens new opportunity for molecular characterization, isotopic abundance evaluation, and more generally environmental characterization. Our French consortium of laboratories, in collaboration with ThermoFischer Scientific, is currently working on the adaptation of this type of mass spectrometer for space instrumentation. We present here this innovative concept of mass analyzer for space that is lightweight, uses DC voltages, and provides ultra high resolving power capabilities. A mass resolution of 140,000 at mass 56 has been recently achieved with our prototype.

  8. The method of improving the spatial resolution of the matrix spectrometer

    Science.gov (United States)

    Krot, Yury; Beliaev, Boris; Katkovsky, Leonid

    2014-10-01

    The videospectral system (VSS) intended for ecological space experiment on board of the International Space Station (ISS) has been developed by the Aerospace Researches Department of the Institute of Applied Physical Problems of the Belarusian State University. The system comprises three matrix spectrometers MP-15. The polychromator of each spectrometer includes the imaging fiber, the entrance slit, concave holographic diffraction grating, and a CCD array detector. The array photodetector measures the spectral radiation distribution in rows, and the spatial distribution (image) in columns. Astigmatism is a typical aberration of polychromators based on concave spherical gratings - rays in tangential and sagittal planes are focused at different points. This degrades as for spectral and spatial resolution along the entrance slit. The proposed method of obtaining high spatial resolution without spectral resolution loss consists in the displacement of the output end of the imaging fiber along the optical axis at a specified distance from the entrance slit. After that the rays in the tangential and sagittal planes focus at one point. The entrance slit operates as a one-dimensional aperture to obtain high spectral resolution.

  9. An inelastic X-ray spectrometer with 2.2 meV energy resolution

    CERN Document Server

    Sinn, H; Alatas, A; Barraza, J; Bortel, G; Burkel, E; Shu, D; Sturhahn, W; Sutter, J P; Toellner, T S; Zhao, J

    2001-01-01

    We present a new spectrometer at the Advanced Photon Source for inelastic X-ray scattering with an energy resolution of 2.2 meV at an incident energy of 21.6 keV. For monochromatization, a nested structure of one silicon channel cut and one 'artificial' channel cut is used in forward-scattering geometry. The energy analysis is achieved by a two-dimensional focusing silicon analyzer in backscattering geometry. In the first demonstration experiments, elastic scattering from a Plexiglas sup T sup M sample and two dispersion curves in a beryllium single crystal were measured. Based on these data sets, the performance of the new spectrometer is discussed.

  10. Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs

    CERN Document Server

    Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra

    2015-01-01

    Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.

  11. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT).

    Science.gov (United States)

    Cecilia, A; Baccaro, S; Cemmi, A; Colli, V; Gambarini, G; Rosi, G; Scolari, L

    2004-01-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF2:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH3CH(NH2)COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT.

  12. MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons

    Science.gov (United States)

    Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.

    2014-05-01

    The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.

  13. Performance of the High Resolution, Multi-collector Helix MC Plus Noble Gas Mass Spectrometer at the Australian National University

    Science.gov (United States)

    Zhang, Xiaodong; Honda, Masahiko; Hamilton, Doug

    2016-12-01

    Performance of the Helix MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is reported. Results for sensitivity, mass discrimination and their linearity against partial pressure of noble gases, and mass resolution of the mass spectrometer are presented, and the results are compared with those of conventional noble gas mass spectrometers. The application of the five detectors on the Helix MC Plus in measuring various noble gas isotopes in multi-collector modes and the integration of the software drivers of peripheral hardware devices into the controlling program Qtegra of the mass spectrometer are discussed. High mass resolution (>1800) and mass resolving power (>8000) make this mass spectrometer unique in noble gas cosmo-geochemistry. It provides the capability to measure isobaric interference-free noble gas isotopes in multi-collector mode, significantly improves the accuracy to determine isotopic ratios, and greatly increases the efficiency of data acquisition.

  14. Performance of the High Resolution, Multi-collector Helix MC Plus Noble Gas Mass Spectrometer at the Australian National University

    Science.gov (United States)

    Zhang, Xiaodong; Honda, Masahiko; Hamilton, Doug

    2016-09-01

    Performance of the Helix MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is reported. Results for sensitivity, mass discrimination and their linearity against partial pressure of noble gases, and mass resolution of the mass spectrometer are presented, and the results are compared with those of conventional noble gas mass spectrometers. The application of the five detectors on the Helix MC Plus in measuring various noble gas isotopes in multi-collector modes and the integration of the software drivers of peripheral hardware devices into the controlling program Qtegra of the mass spectrometer are discussed. High mass resolution (>1800) and mass resolving power (>8000) make this mass spectrometer unique in noble gas cosmo-geochemistry. It provides the capability to measure isobaric interference-free noble gas isotopes in multi-collector mode, significantly improves the accuracy to determine isotopic ratios, and greatly increases the efficiency of data acquisition.

  15. High resolution X-ray spherically bent crystal spectrometer for laser-produced plasma diagnostics

    Institute of Scientific and Technical Information of China (English)

    Shali Xiao; Hongjian Wang; Jun Shi; Changhuan Tang; Shenye Liu

    2009-01-01

    A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5 - 0.9 nm range. A large open aperture (30 x 20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 x 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laser produced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/鈻矱 ~ 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.

  16. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    CERN Document Server

    Davis, John R; Vetter, Kai

    2016-01-01

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the backg...

  17. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  18. Monte Carlo Calculations for Neutron and Gamma Radiation Fields on a Fast Neutron Irradiation Device

    Science.gov (United States)

    Vieira, A.; Ramalho, A.; Gonçalves, I. C.; Fernandes, A.; Barradas, N.; Marques, J. G.; Prata, J.; Chaussy, Ch.

    We used the Monte Carlo program MCNP to calculate the neutron and gamma fluxes on a fast neutron irradiation facility being installed on the Portuguese Research Reactor (RPI). The purpose of this facility is to provide a fast neutron beam for irradiation of electronic circuits. The gamma dose should be minimized. This is achieved by placing a lead shield preceded by a thin layer of boral. A fast neutron flux of the order of 109 n/cm2s is expected at the exit of the tube, while the gamma radiation is kept below 20 Gy/h. We will present results of the neutron and gamma doses for several locations along the tube and different thickness of the lead shield. We found that the neutron beam is very collimated at the end of the tube with a dominant component on the fast region.

  19. A compact high-resolution X-ray ion mobility spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T.; Kirk, A. T.; Heptner, A.; Niebuhr, D.; Böttger, S.; Zimmermann, S. [Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover (Germany)

    2016-05-15

    For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source is that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.

  20. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    CERN Document Server

    Cortesi, M; Adams, R; Dangendorf, V; Prasser, H -M

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, cool...

  1. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    Science.gov (United States)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  2. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    Science.gov (United States)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  3. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  4. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aspesund, O.; Bjorkman, J.; Trumpy, G.

    1965-05-15

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li{sup 7} (p, n) Be{sup 7} reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found.

  5. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  6. High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F S; Adams, J S; Beiersdorfer, P; Brown, G V; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A

    2009-10-01

    The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

  7. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chiuzbăian, Sorin G., E-mail: gheorghe.chiuzbaian@upmc.fr; Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris (France); Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Sacchi, Maurizio [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05 (France); CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05 (France)

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  8. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s(2)-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s(2)-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  9. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite].

    Science.gov (United States)

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi

    2011-12-01

    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  10. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M.; Maron, Y.

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  11. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte & ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany); Bitter, M.; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F. [Directorate of Research and Applied Science, AWE plc, Reading RG7 4PR (United Kingdom)

    2016-06-15

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  12. The High Resolution Microcalorimeter Soft X-ray Spectrometer for the Astro-H Mission

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, K.; International SXS Team

    2013-04-01

    We are developing the Soft X-Ray Spectrometer (SXS) for the JAXA Astro-H mission. The instrument is based on a 36-pixel array of semiconductor micro calorimeters that provides high spectral resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror, giving a 3 x 3 arcmin field of view and more than 200 cm2 of collecting area at 6 keV. The instrument is a collaboration between the JAXA Institute of Space and Astronautical Science and their partners in Japan, the NASA/Goddard Space Flight Center, the University of Wisconsin, the Space Research Organization of the Netherlands, and Geneva University. The principal components of the spectrometer are the microcalorimeter detector system, low-temperature anticoincidence detector, 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid helium cryostat, Joule-Thomson cooler, and Stirling coolers. The instrument is capable of achieving 4-5 eV resolution across the array and is designed to operate for at least three years in orbit, and can operate either without liquid helium or the cooling power of the Joule-Thomson cooler. In this presentation we describe the design and status of the Astro-H/SXS instrument.

  13. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  14. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

  15. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  16. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  17. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.

    Science.gov (United States)

    Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

    2011-08-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  18. Fast neutron activation analysis by means of low voltage neutron generator

    Science.gov (United States)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  19. Arcus: an ISS-attached high-resolution x-ray grating spectrometer

    Science.gov (United States)

    Smith, R. K.; Ackermann, M.; Allured, R.; Bautz, M. W.; Bregman, J.; Bookbinder, J.; Burrows, D.; Brenneman, L.; Brickhouse, N.; Cheimets, P.; Carrier, A.; Freeman, M.; Kaastra, J.; McEntaffer, R.; Miller, J.; Ptak, A.; Petre, R.; Vacanti, G.

    2014-07-01

    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. The mission requirements will be R>2500 and >600 cm2 of effective area at the crucial O VII and O VIII lines, values similar to the goals of the IXO X-ray Grating Spectrometer. The full bandpass will range from 8-52Å (0.25-1.5 keV), with an overall minimum resolution of 1300 and effective area >150 cm2. We will use the silicon pore optics developed at cosine Research and proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs. This mission achieves key science goals of the New Worlds, New Horizons Decadal survey while making effective use of the International Space Station (ISS).

  20. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer

    CERN Document Server

    Wells, Martyn; Glasse, Alistair; Wright, G S; Aitink-Kroes, Gabby; Azzollini, Ruyman; Beard, Steven; Brandl, B R; Gallie, Angus; Geers, V C; Glauser, A M; Hastings, Peter; Henning, Th; Jager, Rieks; Justtanont, K; Kruizinga, Bob; Lahuis, Fred; Lee, David; Martinez-Delgado, I; Martinez-Galarza, J R; Meijers, M; Morrison, Jane E; Mueller, Friedrich; Nakos, Thodori; O'Sullivan, Brian; Oudenhuysen, Ad; Parr-Burman, P; Pauwels, Evert; Rohloff, R -R; Schmalzl, Eva; Sykes, Jon; Thelen, M P; van Dishoeck, E F; Vandenbussche, Bart; Venema, Lars B; Visser, Huib; Waters, L B F M; Wright, David

    2015-01-01

    We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 X 7.7 arcseconds in extent and at spectral resolving powers ranging from 1,300 to 3,700. Each channel includes an all-reflective integral field unit (IFU): an 'image slicer' that reformats the input field for presentation to a grating spectrometer. Two 1024 X 1024 focal plane arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5 to 28.5 micron spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage an...

  1. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    Science.gov (United States)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  2. High-energy resolution μ-XRF analysis by position sensitive spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With a high-energy resolution micro-X-ray fluorescence (μ-XRF) analysis setup, which basically consists of an X-ray microbeam formed by an X-ray focusing lens combined with an X-ray apparatus and a wavelength dispersive position sensitive spectrometer with a flat crystal (PSS), preliminary results have been obtained. The counting rate of the analyzed element linearly increased with the power of X-ray apparatus, and the energy resolution, full width of half maximum (FWHM) of Ka lines of Ti and Cr reached 16.6 and 23.6 eV, respectively. The Cr Kb and Mn Ka lines in a sample of stainless steel could clearly be resolved. The above-mentioned results are also compared with those obtained by synchrotron radiation light microbeam combined with the PSS. The facts show that the high-energy resolution element analysis is feasible by using the setup. Moreover, problems for the setup and the ways to resolve them are discussed as well.

  3. The Astro-H high resolution soft x-ray spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarello, Phillipp; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; den Herder, Jan-Willem; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark O.; Kitamoto, Shunji; Konami, Saori; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Moseley, Harvey; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. S.; Sakai, Kazuhiro; Sato, Kosuke; Sato, Yohichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor P.; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  4. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  5. High resolution Si(Li) X-ray spectrometer with high throughput rate

    Energy Technology Data Exchange (ETDEWEB)

    Bacso, J.; Kalinka, G.; Kertesz, Zs.; Kovacs, P.; Lakatos, T. (Magyar Tudomanyos Akademia Atommag Kutato Intezete, Debrecen)

    1982-06-01

    The paper presents the description of a modern Si(Li) X-ray spectrometer developed in ATOMKI. The Si(Li) detectors are single-grooved with an active area of 20-50 mm/sup 2/. The Be window is coated with a special protective layer against corrosion. A small getter-ion pump maintains the high vacuum in the cryostat chamber. The preamplifier employs pulsed drain feedback; in its first stage selected, teflon-encapsulated field effect transistors are used. The analogue signal processor is direct coupled and employs time variant pulse shaping. This construction provides high resolution (150-170 eV), high throughput rate, excellent stability, effective pile-up elimination, accurate live-time correction and simplicity in the applications. The live-time correction is performed by a random pulse generator, its average frequency is stabilized and the corresponding peak appears at zero energy in the spectra.

  6. The Mid-Infrared Instrument for the James Webb Space Telescope: IV. The Low Resolution Spectrometer

    CERN Document Server

    Kendrew, S; Bouchet, P; Amiaux, J; Azzolini, R; Bouwman, J; Chen, C; Dubreuil, D; Fischer, S; Glasse, A; Greene, T; Lagage, P -O; Lahuis, F; Ronayette, S; Wright, D; Wright, G S

    2015-01-01

    The Low Resolution Spectrometer of the MIRI, which forms part of the imager module, will provide R~100 long-slit and slitless spectroscopy from 5 to 12 micron. The design is optimised for observations of compact sources, such as exoplanet host stars. We provide here an overview of the design of the LRS, and its performance as measured during extensive test campaigns, examining in particular the delivered image quality, dispersion, and resolving power, as well as spectrophotometric performance, flatfield accuracy and the effects of fringing. We describe the operational concept of the slitless mode, which is optimally suited to transit spectroscopy of exoplanet atmospheres. The LRS mode of the MIRI was found to perform consistently with its requirements and goals.

  7. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides.

    Science.gov (United States)

    Velasco, Aitor V; Cheben, Pavel; Bock, Przemek J; Delâge, André; Schmid, Jens H; Lapointe, Jean; Janz, Siegfried; Calvo, María L; Xu, Dan-Xia; Florjańczyk, Mirosław; Vachon, Martin

    2013-03-01

    We report a stationary Fourier-transform spectrometer chip implemented in silicon microphotonic waveguides. The device comprises an array of 32 Mach-Zehnder interferometers (MZIs) with linearly increasing optical path delays between the MZI arms across the array. The optical delays are achieved by using Si-wire waveguides arranged in tightly coiled spirals with a compact device footprint of 12 mm2. Spectral retrieval is demonstrated in a single measurement of the stationary spatial interferogram formed at the output waveguides of the array, with a wavelength resolution of 40 pm within a free spectral range of 0.75 nm. The phase and amplitude errors arising from fabrication imperfections are compensated using a transformation matrix spectral retrieval algorithm.

  8. High resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX imaging spectrometer

    Directory of Open Access Journals (Sweden)

    B. Buchmann

    2012-03-01

    Full Text Available We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD from the Airborne Prism EXperiment (APEX imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm−2. The two-dimensional maps of NO2 VCD reveal a very plausible spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day (development of the boundary layer and increased wind speed in the afternoon as well as to photochemical loss of NO2. The remotely sensed NO2 VCD are also highly correlated with ground-based in-situ measurements from local and national air quality networks (R=0.73. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modeling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

  9. High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX imaging spectrometer

    Directory of Open Access Journals (Sweden)

    B. Buchmann

    2012-09-01

    Full Text Available We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD from the Airborne Prism EXperiment (APEX imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm−2. The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

  10. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  11. Monte-Carlo simulations of a high-resolution backscattering spectrometer on the SNS - Long Wavelength Target Station

    Science.gov (United States)

    Bordallo, H. N.; Herwig, K. W.

    2001-03-01

    It is proposed to build an inverse geometry spectrometer to provide extremely high energy resolution (0.2 μeV FWHM, elastic) at the Long Wavelength Target Station (LWTS) at SNS. The design employs mica analyzers in close to backscattering geometry (final neutron wavelength of 20 ÅAnalytical calculations and Monte Carlo simulations (using the McStas package) have been used to optimize the layout of individual components and to estimate the instrument performance. This design requires a long initial guide section of 63 m from moderator to sample in order to achieve the timing resolution necessary for the desired δω. The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines. Molecular biology, for example, often requires systematic studies of many similar molecules under slightly different conditions, requiring a large range of energy/timing resolutions for optimum study.

  12. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    Science.gov (United States)

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  13. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, J G; Hertrich, T; Drury, O B; Hohne, J; Friedrich, S

    2008-06-30

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to {approx}3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of {approx}2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors.

  14. FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P.; VERNON, E.; GASKIN, J.A.; RAMSEY, B.D.; ANELLI, G.

    2007-10-27

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.

  15. The construction of a high resolution crystal backscattering spectrometer HERMES I

    Energy Technology Data Exchange (ETDEWEB)

    Larese, J.Z.

    1998-11-01

    There is a need in the United States for a state-of-the-art, cold-neutron, crystal backscattering spectrometer (CBS) designed to investigate the structure and dynamics of condensed matter systems by the simultaneous utilization of long wavelength elastic diffraction and high-energy-resolution inelastic scattering. Cold neutron spectroscopy with CBS-type instruments has already made many important contributions to the study of atomic and molecular diffusion in biomaterials, polymers, semiconductors, liquid crystals, superionic conductors and the like. Such instruments have also been invaluable for ultra high resolution investigations of the low-lying quantum tunneling processes that provide direct insight into the dynamical response of solids at the lowest energies. Until relatively recently, however, all such instruments were located at steady-state reactors. This proposal describes HERMES I (High Energy Resolution Machines I) a CBS intended for installation at the LANSCE pulsed neutron facility of Los Alamos National Laboratory. As explained in detail in the main text, the authors propose to construct an updated, high-performance CBS which incorporates neutron techniques developed during the decade since IRIS was built, i.e., improved supermirror technology, a larger area crystal analyzer and high efficiency wire gas detectors. The instrument is designed in such a way as to be readily adaptable to future upgrades. HERMES I, they believe, will substantially expand the range and flexibility of neutron investigations in the United States and open new and potentially fruitful directions for condensed matter exploration. This document describes a implementation plan with a direct cost range between $4.5 to 5.6 M and scheduled duration of 39--45 months for identified alternatives.

  16. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  17. Dose estimations of fast neutrons from a nuclear reactor by micronuclear yields in onion seedlings.

    Science.gov (United States)

    Fujikawa, K; Endo, S; Itoh, T; Yonezawa, Y; Hoshi, M

    1999-12-01

    Irradiations of onion seedlings with fission neutrons from bare, Pb-moderated, and Fe-moderated 252Cf sources induced micronuclei in the root-tip cells at similar rates. The rate per cGy averaged for the three sources, , was 19 times higher than rate induced by 60Co gamma-rays. When neutron doses, Dn, were estimated from frequencies of micronuclei induced in onion seedlings after exposure to neutron-gamma mixed radiation from a 1 W nuclear reactor, using the reciprocal of as conversion factor, resulting Dn values agreed within 10% with doses measured with paired ionizing chambers. This excellent agreement was achieved by the high sensitivity of the onion system to fast neutrons relative to gamma-rays and the high contribution of fast neutrons to the total dose of mixed radiation in the reactor's field.

  18. Development of fast neutron radiography system based on portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok, THAILAND 10330 (Thailand)

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  19. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  20. Development of fast neutron radiography system based on portable neutron generator

    Science.gov (United States)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  1. Influence of Fast Neutron Irradiation on Critical Current Densities of Bi-2223/Ag Tape

    Institute of Scientific and Technical Information of China (English)

    Duan Zhenzhong

    2004-01-01

    Experimental results on the magnetic field behavior of the critical current in silver sheathed Bi-2223 tapes are presented. The experiments consist of transport and magnetic measurements in a wide temperature range and in external magnetic field up to 6 T. Significant enhancement of the intragrain critical current densities Jc are observed after irradiation with fast neutron. This is attributed to an improvement of flux pinning capability by the neutron induced defects, but the weak link structure is somewhat damaged as evidenced by the small degradation of transport critical current at low field. According to the measurement of remanent magnetic moment before and after irradiation with fast neutron, the connectivity in Bi-2223 tapes is reduced by 50% after irradiated to a fluence of 2 × 1021 m-2, which resulted in the critical currents degradated by a factor of 10%.

  2. SWAN - Detection of explosives by means of fast neutron activation analysis

    Science.gov (United States)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  3. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  4. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  5. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  6. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  7. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  8. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  9. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  10. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.; Nuclear Engineering Division

    2008-03-03

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  11. Recent Developments in Fast Neutron Detection and Multiplicity Counting with Liquid Scintillator

    Science.gov (United States)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2011-12-01

    For many years, LLNL researchers have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (ns versus tens of μs) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of 3He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  12. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    Science.gov (United States)

    2016-06-01

    and alkali-halide scintillators for potential use in neutron and gamma detection systems .” M.S. thesis, Dept. Physics , Naval Posgraduate School...DETECTION AND CLASSIFICATION OF HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DETECTION OF FAST NEUTRONS by Jacob W. Capps June 2016 Thesis...DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RADIATION DETECTION AND CLASSIFICATION OF HEAVY OXIDE

  13. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    Science.gov (United States)

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    2017-06-01

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

  14. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  15. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Habob, Moinul

    2005-12-15

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design.

  16. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    CERN Document Server

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  17. Statistical estimation of the performance of a fast-neutron multiplicity system for nuclear material accountancy

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L., E-mail: david.chichester@inl.gov [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Thompson, Scott J.; Kinlaw, Mathew T.; Johnson, James T. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Dolan, Jennifer L.; Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States)

    2015-06-01

    Statistical analyses have been performed to develop bounding estimates of the expected performance of a conceptual fast-neutron multiplicity system (FNMS) for assaying plutonium. The conceptual FNMS design includes 32 cubic liquid scintillator detectors, measuring 7.62 cm per side, configured into 4 stacked rings of 8 detectors each. Expected response characteristics for the individual FNMS detectors, as well as the response characteristics of the entire FNMS, were determined using Monte Carlo simulations based on prior validation experiments. The results from these simulations were then used to estimate the Pu assay capabilities of the FNMS in terms of counting time, assay mass, and assay mass variance, using assay mass variance as a figure of merit. The analysis results are compared against a commonly used thermal-neutron coincidence counter. The advantages of using a fast-neutron counting system versus a thermal-neutron counting system are significant. Most notably, the time required to perform an assay to an equivalent assay mass variance is greatly reduced with a fast-neutron system, by more than an order of magnitude compared with that of the thermal-neutron system, due to the reduced probability of random summing with the fast system. The improved FNMS performance is especially relevant for assays involving Pu masses of 10 g or more.

  18. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    CERN Document Server

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  19. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    CERN Document Server

    Kroc, T K

    2012-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality optimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  20. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  1. High resolution {gamma}-spectroscopy at the big-bite spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Savran, D.; Ramspeck, K.; Zilges, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Berg, A.M. van den; Harakeh, M.N.; Woertche, H.J. [Kernfysisch Versneller Inst. (KVI), Groningen (Netherlands)

    2006-04-05

    An array of HPGe detectors has been set up at the Big-Bite Spectrometer at AGOR cyclotron of KVI Groningen to allow coincident measurements of the {gamma}-decay of nuclei excited in inelastic hadron scattering at 100-400 MeV incident energies. Compared to previous experiments, where NaI detectors have been used, the energy resolution of the {gamma}-detection could be improved by more than one order of magnitude to about {delta}E{sub {gamma}}/E{sub {gamma}}=0.2 % in the energy region of interest. The coincident measurement of the {gamma}-decay in inelastic hadron scattering experiments is very useful for the separation of nearby excitations, the assignment of multipolarities, the determination of branching ratios and to study the isospin character of bound excitations. The experimental setup and the results of a first ({alpha},{alpha}'{gamma}) test experiment at E{sub {alpha}}=136 MeV on {sup 58}Ni are presented. (orig.)

  2. The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H

    Science.gov (United States)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; DiPirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; denHerder, Jan-Willem; Hoshino, Akio; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Kitamoto, Shunji; McCammon, Dan; Murakami, Masahide; Murakami, Hiroshi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Paltani, Stephane; Pohl, Martin; Porter, F. Scott; Sato, Yoichi; Shinozaki, Keisuke

    2012-01-01

    The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6 x 6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3' x 3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 square centimeters at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  3. Study of $\\overline{p}$-Nucleus Interaction with a High Resolution Magnetic Spectrometer

    CERN Multimedia

    2002-01-01

    This experiment uses the high resolution, large solid angle and large momentum acceptance magnetic spectrometer SPES~II to study the interaction between @* and complex nuclei in the following experiments: \\\\ \\\\ \\item 1)~~~~A(@*, @*)A. Angular distribution of @* elastically scattered from |1|2C, |4|0Ca and |2|0|8Pb. \\item 2)~~~~A(@*, @*')A*. Excitation energy spectra and some angular distributions of @* inelastically scattered from |1|2C, |4|0Ca and |2|0|8Pb up to an excitation energy of &prop.~100~MeV. \\item 3)~~~~A(@*, p)A^z^-^1 (@*). Excitation energy spectra for knock out reaction on |6Li, |1|2C, |6|3Cu and |2|0|9Bi at several angles. \\end{enumerate}\\\\ \\\\ Any beam momentum between 300 MeV/c and 800 MeV/c will be suitable for this experiment. In order to vary the effect of strong absorption of @* by nuclei, elastic and inelastic scattering will be performed at two or three different @* momenta (depending on the way LEAR will be operated) down to 300~MeV/c.

  4. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    Science.gov (United States)

    2015-03-01

    emission of additional gamma photons that likewise cause scintillation [4]. The specific goals of this research are to:  explore the physics of fast ...reaction products are registered; also in the sense that, in the case of fast neutrons, moderation is normally required before the absorption event...various other forms of radiation, fast neutrons are the crux of the overall study, and every effort should be made to test with them. 39 LIST OF

  5. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei, Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  6. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Efthimion, P; Pablant, N A; Lu, J; Beiersdorfer, P; Chen, H; Magee, E

    2014-11-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10,000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  7. Fragmentation reactions of labeled and untabeled Rhodamine B in a high-resolution Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Clemen, Martin; Gernert, Claus; Peters, Jonathan; Grotemeyer, Jürgen

    2013-01-01

    The fragmentation reactions of Rhodamine B have been investigated by the use of electrospray ionization mass spectra in a high mass resolving ion cyclotron resonance mass spectrometer. Using high resolution, it could be shown that the loss of 44 mass units from the molecular ion is due to propane; the measured masses were inconsistent with loss of carbon dioxide. These conclusions are supported using deuterium-labeled Rhodamine B. This sample again only shows the loss of fully-deuterated propane verifying the high-resolution data. These findings illustrate very clearly that the conclusions based solely on low resolution spectra were false. The general implication on fragmentations of aromatic acids is discussed.

  8. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    Science.gov (United States)

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  9. Analytical calculations and Monte-Carlo simulations of a high-resolution backscattering spectrometer for the long wavelength target station at the Spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N. E-mail: bordallo@hmi.de; Herwig, K.W.; Zsigmond, G

    2002-09-21

    Using the Monte-Carlo simulation programs McStas and VITESS, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the Spallation neutron source (SNS) - long wavelength target station (LWTS). LWTS will enable the combination of large energy and momentum transfer ranges with energy resolution. Indeed the resolution of this spectrometer lie between that routinely achieved by spin echo techniques and the design goal of the high-power target station (HPTS) backscattering spectrometer. This niche of energy resolution is interesting for the study of slow motions of large objects and we are led to the domain of large molecules - polymers and biological molecules.

  10. Analytical calculations and Monte-Carlo simulations of a high-resolution backscattering spectrometer for the long wavelength target station at the Spallation neutron source

    CERN Document Server

    Bordallo, H N; Zsigmond, G

    2002-01-01

    Using the Monte-Carlo simulation programs McStas and VITESS, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the Spallation neutron source (SNS) - long wavelength target station (LWTS). LWTS will enable the combination of large energy and momentum transfer ranges with energy resolution. Indeed the resolution of this spectrometer lie between that routinely achieved by spin echo techniques and the design goal of the high-power target station (HPTS) backscattering spectrometer. This niche of energy resolution is interesting for the study of slow motions of large objects and we are led to the domain of large molecules - polymers and biological molecules.

  11. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  12. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    Science.gov (United States)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  13. Remote Nuclear Spectrometer for Martian Moon Exploration

    Science.gov (United States)

    Hasebe, Nobuyuki; Okada, Tatsuaki; Kameda, Shingo; Karouji, Yuzuru; Amano, Yoshiharu; Shibamura, Eido; Cho, Yuichiro; Ohta, Toru; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Kuno, Haruyoshi; Martínez-Frías, Jesus; Nakamura, Tomoki; Takashi, Mikouchi; Shimizu, Sota; Shirai, Naoki; Fagan, Timothy J.; Hitachi, Akira; Matias Lopes, José A.; Miyamoto, Hideaki; Niihara, Takafumi; Kim, Kyeong

    2016-07-01

    The Gamma-ray and Neutron Spectrometer (GNS) on the Mars Moon eXploration (MMX) forms part of the geochemistry investigation. The remote observation from spacecraft orbit provides us global information of the Moons showing evidence of their origin. The Gamma-Ray Sensor (GS) detects gamma-ray emissions in the 0.2- to 10-MeV energy range with an energy resolution of plastic scintillation detector surrounding the main detector as an anticoincidence detector. The HPGe crystal is cooled by a compact mechanical cooler below 90K. The Neutron Sensor (NS) consists of a Li-glass scintillator to measure thermal neutrons, and a borated plastic scintillator to measure epithermal and fast neutrons. The GNS measures elements such as O, Mg, Si, Ca, Ti, Fe, K, Th and volatile elements such as H, S and Cl. The GNS shows distinct features of light weight, low power, excellent energy resolution and high hydrogen-sensitivity. The high concentration of such volatile elements as H and S in their Moons shows the evidence that they are primordial bodies in the solar system and low values of Ca/F and Si/Fe-ratios also suggest the primordial origin. The present status of the GNS development will be reviewed.

  14. A high-resolution mass spectrometer to measure atmospheric ion composition

    Directory of Open Access Journals (Sweden)

    H. Junninen

    2010-02-01

    Full Text Available In this paper we present recent achievements on developing and testing a tool to detect the composition of ambient ions in the mass/charge range up to 2000 Th. The instrument is an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, Tofwerk AG. Its mass accuracy is better than 0.002%, and the mass resolving power is 3000 Th/Th. In the data analysis, a new efficient Matlab based set of programs (tofTools were developed, tested and used. The APi-TOF was tested both in laboratory conditions and applied to outdoor air sampling in Helsinki at the SMEAR III station. Transmission efficiency calibrations showed a throughput of 0.1–0.5% in the range 100–1300 Th for positive ions, and linearity over 3 orders of magnitude in concentration was determined. In the laboratory tests the APi-TOF detected sulphuric acid-ammonia clusters in high concentration from a nebulised sample illustrating the potential of the instrument in revealing the role of sulphuric acid clusters in atmospheric new particle formation. The APi-TOF features a high enough accuracy, resolution and sensitivity for the determination of the composition of atmospheric small ions although the total concentration of those ions is typically only 400–2000 cm-3. The atmospheric ions were identified based on their exact masses, utilizing Kendrick analysis and correlograms as well as narrowing down the potential candidates based on their proton affinities as well isotopic patterns. In Helsinki during day-time the main negative ambient small ions were inorganic acids and their clusters. The positive ions were more complex, the main compounds were (polyalkyl pyridines and – amines. The APi-TOF provides a near universal interface for atmospheric pressure sampling, and this key feature will be utilized in future laboratory and field studies.

  15. [Study and design on Dyson imaging spectrometer in spectral broadband with high resolution].

    Science.gov (United States)

    Yan, Ling-Wei

    2014-04-01

    The paper designs and improves a telecentric imaging spectrometer, the Dyson imaging spectrometer. The optical structure of the imaging spectrometer is simple and compact, which is only composed of a hemispherical lens and a concave grating. Based on the Rowland circle and refraction theory, the broadband anastigmatic imaging condition of Dyson imaging spectrometer which is the ratio of the grating radius and hemispherical lens radius has been analyzed. By imposing this condition for two different wavelengths, the parameters of the optical system presenting low aberrations and excellent imaging quality are obtained. To make the design spectrometer more suitable for the engineering application, the paper studies the method making the detector not to attach the surface of the hemispherical lens. A design example using optimal conditions was designed to prove our theory. The Dyson imaging spectrometer of which the imaging RMS radii are less than 2.5 microm and the advanced spectrometer of which the imaging RMS radii are less than 8 microm, with NA 0.33, waveband 0.38-1.7 microm and the slit length 15 mm, have been obtained. The design method and results are more feasible and predominant, and can be applied in the areas of the industry and remote sensing.

  16. Compact High-Resolution Broad-Band Terahertz Fabry-Perot Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to develop a compact scanning Fabry-Perot spectrometer, for satellite far-infrared astronomy and Earth remote sensing, that operates at wavelengths...

  17. Use of CR 39 Films for Evaluation of Shielding Efficacy of Materials against Fast Neutrons

    OpenAIRE

    1992-01-01

    CR-39 films have been used for evaluation of neutron shielding of metal alloys, different types of rubbers, sand polymers, etc. These films have been chosen because of their ability to record fast neutrons from 200 keV-10 MeV and their insensitivity to gamma radiations. Tenth value layer (TVL) for the materials studied varies from 10.5 to 28.6 cm. In addition, the values of TVL have also been computed for standard material, such as Al, steel, etc. Using neutron removal cross-section da...

  18. Inelastic scattering of fast neutrons on Fe-56; Inelastische Streuung schneller Neutronen an {sup 56}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Roland

    2014-11-24

    The relevant reaction cross sections for the nuclear transmutation will be measured at the neutron flight time facility nELBE in Dresden-Rossendorf. Transmutation by fast neutron irradiation is supposed to reduce the radiotoxicity of high-level radioactive wastes. The thesis is aimed to measure the inelastic neutron scattering cross sections of Fe-56 using a new double flight-time method. With combined plastic and BaF2 scintillation detectors for the first time the emitted neutrons and photons are observed in coincidence.

  19. An empirical formula for scattered neutron components in fast neutron radiography

    Institute of Scientific and Technical Information of China (English)

    DOU Hai-Feng; TANG Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiog- raphy. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as LiD are given.

  20. N-acetylcysteine and captopril protect DNA and cells against radiolysis by fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Spotheim-Maurizot, M. (CNRS, 45 - Orleans (France). Centre de Biophysique Moleculaire); Garnier, F. (CNRS, 45 - Orleans (France). Centre de Biophysique Moleculaire); Kieda, C. (CNRS, 45 - Orleans (France). Centre de Biophysique Moleculaire); Sabattier, R. (Centre Hospitalier Regional d' Orleans, 45 (France). Service de Radiotherapie); Charlier, M. (CNRS, 45 - Orleans (France). Centre de Biophysique Moleculaire)

    1993-10-01

    N-Acetylcysteine and captopril, respectively mucolytic and antihypertensive drugs, contain free sulfhydryl groups. Since in general thiols have well-established radioprotective abilities, we sought putative radioprotective effects of these drugs against therapeutic fast neutrons. We show that pBR322 plasmid DNA is indeed protected against radiolytic strand breakage by both drugs. The oxygen independent protection is consistent with a hydroxyl radical scavenging mechanism. A clonogenicity assay reveals an increase of the survival of SCL-1 cultured keratinocytes irradiated in the presence of the drugs compared with cells irradiated without drugs. Our results suggest possible interferences between treatment with drugs bearing-SH groups and radiotherapy. (orig.)

  1. The fast neutron SEU cross section of a 4 Mb SRAM memory

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Junior, Evaldo C.F.; Goncalez, Odair L.; Cruz, Marco Aurelio da; Prado, Adriane Cristina Mendes; Federico, Claudio Antonio; Gaspar, Felipe de Barros, E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: evaldocarlosjr@gmail.com, E-mail: adriane.acm@hotmail.com [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    The results of a static test of single event upset (SEU) produced by fast neutrons on an ISSI 4Mb SRAM memory are reported in this work. To perform the tests, it was built a platform based on a motherboard which is controlled by microprocessor, whose function is to perform the writing, reading and control of the memories under irradiation. The irradiation was performed with a set of 8 {sup 241}Am-Be neutrons source in a quasi-isotropic incidence. The SEU cross was calculated from the accumulated bit flip count. (author)

  2. Integral test on activation cross section of tag gas nuclides using fast neutron spectrum fields

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Takafumi; Suzuki, Soju [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    Activation cross sections of tag gas nuclides, which will be used for the failed fuel detection and location in FBR plants, were evaluated by the irradiation tests in the fast neutron spectrum fields in JOYO and YAYOI. The comparison of their measured radioactivities and the calculated values using the JENDL-3.2 cross section set showed that the C/E values ranged from 0.8 to 2.8 for the calibration tests in YAYOI and that the present accuracies of these cross sections were confirmed. (author)

  3. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  4. Defects in Fast-Neutron Irradiated Nitrogen-Doped Czochralski Silicon after Annealing at High Temperature

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fast-neutron irradiated nitrogen-doped Czochralski silicon (NCZ-Si) was annealed at 1100 ℃ for different time, then FTIR and optical microscope were used to study the behavior of oxygen. It is found that [Oi] increase at the early stage then decrease along with the increasing of anneal time. High density induced-defects can be found in the cleavage plane. By comparing NCZ-Si with Czochralski silicon (CZ-Si), [Oi] in NCZ-Si decrease more after anneal 24 h.

  5. Transmission of fast neutrons along cylindrical air-filled ducts pierced in ilmenite concrete

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Bashter, I.I.

    1980-01-01

    The variation of flux of fast neutrons along air filled ducts passing through ilmenite concrete of density 4.6 gm. cm/sup -3/ was measured. Ducts of diameter 2.9, 5.8 and 10 cm were used. Measurements were carried out at different distances (up to 120 cm) along the duct axis. The source of neutrons was a collimated beam of reactor neutrons emitted from one of the horizontal channels of ET-RR-1 reactor. All measurements were performed using phosphorus activation detectors. The data obtained show the dependence of flux values on duct length and diameter.

  6. Understanding fast neutrons utilizing a water Cherenkov detector and a gas-filled detector at the soudan underground laboratory

    Science.gov (United States)

    Ghimire, Chiranjibi

    Many experiments are currently searching for Weakly Interactive Massive Particles (WIMPs), a well-motivated class of hypothetical dark matter candidates. These direct dark matter detection experiments are located in deep underground to shield from cosmic-ray muons and the fast neutrons they produce. Fast neutrons are particularly dangerous to WIMP detectors because they can penetrate a WIMP-search experiment's neutron shielding. Once inside, these fast neutrons can interact with high-Z material near the WIMP detector, producing slower neutrons capable of mimicking the expected WIMP signal. My research uses two detectors located in Soudan Underground Laboratory to understand fast neutron production by muons in an underground environment: a water-Cherenkov detector sensitive to fast neutrons; and a gas-filled detector sensitive to charged particles like muons. The different kinds of selection criterion and their efficiencies are reported in this thesis. This thesis estimate the number of high energy neutron-like candidates associated with a nearby muon by using data from both detector systems.

  7. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Directory of Open Access Journals (Sweden)

    Jamie A. O'Rourke

    2013-06-01

    Full Text Available A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation; between cultivar variation, natural variation within the fast neutron mutant population, and fast neutron induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp common to multiple individuals, illustrating residual heterogeneity and regions of structural variation within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of fast neutron mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.

  8. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  9. ONE-DIMENSIONAL LIGHT BEAM WIDENING USING PRISMS FOR INCREASE OF SPECTROMETER SPECTRAL RESOLUTION AND ANGULAR DISPERSION

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available The increase of angular dispersion and slit resolution limit of grating spectrometers by means of variation of grating parameters is limited by its period and allowable order of diffraction. The special solutions (echelle, holographic, immersion gratings are acceptable in a limited parameter range and are technologically complex in fabrication, thus hardly applicable to instruments of mass production. We propose to decrease slit resolution limit by one-dimensional beam widening in dispersion plane by means of passing it through oblique prism before incidence onto diffraction grating. The increase of angular dispersion can be achieved by narrowing of dispersed beams after grating while passing through other oblique prism. We prove that slit resolution limit in such a system changes approximately as multiplied by angular magnification of the first prism (that is less than 1 times. Also angular dispersion changed approximately as multiplied by angular magnification of the second prism. The Fresnel reflection from the faces of prisms is analyzed. Accounting for that factor gives the increase of resolution about 1,4–1,6 times without loss of light (and can be 2 and more times while using anti-reflective coating. The proposed method is different from the similar ones first of all by its simplicity because it uses simple optical elements – plane reflective grating and thin prisms. It can be applied to amend the analytical characteristics of dispersive spectrometers, first of all the small-sized ones. 

  10. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.

    Science.gov (United States)

    Goodhead, D T; Berry, R J; Bance, D A; Gray, P; Stedeford, J B

    1977-10-01

    A high energy fast neutron beam potentially suitable for radiotherapy was built at the Harwell variable energy cyclotron. The beam line is described and results are given of physical measurements on the fast neutron beams produced by 42 MeV deuterons on thick (4 mm) and thin (2 mm) beryllium targets. With 20 muA beam current the entrance dose rate in a phantom 150 cm from the target was about 130 rad min-1 with the thick target and about 60 rad min-1 with the thin target. Therefore, it is possible to use both the thin target and the relatively large target-skin distance of 150 cm to improve depth dose for radiotherapy or radiobiology. With this arrangement the dose rate decreased to 50% at depths in the phantom of 11.3-15.4 cm, depending on the field size. The use of primarily hydrogenous materials for shielding and collimation provided beam edge definition similar to that of 60Co teletherapy units, and off-axis radiation levels of approximately 1% which compare favorably with 14 MeV deuteron-tritium generators. The copper backing of the thin target became highly radioactive and an alterative material may be preferable. Biologic characteristics of the beam are described in a companion paper.

  11. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  12. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cortesi, M.; Prasser, H.-M. [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, Villigen PSI 5234 (Switzerland); Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland); Dangendorf, V. [Ion and Neutron Radiation Department, Physikalisch-Technische Bundesanstalt, Braunschweig 38116 (Germany); Zboray, R. [Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland)

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  13. Cisplatin enhances the cytotoxicity of fast neutrons in a murine lymphoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B.; Benzina, S.; Ganansia-Leymarie, V. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France); Denis, J.M. [Universite Catholique de Louvain (UCL-RBNT), Lab. de Radiobiologie et de Radioprotection, Faculte de Medecine, Bruxelles (Belgium); Bergerat, J.P.; Dufour, P. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France); Gueulette, J. [Universite Catholique de Louvain (UCL-RBNT), Lab. de Radiobiologie et de Radioprotection, Faculte de Medecine, Bruxelles (Belgium); Bischoff, P. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France)]. E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2004-02-01

    The utilization of high linear energy transfer (LET) radiations, such as fast neutrons or carbon ions (hadrontherapy), offers promising perspectives in radiotherapy. While it is well known that by combining radiotherapy and chemotherapy, important therapeutic advantages can be obtained to cure cancer, there have been, so far, very few investigations on the effects of treatments combining an irradiation with high-LET particles and cancer drugs. The present study was therefore undertaken to examine the effects of exposure to 65 MeV fast neutrons combined with cisplatin in a murine T cell lymphoma (RDM4) in vitro. The cells were irradiated at doses ranging from 2 to 8 Gy without or with addition of cisplatin shortly before the irradiation, at concentrations between 0.3 and 12.5 {mu}M. These treatments were applied concomitantly. Proliferation and apoptosis were assessed at different time intervals thereafter. The combination of irradiation with cisplatin was found to be more cytotoxic than either treatment alone. Furthermore, the cytotoxicity induced by this cotreatment resulted not only from apoptosis but also from other forms of cell death. (author)

  14. Determination of the fast neutrons spectra by the Elastic scattering method (n, p)

    CERN Document Server

    Elizalde, J

    1973-01-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spect...

  15. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  16. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Tebartz, A.; Ding, J.; Neumann, N. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Astbury, S.; Carroll, D. C.; Scott, G. G. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Higginson, A.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Wagner, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany)

    2016-08-15

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  17. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams.

    Science.gov (United States)

    Alejo, A; Kar, S; Tebartz, A; Ahmed, H; Astbury, S; Carroll, D C; Ding, J; Doria, D; Higginson, A; McKenna, P; Neumann, N; Scott, G G; Wagner, F; Roth, M; Borghesi, M

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  18. Influence of the thorium decay series on the background of high-resolution gamma-ray spectrometers.

    Science.gov (United States)

    Bučar, K; Korun, M; Vodenik, B

    2012-06-01

    The background induced by the members of the thorium decay sequence in six high-resolution, gamma-ray spectrometers was analyzed. For the analysis, the count rates in the peaks of the background spectra, normalized to the unit of emission probability and detection probability, were used. The energy dependence of these normalized count rates carries information about the location of the sources of contamination. The contributions of the detector contamination, the contamination of the shielding material and the radiation penetrating the shield were calculated. The comparison of these contributions among the spectrometers pointed to the weaknesses of some shields, making such a comparison a useful tool for assessing the effectiveness of the shields.

  19. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    Science.gov (United States)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  20. A compact fast-neutron producing target for high resolution cross section measurements

    NARCIS (Netherlands)

    Flaska, M.

    2006-01-01

    A proper knowledge of neutron cross sections is very important for the operation safety of various nuclear facilities. Reducing uncertainties in the neutron cross sections can lead to an enhanced safety of present and future nuclear power systems. Accurate neutron cross sections also play a relevant

  1. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  2. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  3. Algorithmic Enhancement of Spectral Resolution of a LiNbO3 Waveguide-Based Miniature Fourier Transform Spectrometer.

    Science.gov (United States)

    Wang, Kun; Li, Jinyang; Lu, Dan-Feng; Qi, Zhi-Mei

    2016-07-08

    In a recent report we demonstrated a miniature static Fourier transform spectrometer (FTS) that was implemented with a LiNbO3 (LN) waveguide electro-optic modulator (EOM) combined with the dispersion relation between its half-wave voltage and wavelength. The FTS was verified to be able to measure laser wavelength and for low-resolution spectroscopy. In this report, we successfully applied the resolution enhancement algorithm to the FTS, resulting in at least a three-fold increase in its spectral resolution without causing obvious distortion of the measured spectra. The algorithm method used is based on an autoregressive (AR) model, singular value decomposition (SVD), and forward-backward linear prediction (FBLP). The combination of these methods allows the FTS to remain a small size but to possess good spectral resolution, effectively mitigating the conflict between the small size and high resolution of the device. This study opens the way to development of high-resolution miniature FTS. © The Author(s) 2016.

  4. Mobile high-resolution time-of-flight mass spectrometer for in-situ analytics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU, Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [II. Physikalisches Institut, JLU, Giessen (Germany); GSI, Darmstadt (Germany)

    2011-07-01

    A compact multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed. For the first time it allows for mass measurements with a resolving power exceeding 100000 and sub ppm accuracy in a mobile device. Thus it allows to resolve isobars and enables to accurately determine the composition and structure of biomolecules. The MR-TOF-MS consists of an atmospheric pressure interface for DESI and REIMS, ion cooler, ion trap, time-of-flight analyzer, MCP detector and DAQ. Vacuum system components, power supplies as well as electronics are mounted together with the ion optical spectrometer parts on a single frame with a total volume of 0.8 m{sup 3}. Applications of the device within the AmbiProbe research program include in-situ mass spectrometry such as real-time tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  5. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen' s University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  6. Guide design study for the high-resolution backscattering spectrometer FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Pelley, C; Kargl, F; Sakai, V Garcia; Telling, M T F; Fernandez-Alonso, F; Demmel, F, E-mail: franz.demmel@stfc.ac.uk

    2010-11-01

    Different options are considered to transport cold neutrons along 90 m for the proposed new spectrometer FIRES at the ISIS facility. Monte Carlo simulations using the McStas programme package are used to assess the performance of various guide designs from the biological shield to the sample position. By employing a curved geometry, to avoid the direct line of sight, a hybrid design which combines a curved ballistic guide and an elliptic focusing section appears to be the best solution.

  7. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Science.gov (United States)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-11-01

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  8. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  9. First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory

    CERN Document Server

    Tziaferi, E; Kudryavtsev, V A; Lerner, R; Lightfoot, P K; Paling, S M; Robinson, M; Spooner, N J C

    2006-01-01

    A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated...

  10. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  11. Coded moderator approach for fast neutron source detection and localization at standoff

    Science.gov (United States)

    Littell, Jennifer; Lukosi, Eric; Hayward, Jason; Milburn, Robert; Rowan, Allen

    2015-06-01

    Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°.

  12. Use of CR 39 Films for Evaluation of Shielding Efficacy of Materials against Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1992-10-01

    Full Text Available CR-39 films have been used for evaluation of neutron shielding of metal alloys, different types of rubbers, sand polymers, etc. These films have been chosen because of their ability to record fast neutrons from 200 keV-10 MeV and their insensitivity to gamma radiations. Tenth value layer (TVL for the materials studied varies from 10.5 to 28.6 cm. In addition, the values of TVL have also been computed for standard material, such as Al, steel, etc. Using neutron removal cross-section data, the results have been compared with those of experimentally determined values. The results seem to be in agreement within approximate 10 per cent variation.

  13. Energy-dispersive study of the interactions of fast neutrons with matter

    CERN Document Server

    Altstadt, E; Eckert, S; Freiesleben, H; Galindo, V; Grosse, E; Naumann, B; Weiss, F P

    2003-01-01

    The construction and the first use of a compact time-of-flight system for the energy-dispersive study of the interaction of fast neutrons with materials are content of a network project of the Research Center Rossendorf, to which also the Technical University Dresden contributes in the framework of a common DFG project. The planned time-of-flight experiments with pulsed neutrons will be performed at the radiation source ELBE. First results on the development of a neutron-production target are presented. By means of radiation-transport and finite-element programs the distributions of the energy deposition of the used pulsed electron beam of the radiation source ELBE and the temperature in the neutron radiator as well as the expected particle spectra and fluxes at the measurement place were calculated. Considerations on the development of a beam catcher are discussed.

  14. Magnetization studies of YBa 2Cu 3O 7-x irradiated by fast neutrons

    Science.gov (United States)

    Wisniewski, A.; Baran, M.; Przysłupski, P.; Szymczak, H.; Pajaczkowska, A.; Pytel, B.; Pytel, K.

    1988-02-01

    Studies of the effect of fast neutron damage on the magnetic hysteresis of YBa 2Cu 3O 7-x ceramic samples subjected to fluence of neutrons of 2∗10 16 n/cm 2 up to 6∗10 17 n/cm 2 have been performed. irradiation up to dose of 1∗10 17 did not cause any change in the critical temperature. However it causes a strong increase of the magnetic hysteresis which is presumably connected with the creation of defects. The critical current density at 77 K in H = 10 k0e for the sample irradiated with the dose 1∗10 17 n/cm 2 was estimated to be 520 A/cm 2 as compared to 29 A/cm 2 for the reference non-irradiated sample, non-irradiated sample.

  15. Effect of Gamma Rays on Fast Neutron Registration in CR-39

    CERN Document Server

    Kobzev, A P; El-Halem, A A; Abdul-Ghaphar, U S; Salama, T A

    2002-01-01

    A set of CR-39 plastic detectors with front PE radiator was exposed to Am-Be neutron source, which has an emission rate of 0.86\\cdot 10^{7} sec^{-1}, and the neutron dose equivalent rate 1 m apart from the source is equal to 11 mrem/hr. Another set of samples was irradiated by a neutron dose of 4 rem, then exposed to different gamma-ray doses using ^{60}Co source. It was found that the track density grows with the increase of neutron dose and etching time. It was also found that the bulk etching rate V_{B}, the track diameter and the sensitivity of the CR-39 plastic detector with respect to the neutron irradiation increased with increasing gamma-ray dose in the range 1?10 Mrad. These results show that CR-39 can be considered as a promising fast neutron dosimeter and gamma-ray dosimeter.

  16. Theoretical study and calculation of the response of a fast neutron dosemeter based on track detection

    Energy Technology Data Exchange (ETDEWEB)

    Decossas, J.L.; Vareille, J.C.; Moliton, J.P.; Teyssier, J.L. (Limoges Univ., 87 (France). Lab. d' Electronique des Polymeres sous Faisceaux Ioniques)

    1983-01-01

    A fast neutron dosemeter is generally composed of a radiator in which n-p elastic scattering occurs and a detector which registers protons. A theoretical study, and the calculation (FORTRAN program) of the response of such a dosemeter is presented involving two steps: 1) The proton flux emerging from a thick radiator on which monoenergetic neutrons are normally incident is studied. This is characterised by its energy spectrum depending on the neutron energy and on the radiator thickness. 2) Proton detection being achieved with a solid state nuclear track detector whose performance is known, the number of registered tracks are calculated. The dosemeter sensitivity (tracks cm/sup -2/. Sv/sup -1/) is deduced. Then, the calculations show that it is possible to optimise the radiator thickness to obtain the smallest variation in sensitivity with neutron energy. The theoretical results are in good agreement with the experimental ones found in the literature.

  17. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    CERN Document Server

    Chen, Yonghao; Lei, Jiarong; An, Li; Zhang, Xiaodong; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua

    2013-01-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  18. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    Science.gov (United States)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  19. Radiolysis of Boric Acid Solutions under Mixed Thermal and Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Im, Heejung; Choi, Ke Chon; Yeon, Jeiwon; Song, Kyuseok; Jung Hoansung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The thermal neutron irradiation of water samples containing neutron absorbers has not been published except for a paper reporting the experimental data obtained at high temperatures. However, irradiation or simulations of water and voluminous liquid samples with fast neutrons and gamma rays are frequently discussed in several published papers. Several water samples containing {sup 10}B-enriched boric acid, and natural and {sup 10}B-enriched mixed boric acids in the range of 0 to 2000 μg/mL for the function of {sup 10}B concentration, were irradiated to study the radiolysis of the cooling water containing boric acid. The concentration of natural boron in the primary coolant of pressurized water reactors (PWRs) is known to start at 1500 μg/mL, and boric acid is used for the purpose of nuclear reaction control.

  20. Statistical properties of an algorithm used for illicit substance detection by fast-neutron transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Sagalovsky, L.; Micklich, B.J.; Harper, M.K.; Novick, A.H.

    1994-06-01

    A least-squares algorithm developed for analysis of fast-neutron transmission data resulting from non-destructive interrogation of sealed luggage and containers is subjected to a probabilistic interpretation. The approach is to convert knowledge of uncertainties in the derived areal elemental densities, as provided by this algorithm, into probability information that can be used to judge whether an interrogated object is either benign or potentially contains an illicit substance that should be investigated further. Two approaches are considered in this paper. One involves integration of a normalized probability density function associated with the least-squares solution. The other tests this solution against a hypothesis that the interrogated object indeed contains illicit material. This is accomplished by an application of the F-distribution from statistics. These two methods of data interpretation are applied to specific sets of neutron transmission results produced by Monte Carlo simulation.

  1. Nuclear data needs and sensitivities for illicit substance detection using fast-neutron transmission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Micklich, B.J.; Harper, M.K.; Sagalovsky, L.; Smith, D.L.

    1994-05-01

    Results from analysis of fast-neutron transmission spectra in the interrogation of luggage for illicit substances are quite sensitive to the neutron total cross section data employed. Monte Carlo and analytical techniques are used to explore the uses for such data and to demonstrate the sensitivity of these results to various total cross sections employed in the analysis. The status of total cross section information required for materials commonly found in containers having both illicit and benign substances, with particular attention to the matter of data uncertainties, is considered in the context of the available nuclear data. Deficiencies in the contemporary nuclear data base for this application are indicated and suggestions are offered for new measurements or evaluations.

  2. Texas Instruments TPS7H1101-SP Fast Neutron Irradiation Results

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    Texas Instruments’s TPS7H1101-SP is an ultra low drop-out voltage regulator that operates under a wide range of input voltages - 1.5 to 7V. It can operate under a load of at most 3A and is radiation qualified by Texas Instruments for Total Ionizing Dose (TID) effects and Single Event Effects (SEE). For the application of the TPS7H1101-SP on the Front End Boards (FEBs) of the New Small Wheel (NSW) of the ATLAS detector, we study its susceptibility to a third kind of radiation effect -displacement damage- and present its performance in fast neutrons up to a dose of 6 x 10$^{14}$ 1MeVNE/cm$^{2}$.

  3. Lifetime effects for high-resolution gamma-ray spectroscopy at relativistic energies and their implications for the RISING spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Doornenbal, P., E-mail: pieter@ribf.riken.j [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Reiter, P. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Grawe, H.; Saito, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Al-Khatib, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, 53115 Bonn (Germany); Banu, A.; Beck, T.; Becker, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Bednarczyk, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow (Poland); Benzoni, G. [INFN Sezione di Milano, 20133 Milano (Italy); Bracco, A. [INFN Sezione di Milano, 20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, 20133 Milano (Italy); Buerger, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, 53115 Bonn (Germany); Caceres, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Camera, F. [INFN Sezione di Milano, 20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, 20133 Milano (Italy); Chmel, S. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, 53115 Bonn (Germany); Crespi, F.C.L. [INFN Sezione di Milano, 20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, 20133 Milano (Italy); Geissel, H.; Gerl, J.; Gorska, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Grebosz, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow (Poland)

    2010-02-01

    The lineshapes and peak position of Doppler corrected gamma-ray spectra from in-beam experiments at relativistic energies are investigated with respect to the intrinsic energy resolution of the employed detectors, the particles' velocities, and the photons' emission angle uncertainties at the moment of gamma-ray emission. The uncertainties in velocity and photon emission angle are dependent on the lifetime of the excited state. The impact of these two observables on the lineshape and energy resolution are studied for the RISING gamma-spectrometer by means of simulations and experimental results from a two-step fragmentation experiment at approx200MeV/u. Potential use of the distinct lineshape for lifetime determination is demonstrated for measured gamma-ray transitions.

  4. FAST NEUTRON SOURCE DETECTION AT LONG DISTANCES USING DOUBLE SCATTER SPECTROMETRY.

    Energy Technology Data Exchange (ETDEWEB)

    FORMAN,L.VANIER,P.WELSH,K.

    2003-08-03

    Fast neutrons can be detected with relatively high efficiency, >15%, using two planes of hydrogenous scintillator detectors where a scatter in the first plane creates a start pulse and scatter in the second plane is separated by time-of-flight. Indeed, the neutron spectrum of the source can be determined as the sum of energy deposited by pulse height in the first added to the energy of the second found by time-of-flight to the second detector. Gamma rays can also create a double scatter by Compton interaction in the first with detection in the second, but these events occur in a single time window because the scattered photons all travel at the speed of light. Thus, gamma ray events can be separated from neutrons by the time-of-flight differences. We have studied this detection system with a Cf-252 source using Bicron 501A organic scintillators and report on the ability to efficiently detect fast neutrons with high neutron/gamma detection ratios. We have further studied cosmic-ray neutron background detection response that is the dominant background in long range detection. We have found that most of the neutrons are excluded from the time-of-flight window because they are either too high in energy, >10 keV, or too low, < 10 keV. Moreover, if the detection planes are position-sensitive, the angular direction of the source can be determined by the ratio of the energy of scattered protons in the first detector relative to the position and energy of the scattered neutron detected in the second. This ability to locate the source in theta is useful, but more importantly increases the signal to noise relative to cosmic-ray produced neutrons that are relatively isotropic. This technique may be used in large arrays to detect neutrons at ranges up to 0.5 kilometer.

  5. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    Science.gov (United States)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  6. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, P.; Breitenfeldt, M.; Porobic, T.; Wursten, E.; Couratin, C.; Soti, G.; Severijns, N. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); Ban, G.; Fabian, X.; Flechard, X.; Lienard, E. [Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Beck, M.; Friedag, P.; Weinheimer, C. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Glueck, F.; Kozlov, V.Y. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Herlert, A. [FAIR, Darmstadt (Germany); Knecht, A. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); CERN, PH Department, Geneva (Switzerland); Tandecki, M. [TRIUMF, Vancouver BC (Canada); Traykov, E. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Van Gorp, S. [RIKEN, Atomic Physics Laboratory, Saitama (Japan); Zakoucky, D. [ASCR, Nuclear Physics Institute, Rez (Czech Republic)

    2016-07-15

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β{sup +} decay of {sup 35}Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2 ns and position resolution of 0.1 mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for {sup 35}Ar decay using the WITCH spectrometer. (orig.)

  7. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  8. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    CERN Document Server

    Suvorov, A; Chubar, O; Cai, Y Q

    2015-01-01

    A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the "Synchrotron Radiation Workshop" software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. It was shown that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  9. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    CERN Document Server

    Kaschuck, Y A; Trykov, L A; Semenov, V P

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2''x2'' NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion ...

  10. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  11. Inverse magnetocaloric effect in Ce(Fe0.96Ru0.04)2: Effect of fast neutron irradiation

    Science.gov (United States)

    Dube, V.; Mishra, P. K.; Rajarajan, A. K.; Prajapat, C. L.; Sastry, P. U.; Thakare, S. V.; Singh, M. R.; Ravikumar, G.

    2013-02-01

    We have shown the effect of fast neutron irradiation on the magnetic phase transition and magnetocaloric effect (MCE) in a doped Ce(Fe0.96Ru0.04)2, intermettalic. We show that this leads to suppression of MCE and a to a disordered ferromagnetic phase.

  12. Influence of temperature on the behaviour of INTEGRAL n-type HPGe detectors irradiated with fast neutrons

    CERN Document Server

    Kandel, B; Albernhe, F; Frabel, P; Cordier, B; Tauzin, G; Crespin, S; Coszach, R; Denis, J M; Leleux, P

    1999-01-01

    Several INTEGRAL n-type HPGe detectors have been irradiated by fast neutrons at different temperatures and their performances have been evaluated. Their behaviour during warm-up and cool-down cycles following the irradiations show evidence for irreversible temperature effects above 100 K. The detectors recovery after annealing was also studied.

  13. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  14. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  15. Analytical calculations and Monte-Carlo simulations of a high-resolution backscattering spectrometer for the long wavelength target station at the Spallation neutron source

    Science.gov (United States)

    Bordallo, H. N.; Herwig, K. W.; Zsigmond, G.

    2002-09-01

    Using the Monte-Carlo simulation programs McStas and VITESS, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the Spallation neutron source (SNS)—long wavelength target station (LWTS). LWTS will enable the combination of large energy and momentum transfer ranges with energy resolution. Indeed the resolution of this spectrometer lie between that routinely achieved by spin echo techniques and the design goal of the high-power target station (HPTS) backscattering spectrometer. This niche of energy resolution is interesting for the study of slow motions of large objects and we are led to the domain of large molecules—polymers and biological molecules.

  16. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.; Mauerhofer, E. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Engels, R.; Kemmerling, G. [Central Institute for Engineering, Electronics and Analytics - Electronic Systems, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Frank, M. [MATHCCES - Department of Mathematics, RWTH Aachen University, 52062 Aachen (Germany); Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T. [Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 52062 Aachen (Germany); Schitthelm, O. [Corporate Technology, Siemens AG, 91058 Erlangen (Germany)

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  17. Broadening of a spectrum line by finite spectrometer resolution. [FORTRAN IV; SAL, KAL

    Energy Technology Data Exchange (ETDEWEB)

    Engleman, R. Jr.

    1978-12-01

    The distortion of a spectrum line by the finite resolving power of a spectrometer is discussed in terms of a mathematical model. Particular attention is given to the case where either a Gaussian or Cauchy slit function broadens an isolated Doppler, Lorentz, or Voigt absorption line. Corrections to the peak absorption, the line width, and the integrated absorption coefficient are calculated and discussed for different combinations of slit functions and line shapes. Several new series expansions for the corrections are derived. Two general FORTRAN IV programs that calculate these corrections are described and some sample correction curves are given. 27 references.

  18. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  19. Ge(Li) detector gamma-ray spectrometer system for measurement of the spectra and production cross sections of. gamma. -rays produced by 14 MeV neutron nonelastic interaction with nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ronglin; Shi Xiamin; Wu Yongshun; Xing Jinjiang; Ding Dazhao

    1982-02-01

    A 42 cm/sup 3/ Ge(Li) detector gamma-ray spectrometer system for measuring the spectra and the production cross sections of ..gamma..-rays produced by fast neutron nonelastic interaction with nuclei is described in this paper. The incident neutrons are produced by T(d,n)/sup 4/He reaction in an high tension set with the incident deuteron energy of 200 keV. The time of flight technique is used to discriminate between the scattered neutrons and gamma-rays resulting from nonelastic interaction. The ..cap alpha..-particles are picked up by a Si(Au) surface barrier detector and the ARC timing discriminaters are used in both Si(Au) and Ge(Li) channels. The overall time resolution (FWHM) of this system is 4.1 ns typically for energy selection threshold at 400keV. The block diagram of spectrometer system is described in detail. The complex complete shielding damage of Ge(Li) detector in this fast neutron field is well discussed.

  20. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    Science.gov (United States)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  1. High-Resolution X-ray Spectroscopy with a Grating Spectrometer Explorer on the ISS

    Science.gov (United States)

    Smith, Randall

    We present the design and scientific motivation for a X-ray grating spectrometer mission to be deployed on the International Space Station. This mission would observe the Warm-Hot Intergalactic Medium, feedback from supermassive black holes, and the structure of the interstellar medium and halo of the Milky Way, amongst other goals. The mission requirements are similar to those of the IXO X-ray Grating Spectrometer of R=3000 and 1000 cm(2) \\ of effective area at 0.5 keV, with a full bandpass covering at least between 0.3-1 keV. Our initial design baselines the silicon pore optics proposed for ESA's Athena mission with a 4.3 m focal length, paired with off-plane gratings being developed at the University of Iowa combined with MIT/Lincoln Labs CCDs. This mission would achieve core science described in the 2010 New Worlds, New Horizons Decadal survey performed by the US National Research Council while effectively using the ISS and at low cost and low risk.

  2. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers.

    Science.gov (United States)

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L

    2014-07-15

    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  3. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro, E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Watanabe, Hideyuki [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

    2016-02-15

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  4. a Decade-Spanning High-Resolution Asynchronous Optical Sampling Based Terahertz Time-Domain Spectrometer

    Science.gov (United States)

    Good, Jacob T.; Holland, Daniel; Finneran, Ian A.; Carroll, Brandon; Allodi, Marco A.; Blake, Geoffrey

    2015-06-01

    High-resolution ASynchronous OPtical Sampling (ASOPS) is a technique that substantially improves the combined frequency resolution and bandwidth of ASOPS based TeraHertz Time-Domain Spectroscopy (THz-TDS) systems. We employ two mode-locked femtosecond Ti:Sapphire oscillators with repetition frequencies of 80 MHz operating at a fixed repetition frequency offset of 100 Hz. This offset lock is maintained by a Phase-Locked Loop (PLL) operating at the 60th harmonic of the repetition rate of the Ti:Sapphire oscillators. Their respective time delay is scanned across 12.5 ns requiring a scan time of 10 ms, supporting a time delay resolution of up to 15.6 fs. ASOPS-THz-TDS enables high-resolution spectroscopy that is impossible for a THz-TDS system employing a mechanical delay stage. We measure a timing jitter of 1.36 fs for the system using an air-gap etalon and an optical cross-correlator. We report a Root-Mean-Square deviation of 20.7 MHz and a mean deviation of 14.4 MHz for water absorption lines from 0.5 to 2.7. High-resolution ASOPS-THz-TDS enables high resolution spectroscopy of both gas-phase and condensed-phase samples across a decade of THz bandwidth.

  5. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  6. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  7. High-resolution miniature FTIR spectrometer enabled by a large linear travel MEMS pop-up mirror

    Science.gov (United States)

    Deutsch, Erik R.; Reyes, David; Schildkraut, Elliot R.; Kim, Jinhong

    2009-05-01

    This paper reports the design, fabrication, and characterization of a millimeter diameter, surface micromachined Micro-Electro-Mechanical-Systems (MEMS) mirror, which is assembled perpendicular to the substrate and can be linearly and repeatedly traversed through 600 μm. The moving mirror, when combined with a fixed mirror and beamsplitter, make up a monolithic MEMS Michelson interferometer; all are made on the same substrate and in the same surface micromachined fabrication process. The beamsplitter has been specifically designed such that the motion of the mirror enables modulation of light over the 2-14 μm spectral region. The rapid scan MEMS Michelson interferometer is the engine behind a miniaturized, Fourier transform infrared (FTIR) absorption spectrometer. The FTIR measures the absorption of infrared (IR) radiation by a target material, which can be used for the detection and identification of gases, liquids, or solids. The fabrication of the mirror with the ability to displace 600 μm along the optical axis enables the miniaturized system to have species identification resolution, while leveraging wafer scale batch fabrication to enable extremely low system cost. The successful fabrication of the millimeter diameter mirrors and beamsplitter with interferometric alignment over the range of travel of the moving mirror promises unprecedented sensitivity relative to the size of the FTIR spectrometer system.

  8. Monte Carlo simulation of the response to fast neutrons of a multi-gap RPC (MRPC) by using the GEANT4 code

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, J. T.; Jo, H. Y.; Jamil, M.; Jeon, Y. J. [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    This article reports the simulated response to fast neutrons of a multi-gap resistive plate chamber (MRPC) by using the GEANT4 MC code. In this study, a thin polyethylene layer, which acted as the converter material for the detection of fast neutrons, was coated on the surface of the MRPC, which acts as the converter material for the detection of fast neutrons. The converter based on the polyethylene material improved the chamber's ability to detect fast neutrons. By employing the GEANT4 MC code, fast neutrons were inserted into the converter-based MRPC chamber in the energy range of 1.0 - 20.0 MeV. The response of the polyethylene-coated MRPC were evaluated as a function of the neutron energy by using the QGSP{sub B}ERT{sub H}P and the QGSP{sub B}IC{sub H}P physics list with the GEANT4 code. For a 0.13-mm converter thickness, a detection efficiency of 6.4x10{sup -3} were found for fast neutrons with an energy of E{sub n} = 6.0 by the QGSP{sub B}ERT{sub H}P physics list. The simulation test further confirmed that a higher response of the fast neutrons could be achieved if the converter thickness were to be increased. A detailed outline of the simulation test and the obtained results are presented.

  9. Improvements in fast-neutron spectroscopy methods (1961); Amelioration des methodes de spectrometrie des neutrons rapides (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cambou, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-02-15

    This research aimed at improving fast-neutron electronic detectors based on n-p elastic scattering. The first part concerns proportional counters; careful constructional methods have made it possible to plot mono-energetic neutron spectra in the range 700 keV - 3 MeV with a resolution of 7 per cent. The second part concerns scintillation counters: an organic scintillator and an inorganic scintillator covered with a thin layer of a scattering agent. An exact study of the types of scintillation has made it possible to develop efficient discriminator circuits. Different neutron spectra plotted in the presence of a strong gamma background are presented. The last part deals with the development of form discrimination methods for the study, in the actual beam, of the elastic scattering of 14.58 MeV electrons. With hydrogen, the distribution f ({phi}) of the recoil protons is f({phi}) = 1 + 0.034 cos {phi} + 0.042 cos{sup 2} {phi}. With tritium the scattering is strongly anisotropic; the curve representing the variation of the differential cross-section for the elastic scattering in the centre of mass system is obtained with a target containing 1 cm{sup 3} of tritium. (author) [French] Le travail a porte sur l'amelioration des detecteurs electroniques de neutrons rapides bases sur la diffusion elastique n-p. La premiere partie est relative aux compteurs proportionnels; des methodes soignees de fabrication ont permis des traces de spectres de neutrons monoenergetiques dans le domaine 700 keV - 3 MeV avec une resolution de 7 pour cent. La deuxieme partie est relative au compteur a scintillations; scintillateur organique et scintillateur mineral recouvert d'un diffuseur mince. Une etude precise des formes de scintillations a permis la mise au point de circuits discriminateurs efficaces. Differents spectres de neutrons traces en presence d'un fond gamma intense sont presentes. La derniere partie est relative a la mise en oeuvre des methodes de discrimination de

  10. The mid-infrared instrument for the James Webb Space Telescope: performance and operation of the Low-Resolution Spectrometer

    Science.gov (United States)

    Kendrew, Sarah; Scheithauer, Silvia; Bouchet, Patrice; Amiaux, Jerome; Azzollini, Ruymán.; Bouwman, Jeroen; Chen, Christine; Dubreuil, Didier; Fischer, Sebastian; Fox, Ori D.; Glasse, Alistair; Gordon, Karl; Greene, Tom; Hines, Dean C.; Lagage, Pierre-Olivier; Lahuis, Fred; Ronayette, Samuel; Wright, David; Wright, Gillian S.

    2016-07-01

    We describe here the performance and operational concept for the Low Resolution Spectrometer (LRS) of the mid-infrared instrument (MIRI) for the James Webb Space Telescope. The LRS will provide R˜100 slit and slitless spectroscopy from 5 to 12 micron, and its design is optimised for observations of compact sources, such as exoplanet host stars. We provide here an overview of the design of the LRS, and its performance as measured during extensive test campaigns, examining in particular the delivered image quality, dispersion, and resolving power, as well as spectrophotometric performance. The instrument also includes a slitless spectroscopy mode, which is optimally suited for transit spectroscopy of exoplanet atmospheres. We provide an overview of the operational procedures and the differences ahead of the JWST launch in 2018.

  11. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse.

    Science.gov (United States)

    Lee, Hae-June; Kim, Joong-Sun; Moon, Changjong; Kim, Jong-Choon; Jo, Sung-Kee; Kim, Sung-Ho

    2008-04-01

    This study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis in several tissue types (hair follicle, intestine crypt, testis) of ICR mouse exposed to low LET 60Co gamma-rays. The changes that occurred from 0 to 24 h after exposing the mice to either 2 Gy of gamma-rays (2 Gy/min) or 0.8 Gy of neutrons (94 mGy/min, 35 MeV) were examined. The maximum frequency of apoptosis was observed at 8 or 12 h after irradiation. The mice that had received 0-8 Gy of gamma-rays or 0-1.6 Gy of neutrons were examined 8 h after irradiation. The best-fitting dose-response curves were linear-quadratic, and there was a significant relationship between the number of apoptotic cells and the dose. The stained products in the TUNEL-positive cells or bodies correlated with the typical morphologic characteristics of apoptosis observed by optical microscopy. In the follicles showing an apoptosis frequency between 2 and 14 per hair follicle, the relative biological effectiveness (RBE) of the neutrons in the small and large follicles was 2.09 +/- 0.31 and 2.15 +/- 0.18, respectively. In the intestine crypts showing an apoptosis frequency between 1 and 3 per crypt, the RBE of the neutrons was 4.03 +/- 0.06 and 3.87 +/- 0.04 in the base and total crypts, respectively. The RBE of the neutrons in the seminiferous tubule showing an apoptosis frequency between 0.5 and 2 per tubule was 5.18 +/- 0.06. The results determined the time-response relations and the RBE for fast neutron-induced apoptosis in several organs at the same time. The differences in RBE observed between the high and low LET radiation and it is believed that the difference in the DSB repair capacity in hair follicle, intestine crypt, and seminiferous tubule cells plays a role in determining the RBE of the high-LET radiation for the induced apoptotic cell formation.

  12. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  13. Development of high resolution arrayed waveguide grating spectrometers for astronomical applications: first results

    CERN Document Server

    Gatkine, Pradip; Hu, Yiwen; Zhu, Tiecheng; Meng, Yang; Bland-Hawthorn, Joss; Dagenais, Mario

    2016-01-01

    Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resolving power of about 3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low crosstalk (high contrast ratio) between adjacent on-chip wavelength channels of less than 1% (-20dB). A promising photonic technology to achieve these requirements is Arrayed Waveguide Gratings (AWGs). We have developed our first generation of AWG devices using a silica-on-silicon substrate with a very thin layer of silicon-nitride in the core of our waveguides. The waveguide bending losses are minimized by optimizing the geometry of the waveguides. Our first generation of AWG devices are designed for H band and have a resolving power of around 1500 and free spectral range of about 10 nm around a central wavelength ...

  14. High-resolution mid-IR spectrometer based on frequency upconversion

    DEFF Research Database (Denmark)

    Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian

    2012-01-01

    allowing for direct detection with a silicon-based CCD camera. This approach allows for low noise detection even without cooling of the detector. A setup is realized for the 3xA0;x3BC;m regime with a spectral resolution of 0.2xA0;nm using lithium niobate as the nonlinear material and mixing with a single......We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region...

  15. Fast-neutron induced background in LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J., E-mail: Jurgen.Kiener@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Tatischeff, V.; Deloncle, I. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Séréville, N. de [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Laurent, P. [CEA/IRFU Service d' Astrophysique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Laboratoire Astroparticules et Cosmologie (APC), 10, rue A. Domon et L. Duquet, 75205 Paris (France); Blondel, C. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Chabot, M. [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Chipaux, R. [CEA/DMS/IRFU/SEDI, CEA Saclay, 91191 Gif sur Yvette (France); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Dubos, S. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Gostojic, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); and others

    2015-10-21

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr{sub 3}:Ce crystal to incident neutrons has been measured in the energy range E{sub n} = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at E{sub p} = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr{sub 3}:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr{sub 3}:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr{sub 3}:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr{sub 3}:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range E{sub n} = 0.5–10 MeV.

  16. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  17. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Science.gov (United States)

    Lewis, J. M.; Kelley, R. P.; Murer, D.; Jordan, K. A.

    2014-07-01

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure 4He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the 4He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  18. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    Science.gov (United States)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  19. Development and performance of the Fast Neutron Imaging Telescope for SNM detection

    Science.gov (United States)

    Ryan, James M.; Bravar, Ulisse; Flückiger, Erwin O.; Macri, John R.; McConnell, Mark L.; Pirard, Benoit; Woolf, Richard S.

    2008-04-01

    FNIT (the Fast Neutron Imaging Telescope), a detector with both imaging and energy measurement capabilities, sensitive to neutrons in the range 0.8-20 MeV, was initially conceived to study solar neutrons as a candidate design for the Inner Heliosphere Sentinel (IHS) spacecraft of NASA's Solar Sentinels program and successively reconfigured to locate fission neutron sources. By accurately identifying the position of the source with imaging techniques and reconstructing the Watt spectrum of fission neutrons, FNIT can detect samples of special nuclear material (SNM), including heavily shielded and masked ones. The detection principle is based on multiple elastic neutron-proton scatterings in organic scintillators. By reconstructing n-p event locations and sequence and measuring the recoil proton energies, the direction and energy spectrum of the primary neutron flux can be determined and neutron sources identified. We describe the design of the FNIT prototype and present its energy reconstruction and imaging performance, assessed by exposing FNIT to a neutron beam and to a Pu fission neutron source.

  20. Mosaic diamond detectors for fast neutrons and large ionizing radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Bellucci, Alessandro [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Dipartimento di Fisica, Universita degli Studi di Roma ' ' La Sapienza' ' , Rome (Italy); Cazzaniga, Carlo; Rebai, Marica; Rigamonti, Davide [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Tardocchi, Marco [Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Pillon, Mario [ENEA, Centro Ricerche di Frascati, Rome (Italy)

    2015-11-15

    First neutron and X-ray beam tests on a novel 12-pixel single-crystal diamond mosaic detector are presented and discussed. Preliminary characterization of single-pixel electronic properties, performed with α particles, results in charge carrier mobilities >2000 cm{sup 2} Vs{sup -1} and saturation velocities of the order of 10{sup 7} cm s{sup -1}. Signal stability over time, measured with a {sup 241}Am source (37 kBq activity), is longer than 5 h. Tests under an intense X-ray beam (1 Gy h{sup -1} dose-rate) show a very good response uniformity (down to about 1% of relative standard deviation from mean value), suggesting a high level of pixel reproducibility at intermediate bias voltages (ranging from 20 to 100 V). Response uniformity reduces at voltages >200 V, due presumably to radiation-assisted detrapping effects. Preliminary results of 12-pixel simultaneous acquisitions of X-ray beam profiles and pulse height spectra under a fast neutron beam (14 MeV) are also presented. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  2. Transient and chronic neurological complications of fast neutron radiation for adenocarcinoma of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.J.; Laramore, G.E.; Wiens, L.W.; Griffeth, J.T.; Koh, W.J.; Griffin, B.R.; Austin-Seymour, M.M.; Griffin, T.W. (Washington Univ., Seattle, WA (USA). Lab. of Radiation Ecology); Krieger, J.N. (Washington University, Seattle (USA). Department of Urology); Davis, L.W. (Albert Einstein Coll. of Medicine, Bronx, NY (USA))

    1990-07-01

    The records of 132 patients participating in clinical trials using fast neutron (n = 94), mixed neutron and photon (n = 16), or conventional photon (n = 22) irradiation for primary management of prostatic cancer were retrospectively reviewed to assess treatment-related neurological complications. With a median follow-up of 14 months (range 1 to 101 months), 31/132 patients (26 neutron, 3 mixed beam, 2 photon) have experienced either sciatica beginning during or shortly after treatment, or diminished bladder or bowel continence that developed at a median time of 6.5 months following treatment. Sciatica responded to oral steroids and was usually self-limited, whereas sphincter dysfunction appears to be permanent. Pre-treatment risk factors for complications included a history of hypertension, diabetes, cigarette smoking or peripheral vascular disease, with 81% of affected patients having one or more risk factors compared witn 55% of unaffected patients (p = 0.01). Seven patients have moderate (5) or severe (2) residual problems, all in the cohorts receiving neutrons (6/7) or mixed beam therapy (1/7). (author). 31 refs.; 5 tabs.

  3. Feasibility of fast neutron analysis for the detection of explosives buried in soil

    Energy Technology Data Exchange (ETDEWEB)

    Faust, A.A. [Defence R and D Canada - Suffield, Medicine Hat, Alta. (Canada); McFee, J.E., E-mail: John.McFee@drdc-rddc.gc.ca [Defence R and D Canada - Suffield, Medicine Hat, Alta. (Canada); Bowman, C.L.; Mosquera, C. [Defence R and D Canada - Suffield, Medicine Hat, Alta. (Canada); Andrews, H.R.; Kovaltchouk, V.D.; Ing, H. [Bubble Technology Industries, Chalk River, Ont. (Canada)

    2011-12-11

    A commercialized thermal neutron analysis (TNA) sensor has been developed to confirm the presence of buried bulk explosives as part of a multi-sensor anti-tank landmine detection system. Continuing improvements to the TNA system have included the use of an electronic pulsed neutron generator that offers the possibility of applying fast neutron analysis (FNA) methods to improve the system's detection capability. This paper describes an investigation into the use of FNA as a complementary component in such a TNA system. The results of a modeling study using simple geometries and a full model of the TNA sensor head are presented, as well as preliminary results from an experimental associated particle imaging (API) system that supports the modeling study results. The investigation has concluded that the pulsed beam FNA approach would not improve the detection performance of a TNA system for landmine or buried IED detection in a confirmation role, and could not be made into a practical stand-alone detection system for buried anti-tank landmines. Detection of buried landmines and IEDs by FNA remains a possibility, however, through the use of the API technique.

  4. Fast-neutron induced background in LaBr3:Ce detectors

    CERN Document Server

    Kiener, J; Deloncle, I; de Séréville, N; Laurent, P; Blondel, C; Chabot, M; Chipaux, R; Coc, A; Dubos, S; Gostojic, A; Goutev, N; Hamadache, C; Hammache, F; Horeau, B; Limousin, O; Ouichaoui, S; Prévot, G; Rodríguez-Gasén, R; Yavahchova, M S

    2015-01-01

    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the resul...

  5. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  6. Thermal stability and kinetics of defects in magnesium aluminate spinel irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kazuhiro E-mail: yasudak@nucl.kyushu-u.ac.jp; Kinoshita, Chiken; Fukuda, Korehisa; Garner, Frank A

    2000-12-01

    Thermal stability of interstitial-type dislocation loops and cavities in single crystals of MgAl{sub 2}O{sub 4} was examined during isochronal and isothermal annealing. The specimens were irradiated with fast-neutrons in FFTF/MOTA at 658 and 1023 K up to 249 dpa. During the isochronal annealing, dislocation loops started to shrink around 1000 K and completely disappeared at 1470 K without changing their character. Cavities grew slightly around 1570 K, and above this temperature, cavities shrunk with increasing annealing temperature. The recovery stage of point defects in MgAl{sub 2}O{sub 4} was discussed in terms of the thermal stability of defect clusters; vacancy migration starts around 1000 K (corresponding to stage III), whereas vacancy clusters start to dissociate around 1570 K (corresponding to stage V). The vacancy migration energy for rate controlling species was estimated from the shrinkage process of interstitial-type dislocation loops to be 2.0 {+-} 0.7 eV.

  7. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Science.gov (United States)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  8. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  9. Membrane solubilization in erythrocytes as a measure of radiation exposure to fast neutrons

    Science.gov (United States)

    Soltan Monem, A.; Ali, Fadel M.; Al-thani, Noura J. J.; Ali, Samira A.

    1999-02-01

    Membrane solubilization and osmotic fragility of rat erythrocytes irradiated in vivo with fast neutron fluences ranging from to using a source were measured instantaneously using a light scattering technique. The solubilization of erythrocyte membrane by a non-ionic detergent, octylglucoside (OG), was found to exhibit a two stage transition from vesicular form to mixed micellar form in the range of detergent concentrations 1.5-7.8 mM. The coexistence phase, vesicular/mixed micellar, was shifted towards higher detergent concentrations with increase in the neutron fluence, indicating increasing membrane resistance to the detergent and hence change in the natural membrane permeation properties. The technique shows an adequate sensitivity in detecting membrane damage in erythrocytes and has potential as a biophysical marker of radiation exposure. The osmotic fragility of irradiated erythrocytes shows a decreasing trend with increasing irradiation fluence measured directly and two weeks post-irradiation. Blood films photographed two weeks post-irradiation show developed elliptocytosis and crenated cell anaemia.

  10. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    Science.gov (United States)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  11. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  12. Radiation damage in InGaAs photodiodes by 1 MeV fast neutrons

    CERN Document Server

    Ohyama, H; Vanhellemont, J; Takami, Y; Sunaga, H

    1998-01-01

    Irradiation damage in In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As p-i-n photodiodes by 1 MeV fast neutrons has been studied as a function of fluence for the first time, and the results are discussed in this paper. The degradation of the electrical and optical performance of diodes increases with increasing fluence. The induced lattice defects in the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers and the InP substrate are studied by Deep Level Transient Spectroscopy (DLTS) methods. In the In sub 0 sub . sub 5 sub 3 Ga sub 0 sub . sub 4 sub 7 As epitaxial layers, hole and electron capture levels are induced by irradiation. The influence of the type of radiation source on the device degradation is then discussed by comparison to 1 MeV electrons with respect to the numbers of knock-on atoms and the nonionizing energy loss (NIEL). The radiation source dependence of performance degradation is attributed to the difference of mass between the two irradiating particles and the p...

  13. Fast neutron incineration in the energy amplifier as alternative to geologic storage the case of Spain

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Rubio, Juan Antonio

    1997-01-01

    In previous reports [1][2] we have presented the conceptual design of a fast neutron driven sub-critical device (Energy Amplifier) designed both for energy amplification (production) and for the incineration of unwanted ³waste² from Nuclear Light Water Reactors (LWR). The latter scheme is here applied to the specific case of Spain, where 9 large LWR¹s are presently in operation. It is shown that a cluster of 5 EA¹s is a very effective and realistic solution to the elimination (in 37 years) of the present and foreseen (till 2029) LWR-Waste stockpiles of Spain, but with major improvements over Geologic Storage, since: (1) only a Low Level Waste (LLW) surface repository of reasonable size is ultimately required; (2) the large amount of energy stored in the trans-Uranics is recovered, amounting for each of the 37 years of incineration to a saving of about 8% of the present primary energy demand of Spain (100 MTep/y); (3) the slightly enriched (1.1%) Uranium, unburned by LWR¹s, can be recovered for further us...

  14. Design of a single moderator-type neutron spectrometer with enhanced energy resolution in the energy range from a few to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Tanimura, Y. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)]. E-mail: tanimura@popsvr.tokai.jaeri.go.jp; Saegusa, J. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yoshizawa, M. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yoshida, M. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2005-08-01

    The moderator structure for a neutron spectrometer was optimized with the Monte Carlo code MCNP-4B. The spectrometer consists of a cylindrical moderator and a position-sensitive thermal neutron detector and obtains energy spectra from thermal neutron distribution along its cylindrical axis. The structure of the moderator was improved by using a low hydrogen density material on one end and a high hydrogen density on the other, and inserting a neutron absorber that eliminates thermal neutron diffusion. This design improves the energy resolution of the spectrometer, especially for low-energy neutrons from a few to 100 keV. The designed spectrometer can be applied to the measurement of energy spectra over a neutron energy range from a few keV to 20 MeV.

  15. DETEC, a Subprogram for Simulation of the Fast-Neutron Detection Process in a Hydro-Carbonous Plastic Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, B.; Aspelund, O.

    1966-07-15

    A description is given of the subprogram DETEC, which for energies below 5 MeV simulates the detection process of a fast-neutron within a large cylindrical plastic scintillator. DETEC has been coded in FORTRAN IV, and consists of a subroutine and a BLOCK-DATA subprogram. The latter is in its present form adapted to the dimensions 5 cm diam. x 8 cm of the scintillating materials NE102 and NE102A. The character of DETEC as a subprogram is manifest through the requirement of a main routine for generation of the following input parameters: 1. fast-neutron position; 2. direction; 3. energy; 4. entrance time; 5. input weight (all referred to the detector surface), and 6. the discriminator threshold. When these are provided, the virtues of DETEC are recording of the detected weight and the time elapsed prior to the detection event. The merits of DETEC are finally demonstrated in two typical applications.

  16. Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle

    CERN Document Server

    Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K

    1999-01-01

    Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.

  17. Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    CERN Document Server

    Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

    2012-01-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

  18. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    Science.gov (United States)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  19. Analysis and optimization of energy resolution of neutron-TPC

    Institute of Scientific and Technical Information of China (English)

    黄孟; 李玉兰; 牛莉博; 李金; 李元景

    2015-01-01

    Neutron-TPC (nTPC) is a fast neutron spectrometer based on GEM-TPC (Gas Electron Multiplier-Time Pro-jection Chamber) and expected to be used in nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. By measuring the recoiled proton energy and slopes of the proton tracks, the incident neutron energy can be deduced. It has higher n/γseparation ability and higher detection efficiency than conventional neutron spectrometers. In this paper, neutron energy resolution of nTPC is studied using the analytical method. It is found that the neutron energy resolution is determined by 1) the proton energy resolu-tion (σEp/Ep), and 2) standard deviation of slopes of the proton tracks caused by multiple Coulomb scattering (σk(scat ering)) and by the track fitting accuracy (σk(fit)). Suggestions are made for optimizing energy resolution of nTPC. Proper choices of the cut parameters of reconstructed proton scattering angles (θcut), the number of fitting track points (N ), and the working gas help to improve the neutron energy resolution.

  20. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    OpenAIRE

    R.P. Kelley; Murer, D.; Ray, H.; K.A. Jordan

    2015-01-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactiv...

  1. Gram-scale Plutonium Samples Measured by Experimental Device of Four Detectors Well-type Fast Neutron Coincidence Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU; Guo-rong; LIANG; Qing-lei; LI; Jing-huai; LI; An-li

    2013-01-01

    Experimental device of four detectors well-type fast neutron coincidence measurement(see Fig.1)consists of four?127 mm×50.8 mm BC501A liquid scintillation detectors,DC271A digitizer and other circuits.Application program simultaneously acquires the waveform of each pulse output from each detector,and identifies each pulse from neutron or?particle by offline model,and gets their arrival timing.

  2. Investigation of Fast Neutron Production by 100 to 250~GeV Muon Interactions on Thin Targets

    CERN Multimedia

    2002-01-01

    % NA55 \\\\ \\\\ The production of fast (1~MeV~-~1~GeV) neutrons in high energy muon-nucleon interactions is poorly understood. Yet it is essential to the understanding of the background in many underground neutrino experiments and, in particular, may hold relevance for the atmospheric neutrino anomaly. We propose an experiment to investigate fast neutron production using the M2 muon beam at the CERN SPS.

  3. Design of flattening filters for the fast-neutron beam at TAMVEC by use of decrement lines.

    Science.gov (United States)

    Otte, V A; Smathers, J B; Wright, R E

    1976-01-01

    Isodose distributions in a tissue-equivalent phantom produced by fast neutrons from 50-MeV deuterons incident on a thick beryllium target exhibit strong forward peaking, particularly for large fields. The design by use of decrement lines and the construction of polyethylene filters used to "flatten" those distributions are discussed and the results are illustrated. Also, the compromises of central-axis attenuation versus effective filter width and of off-axis peaking versus depth of "flattening" are discussed.

  4. [The rapid analysis of polychlorinated quaterphenyls in blood using different diameter capillary column with the high-resolution gas chromatograph high-resolution mass spectrometer].

    Science.gov (United States)

    Yasutake, Daisuke; Ashizuka, Yuki; Hori, Tsuguhide; Kurokawa, Youichi; Kajiwara, Jumboku; Hirata, Teruaki; Ishiguro, Yasuhisa; Iida, Takao; Uchi, Hiroshi; Furue, Masutaka

    2011-04-01

    The polychlorinated quaterphenyl (PCQ) concentrations in blood are important discriminative parameters in yusho patient. In this study, a rapid analytical method for PCQ using different diameter capillary column (rapid-Rtx65TG) with high-resolution gas chromatograph high-resolution mass spectrometer (HRGC/HRMS) instead of the gas chromatograph electron capture detector (ECD/GC) was developed. Using different diameter capillary columns, the analysis time of the HRGC/HRMS was drastically shortened, and the detection sensitivity was improved. In the rapid-Rtx65TG column, a small-bore capillary column (length 1m, I.D. 0.1mm) was connected with the inlet side of the GC, and behind that column, a large-bore capillary column (length 15mm, I.D. 0.53mm) for octadecachloroquaterphenyl (ODCQ) analysis was connected. In the HRGC/HRMS measurement of ODCQ by the rapid-Rtx65TG column, the minimum limit of detection for the apparatus was 0.4 pg, and the minimum limit of determination for the blood was 0.008 ppb. On ECD/GC in the conventional method and HRGC/HRMS in this study, the PCQ concentration in blood including yusho patients and yusho suspected persons was almost equivalent.

  5. High resolution imaging Fourier transform spectrometer with no moving components for the measurement of atmospheric trace gases

    Science.gov (United States)

    Mortimer, H.

    2014-12-01

    A high resolution Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the detection of atmospheric gases. The instrument has been shown to have high spectral resolution (4 cm-1) and temporal resolution (10kHz) resolution in both the mid and near infrared and moderate spectral resolution (14cm-1) in the visible. This instrument has been developed for the remote sensing and in-situ measurements of atmospheric gases. It has been identified that due to the low mass and compact size of the instrument system, that the SIFTS could be deployed as a remote sensing instrument onboard a Earth Observation satellite or Unmanned Aerial Vehicle (UAV), or conversely as a radiosonde instrument for in-situ measurements of atmospheric gases. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving components, the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. Using a high speed Toshiba CCD line array, sensitive over the spectral region of 400 - 1100nm, spectra have been recorded at a rate of one every 100 microseconds. Using an uncooled microbolometer infrared detector array, sensitive over the spectral region of 2 to 15μm, the gases NH3, O3 and CH4 have been used to demonstrate the sensitivity of the SIFTS instrument. It has been shown that the Signal to Noise of the SIFTSMIR is >1200 using an integration time of 77msec. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument

  6. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  7. Improvement of switching speed of a 600-V nonpunch through insulated gate bipolar transistor using fast neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ha Ni; Sun, Gwang Min; Kim, Ji Suck; Hoang, Sy Minh Tuan; Jin, Mi Eun; Ahn, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    Fast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of 1 × 10{sup 8} n/cm{sup 2}, 1 × 10{sup 9} n/cm{sup 2}, 1 × 10{sup 10} n/cm{sup 2}, and 1 × 10{sup 11} n/cm{sup 2}. Electrical characteristics such as current–voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device.

  8. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    Science.gov (United States)

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  9. Progress, Performance, and Prospects of Ultra-High Resolution Microcalorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)

    2017-01-23

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to close the performance gap between NDA and DA methods to address the needs of nuclear facilities.

  10. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, E A; Shatokhin, A N; Ragozin, E N [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ ≤ 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength. (laser applications and other topics in quantum electronics)

  11. SONGS - A high resolution imaging gamma-ray spectrometer for the Space Station

    Science.gov (United States)

    Nakano, G. H.; Chase, L. F.; Kilner, J. R.; Sandie, W. G.; Fishman, G. J.; Paciesas, W. S.

    1989-11-01

    The overall design and the instrumental features of the Space-Station Observer for Nuclear Gamma-ray Spectroscopy (SONGS) instrument are described. SONGS comprises an array of 19 two-segment n-type Ge detectors, which have the capability of determining the interaction site in either the upper or the lower segment or in both segments. The detectors provide high energy resolution of 1 keV at 100 keV and of 2 keV at 1 MeV. The close-packed Ge sensor array provides a natural sensitivity for the measurement of gamma ray polarization in the 100 keV to 1 MeV energy range, making it possible to obtain information on the structure of the magnetosphere of neutron stars and of the accretion disk of black holes.

  12. MCNP5 and GEANT4 comparisons for preliminary Fast Neutron Pencil Beam design at the University of Utah TRIGA system

    Science.gov (United States)

    Adjei, Christian Amevi

    The main objective of this thesis is twofold. The starting objective was to develop a model for meaningful benchmarking of different versions of GEANT4 against an experimental set-up and MCNP5 pertaining to photon transport and interactions. The following objective was to develop a preliminary design of a Fast Neutron Pencil Beam (FNPB) Facility to be applicable for the University of Utah research reactor (UUTR) using MCNP5 and GEANT4. The three various GEANT4 code versions, GEANT4.9.4, GEANT4.9.3, and GEANT4.9.2, were compared to MCNP5 and the experimental measurements of gamma attenuation in air. The average gamma dose rate was measured in the laboratory experiment at various distances from a shielded cesium source using a Ludlum model 19 portable NaI detector. As it was expected, the gamma dose rate decreased with distance. All three GEANT4 code versions agreed well with both the experimental data and the MCNP5 simulation. Additionally, a simple GEANT4 and MCNP5 model was developed to compare the code agreements for neutron interactions in various materials. Preliminary FNPB design was developed using MCNP5; a semi-accurate model was developed using GEANT4 (because GEANT4 does not support the reactor physics modeling, the reactor was represented as a surface neutron source, thus a semi-accurate model). Based on the MCNP5 model, the fast neutron flux in a sample holder of the FNPB is obtained to be 6.52×107 n/cm2s, which is one order of magnitude lower than gigantic fast neutron pencil beam facilities existing elsewhere. The MCNP5 model-based neutron spectrum indicates that the maximum expected fast neutron flux is at a neutron energy of ~1 MeV. In addition, the MCNP5 model provided information on gamma flux to be expected in this preliminary FNPB design; specifically, in the sample holder, the gamma flux is to be expected to be around 108 γ/cm 2s, delivering a gamma dose of 4.54×103 rem/hr. This value is one to two orders of magnitudes below the gamma

  13. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsiboulia, Anatoli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rozhikhin, Yevgeniy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin

  14. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L; Fallin, Brent [Medical Physics Graduate Program, Duke University, Durham, NC 27705 (United States); Gunasingha, Rathnayaka; Yoshizumi, Terry T [Radiation Safety Division, Duke University, Durham, NC 27705 (United States); Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P [Department of Physics, Duke University, Durham, NC 27706 (United States); Dewhirst, Mark W, E-mail: yoshi003@mc.duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-09-07

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the {sup 2}H(d,n){sup 3}He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  15. A Prototype Experiment to Study Charmed Particle Production and Decay using a Holographic High Resolution Hydrogen Chamber (HOLEBC) and the European Hybrid Spectrometer

    CERN Multimedia

    2002-01-01

    The high resolution Hydrogen bubble chamber LEBC has already been used in experiments at the SPS to detect particles with lifetime @$>$ 5.10|-|1|3s (NA13 & NA16). For this experiment, a new version of LEBC called HOLEBC, has been constructed. This chamber and the NA26 version of the spectrometer have been used with classical optics in the NA27 experiment. A significant improvement in resolution was achieved (@= 20 microns compared with @= 40@mm in LEBC) and hence a good sensitivity all (known) charmed particle decays. The development of holographic recording techniques with HOLEBC is in progress. The prototype NA26 experiment is designed to evaluate the feasibility of the high sensitivity, high resolution holographic hydrogen bubble chamber technique and evaluate various possible charm selective triggers using the information from the spectrometer.

  16. Momentum and energy dependent resolution function of the ARCS neutron chopper spectrometer at high momentum transfer: Comparing simulation and experiment

    Science.gov (United States)

    Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.

    2016-11-01

    Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little with the

  17. High Resolution Soft X-ray Spectroscopy of M87 with the Reflection Grating Spectrometers on XMM-Newton

    CERN Document Server

    Sakelliou, I; Tamura, T; Paerels, F B S; Kaastra, J S; Belsole, E; Böhringer, H; Branduardi-Raymont, G; Ferrigno, C; Den Herder, J W A; Kennea, J; Mushotzky, R F; Vestrand, W T; Worrall, D M

    2002-01-01

    We present high-resolution X-ray spectroscopic observations of M87 with the Reflection Grating Spectrometers on XMM-Newton. We detect strong K-shell line emission from N, O, Ne, Mg, some emission from He-like Si, a fully resolved set of Fe L-shell emission spectra, and some emission from C. The angular intensity distributions of the strong emission lines are detectably resolved on scales (15-160) arcsec. The gas in the inner arcmin of M87 has a multi-phase structure, as indicated by the similarity of the emission line profiles of Fe L shell ions with widely separated ionization potentials. The global Fe L spectrum is approximately consistent with an isothermal plasma at kT_e ~ 1.8 keV, in addition to a component with a temperature distribution appropriate to an isobaric cooling flow, but with a minimum temperature cutoff of kT_min ~ 600 eV. The behaviour of this cooling-flow component is qualitatively similar to what is seen in other cooling flow clusters. Finally, we do not find any strong evidence for a spa...

  18. A high resolution X-ray crystal spectrometer to study electron and heavy-ion impact atomic collisions

    Indian Academy of Sciences (India)

    Ajay Kumar; D Misra; A H Kelkar; U R Kadhane; K V Thulasiram; Lokesh C Tribedi

    2007-06-01

    We have studied fast ion–atom and electron–atom collision processes using a reconditioned high resolution X-ray spectrometer. The X-rays, generated by the collisions, are dispersed by a curved ADP crystal (Johansson geometry) and detected by a gas proportional counter. A self-written LabVIEW based program has been used to give precise and controlled movement to the crystal and for data acquisition. The performance was tested by detecting the K diagram and satellite lines of several elements. The K satellite lines of Al have been studied in collision with 3–12 keV electrons and 40 MeV C4+ ions. In ion collisions as large as four L-vacancies are created simultaneously with the K-vacancy, compared to two satellites in case of the e-impact. In addition, we have measured the X-rays from H-, He- and Li-like Si ions which arise due to the electron loss/capture process in highly charged 80 MeV Si7+ ions in collision with thin carbon foil. Approximate charge state distribution has been obtained using this new technique.

  19. Radiometric calibration of IR Fourier transform spectrometers - Solution to a problem with the High-Resolution Interferometer Sounder

    Science.gov (United States)

    Revercomb, Henry E.; Smith, William L.; Buijs, H.; Howell, Hugh B.; Laporte, D. D.

    1988-01-01

    A calibrated Fourier transform spectrometer, known as the High-Resolution Interferometer Sounder (HIS), has been flown on the NASA U-2 research aircraft to measure the infrared emission spectrum of the earth. The primary use - atmospheric temperature and humidity sounding - requires high radiometric precision and accuracy (of the order of 0.1 and 1 C, respectively). To meet these requirements, the HIS instruments, the HIS instrument performs inflight radiometric calibration, using observations of hot and cold blackbody reference sources as the basis for two-point calibrations at each wavenumber. Initially, laboratory tests revealed a calibration problem with brightness temperature errors as large as 15 C between 600 and 900/cm. The symptom of the problem, which occurred in one of the three spectral bands of HIS, was a source-dependent phase response. Minor changes to the calibration equations completely eliminated the anomalous errors. The new analysis properly accounts for the situation in which the phase response for radiance from the instrument itself differs from that for radiance from an external source. The mechanism responsible for the dual phase response of the HIS instrument is identified as emission from the interferometer beam splitter.

  20. The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA Observatory

    CERN Document Server

    Risacher, C; Stutzki, J; Huebers, H -W; Bell, A; Buchbender, C; Buechel, D; Csengeri, T; Graf, U U; Heyminck, S; Higgins, R D; Honingh, C E; Jacobs, K; Klein, B; Okada, Y; Parikka, A; Puetz, P; Reyes, N; Ricken, O; Riquelme, D; Simon, R; Wiesemeyer, H

    2016-01-01

    We present a new multi-pixel high resolution (R >10^7) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 x 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016 . The receiver is designed to ultimately cover the full 1.8-2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83-2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating...

  1. The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA Observatory

    Science.gov (United States)

    Risacher, C.; Güsten, R.; Stutzki, J.; Hübers, H.-W.; Bell, A.; Buchbender, C.; Büchel, D.; Csengeri, T.; Graf, U. U.; Heyminck, S.; Higgins, R. D.; Honingh, C. E.; Jacobs, K.; Klein, B.; Okada, Y.; Parikka, A.; Pütz, P.; Reyes, N.; Ricken, O.; Riquelme, D.; Simon, R.; Wiesemeyer, H.

    2016-10-01

    We present a new multi-pixel high resolution (R ≳ 107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 × 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016. The receiver is designed to ultimately cover the full 1.8-2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83-2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA's instrument suite already for ongoing observing cycle 4. The datacube of the Horsehead observations is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A34

  2. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  3. DOTS: A High Resolution Orbitrap Mass Spectrometer for In Situ Analysis of the surface samples of Airless Planetary Bodies

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Engrand, Cécile; Altwegg, Kathrin; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chapuis, Claude; Cottin, Hervé; Grün, Eberhard; Grand, Noel; Henkel, Hartmut; Kempf, Sascha; Lebreton, Jean-Pierre; Makarov, Alexander A.; Postber, Frank; Srama, Ralf; Schmidt, Jürgen; Szopa, Cyril; Thirkell, Laurent; Tobie, Gabriel; Wurz, Peter; Zolotov, Mikhail Yu

    2013-04-01

    The dust detectors on board the Ulysses and Galileo spacecraft have shown that the Galilean satellites are surrounded by clouds of sub-micrometer size grains generated by impacts of interplanetary (micro-) meteoroids [1, 2]. In situ chemical analysis from orbit of these ballistic grains ejected from the surface of airless bodies provides a unique opportunity to remotely access the chemical composition of the Jovian moons' surface and subsurface. For Saturn, in situ identification by the Cassini Dust Analyzer (CDA) of sodium in icy grains in the E-Ring and in Enceladus plumes have proven a subsurface liquid water reservoir inside Enceladus [3, 4]. Noticeably, this was not accessible to other in situ or traditional remote sensing techniques. In situ measurements, either during a flyby or from orbit, of grains ejected from the surface, or emerging from the subsurface, of an airless body is a powerful tool to remotely study its surface composition and the nature of its geological activity. Crucial constraints on habitability can thus be determined. Our consortium of laboratories, in collaboration with Thermo Fischer Scientific [5, 6], is currently developing a high mass resolution Fourier Transform (FT) Orbitrap-based mass spectrometer optimized for in situ analysis of dust and icy grains in the environment of Solar System airless bodies. This new generation of dust mass spectrometer was studied in the framework of the Europa Jupiter System Mission (EJSM) instrument study in 2010-2012 and proposed in response to ESA's AO for the JUpiter ICy moons Explorer (JUICE) mission [7]. This mass analyser can provide very high mass resolution analysis (M/ΔM reaching 50 000 at m/z 50 Da). DOTS would allow identification of elemental and molecular species with excellent accuracy, in the 20-1000 Da mass range. In the context of the JUICE mission, DOTS would provide decisive information on the surface composition and on the putative liquid oceans in the subsurface of Ganymede

  4. A fast-neutron generator for experiments; Um dispositivo gerador de neutrons rapidos para experimentacao

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Charles F.; Souza, Manuel Jorge M.T. de; Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    The present article presents an irradiation device of fast neutrons generated by sealed sources of AmBe, placed diametrically opposed to a central channel. The paper addresses the project, the shield calculations using the nuclear code MCNP5, and radioprotection issues. Considerations of the assembly of the device will be presented. The device is in a licensing phase. A cylinder of 30 cm diameter and 200 cm length are positioned buried 200 cm deep, whose opening is in the level of the floor Six sealed sources are available for the load of the irradiator. The sources will be positioned inside of the irradiator, receiving a double cast, a polyethylene one and another made of a steel tube. In the bottom and top of the cylinder there are paraffin shielding and in the center a central channel exists for lifting down samples to the irradiation position. In the central channel of this irradiator, a guide tube holds safely the sample close to 60 mm at center distance from sources, diametrically placed. The system is built-in into the soil, with the opening in the floor and all stamped against humidity. The sample's space to be irradiated has 20cm{sup 3} and it receives irradiation of fast to thermal neutrons. At vertical level, the sources will be shielded with 120 cm of boronate paraffin. A solid cylinder of 10 cm of diameter is positioned internally in the irradiator. The cylinder receives a restraint so that it cannot be removed unaware. In the half middle of the cylinder an opening of 8 cm length exists, in the form of a camera. Puling over the cylinder in a meter height liberates the camera at the level of the floor for placement of samples, at the same time in that shields the hole with a meter of boronate paraffin. The sample is placed inside of the camera of steel. After going down the cylinder at level of sources the sample is irradiated. Radioprotection aspects will be presented. The neutron flux at camera position is close to 10{sup 8}n/cm{sup 2}.seg. at 6

  5. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J. E-mail: jguzek@debeers.co.za; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S

    1999-06-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 {mu}A beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output.

  6. Temperature Dependence of the Primary Species Yields of Liquid Water Radiolysis by 0.8-MeV Fast Neutrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2016-04-01

    Full Text Available The yields of species such as e-aq, H•, •OH, H2 and H2O2, formed from the radiolysis of neutral liquid water by the incidence of 0.8-MeV neutrons at temperatures between 25 and 350°C, were calculated by using Monte Carlo simulations. The slowing down of these neutrons through elastic scattering produced recoil protons elastically of ~0.5057, 0.186, and 0.0684 MeV which had linear energy transfers (LETs of ~40, 67 and 76 keV/µm, respectively, at 25°C. The effects of neutron radiation can be predicted based on the contribution of those first three recoil protons by neglecting the radiation effects due to oxygen ion recoils. Then, the fast neutron yields could be estimated by summing the yields of contributing protons after corresponding weightings were used according to their energy. In this work, yields were calculated at 10-7 and 10-6 s after incidence of neutron radiation in water at the aforementioned temperature range. Overall, there is a reasonably good agreement between our calculated and existing experimental G-values for the entire temperature range. However, we proposed an hypothesis that the not very significant difference between experimental data and our calculated data is due to the different measuring time used in obtaining the experimental data as compared to the ones used in our calculation. Our computed yields for 0.8-MeV fast neutron radiation show an essentially similar temperature dependences over the range of temperature studied with 2-MeV fast neutron and low-LET radiation, but with lower values for yields of free radicals and higher values for molecular yields.

  7. The optimisation of the fast neutron and gamma-ray transmission set-up for moisture measurement of coke.

    Science.gov (United States)

    Cywicka-Jakiel, T; Łoskiewicz, J; Tracz, G

    2003-01-01

    In the present paper, modelling calculations with the Monte Carlo (MCNP4C) code were performed for the optimisation of the fast neutron and gamma-ray transmission, set-up, used for the humidity measurement of coke. The optimisation focused on maximising the sensitivity of the neutron flux to humidity changes and on lowering neutron-counting error, both leading to higher accuracy of coke moisture determination. Different materials used for the source shielding and neutron collimation, together with different dimensions of the neutron collimators were studied. The results obtained from the Monte Carlo modelling correlate with the real instrument performance.

  8. Effects of irradiation - fast neutrons and implantation on sintered Y sbnd Ba sbnd Cu sbnd O superconductors

    Science.gov (United States)

    Rao, K. V.; PuŹniak, R.; Chen, D.-X.; Karpe, N.; Baran, M.; Wiśniewski, A.; Pytel, K.; Szymczak, H.; Dyrbye, K.; Bøttiger, J.

    1988-06-01

    Effects of irradiation damage by fast neutrons, and nitrogen implantation on magnetic and electrical properties of Y sbnd Ba sbnd Cu sbnd O materials have been studied. The samples were subjected to a fluence of 2 × 10 17 and 1 × 10 17 neutrons / cm 2. In the implantation studies dosages of 10 15 and 10 16ions/ cm 2 of N + were used. Here we will report on the detailed changes in the magnetic hysteresis loop due to irradiation. It is found that the transport inter-grain critical current decreases with irradiation, while the critical current inside the grains is enhanced.

  9. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    Science.gov (United States)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  10. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-05-19

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas of high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.

  11. Technical note: Sensitivity of instrumental line shape monitoring for the ground-based high-resolution FTIR spectrometer with respect to different optical attenuators

    Science.gov (United States)

    Sun, Youwen; Palm, Mathias; Weinzierl, Christine; Petri, Christof; Notholt, Justus; Wang, Yuting; Liu, Cheng

    2017-03-01

    The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) sites assume an ideal ILS (instrumental line shape) for analysis of the spectra. In order to adapt the radiant energy received by the detector, an attenuator or different sizes of field stop can be inserted in the light path. These processes may alter the alignment of a high-resolution FTIR (Fourier transform infrared) spectrometer, and may result in bias due to ILS drift. In this paper, we first investigated the sensitivity of the ILS monitoring with respect to application of different kinds of attenuators for ground-based high-resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted after the insertion of five different attenuators in front of and behind the interferometer. The ILS characteristics derived from lamp and sun spectra are in good agreement. ILSs deduced from all lamp cell measurements were compared. As a result, the disturbances to the ILS of a high-resolution FTIR spectrometer with respect to the insertion of different attenuators at different positions were quantified. A potential strategy to adapt the incident intensity of a detector was finally deduced.

  12. Rapid Detection of Gas Hazards and Leaks with an Atmospheric Sampling, High Resolution, Mass Spectrometer with Low Pumping Requirements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Miniaturization of mass spectrometers is restricted almost exclusively by the ability of small vacuum pumps to remove gas loads during operation of the instrument....

  13. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  14. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  15. Enhancement of critical current density in fast neutron irradiated melt-textured YBa 2Cu 3O 7- x

    Science.gov (United States)

    Puźniak, R.; Wiśniewski, A.; Baran, M.; Szymczak, H.; Pingxiang, Zhang; Jingrong, Wang; Lian, Zhou; Pytel, K.; Pytel, B.

    The critical current density in melt-textured samples obtained by the powder melting process was determined from magnetization measurements. Linear dependence between the width of the hysteresis loop and sample size was observed for both unirradiated and irradiated samples. This indicates that the critical current is circulating through the whole sample and is not disconnected by weak links, even when a magnetic field is applied in the irradiated sample. After fast neutron irradiation with fluences from 5 × 10 16 to 6 × 10 17 n cm -2 ( E > 0.5 MeV), significant enhancement of the critical current density, jc, was observed. Critical current density, determined from magnetization measurements, for magnetic field perpendicular to the a-b plane, jcab, reaches - 10 5 A cm 42 at 77 K in 1 T. For H parallel to the a-b plane, jcc along the c-axis reaches 5 × 10 3 A cm -2. An increase in the anisotropy of the critical current was observed after fast neutron irradiation in the temperature range 60 - 80 K.

  16. Detection of fast neutrons from D-T nuclear reaction using a 4H-SiC radiation detector

    Science.gov (United States)

    Zatko, Bohumir; Sagatova, Andrea; Sedlackova, Katarina; Necas, Vladimir; Dubecky, Frantisek; Solar, Michael; Granja, Carlos

    2016-09-01

    The particle detector based on a high purity epitaxial layer of 4H-SiC exhibits promising properties in detection of various types of ionizing radiation. Due to the wide band gap of 4H-SiC semiconductor material, the detector can reliably operate at room and also elevated temperatures. In this work we focused on detection of fast neutrons generated the by D-T (deuterium-tritium) nuclear reaction. The epitaxial layer with a thickness of 105 μm was used as a detection part. A circular Schottky contact of a Au/Ni double layer was evaporated on both sides of the detector material. The detector structure was characterized by current-voltage and capacitance-voltage measurements, at first. The results show very low current density (SiC detector is caused by the elastic and inelastic scattering on the silicon or carbide component of the detector material. Another possibility that increases the detection efficiency is the use of a conversion layer. In our measurements, we glued a HDPE (high density polyethylene) conversion layer on the detector Schottky contact to transform fast neutrons to protons. Hydrogen atoms contained in the conversion layer have a high probability of interaction with neutrons through elastic scattering. Secondary generated protons flying to the detector can be easily detected. The detection properties of detectors with and without the HDPE conversion layer were compared.

  17. Radiation induced changes in electrical conductivity of chemical vapor deposited silicon carbides under fast neutron and gamma-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Bun, E-mail: btsuchiya@meijo-u.ac.jp [Department of General Education, Faculty of Science and Technology, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan); Shikama, Tatsuo; Nagata, Shinji; Saito, Kesami [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamamoto, Syunya [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohnishi, Seiki [Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nozawa, Takashi [Aomori Research and Development Center, Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-10-15

    The radiation-induced changes in the volume electrical conductivities of chemical vapor deposited silicon carbides (CVD-SiCs) were in-site investigated by performing irradiation using 1.17 and 1.33-MeV gamma-ray and 14-MeV fast neutron beams in air and vacuum. Under gamma-ray irradiation at ionization dose rates of 3.6 and 5.9 Gy/s and irradiation temperature of approximately 300 K, the initial rapid increase in electrical conductivity; this is indicative of radiation-induced conductivity (RIC), occurred due to electronic excitation, and a more gradual increase followed up to a dose of approximately 10-50 kGy corresponding to the results in base conductivity without radiation; this is indicative of radiation-induced electrical degradation (RIED). However, the radiation-induced phenomena were not observed at irradiation temperatures above 373 K. Under neutron irradiation at a further low dose rate below approximately 2.1 Gy/s, a fast neutron flux of 9.2 x 10{sup 14} n/m{sup 2} s, and 300 K, the RIED-like behavior according to radiation-induced modification of the electrical property occurred with essentially no displacement damage, but ionizing effects (radiolysis).

  18. High Hydrogen Content Graphene Hydride Compounds & High Cross-­ Section Cladding Coatings for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekhar, MVS [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-21

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cycles to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.

  19. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-05-01

    Full Text Available The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements were first combined into positive matrix factorization (PMF analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA and cooking OA (COA contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69 among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA. The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox (= O3+NO2. The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states

  20. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    Science.gov (United States)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  1. Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign

    Science.gov (United States)

    Decarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins, D. R.; Knapp, D.; Weinheimer, A. J.; Montzka, D. D.; Campos, T.; Jimenez, J. L.

    2007-12-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM1) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS, in which the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM1 mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 μg m-3 (STP) ppm-1. This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2007b). BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city likely due to evaporation. BB does not appear to be a strong source of nitrate despite its high emissions of nitrogen oxides, presumably due to low ammonia

  2. Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2007-12-01

    Full Text Available The concentration, size, and composition of non-refractory submicron aerosol (NR-PM1 was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS, in which the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA species dominate the NR-PM1 mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA and biomass burning (BB are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 μg m−3 (STP ppm−1. This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006 and Kleinman et al. (2007b. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city likely due to evaporation. BB does not appear to be a strong source of nitrate

  3. The effect of biological shielding on fast neutron and photon transport in the VVER-1000 mock-up model placed in the LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip

    2013-05-01

    The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.

  4. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  5. A rapid reflectance-difference spectrometer for real-time semiconductor growth monitoring with sub-second time resolution.

    Science.gov (United States)

    Núñez-Olvera, O; Balderas-Navarro, R E; Ortega-Gallegos, J; Guevara-Macías, L E; Armenta-Franco, A; Lastras-Montaño, M A; Lastras-Martínez, L F; Lastras-Martínez, A

    2012-10-01

    We report on a rapid, 32-channel reflectance-difference (RD) spectrometer with sub-second spectra acquisition times and ΔR/R sensitivity in the upper 10(-4) range. The spectrometer is based on a 50 kHz photo-elastic modulator for light polarization modulation and on a lock-in amplifier for signal harmonic analysis. Multichannel operation is allowed by multiplexing the 32 outputs of the spectrometer into the input of the lock-in amplifier. The spectrometer spans a wavelength range of 230 nm that can be tuned to cover E(1) and E(1) + Δ(1) transitions for a number of III-V semiconductors at epitaxial growth temperatures, including GaAs, InAs, AlAs, and their alloys. We present two examples of real-time measurements to demonstrate the performance of the RD spectrometer, namely, the evolution of the RD spectrum of GaAs (001) annealed at 500 °C and the time-dependent RD spectrum during the first stages of the epitaxial growth of In(0.3)Ga(0.7)As on GaAs (001) substrates.

  6. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Welgand, M.; Umbach, E.; Bar, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-11

    We present a variable line-space grating spectrometer for soft s-rays that coverst the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite is slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) micrometers squared, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scatters (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken with 10 min.

  7. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  8. Characterization of x-ray imaging crystal spectrometer for high-resolution spatially-resolved x-ray Thomson scattering measurements in shock-compressed experiments

    Science.gov (United States)

    Lu, J.; Hill, K. W.; Bitter, M.; Pablant, N. A.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Lee, H. J.; Zastrau, U.

    2017-01-01

    We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals, which are combined to form a large aperture dispersive element with a spectral bandwidth of 300 eV that enables both the elastic and inelastic x-ray scattering peaks to be simultaneously measured. The apparatus and its characterization are described. A resolving power of 1900 was demonstrated and a spatial resolution of 12 μm was achieved in calibration tests. For XRTS measurements, a narrow-bandwidth (ΔE/Ecarbon plasma produced in shock-compressed samples of different forms of carbon. Preliminary results of the scattering experiments from Pyrolytic Graphite samples that illustrate the utility of the instrument are presented.

  9. Measurement and calculations of long-lived radionuclide activity forming in the fast neutron field in some ITER construction steels

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecki, W., E-mail: poho@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Jodłowski, P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow (Poland); Pytel, K.; Prokopowicz, R. [National Centre for Nuclear Research, ul. Sołtana 7, 05-400 Otwock-Świerk (Poland)

    2014-10-15

    Highlights: • Measurement and calculations of long-lived gamma-emitting radionuclide activity forming in the fission reactor fast neutron field were done, in some ITER construction steels. • The neutron flux density was measured by means of activation foil method and unfolding technique. • Activity calculations were done by means of FISPACT-II code using the activation libraries EAF-2010 and TALYS-2011. • The activity measurements were done by means of gamma-ray spectrometry. - Abstract: Measurement and calculations of long-lived gamma-emitting radionuclide activity forming in the fission reactor fast neutron field were done, for some ITER construction steels. The activation was conducted in fast neutron irradiation channel of the MARIA research fission reactor (Poland). The dimensions of steel samples were 10 mm × 10 mm × 1 mm and mass was approximately 0.8 g. The neutron flux density was measured by means of activation foil method and unfolding technique; fraction of neutrons above 1 keV was 95%. The activation lasted 242 h and cooling took 100 days; the mean neutron flux density was 2.9E12 n/(cm{sup 2} s) (neutrons above 500 keV are 53% of total) whereas total fluency 2.53E18 cm{sup −2}. The activity measurements were done by means of gamma-ray spectrometry. Activity calculations were done by means of FISPACT-II code using the activation libraries EAF-2010 and TENDL-2011 and experimentally determined neutron flux. Measured activity of long-lived gamma emitting radionuclides was, in average, about 6.3 MBq/g 100 days after activation; the dominant radionuclides were {sup 58}Co and {sup 54}Mn (about 81% and 14% of total activity respectively). The C/E ratio differs for particular radionuclides and is in the range 0.86–0.92 for {sup 51}Cr, 0.93–1.21 for {sup 54}Mn, 0.77–0.98 for {sup 57}Co, 0.91–1.21 for {sup 58}Co, 1.17–1.27 for {sup 59}Fe, and 1.75–2.44 for {sup 60}Co.

  10. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    Energy Technology Data Exchange (ETDEWEB)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  11. Use of CLYC spectrometer in counter-terrorism applications

    Science.gov (United States)

    Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.

    2015-05-01

    A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.

  12. Fast neutron damage studies of La/sub 1. 85/Sr/sub 0. 15/CuO/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Sekula, S.T.; Christen, D.K.; Kerchner, H.R.; Thompson, J.R.; Boatner, L.A.; Sales, B.C.

    1987-04-01

    The effect of fast neutron damage on the superconducting transition temperature T/sub c/ and the critical current density j/sub c/ of the compound La/sub 1.85/Sr/sub 0.15/CuO/sub 4/ has been investigated. Irradiation to a fluence of 1.3 x 10/sup 18/ n/cm/sup 2/ (E > 0.1 MeV) resulted in a decrease of T/sub c/ of about 3 K while j/sub c/ at 4.2 K and H = 2 T increased by a factor of two to 1.2 x 10/sup 4/ A/cm/sup 2/.

  13. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    CERN Document Server

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  14. Magnetization studies of YBa/sub 2/Cu/sub 3/Osub(7-x) irradiated by fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, A.; Baran, M.; Przyslupski, P.; Szymczak, H.; Pajaczkowska, A.; Pytel, B.; Pytel, K.

    1988-02-01

    Studies of the effect of fast neutron damage on the magnetic hysteresis of YBa/sub 2/Cu/sub 3/Osub(7-x) ceramic samples subjected to fluence of neutrons of 2x10/sup 16/ n/cm/sup 2/ up to 6x10/sup 17/ n/cm/sup 2/ have been performed. Irradiation up to dose of 1x10/sup 17/ did not cause any change in the critical temperature. However it causes a strong increase of the magnetic hysteresis which is presumably connected with the creation of defects. The critical current density at 77 K in H = 10 KOe for the sample irradiated with the dose 1x10/sup 17/ n/cm/sup 2/ was estimated to be 520 A/cm/sup 2/ as compared to 29 A/cm/sup 2/ for the reference non-irradiated sample.

  15. Quantitative discrimination between oil and water in drilled bore cores via fast-neutron resonance transmission radiography

    CERN Document Server

    Vartsky, D; Dangendorf, V; Israelashvili, I; Mor, I; Bar, D; Tittelmeier, K; Weierganz, M; Breskin, A

    2016-01-01

    A novel method based on Fast Neutron Resonance Transmission Radiography is proposed for non-destructive, quantitative determination of the weight percentages of oil and water in cores taken from subterranean or underwater geological formations. The ability of the method to distinguish water from oil stems from the unambiguously-specific energy dependence of the neutron cross-sections for the principal elemental constituents. Monte-Carlo simulations and initial results of experimental investigations indicate that the technique may provide a rapid, accurate and non-destructive method for quantitative evaluation of core fluids in thick intact cores, including those of tight shales for which the use of conventional core analytical approaches appears to be questionable.

  16. Maxillo-dental lesions produced in cats, after gamma and fast neutron irradiation. Radiographical and microradiographical study

    Energy Technology Data Exchange (ETDEWEB)

    Dambrain, R.; Dhem, A.; Meulders, J.P.; Wambersie, A.

    1988-01-01

    Gamma doses of 50 Gy, in 5 fractions over 29 days, induce severe modifications of the irradiated jaw in the cat, as shown by radiographical and microradiographical techniques. Four out 5 animals could survive up to one year; a fifth one died as a consequence of osteoradionecrosis. In addition, 2 animals, on which a tooth extraction was performed, died from osteoradionecrosis (role of trauma). Similar irradiations were performed with fast neutrons d(50) + Be at a total dose of 16.1 Gy in 5 fractions over 29 days. The ratio 50 Gy/16.1 Gy = 3.1 is the CNPF adopted for neutrontherapy applications at Louvain-la-Neuve. This irradiation was well tolerated by 7/7 animals. Only alveolodental ankylosis was observed in 3 cases, as well as a slight reduction in bone vitality in the dorsal part of the jaw. An eighth animal died from osteoradionecrosis induced by tooth extraction.

  17. Defects in metal crystals. Progress report, May 1, 1976--April 30, 1977. [Heavy ions and fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D N

    1977-02-01

    Work performed during 1976 to investigate point defects, aggregates of point defects and their interactions with one another is described. Strong emphasis is placed on the use of different irradiating species (300 to 700 eV Xe/sup +/ ions, 300 eV and 30 keV He/sup +/ ions, 20- to 40-keV W/sup +/ ions, 20- to 40-keV Mo/sup +/ ions, 20- to 40-keV Cr/sup +/ ions and fast neutrons) to introduce both vacancies and interstitials in a number of pure metals (Mo, W, Au, Ta) and alloys (Pt-Au, W-Re, Mo-Ti, Mo-Ti-Zr, Ni/sub 4/Mo, Ni/sub 3/Fe, Ni/sub 3/Mn, low swelling 316 stainless steel and commercial 316 stainless steel). (GHT)

  18. Light charged particle emission induced by fast neutrons (25 to 65 MeV) on sup 5 sup 9 Co

    CERN Document Server

    Nica, N; Raeymackers, E; Slypen, I; Meulders, J P; Corcalciuc, V

    2002-01-01

    Double-differential cross sections (energy spectra) for the proton, deuteron, triton and alpha-particle production in fast neutron induced reactions on cobalt are reported for ten incident neutron energies between 25 and 65 MeV. Energy spectra were obtained at nine laboratory angles between 20 deg. and 160 deg. and extrapolated or interpolated to other ten angles covering uniformly the laboratory angular domain of 0 deg. to 180 deg. The experimental set-up and procedures for data reduction including corrections and normalization are presented and discussed. Based on the measured double-differential cross sections, energy-differential and total cross sections are reported as well. Experimental cross sections are compared with similar available data from neutron- and proton-induced reactions. Theoretical calculations based on semiclassical exciton model and Hauser-Feshbach statistical theory (GNASH code) and intranuclear cascade model for nucleon-induced interactions (INCL3 code) were done and compared to the e...

  19. The use of the neutronic calculation code CORNER for evaluating the protection of fast neutron reactor and CNFC equipment

    Science.gov (United States)

    Shekhanova, M. E.

    2017-01-01

    In this paper we propose a method of using neutronic calculation code CORNER to the analysis of experiments on the protection of fast neutron reactor and CNFC equipment. An example of Winfrith Graphite Benchmark experiment calculation using this approach is presented. This task can be considered as one step in the general theme of the safety analysis of FR with liquid metal coolant, their fuel cycles and related equipment. CORNER implement a solution of the kinetic equation with a source in the three-dimensional hexagonal geometry based on Sn-method. The purpose of this paper is a demonstration of the application of CORNER’s possibilities for the analysis of the actual reactor problems.

  20. OZSPEC-2: an improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited).

    Science.gov (United States)

    Heeter, R F; Anderson, S G; Booth, R; Brown, G V; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Schneider, M B; Young, B K F

    2008-10-01

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  1. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Afrakoti, Iman Esmaili Paeen

    2017-04-01

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The 241Am-9Be and 252Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions.

  2. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  3. Inverse magnetocaloric effect in Ce(Fe{sub 0.96}Ru{sub 0.04}){sub 2}: Effect of fast neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, V.; Mishra, P. K.; Prajapat, C. L.; Singh, M. R.; Ravikumar, G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai-4000085 (India); Rajarajan, A. K.; Sastry, P. U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-4000085 (India); Thakare, S. V. [Radio Pharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai-4000085 (India)

    2013-02-05

    We have shown the effect of fast neutron irradiation on the magnetic phase transition and magnetocaloric effect (MCE) in a doped Ce(Fe{sub 0.96}Ru{sub 0.04}){sub 2}, intermettalic. We show that this leads to suppression of MCE and a to a disordered ferromagnetic phase.

  4. Relative biological effectiveness and tolerance dose of fission neutrons in canine skin for a potential combination of neutron capture therapy and fast-neutron therapy.

    Science.gov (United States)

    Kadosawa, Tsuyoshi; Ohashi, Fumihito; Nishimura, Ryohei; Sasaki, Nobuo; Saito, Isao; Wakabayashi, Hiroaki; Takeuchi, Akira

    2003-10-01

    To investigate the potential efficacy of fission neutrons from a fast-neutron reactor for the treatment of radioresistant tumors, the relative biological effectiveness (RBE) and tolerance dose of fission neutrons in canine skin were determined. The forelimbs of 34 healthy mongrel dogs received a single dose of fission neutrons (5.6, 6.8, 8.2, 9.6 or 11 Gy) or 137Cs gamma rays (10, 15, 20, 25 or 30 Gy). Based on observations of radiodermatitis for each radiation, the single-fraction RBE of fission neutrons in the sixth month was calculated as approximately 3. The tolerance doses of fission neutrons and gamma rays, defined as the highest doses giving no moist desquamation on the irradiated skin in the recovery phase, were estimated as 7.6 Gy and 20 Gy, respectively. The tolerance dose of 7.6 Gy of fission neutrons included 5.0 Gy of fast neutrons possessing high anti-tumor effects and 1.4 x 10(12) n/cm2 of thermal neutrons, which could be applicable to neutron capture therapy (NCT). The combination of fast-neutron therapy and NCT using a fast-neutron reactor might be useful for the treatment of radioresistant tumors.

  5. HADES. A computer code for fast neutron cross section from the Optical Model; HADES. Un programa numerico para el calculo de seccciones eficaces neutronicas mediante el modelo optico

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Navarro, C.

    1973-07-01

    A FORTRAN V computer code for UNIVAC 1108/6 using a local Optical Model with spin-orbit interaction is described. The code calculates fast neutron cross sections, angular distribution, and Legendre moments for heavy and intermediate spherical nuclei. It allows for the possibility of automatic variation of potential parameters for experimental data fitting. (Author) 55 refs.

  6. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    Science.gov (United States)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  7. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    Science.gov (United States)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  8. Calculation of Resolution Function for Triple-Axis Neutron Spectrometer%中子三轴谱仪分辨函数的模拟计算

    Institute of Scientific and Technical Information of China (English)

    刘丽鹃; 谢超美; 徐家云; 阳剑; 谢雷

    2009-01-01

    The theory of triple-axis neutron spectrometer (TAS) was described briefly. With MCSTAS code based on Monte-Carlo method, the resolution function was calculated at elastic scattering. The energy resolution, the scan of vanadium sample scattering experiment and the resolution function shape of different transferred energy were simulated. The relation between the choice of measuring position in real experiment and the shape of the resolution ellipse was analysed. The result shows that simulation calculation can calculate the shape of resolution function rapidly.%阐述了中子三轴谱仪的工作原理,利用MCSTAS程序模拟计算了分辨函数,分别计算了在弹性散射下能量分辨率、钒样品散射实验的转移能量的扫描和不同转移能量下的分辨函数形态.分析了实验中测量位置的选取与分辨椭圆状态的关系.结果表明,模拟计算能快速地计算出分辨函数形态.

  9. Multi-purpose fast neutron spectrum analyzer with real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaev, Yu.S., E-mail: sulyaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kvashnin, A.N. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Burdakov, A.V.; Grishnyaev, E.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation)

    2013-08-21

    Diagnostics of hot ion component of plasma on the products of fusion reactions is widely used on thermonuclear facilities. In case of employment of neutron spectrometers, based on organics scintillators, there is advanced technique developed to eliminate neutron pulses from gamma background—digital pulse shape discrimination. For every DPSD application it is necessary to use the fast (2–5 ns) and precise (12 bit) transient ADC unit with large amount of onboard memory for storing every digitized scintillation pulses during shot time. At present time the duration of hot thermonuclear plasma burning in large tokamaks approximate to 1 min, and this requires very high onboard memory capacity (∼100 GB). This paper describes a neutron spectrum analyzer with real-time DPSD algorithm, implemented to ADC unit. This approach saves about two orders of onboard memory capacity, gives the possibility of instant use of outcome to feedback systems. This analyzer was tested and calibrated with help of {sup 60}Co and {sup 252}Cf radiation sources, and deuterium neutron generator.

  10. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    Science.gov (United States)

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Science.gov (United States)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  12. The Compact High Resolution Imaging Spectrometer (CHRIS): the future of hyperspectral satellite sensors. Imagery of Oostende coastal and inland waters

    OpenAIRE

    B. De Mol; Ruddick, K

    2004-01-01

    The gap between airborne imaging spectroscopy and traditional multi spectral satellite sensors is decreasing thanks to a new generation of satellite sensors of which CHRIS mounted on the small and low-cost PROBA satellite is the prototype. Although image acquisition and analysis are still in a test phase, the high spatial and spectral resolution and pointability have proved their potential. Because of the high resolution small features, which were before only visible on airborne images, becom...

  13. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Mesick, K. E.; Nowicki, S.

    2016-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. Under the resource constraints of space missions, these measurements are difficult as they require good gamma-ray energy resolution, measurement of neutron energy over almost twelve orders of magnitude, and disentangling the effects of background cosmic radiation, all while surviving the space environment for many years. EPICS will provide a transformational advance in the investigation of these signatures, enabling new scientific discovery. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the recently-discovered elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity and some fast neutron spectroscopy, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is being developed under Los Alamos National Laboratory internal research and development funding to a maturity level

  14. Mineralogical determination in situ of a highly heterogeneous material using a miniaturized laser ablation mass spectrometer with high spatial resolution

    Science.gov (United States)

    Neubeck, Anna; Tulej, Marek; Ivarsson, Magnus; Broman, Curt; Riedo, Andreas; McMahon, Sean; Wurz, Peter; Bengtson, Stefan

    2016-04-01

    Techniques enabling in situ elemental and mineralogical analysis on extraterrestrial planets are strongly required for upcoming missions and are being continuously developed. There is ample need for quantitative and high-sensitivity analysis of elemental as well as isotopic composition of heterogeneous materials. Here we present in situ spatial and depth elemental profiles of a heterogeneous rock sample on a depth-scale of nanometres using a miniaturized laser ablation mass spectrometer (LMS) designed for planetary space missions. We show that the LMS spectra alone could provide highly detailed compositional, three-dimensional information and oxidation properties of a natural, heterogeneous rock sample. We also show that a combination of the LMS and Raman spectroscopy provide comprehensive mineralogical details of the investigated sample. These findings are of great importance for future space missions where quick, in situ determination of the mineralogy could play a role in the process of selecting a suitable spot for drilling.

  15. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Science.gov (United States)

    Laubach, M. A.; Hayward, J. P.; Zhang, X.; Cates, J. W.

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  16. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    Science.gov (United States)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  17. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  18. Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.

    2014-06-01

    We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.

  19. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    Science.gov (United States)

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  20. Use of chemical etching of CR-39 foils at elevated temperature for fast neutron personnel monitoring in India

    Science.gov (United States)

    Sathian, Deepa; Rohatgi, Rupali; Jayalakshmi, V.; Marathe, P. K.; Nair, Sarala; Kolekar, R. V.; Chourasiya, G.; Kannan, S.

    2009-06-01

    CR-39 Solid State Nuclear Track Detecting foils (SSNTD), along with 1 mm thick polyethylene radiator, sealed in triple laminated pouches, are used for country wide Fast Neutron Personnel Monitoring in India. With the present system of processing by elevated temperature electrochemical etching (ETECE) and evaluation using automatic image analysis, only 16 foils are processed at a time and it is useful over the dose equivalent range 0.2 mSv to 10 mSv. It has been reported that, by processing CR-39 of good detection efficiency by chemical etching at elevated temperature, more numbers of foils can be processed simultaneously. In the present study, CR-39 foils from Pershore Moulding (UK) have been chemically etched using 7 N KOH under various conditions of temperature and etching durations and evaluated using high magnification microscope. The duration of chemical etching, has been optimized at a constant temperature of 60°C for chemical etching process. The characteristics of the chemically etched CR-39 foils are compared with the characteristics of the CR-39 foils processed by the existing system of ETECE and the detailed results are presented in the full text of the paper. It has been observed that by chemical etching process, the dose equivalent range of CR-39 foils can be extended above 60 mSv.

  1. Characterization and simulation of fast neutron detectors based on surface-barrier VPE GaAs structures with polyethylene converter

    Science.gov (United States)

    Chernykh, A. V.; Chernykh, S. V.; Baryshnikov, F. M.; Didenko, S. I.; Burtebayev, N.; Britvich, G. I.; Kostin, M. Yu.; Chubenko, A. P.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh.; Zholdybayev, T.; Glybin, Yu. N.; Sadykov, T. Kh.

    2016-12-01

    Fast neutron detectors with an active area of 80 mm2 based on surface-barrier VPE GaAs structures were fabricated and tested. Polyethylene with density of 0.90 g/cm3 was used as a converter layer. The recoil-proton surface-barrier sensor was fabricated on high purity VPE GaAs epilayers with a thickness of 50 μm. The neutron detection efficiency measured with a 241Am-Be source was 1.30 · 10-3 puls./neutr. for the PE converter thickness of 670 μm. The signal-to-gamma-background ratio was at the level of 50. Simulation of the detector characteristics with Geant4 toolkit has showed good correlation with the experimental data and allowed to estimate the maximal theoretical detection efficiency of the detector which is determined by the PE converter and equals to 1.37 · 10-3 puls./neutr. The difference between the measured and simulated values of the detection efficiency is due to the fact that the events with energies below 0.5 MeV were not taken into account during the measurements.

  2. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  3. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds.

    Science.gov (United States)

    Lee, Ben H; Lopez-Hilfiker, Felipe D; Mohr, Claudia; Kurtén, Theo; Worsnop, Douglas R; Thornton, Joel A

    2014-06-03

    A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.

  4. Observation of the fully reconstructed $D^{0}\\overline{D}$$^{0}$ pair with long lifetimes in a high resolution hydrogen bubble chamber and the European Hybrid Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067425; Allison, W W M; Bagnaia, P; Touboul, M C; Baldo, B; Barone, L; Bartl, Walter; Bergier, A; Bettini, A; Bizzarri, R; Boratav, M; Borreani, G; Brooks, B; Bruyant, F; Castelli, Edoardo; Centro, Sandro; Checchia, P; Chliapnikov, P V; Ciapetti, G; Bertrand-Coremans, G H; Crennell, D J; Cresti, M; Crijns, F; De Giorgi, M; Dibon, Heinz; Di Capua, E; Dionisi, C; Dolbeau, J; Duboc, J; Dumarchez, J; Dykes, M; Etienne, F; Ferrando, A; Fisher, Colin M; Fisyak, Yu; Frühwirth, R; Gatignon, L; Gentile, S; Grard, F; Güsewell, D; Hartjes, F G; Hernández, J; Herquet, P; Hervé, A; Holmgren, S O; Hrubec, Josef; Hughes, P; Jacobs, D; Johansson, E K; Kesteman, J; Kistenev, E P; Kitamura, S; Kittel, E W; Kuhn, D; Kurtz, N; Ladrón de Guevara, P; Lecoq, P; Lemonne, J; Lesceux, J M; Leutz, H; Lipari, P; Loverre, P F; Lyons, L; Marchetto, F; Marin, J C; Markytan, Manfred; Marzano, F; Mazzucato, M; Menichetti, E; Michalon-Mentzer, M E; Michalon, A; Moa, T; Montanet, Lucien; Mulvey, J; Neuhofer, Günther; Nguyen, H; Nilsson, S; Paler, Kenneth; Pascoli, D; Peruzzo, L; Pilette, P; Piredda, G; Poljakov, B F; Poppleton, Alan; Rinaudo, G; Poropat, P; Porth, Paul; Powell, B; Regler, Meinhard; Reucroft, S; Robb, L; Rossi, P; Rubio, J; Sartori, G; Sessa, M I; Settles, Ronald; Stergiou, Athanase; Stopchenko, V A; Subramanian, A; Tavernier, Stefaan; Chikilev, O G; Toet, D Z; Touchard, A M; Troncon, C; Van Immerseel, M; Van de Walle, R T; Ventura, L; Voltolini, C; Wenninger, Horst; Wickens, J H; Willmott, C; Yiou, T P; Zanello, D; Zanello, L; Zholobov, G V; Zotto, P L; Zemerle, G

    1981-01-01

    In an experiment with a 360 GeV/c $\\pi^{-}$ beam at the CERN SPS using the high resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer, an event has been observed of the type $\\pi^{-}p$ to $D^{0}D^{0}+8$ prongs. The fully reconstructed decay modes are $D^{0} \\rightarrow K^{-}\\pi^{+}\\pi^{0}\\pi^{0}$ and $D^{0} \\rightarrow K^{+}\\pi^{+}\\pi^{-}\\pi^{-}$, with all six charged tracks being detected in the spectrometer and all four photons from the $\\pi^{0}$ decays detected in the lead glass gamma detection system. The $D^{0}$ has momentum $119.0 \\pm 0.6$ GeV/c, $x_{F}=0.31$, length $4.1 \\pm 0.1$ mm and proper lifetime $(2.1 \\pm 0.1)\\times10^{-13}$s. The $D^{0}$ has momentum $78.5 \\pm 0.3$ GeV/c, $x_{F}=0.19$, length $7.5 \\pm 0.1$ mm and proper lifetime $(5.9 \\pm 0.1)\\times 10^{-13}$s.

  5. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Science.gov (United States)

    Musabaeva, L. I.; Startseva, Zh. A.; Gribova, O. V.; Velikaya, V. V.; Lisin, V. A.

    2016-08-01

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  6. Effects of fractionated doses of fast neutrons or photons on the canine brain: evaluation by computerized tomography and evoked response recording

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.W.; Davis, D.O.; Gaskill, J.W.; Deye, J.A.; Fisher, M.P.; Sloan, G.E.; Rogers, C.C.

    1980-12-01

    The use of fast neutrons in the treatment of cancer necessitates a knowledge of the normal tissue responses. This study was designed to compare the late effects of fractionated doses of fast neutrons with fractionated doses of photons on canine brains by evoked response recording and viewing computerized tomograms (CT). A relative biological effectiveness (RBE) of 4 was obtained for normal brain tissue assessed by mortality and onset of neurologic symptoms. Every three months post-irradiation, visual and sensory evoked responses were recorded. Changes over time appeared to be minimal; however, computerized tomographs showed marked brain shrinkage. A method of quantitating cerebrospinal fluid and parenchymal volumes from scans is described and future use of these CT ratios to generate dose response curves and RBE values is postulated.

  7. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; Gribova, O. V., E-mail: gribova79@mail.ru; Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  8. Lattice and Magnetic Effects on a d-d Excitation in NiO Using a 25 meV Resolution X-ray Spectrometer

    Science.gov (United States)

    Ishikawa, Daisuke; Haverkort, Maurits W.; Baron, Alfred Q. R.

    2017-09-01

    We investigate the behavior of a d-d transition in NiO using a new x-ray spectrometer with 0.025 eV resolution at 15816 eV, and via ab-initio ligand field theory calculations. The transition at ˜1.7 eV energy transfer is measured at temperatures between 20 and 800 K, at a momentum transfer |Q| = 6.52 Å-1. Fine structure is clearly observed at 20 K. As temperature is increased, the excitation shifts to lower energy and broadens. We explain the energy shift as being related to thermal expansion and to magnetism. The broadening is well fit considering thermal fluctuations of the Ni-O bond length, with a scale factor found to be in reasonable agreement with calculation.

  9. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors; Visualisation ultrasonore rapide sous sodium. application aux reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, Ch

    1997-05-30

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  10. The European JASMIN Project for the Development of a New Safety Simulation Code, ASTEC-Na, for Na-cooled Fast Neutron Reactors

    OpenAIRE

    GIRAULT N.; VAN DORSSELAERE J.p.; Jacq, F.; BRILLANT G.; KISSANE Martin; BANDINI, G; Buck,M.; CHAMPIGNY J.; Hering, W; Perez-Martin, S.; Herranz, L; RAISON Philippe; Reinke, N; TUCEK Kamil; VERWAERDE D.

    2012-01-01

    The 4-year JASMIN collaborative project, involving 9 organizations, was launched by IRSN end of 2011 within the 7th European R&D Framework Programme on the enhancement of Na-cooled Fast Neutron Reactors (SFR) safety for a higher resistance to severe accidents. The project aims at developing a new European simulation code, ASTEC-Na, with a modern architecture, sufficiently flexible to account for innovative reactor designs and eventually new types of fuel and claddings and accounting for resul...

  11. Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography.

    Science.gov (United States)

    Tötzke, Christian; Kardjilov, Nikolay; Manke, Ingo; Oswald, Sascha E

    2017-07-21

    Water infiltration in soil is not only affected by the inherent heterogeneities of soil, but even more by the interaction with plant roots and their water uptake. Neutron tomography is a unique non-invasive 3D tool to visualize plant root systems together with the soil water distribution in situ. So far, acquisition times in the range of hours have been the major limitation for imaging 3D water dynamics. Implementing an alternative acquisition procedure we boosted the speed of acquisition capturing an entire tomogram within 10 s. This allows, for the first time, tracking of a water front ascending in a rooted soil column upon infiltration of deuterated water time-resolved in 3D. Image quality and resolution could be sustained to a level allowing for capturing the root system in high detail. Good signal-to-noise ratio and contrast were the key to visualize dynamic changes in water content and to localize the root uptake. We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.

  12. Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy

    CERN Document Server

    Angelone, M; Rollet, S

    2002-01-01

    The feasibility of a compact accelerator-driven device for the generation of neutron spectra suitable for isotope production by neutron capture, boron neutron capture therapy and fast neutron therapy, is analyzed by Monte Carlo simulations. The device is essentially an extension of the activator proposed by Rubbia left bracket CERN/LHC/97-04(EET) right bracket , in which fast neutrons are diffused and moderated within a properly sized lead block. It is shown that by suitable design of the lead block, as well as of additional elements of moderating and shielding materials, one can generate and exploit neutron fluxes with the spectral features required for the above applications. The linear dimensions of the diffusing-moderating device can be limited to about 1 m. A full-scale device for all the above applications would require a fast neutron source of about 10**1**4 s**-**1, which could be produced by a 1 mA, 30 MeV proton beam impinging on a Be target. The concept could be tested at the Frascati Neutron Gener...

  13. Performance of a plasma window for a high pressure differentially pumped deuterium gas target for mono-energetic fast neutron production - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Beer, A. de; Hershcovitch, A.; Franklyn, C.B.; Straaten, S. van; Guzek, J. E-mail: jguzek@debeers.co.za

    2000-09-01

    The reactions D(d,n){sup 3}He and T(d,n){sup 4}He are frequently used for production of the mono-energetic or quasi mono-energetic neutron beams but successful applications are often limited by the intensity of the generated neutron beams. The development of a suitable neutron source for such applications as studies of resonance phenomena, fast neutron radiography, selective fast neutron activation, explosives and contraband detection and others, depends on the output ion current of the accelerator and the design of the target system. A practical solution for a high pressure gas target was previously developed and successfully implemented at De Beers Diamond Research Laboratory in Johannesburg (Guzek et al., 1999), but it is limited to applications using low (<20%) duty cycle accelerators. The concept of a plasma window for the separation of a high pressure gas target region and accelerator vacuum, that was originally developed by Hershcovitch (1995) for electron welding applications, may be suitable for operation with continuous wave accelerators at high particle current output. Preliminary test results, which have been performed with various gases (argon, helium and deuterium), indicate that implementation of the plasma window into a gas target system, for the production of intense mono-energetic fast neutron beams will be achievable.

  14. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  15. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    Science.gov (United States)

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  16. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    Science.gov (United States)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  17. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    Science.gov (United States)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  18. Momentum and Energy Dependent Resolution Function of the ARCS Neutron Chopper Spectrometer at High Momentum Transfer: Comparing Simulation and Experimen

    CERN Document Server

    Diallo, S O; Abernathy, D L; Azuah, R T

    2016-01-01

    Inelastic neutron scattering at high momentum transfers (i.e. $Q\\ge20$ {\\AA}) or DINS provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function $R_{i}({Q},E)$ at each $Q$ and energy transfer $E$, where the label $i$ indicates whether the resolution was experimentally observed $i={obs}$ or simulated $i=sim$. Here, we describe two independent methods for determining the total resolution function $R_{i}({Q},E)$ of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid $^4$He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield $R_{obs}({Q},E)$. The second approach uses accurate Monte Carlo simulations of the ARCS spec...

  19. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  20. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio

    Science.gov (United States)

    Tian, Zhengchao; Li, Zizhong; Liu, Gang; Li, Baoguo; Ren, Tusheng

    2016-09-01

    The cosmic-ray neutron sensor (CRNS), which estimates field scale soil water content, bridges the gap between point measurement and remote sensing. The accuracy of CRNS measurements, however, is affected by additional hydrogen pools (e.g., vegetation, snow, and rainfall interception). The objectives of this study are to: (i) evaluate the accuracy of CRNS estimates in a farmland system using depth and horizontal weighted point measurements, (ii) introduce a novel method for estimating the amounts of hydrogen from biomass and snow cover in CRNS data, and (iii) propose a simple approach for correcting the influences of aboveground hydrogen pool (expressed as aboveground water equivalent, AWE) on CRNS measurements. A field experiment was conducted in northeast China to compare soil water content results from CRNS to in-situ data with time domain reflectometry (TDR) and neutron probe (NP) in the 0-40 cm soil layers. The biomass water equivalent (BWE) and snow water equivalent (SWE) were observed to have separate linear relationships with the thermal/fast neutron ratio, and the dynamics of BWE and SWE were estimated correctly in the crop seasons and snow-covered seasons, respectively. A simple approach, which considered the AWE, AWE at calibration, and the effective measurement depth of CRNS, was introduced to correct the errors caused by BWE and SWE. After correction, the correlation coefficients between soil water contents determined by CRNS and TDR were 0.79 and 0.77 during the 2014 and 2015 crop seasons, respectively, and CRNS measurements had RMSEs of 0.028, 0.030, and 0.039 m3 m-3 in the 2014 and 2015 crop seasons and the snow-covered seasons, respectively. The experimental results also indicated that the accuracies of CRNS estimated BWE and SWE were affected by the distributions of aboveground hydrogen pools, which were related to the height of the CRNS device above ground surface.

  1. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    Science.gov (United States)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  2. Analysis of a measured neutron background below 6 MeV for fast-neutron imaging systems

    Science.gov (United States)

    Ide, K.; Becchetti, M. F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M. C.; Polack, J. K.; Lawrence, C. C.; Clarke, S. D.; Pozzi, S. A.

    2012-12-01

    Detailed and accurate information on the neutron background is relevant for many applications that involve radiation detection, both for non-coincidence and coincidence countings. In particular, for the purpose of developing advanced neutron-detection techniques for nuclear non-proliferation and nuclear safeguards, the energy-dependent, ground-level, neutron-background information is needed. There are only a few previous studies available about the neutron background below 10 MeV, which is a typical neutron energy range of interest for nuclear non-proliferation and nuclear-safeguards applications. Thus, there is a potential for further investigation in this energy range. In this paper, neutron-background measurement results using organic-liquid scintillation detectors are described and discussed, with a direct application in optimization simulations of a fast-neutron imager based on liquid scintillators. The measurement was performed in summer 2011 in Ann Arbor, Michigan, USA, and the measurement setup consisted of several EJ-309 liquid scintillators and a fast waveform digitizer. The average neutron flux below 6 MeV was measured to be approximately 4e-4 counts/cm2/s. In addition, the relationship between the neutron-background count rate and various environmental quantities, such as humidity, at Earth's ground level was investigated and the results did not reveal any straightforward dependences. The measured pulse height distribution (PHD) was unfolded to determine the energy spectrum of the background neutrons. The unfolded neutron-background spectrum was implemented to a previously-created MCNPX-PoliMi model of the neutron-scatter camera and simple-backprojection images of the background neutrons were acquired. Furthermore, a simulated PHD was obtained with the MCNPX-PoliMi code using the "Cosmic-Ray Shower Library" (CRY) source sub-routine which returns various types of radiation, including neutrons and photons at a surface, and accounts for solar cycle

  3. Spatial heterodyne spectrometer for FLEX

    Science.gov (United States)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  4. A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer

    Science.gov (United States)

    Good, Jacob T.; Holland, Daniel B.; Finneran, Ian A.; Carroll, P. Brandon; Kelley, Matthew J.; Blake, Geoffrey A.

    2015-10-01

    We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ˜80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub

  5. Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS)

    NARCIS (Netherlands)

    Holzinger, R.|info:eu-repo/dai/nl/337989338; Kasper-Giebl, A.; Staudinger, M.; Schauer, G.; Roeckmann, T.|info:eu-repo/dai/nl/304838233

    2010-01-01

    For the first time a high mass resolution thermal desorption proton transfer reaction mass spectrometer (hr-TD-PTR-MS) was deployed in the field to analyze the composition of the organic fraction of aerosols. We report on measurements from the remote Mt. Sonnblick observatory in the Austrian alps

  6. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    Science.gov (United States)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  7. The Employment of a 3HE-Based Fast Neutron Spectrometer to Augment the DREO (Defence Research Establishment Ottawa) Radiation Measurement System,

    Science.gov (United States)

    1985-10-01

    de contourner ces problies, le;1. CRDO 1 r~cenunent d~cid6 de muir son syst~me de spectroscopie neutronique d’une chambre d’lonlsatlon i 3He. Le pr...be considered, while the latter defines the active volumes in which these reactions may occur and in which the reaction products may propogate...8217L, .IL- OL a--! K7 %- V UNCLASSIFIED -4- " active volume" of the detector; any ionization track completely contained in this volume will result in the

  8. Fast neutron environments.

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  9. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  10. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  11. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  12. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    Science.gov (United States)

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  13. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    Science.gov (United States)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  14. The 4-Corners methane hotspot: Mapping CH4 plumes at 60km through 1m resolution using space- and airborne spectrometers

    Science.gov (United States)

    Frankenberg, C.; Thorpe, A. K.; Hook, S. J.; Green, R. O.; Thompson, D. R.; Kort, E. A.; Hulley, G. C.; Vance, N.; Bue, B. D.; Aubrey, A. D.

    2015-12-01

    The SCIAMACHY instrument onboard the European research satellite ENVISAT detected a large methane hotspot in the 4-Corners area, specifically in New Mexico and Colorado. Total methane emissions in this region were estimated to be on the order of 0.5Tg/yr, presumably related to coal-bed methane exploration. Here, we report on NASA efforts to augment the TOPDOWN campaign intended to enable regional methane source inversions and identify source types in this area. The Jet Propulsion Laboratory was funded to fly two airborne imaging spectrometers, viz. AVIRIS-NG and HyTES. In April 2015, we used both instruments to continuously map about 2000km2 in the 4-Corners area at 1-5m spatial resolution, with special focus on the most enhanced areas as observed from space. During our weeklong campaign, we detected more than 50 isolated and strongly enhanced methane plumes, ranging from coal mine venting shafts and gas processing facilities through individual well-pads, pipeline leaks and outcrop. Results could be immediately shared with ground-based teams and TOPDOWN aircraft so that ground-validation and identification was feasible for a number of sources. We will provide a general overview of the JPL-led mapping campaign efforts and show individual results, derive source strength estimates and discuss how the results fit in with space borne estimates.

  15. Absolute fission yields in the fast neutron induced fission of sup 2 sup 3 sup 3 U by track etch combined with gamma-ray spectrometry

    CERN Document Server

    Ramaswami, A; Kalsi, P C; Dange, S P

    2003-01-01

    The absolute fission yields of twenty seven fission products were determined in the fast neutron induced fission of sup 2 '3 sup 3 U, employing track etch in combination with gamma-ray spectrometry. The total number of fissions was measured by registering the fission tracks on a small strip of lexan, a solid state track detector. The fission products were analysed by gamma-ray spectrometry. The measured yield values were compared to the ENDF/B-VI compilation and show a good agreement. (author)

  16. Use of D-T-produced fast neutrons for in vivo body composition analysis: a reference method for nutritional assessment in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, J.J. [USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St., Boston, 02111-1524 MA (United States)

    2004-05-01

    Body composition has become the main outcome of many nutritional intervention studies including osteoporosis, malnutrition, obesity, AIDS, and aging. Traditional indirect body composition methods developed with healthy young adults do not apply to the elderly or diseased. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. Non-bone phosphorus for muscle is measured by the {sup 31}P(n,{alpha}){sup 28}Al reaction, and nitrogen for protein via the {sup 14}N(n,2n){sup 13}N fast neutron reaction. Inelastic neutron scattering is used to measure total body carbon and oxygen. Body fat is derived from carbon after correcting for contributions from protein, bone, and glycogen. Carbon-to-oxygen ratio (C/O) is used to measure the distribution of fat and lean tissue in the body and to monitor small changes of lean mass. A sealed, D-T neutron generator is used for the production of fast neutrons. Carbon and oxygen mass and their ratio are measured in vivo at a radiation exposure of less than 0.06 mSv. Gamma-ray spectra are collected using large BGO detectors and analyzed for the 4.43 MeV state of carbon and 6.13 MeV state of oxygen, simultaneously with the irradiation. P and N analysis by delayed fast neutron activation is performed by transferring the patient to a shielded room equipped with an array of NaI(Tl) detectors. A combination of measurements makes possible the assessment of the ''quality'' of fat-free mass. The neutron generator system is used to evaluate the efficacy of new treatments, to study mechanisms of lean tissue depletion with aging, and to investigate methods for preserving function and quality of life in the elderly. It is also used as a reference method for the validation of portable instruments of nutritional assessment. (orig.)

  17. Modeling the radiolysis of supercritical water by fast neutrons: density dependence of the yields of primary species at 400°c.

    Science.gov (United States)

    Butarbutar, Sofia Loren; Meesungnoen, Jintana; Guzonas, David A; Stuart, Craig R; Jay-Gerin, Jean-Paul

    2014-12-01

    A reliable understanding of radiolysis processes in supercritical water (SCW)-cooled reactors is crucial to developing chemistry control strategies that minimize the corrosion and degradation of materials. However, directly measuring the chemistry in reactor cores is difficult due to the extreme conditions of high temperature and pressure and mixed neutron and gamma-radiation fields, which are incompatible with normal chemical instrumentation. Thus, chemical models and computer simulations are an important route of investigation for predicting the detailed radiation chemistry of the coolant in a SCW reactor and the consequences for materials. Surprisingly, information on the fast neutron radiolysis of water at high temperatures is limited, and even more so for fast neutron irradiation of SCW. In this work, Monte Carlo simulations were used to predict the G values for the primary species e(-)aq, H(•), H2, (•)OH and H2O2 formed from the radiolysis of pure, deaerated SCW (H2O) by 2 MeV monoenergetic neutrons at 400°C as a function of water density in the range of ∼0.15-0.6 g/cm(3). The 2 MeV neutron was taken as representative of a fast neutron flux in a reactor. For light water, the moderation of these neutrons after knock-on collisions with water molecules generated mostly recoil protons of 1.264, 0.465, 0.171 and 0.063 MeV. Neglecting oxygen ion recoils and assuming that the most significant contribution to the radiolysis came from these first four recoil protons, the fast neutron yields were estimated as the sum of the G values for these protons after appropriate weightings were applied according to their energy. Calculated yields were compared with available experimental data and with data obtained for low-LET radiation. Most interestingly, the reaction of H(•) atoms with water was found to play a critical role in the formation yields of H2 and (•)OH at 400°C. Recent work has underscored the potential importance of this reaction above 200°C, but its

  18. Fast-Neutron Tomography using a Mobile Neutron Generator for Assessment of Steam-Water Distributions in Two-Phase Flows

    OpenAIRE

    Andersson, Peter

    2014-01-01

    This thesis describes the measurement technique of fast-neutron tomography for assessing spatial distributions of steam and water in two-phase flows. This so-called void distribution is of importance both for safe operation and for efficient use of the fuel in light water reactors, which compose the majority of the world’s commercial nuclear reactors. The technique is aimed for usage at thermal-hydraulic test loops, where heated two-phase flows are being investigated under reactor-relevant co...

  19. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  20. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  1. Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change

    Directory of Open Access Journals (Sweden)

    F. Hase

    2012-03-01

    Full Text Available We propose an improved monitoring scheme for the instrumental line shape (ILS of high-resolution, ground-based FTIR (Fourier Transform InfraRed spectrometers used for chemical monitoring of the atmosphere by the Network for Detection of Atmospheric Composition Change (NDACC. Good ILS knowledge is required for the analysis of the recorded mid-infrared spectra. The new method applies a sequence of measurements using different gas cells instead of a single calibration cell. Three cells are used: cell C1 is a refillable cell offering 200 mm path length and equipped with a pressure gauge (filled with 100 Pa N2O, cells C2 and C3 are sealed cells offering 75 mm path length. C2 is filled with 5 Pa of pure N2O. Cell C3 is filled with 16 Pa N2O in 200 hPa technical air, so provides pressure-broadened N2O lines. We demonstrate that an ILS retrieval using C1 improves significantly the sensitivity of the ILS retrieval over the current calibration cells used in the network, because this cell provides narrow fully saturated N2O lines. The N2O columns derived from C2 and C3 allow the performance of a highly valuable closure experiment: adopting the ILS retrieved from C1, the N2O columns of C2 and C3 are derived. Because N2O is an inert gas, both columns should be constant on long timescales. Apparent changes in the columns would immediately attract attention and indicate either inconsistent ILS results or instrumental problems of other origin. Two different cells are applied for the closure experiment, because the NDACC spectrometers observe both stratospheric and tropospheric gases: C2 mimics signatures of stratospheric gases, whereas C3 mimics signatures of tropospheric gases.

  2. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-11-01

    Full Text Available The Pearl River Delta (PRD region in South China is one of the most economically developed regions in China, but it is also noted for its severe air pollution due to industrial/metropolitan emissions. In order to continuously improve the understanding and quantification of air pollution in this region, an intensive campaign was executed in PRD during October–November 2008. Here, we report and analyze Aerodyne High-Resolution Aerosol Mass Spectrometer measurements at Kaiping, a rural site downwind of the highly-polluted central PRD area, to characterize the general features of submicron particulate pollution in the regional air. The mean measured PM1 mass concentration was 33.1 ± 18.1 μg m−3 during the campaign and composed of organic matter (33.8%, sulfate (33.7%, ammonium (14.0%, nitrate (10.7%, black carbon (6.7%, and chloride (1.1%, which is characterized by high fractions of inorganic ions due to huge emissions of SO2 and NOx in PRD. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at ~450 nm in vacuum aerodynamic diameter. Calculations based on high-resolution organic mass spectra indicate that C, H, O, and N on average contributed 56.6, 7.0, 35.1, and 1.3% to the total organic mass, respectively, corresponding to an organic matter mass to organic carbon mass ratio (OM/OC of 1.77 ± 0.08. Based on the high-resolution organic mass spectral dataset observed, Positive Matrix Factorization (PMF analysis differentiated the organic aerosol into three components, i.e., biomass burning (BBOA and two oxygenated (LV-OOA and SV-OOA organic aerosols, which on average accounted for 24.5, 39.6 and 35.8% of the total organic mass, respectively. The BBOA showed strong features of biomass burning emissions and has been mainly attributed to field rice straw burning after harvest. The LV-OOA and SV-OOA were found to correspond to more aged (and thus

  3. Fast neutron spectrum unfolding of a TRIGA Mark II reactor and measurement of spectrum-averaged cross sections. Integral tests of differential cross sections of neutron threshold reactions

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.S.; Hossain, S.M.; Khan, R. [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology (INST); Sudar, S. [Debrecen Univ. (Hungary). Inst. of Experimental Physics; Zulquarnain, M.A. [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Qaim, S.M. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin (INM-5)

    2013-07-01

    The spectrum of fast neutrons having energies from 0.5 to 20 MeV in the core of the 3MW TRIGA Mark II reactor at Savar, Dhaka, Bangladesh, was unfolded by activating several metal foils to induce threshold nuclear reactions covering the whole spectrum, and then doing necessary iterative calculations utilizing the activation results and the code SULSA. The analysed shape of the spectrum in the TRIGA core was found to be similar to that of the pure {sup 235}U-fission spectrum, except for the energies between 0.5 and 1.5 MeV, where it was slightly higher than the fission spectrum. Spectrum-averaged cross sections were determined by integral measurements. The integral values measured in this work were compared with the recommended values for a pure fission spectrum as well as with the integrated data deduced from measured and evaluated excitation functions of a few reactions given in some data files. The good agreement between integral measurements and integrated data in case of well-investigated reactions shows that the fast neutron field at the TRIGA Mark II reactor can be used for validation of evaluated data of neutron threshold reactions. (orig.)

  4. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    CERN Document Server

    Zboray, Robert; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-01-01

    In a previous work we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been e...

  5. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

    Science.gov (United States)

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams.

  6. A facility for fast-neutron irradiations at Jyväskylä and its use for nuclide cross-section measurements in fission

    Science.gov (United States)

    Lhersonneau, G.; Malkiewicz, T.; Jones, P.; Karvonen, P.; Ketelhut, S.; Bajeat, O.; Fadil, M.; Gaudu, S.; Saint-Laurent, M. G.; Trzaska, W. H.

    2013-01-01

    An efficient and reliable transport system for fast-neutron irradiations has been built at the Physics Department, Jyväskylä, Finland. It is constructed from commercial bicycle components and is driven by a computer-controlled stepping motor. It can be operated in single or cyclic mode. The neutron irradiated targets are moved within 1.2 s (full stop to full stop) to a well-shielded position 3 m away where they can be removed or directly investigated by γ spectroscopy. The system has been built with the aim to experimentally verify the calculated production rates of neutron-rich nuclei in the SPIRAL2 uranium target. However, the facility can be used for various kinds of fast-neutron irradiations, with a neutron spectrum up to 60 MeV produced by stopping a deuteron beam of several μA in a thick target. Examples of applications are activation and integral cross-section measurements, evaluation of damages in materials and biological cells.

  7. Enhancement of critical current density in fast neutron irradiated melt-textured YBa[sub 2]Cu[sub 3]O[sub 7-x

    Energy Technology Data Exchange (ETDEWEB)

    Puzniak, R.; Wisniewski, A.; Baran, M.; Szymczak, H. (Polska Akademia Nauk, Warsaw (Poland). Inst. Fizyki); Zhang Pingxiang; Wang Jingrong; Zhou Lian (Northwest Inst. for Nonferrous Metal Research, Baoji, SN (China)); Pytel, K.; Pytel, B. (Institute of Atomic Energy, Otwock-Swierk (Poland))

    1993-01-01

    The critical current density in melt-textured samples of YBa[sub 2]Cu[sub 3]O[sub 7]-x obtained by the powder melting process was determined from magnetization measurements. A linear dependence between the width of the hysteresis loop and sample size was observed for both unirradiated and irradiated samples. This indicates that the critical current is circulating through the whole sample and is not disconnected by weak links, even when a magnetic field is applied in the irradiated sample. After fast neutron irradiation with fluences form 5 x 10[sup 16] to 6 x 10[sup 17] n cm[sup -2] (E > 0.5 MeV), significant enhancement of the critical current density, j[sub c], was observed. Critical current density, determined from magnetization measurements, for magnetic field perpendicular to the a-b plane j[sub c][sup ab], reaches [approx] 10[sup 5] A cm[sup -2] at 77 K in 1 T. For H parallel to the a-b plane, j[sub c][sup c] along the c-axis reaches 5 x 10[sup 3] A cm[sup -2]. An increase in the anisotropy of the critical current was observed after fast neutron irradiation in the temperature range 60-80 K. (Author).

  8. Fast neutron tolerance of the perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with junction diameters between 46 and 64 nm

    Science.gov (United States)

    Narita, Yuzuru; Takahashi, Yutaka; Harada, Masahide; Oikawa, Kenichi; Kobayashi, Daisuke; Hirose, Kazuyuki; Sato, Hideo; Ikeda, Shoji; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    This work represents the first-ever investigation of the effects of fast neutron exposure on the perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions (p-MTJs) with practical junction diameters (D) between 46 and 64 nm. In this study, 461 p-MTJs, each with a tunnel magnetoresistance (TMR) ratio above 90%, were irradiated with fast neutrons at a total 1 MeV equivalent fluence of 3.79 × 1012 cm-2, corresponding to 1.90 × 1011 h irradiation with fast atmospheric neutrons (20 cm-2 h-1), without applying a bias voltage. Following irradiation, there were no changes in the properties of these devices, such as their resistance versus magnetic field curves, resistance values in the parallel and anti-parallel states, or TMR ratios, regardless of the neutron fluence. On the basis of these data, the nuclear reactions that occur under the specific experimental neutron irradiation conditions employed in this work are discussed.

  9. Effect of pre-exposure to beta rays of tritium on some biochemical parameters measured in organs of rats subsequently irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Petcu, I.; Moisoi, N.; Savu, D.; Constantinescu, B. [Dept. of Health and Environmental Physics, Horia Hulubei Inst. of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2002-07-01

    The experiment examined biological responses produced by combined sequential exposure to low-level tritium contamination, followed by challenging irradiation with fast neutrons. Modifications of endogenous antioxidant potential of different organs in rats were discussed in relation to tissue radiosensitivity. Rats pre-contaminated to 7 cGy and 35 cGy have been additionally irradiated to 1 Gy with fast neutrons. Lipid peroxide level was determined in liver, kidney, small intestine, spleen, bone marrow, and plasma. Reduced glutathione (GSH) level and glucose-6-phosphate dehydrogenase (G6PDH) activity were determined in erythrocytes. An in vitro thymidine uptake assay was performed in isolated bone marrow cells. The lipid peroxide level decreased significantly only in liver and kidney from rats pre-exposed to 35 cGy. For small intestine and spleen, tissues of comparatively higher radiosensitivity, no induced radioprotection was observed, as reflected in the homeostasis of the lipid peroxides. The same behavior was observed in bone marrow, the most radiosensitive tissue studied. However, the bone marrow thymidine-incorporation assay revealed a possible adaptive-type reaction in rats pre-exposed to 35 cGy. We conclude that for radiosensitive tissues pre-exposure to chronic low doses of low linear energy transfer (LET) irradiation has no protective effect on their antioxidant status, whereas a protective effect is observed in radioresistent tissues. (author)

  10. Determination of the fast neutrons spectra by the Elastic scattering method (n, p); Determinacion del espectro de neutrones rapidos por el metodo de la dispersion elastica (n, p)

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde D, J

    1973-07-01

    This work consists in determining the fast neutron spectra emitted by a Pu-Be isotopic source. The implemented technique is based in the spectrometry (n, p). This consists in making to fall on a fast neutrons beams (polyenergetic) over a thin film of hydrogenated material, detecting the spectra of emitted protons at a fix angle. The polyethylene film and the used solid state detector are inside of a vacuum chamber. The detector is placed at 30 degree with respect to direction of the incident neutrons beam. The protons spectra is stored in a multichannel. the energy is obtained with the prior calibration of the system. The data processing involves the transformation of the protons spectra observed at the falling on neutrons spectra over the film. The energy of the neutrons is related with that of the protons, according to the collision kinematical equations. The cross section of elastic collision of the neutrons with the hydrogen atoms is obtained from literature. Applying these relations to the observed spectra it is obtained the falling on neutron spectra over the film. (Author)

  11. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  12. Paving the Road for Modern Particle Therapy – What can we Learn from the experience gained with Fast Neutron Therapy in Munich?

    Directory of Open Access Journals (Sweden)

    Hanno Martin Specht

    2015-11-01

    Full Text Available While neutron therapy was a highly topical subject in the 70’s and 80’s, today there are only a few remaining facilities offering fast neutron therapy. Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma there is clinical evidence that the addition of Fast Neutron Therapy (FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the RENT facility (Reactor Neutron Therapy. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies.

  13. Neutron guide shielding for the BIFROST spectrometer at ESS

    Science.gov (United States)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C. P.; Lefmann, K.; Klinkby, E. B.

    2016-09-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves that it is sufficient to bring the background level below the cosmic neutron rate, which defines an order of magnitude of the lowest obtainable background in the instruments.

  14. Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Gleisner, Heike, E-mail: H.Gleisner@analytik-jena.d [Analytik Jena AG, Konrad-Zuse-Str. 1, 07745 Jena (Germany); Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170 Salvador, BA (Brazil); Einax, Juergen W. [Department of Environmental Analysis, Institute of Inorganic und Analytical Chemistry, Friedrich Schiller University of Jena, Lessingstr. 8, 07743 Jena (Germany)

    2010-09-15

    The determination of fluorine using the molecular absorption of gallium mono-fluoride (GaF) at the 211.248 nm rotational line has been optimized using a commercially available high-resolution continuum source atomic absorption spectrometer with a transversely heated graphite tube furnace. The electron excitation spectrum of GaF was generated by adding 500 {mu}g Ga per injection into the graphite tube as molecule forming reagent. Best results were obtained by applying Zr as a permanent modifier and a mixed Pd/Zr modifier, thermally pretreated before each sample injection together with the Ga reagent at 1100 {sup o}C. The use of sodium acetate and Ru(III) nitrosyl nitrate as additional modifiers injected together with the sample further improved the performance. This way a maximum pyrolysis temperature of 550 {sup o}C could be used, and the optimum molecule forming temperature was 1550 {sup o}C. Several drinking water samples, a mineral water sample, and two certified reference materials were analyzed using the standard calibration technique; the absence of potential matrix effects was verified by measuring different dilutions and spiking with known fluorine mass. The results were in good agreement with the certified values and those measured by ion selective electrode; the recovery rate for the spiking experiments was between 97% and 106%. The results show that there was no matrix influence for that kind of samples containing relatively high concentrations of Ca, Mg and chloride, which are known to cause interference in GaF molecule absorption. The limit of detection and the characteristic mass of the method were 5.2 and 7.4 pg F, respectively, and were both about a factor of two better than recently published values.

  15. Fast neutron spectrum in the reflector of swimming pool reactor behind metallics slabs; Spectre des neutrons rapides dans le reflecteur d'une pile a eau legere derriere des ecrans metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Brousse, J.C. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The large perturbations of fast neutron spectrum were measured behind lead, aluminium and iron slabs in the Siloette reflector at the CENG. The neutron slowing down is chiefly depending of the inelastic reaction. The reaction cross section increases with energy; a spectrum softening is deduced. This is verified. We tried to determine the spectrum shape by calculation to fit the measurements. Calculations were firstly made in unidimensional geometry by the NIOBE transport equation resolution code and by the SANE Monte-Carlo code. The results does not agree with the experimental determined values. Finally a semi-empirical method for studying a tridimensional geometry was chosen. We have obtained calculation results in a perfect agreement with measurements. The method is described. (author) [French] Les experiences realisees dans le reflecteur de la pile a eau legere SILOETTE du CENG avec des ecrans de plomb, d'aluminium et de fer, nous ont permis de caracteriser les deformations importantes du spectre des neutrons rapides par ces materiaux. Nous avons verifie que la loi de ralentissement preponderante est la reaction de diffusion inelastique dont la section efficace croit avec l'energie, ce qui entraine un amollissement du spectre. Nous avons cherche a determiner par le calcul la trace des spectres de neutrons rapides correspondant aux points de mesure. Les premiers calculs effectues en geometrie unidimensionnelle a l'aide d'un code de resolution de l'equation du transport (NIOBE) et d'un code de Monte-Carlo (SANE) nous ont donne des resultats imparfaits. On a alors choisi une methode de calcul approche capable d'etudier une geometrie tridimensionnelle. Cette methode nous a donne des resultats de calcul qui s'approchaient a quelques pour cent des resultats experimentaux. La methode est decrite. (auteur)

  16. Miniaturised TOF mass spectrometer

    Science.gov (United States)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  17. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-09-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses

  18. Characterization of submicron aerosols during a serious pollution month in Beijing (2013 using an aerodyne high-resolution aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Zhang

    2013-07-01

    Full Text Available In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1. During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%, sulfate (21.4%, nitrate (14.6%, ammonium (10.4%, and chloride (3.8%. Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm. Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon of 1.60. Positive matrix factorization (PMF analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA, cooking-related (COA, nitrogen-containing (NOA and hydrocarbon-like (HOA, which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  19. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-05-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region–2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralytic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1±39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum showed high similarity to that measured from cooking aerosol emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. This result is similar to observations made in the summer of 2006, although the average PM1 concentration level for the southerly air flows is 31% lower than

  20. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions

    Science.gov (United States)

    Yao, Lei; Wang, Ming-Yi; Wang, Xin-Ke; Liu, Yi-Jun; Chen, Hang-Fei; Zheng, Jun; Nie, Wei; Ding, Ai-Jun; Geng, Fu-Hai; Wang, Dong-Fang; Chen, Jian-Min; Worsnop, Douglas R.; Wang, Lin

    2016-11-01

    Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). This method possesses sensitivities of 5.6-19.4 Hz pptv-1 for amines and 3.8-38.0 Hz pptv-1 for amides under total reagent ion signals of ˜ 0.32 MHz. Meanwhile, the detection limits were 0.10-0.50 pptv for amines and 0.29-1.95 pptv for amides at 3σ of the background signal for a 1 min integration time. Controlled characterization in the laboratory indicates that relative humidity has significant influences on the detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few parts per trillion by volume to hundreds of parts per trillion by volume, concentrations of amides varied from tens of parts per trillion by volume to a few parts per billion by volume. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb) were the most abundant species. The diurnal and backward trajectory analysis profiles of amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in daytime, and wet deposition was also an important sink.