WorldWideScience

Sample records for resistant starch rs

  1. Effects of Sorghum [Sorghum bicolor (L. Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS Contents of Porridges

    Directory of Open Access Journals (Sweden)

    Dilek Lemlioglu-Austin

    2012-09-01

    Full Text Available Bran extracts (70% aqueous acetone of specialty sorghum varieties (tannin, black, and black with tannin were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA. The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  2. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  3. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ruifang Yang

    Full Text Available Foods high in resistant starch (RS are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67% was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%. The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36 using 178 F(2 plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4 families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2 plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs.

  4. Survival of resistant starch during the processing of atmospheric and vacuum fried instant noodles

    Directory of Open Access Journals (Sweden)

    Maria Gabriela VERNAZA

    Full Text Available Abstract The objective was to develop instant noodles (IN made by atmospheric and vacuum frying processes, with addition of 10% of three different sources of resistant starch: resistant starch type 2 (RS2, resistant starch type 3 (RS3 and green banana flour (GBF aiming the increasing of the fibre content. The IN obtained by atmospheric frying lost water faster and absorbed more fat. However, for both frying treatments, the RS3 noodles absorbed the least amount of oil. The greatest loss of RS occurred during the cooking stage. RS2 and GBF noodles presented a loss of RS of around 30% during steam cooking, while the RS3 approximately 18%. The frying process decreased RS content of noodles, however, during both frying process, the samples with the highest RS content at all frying times were noodles containing RS3. When comparing products obtained after 90 and 120 s of atmospheric and vacuum frying, respectively, it was observed that, although the frying time in vacuum process was longer, higher RS values were obtained for the three different formulations. The vacuum frying process has advantages due to the lower fat absorption (3% less, lighter colour and a reduced conversion of RS to digestible starch, compared to atmospheric frying.

  5. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    Science.gov (United States)

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (Pcake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  6. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    Science.gov (United States)

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

    DEFF Research Database (Denmark)

    Gentile, Christopher L; Ward, Emery; Holst, Jens Juul

    2015-01-01

    and overweight/obese women. METHODS: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS...

  8. In vitro fermentability of differently digested resistant starch preparations

    NARCIS (Netherlands)

    Fässler, C.; Arrigoni, E.; Venema, K.; Brouns, F.; Amadò, R.

    2006-01-01

    The in vitro fermentability of two resistant starch preparations type 2 (RS2) and type 3 (RS3) was investigated using human colonic microbiota. Prior to the fermentation experiments, samples were digested using two in vitro models, a batch (ba) and a dynamic (dy), as well as an in vivo method (il)

  9. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  10. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Science.gov (United States)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  11. Intestinal transport and fermentation of resistant starch evaluated by the hydrogen breath test

    DEFF Research Database (Denmark)

    Olesen, M; Rumessen, J J; Gudmand-Høyer, E

    1994-01-01

    To study fermentability of different samples of resistant starch (RS), compared to one another and to lactulose, and to study the effect on gastric emptying of addition of RS to test meal. Finally to study if adaptation to RS results in a measurable change in fermentation pattern, (H2/CH4...

  12. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rheological, physical, and sensory attributes of gluten-free rice cakes containing resistant starch.

    Science.gov (United States)

    Tsatsaragkou, Kleopatra; Papantoniou, Maria; Mandala, Ioanna

    2015-02-01

    In this study the effect of resistant starch (RS) addition on gluten-free cakes from rice flour and tapioca starch physical and sensorial properties was investigated. Increase in RS concentration made cake batters less elastic (drop of G'(ω), G''(ω) values) and thinner (viscosity decreased). Cakes specific volume increased with an increase in RS level and was maximized for 15 g/100 g RS, although porosity values were significantly unaffected by RS content. Crumb grain analysis exhibited a decrease in surface porosity, number of pores and an increase in average pore diameter as RS concentration increased. During storage, cake crumb remained softer in formulations with increasing amounts of RS. Sensory evaluation of cakes demonstrated the acceptance of all formulations, with cake containing 20 g/100 g RS mostly preferred. Gluten-free cakes with improved quality characteristics and high nutritional value can be manufactured by the incorporation of RS. © 2015 Institute of Food Technologists®

  14. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  15. Sensory characteristics of high-amylose maize-resistant starch in three food products

    OpenAIRE

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2012-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g...

  16. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  17. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  18. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Science.gov (United States)

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  19. Simultaneous delivery of antibiotics neomycin and ampicillin in drinking water inhibits fermentation of resistant starch in rats.

    Science.gov (United States)

    Carvajal-Aldaz, Diana G; Guice, Justin L; Page, Ryan C; Raggio, Anne M; Martin, Roy J; Husseneder, Claudia; Durham, Holiday A; Geaghan, James; Janes, Marlene; Gauthier, Ted; Coulon, Diana; Keenan, Michael J

    2017-03-01

    Antibiotics ampicillin 1 g/L and neomycin 0.5 g/L were added to drinking water before or during feeding of resistant starch (RS) to rats to inhibit fermentation. In a preliminary study, antibiotics and no RS were given prior to rats receiving a transplant of cecal contents via gavage from donor rats fed RS (without antibiotics) or a water gavage before feeding resistant starch to both groups. Antibiotics given prior to feeding RS did not prevent later fermentation of RS regardless of either type of gavage. In the second study, antibiotics were given simultaneously with feeding of RS. This resulted in inhibition of fermentation of RS with cecal contents pH >8 and low amounts of acetate and butyrate. Rats treated with antibiotics had reduced Bifidobacteria spp., but similar Bacteroides spp. to control groups to reduce acetate and butyrate and preserve the production of propionate. Despite reduced fermentation, rats given antibiotics had increased glucagon-like peptide 1 (GLP-1) and cecum size, measures that are usually associated with fermentation. A simultaneous delivery of antibiotics inhibited fermentation of RS. However, increased GLP-1 and cecum size would be confounding effects in assessing the mechanism for beneficial effects of dietary RS by knocking out fermentation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effects of temperature on the crystalline properties and resistant starch during storage of white bread.

    Science.gov (United States)

    Sullivan, William R; Hughes, Jeff G; Cockman, Russell W; Small, Darryl M

    2017-08-01

    Resistant starch (RS) can form during storage of foods, thereby bestowing a variety of potential health benefits. The purpose of the current study has been to determine the influence of storage temperature and time on the crystallinity and RS content of bread. Loaves of white bread were baked and stored at refrigeration, frozen and room temperatures with analysis over a period of zero to seven days. RS determination and X-ray diffraction (XRD) were used to evaluate the influence of storage temperature and time on total crystallinity and RS content. The rate of starch recrystallisation was affected by storage temperature and time, where refrigeration temperatures accelerated RS formation and total crystallinity more than storage time at both frozen and room temperature. A strong statistical model has been established between RS formation in bread and XRD patterns, having a 96.7% fit indicating the potential of XRD to measure RS concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of potato (Solanum tuberosum addition on dough properties, sensory qualities and resistant starch content of bread

    Directory of Open Access Journals (Sweden)

    Maria Lidia IANCU

    2015-08-01

    Full Text Available The aim of this study is to assess the effects of adding different varieties of boiled potatoes-pasta (PP, Impala (I and Orchestra (O, to wheat flour in bread making. These potato varieties were used to replace wholemeal 1250 type flour (F1 and hard wheat semolina flour (F2 in different concentrations: 5%, 10%, 20%, 30%. The rheological properties of dough with added potato were assessed by means of the flour-graphic technique. The study also determined the amount of resistant starch (RS, non-resistant starch (n-RS, total starch (TS and moisture content of the potato bread. The results showed that the water absorption (WA in the potato dough containing salt and yeast decreased by 28.8% (F2-I-PP, and by 41.2% (F1-I-PP respectively. The same happened with the dough development time, dough stability and quality number. We found out that the degree of dough softening was increased, as was the moisture content of the bread, which went from 47.7% (O-PP-F2 to 50.3% (I-PP-F1. The level of the ten analyzed sensory properties led to the conclusion that, by adding up to 20% PP, we enhance the bread quality. The RS content increased by 5.1 g/100 g d.m. for F1 bread for the 30% (O-PP-F2 potato content batch. In F2 bread, the RS content increased by up to 5.11g/100 g d.m. for the 30% (O-PP-F2 potato content batch. Given the method of analysis, RS may be a mixture of RS2 (natural granule starch and RS3 (retrograde or non crystalline retrograde. Therefore, potato bread is very healthy and recommended for its nutritional benefits.

  2. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures

    Directory of Open Access Journals (Sweden)

    David Neder-Suárez

    2016-08-01

    Full Text Available Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS content in cornstarch were evaluated. The cornstarch was conditioned at 20%–40% moisture contents and extruded in the range 90–130 °C and at screw speeds in the range 200–360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  3. Comparative study on resistant starch, amilose content and glycaemic index after precooked process in white rice

    Science.gov (United States)

    Pratiwi, V. N.

    2018-03-01

    Rice is a staple food and regarded as a useful carbohydrate source. In general rice is high in glycaemic index (GI) and low colonic fermentation. People are aware of the alterations in blood glucose levels or glycaemic index after consuming rice. Resistant starch (RS) and amylose content play an important role in controlling GI. GI and RS content have been established as important indicators of starch digestibility. The aim of this study was to determine the precooked process with hydrothermal (boiling at 80°C, 10 minutes) and cooling process with low temperature (4°C, 1 h) to increase potential content of RS and decrease of glycaemic index of white rice. There were two stages of this research, 1) preparation of white rice with precooked process; 2) analysis of precooked white rice characteristics (resistant starch, amylose content, and estimated glycaemic index). The result of analysis on precooked white rice showed an increased RS content (1.11%) and white rice (0.99%), but the difference was not statistically significant. The amylose content increased significantly after precooked process in white rice (24.70%) compared with white rice (20.89%). Estimated glycaemic index (EGI) decreased after precooked proses (65.63%) but not significant as compared to white rice (66.47%). From the present study it was concluded that precooked process had no significant impact on increasing RS and decreasing EGI of white rice. This may be due to the relatively short cooling time (1hour) in 4°C.

  4. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  5. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  6. Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics.

    Science.gov (United States)

    Aravind, Nisha; Sissons, Mike; Fellows, Christopher M; Blazek, Jaroslav; Gilbert, Elliot P

    2013-01-15

    Foods with elevated levels of resistant starch (RS) may have beneficial effects on human health. Pasta was enriched with commercial resistant starches (RSII, Hi Maize™ 1043; RSIII, Novelose 330™) at 10%, 20% and 50% substitution of semolina for RSII and 10% and 20% for RSIII and compared with pasta made from 100% durum wheat semolina to investigate technological, sensory, in vitro starch digestibility and structural properties. The resultant RS content of pasta increased from 1.9% to ∼21% and was not reduced on cooking. Significantly, the results indicate that 10% and 20% RSII and RSIII substitution of semolina had no significant effects on pasta cooking loss, texture and sensory properties, with only a minimal reduction in pasta yellowness. Both RS types lowered the extent of in vitro starch hydrolysis compared to that of control pasta. X-ray diffraction and small-angle scattering verified the incorporation of RS and, compared to the control sample, identified enhanced crystallinity and a changed molecular arrangement following digestion. These results can be contrasted with the negative impact on pasta resulting from substitution with equivalent amounts of more traditional dietary fibre such as bran. The study suggests that these RS-containing formulations may be ideal sources for the preparation of pasta with reduced starch digestibility. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  8. Production of resistant starch by enzymatic debranching in legume flours.

    Science.gov (United States)

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods

    Science.gov (United States)

    Resistant starch (RS), which is not hydrolyzed in the small intestines, has proposed health benefits. We evaluated a set of 40 high amylose rice varieties for RS levels in cooked rice and approximately a 1.9-fold difference was found. The highest ones had more than two-fold greater RS concentration ...

  10. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  11. Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial.

    Science.gov (United States)

    Marlatt, Kara L; White, Ursula A; Beyl, Robbie A; Peterson, Courtney M; Martin, Corby K; Marco, Maria L; Keenan, Michael J; Martin, Roy J; Aryana, Kayanush J; Ravussin, Eric

    2018-02-01

    Dietary resistant starch (RS) might alter gastrointestinal tract function in a manner that improves human health, particularly among adults at risk for diabetes. Here, we report the design and baseline results (with emphasis on race differences) from the STARCH trial, the first comprehensive metabolic phenotyping of people with prediabetes enrolled in a randomized clinical trial testing the effect of RS on risk factors for diabetes. Overweight/obese participants (BMI≥27kg/m 2 and weight≤143kg), age 35-75y, with confirmed prediabetes were eligible. Participants were randomized to consume 45g/day of RS (RS=amylose) or amylopectin (Control) for 12weeks. The study was designed to evaluate the effect of RS on insulin sensitivity and secretion, ectopic fat, and inflammatory markers. Secondary outcomes included energy expenditure, substrate oxidation, appetite, food intake, colonic microbial composition, fecal and plasma levels of short-chain fatty acids, fecal RS excretion, and gut permeability. Out of 280 individuals screened, 68 were randomized, 65 started the intervention, and 63 were analyzed at baseline (mean age 55y, BMI 35.6kg/m 2 ); 2 were excluded from baseline analyses due to abnormal insulin and diabetes. Sex and race comparisons at baseline were reported. African-Americans had higher baseline acute insulin response to glucose (AIRg measured by frequently sampled intravenous glucose tolerance test) compared to Caucasians, despite having less visceral adipose tissue mass and intrahepatic lipid; all other glycemic variables were similar between races. Sleep energy expenditure was ~90-100kcal/day lower in African-Americans after adjusting for insulin sensitivity and secretion. This manuscript provides an overview of the strategy used to enroll people with prediabetes into the STARCH trial and describes methodologies used in the assessment of risk factors for diabetes. Clinicaltrials.gov identifier: STARCH (NCT01708694). The present study reference can be

  12. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation

    DEFF Research Database (Denmark)

    Plongbunjong, Vijitra; Graidist, Potchanapond; Knudsen, Knud Erik Bach

    2017-01-01

    Starch-based carbohydrates, native rice starch (NRS), isomaltooligosaccharide produced from native rice starch (rIMO), commercial isomaltooligosaccharide (cIMO), resistant starch type 2 (RS2) and type 3 (RS3) were investigated the bifidogenic and butyrogenic properties. The result confirmed...

  13. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa.

    Science.gov (United States)

    Peixoto, M C; Ribeiro, É M; Maria, A P J; Loureiro, B A; di Santo, L G; Putarov, T C; Yoshitoshi, F N; Pereira, G T; Sá, L R M; Carciofi, A C

    2018-02-01

    The effects of resistant starch (RS) intake on nutrient digestibility, microbial fermentation products, faecal IgA, faecal pH, and histological features of the intestinal mucosa of old dogs were evaluated. The same formulation was extruded in two different conditions: one to obtain elevated starch cooking degree with low RS content (0.21%) and the other lower starch cooking with high RS content (1.46%). Eight geriatric Beagles (11.5 ± 0.38 years old) were fed each diet for 61 days in a crossover design. Food intake, nutrient digestibility, fermentation products, faecal pH, and faecal IgA were examined via variance analysis. Histological results of intestinal biopsies were assessed via Wilcoxon test for paired data. The morphometric characteristics of large intestine crypts were evaluated via paired t tests (p Dogs receiving the high-RS diet had lower faecal pH and higher values for propionate, butyrate, total volatile fatty acids, and lactate (p dogs fed the high-RS diet (p = .083). The intake of a corn-based kibble diet manufactured with coarse ground raw material and low starch gelatinization to obtain 1.4% of RS affected microbial fermentation products and faecal pH and tended to increase crypt depth in the descending colon of old dogs. © 2017 Blackwell Verlag GmbH.

  14. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.

    Science.gov (United States)

    Maier, Tanja V; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C; Brislawn, Colin J; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E; Bergeron, Nathalie; Heinzmann, Silke S; Morton, James T; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M; Schmitt-Kopplin, Philippe; Jansson, Janet K

    2017-10-17

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes , including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of

  15. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  16. Resistant Starch Induces Catabolic but Suppresses Immune and Cell Division Pathways and Changes the Microbiome in Proximal Colon of Male Pigs

    NARCIS (Netherlands)

    Haenen, D.; Souza Da Silva, C.; Zhang, J.; Koopmans, S.J.; Bosch, G.; Vervoort, J.J.M.; Gerrits, W.J.J.; Kemp, B.; Smidt, H.; Müller, M.R.; Hooiveld, G.J.E.J.

    2013-01-01

    Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge on its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic

  17. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in proximal colon of male pigs

    NARCIS (Netherlands)

    Haenen, Danielle; Muller, Michael; Hooiveld, Guido

    2013-01-01

    Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge on its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic

  18. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat

    Directory of Open Access Journals (Sweden)

    Brown Marc A

    2006-09-01

    Full Text Available Abstract Chronic consumption of diets high in resistant starch (RS leads to reduced fat cell size compared to diets high in digestible starch (DS in rats and increases total and meal fat oxidation in humans. The aim of the present study was to examine the rate of lipogenesis in key lipogenic organs following a high RS or DS meal. Following an overnight fast, male Wistar rats ingested a meal with an RS content of 2% or 30% of total carbohydrate and were then administered an i.p bolus of 50 μCi 3H2O either immediately or 1 hour post-meal. One hour following tracer administration, rats were sacrificed, a blood sample collected, and the liver, white adipose tissue (WAT, and gastrocnemius muscle excised and frozen until assayed for total 3H-lipid and 3H-glycogen content. Plasma triglyceride and NEFA concentrations and 3H-glycogen content did not differ between groups. In all tissues, except the liver, there was a trend for the rate of lipogenesis to be higher in the DS group than the RS group which reached significance only in WAT at 1 h (p

  19. Type-4 Resistant Starch in Substitution for Available Carbohydrate Reduces Postprandial Glycemic Response and Hunger in Acute, Randomized, Double-Blind, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maria L. Stewart

    2018-01-01

    Full Text Available Resistant starch (RS is a type of dietary fiber that has been acknowledged for multiple physiological benefits. Resistant starch type 4 (RS4 is a subcategory of RS that has been more intensively studied as new types of RS4 emerge in the food supply. The primary aim of this randomized, double-blind, controlled study was to characterize the postprandial glucose response in healthy adults after consuming a high fiber scone containing a novel RS4 or a low fiber control scone without RS4. Secondary aims included assessment of postprandial insulin response, postprandial satiety, and gastrointestinal tolerance. The fiber scone significantly reduced postprandial glucose and insulin incremental areas under the curves (43–45% reduction, 35–40% reduction, respectively and postprandial glucose and insulin maximum concentrations (8–10% and 22% reduction, respectively. The fiber scone significantly reduced hunger and desire to eat during the 180 min following consumption and yielded no gastrointestinal side effects compared with the control scone. The results from this study demonstrate that a ready-to-eat baked-good, such as a scone, can be formulated with RS4 replacing refined wheat flour to yield statistically significant and clinically meaningful reductions in blood glucose and insulin excursions. This is the first study to report increased satiety after short-term RS4 intake, which warrants further investigation in long-term feeding studies.

  20. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Directory of Open Access Journals (Sweden)

    Elin Östman

    2011-08-01

    Full Text Available Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS. Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%.Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW, EAW with added lactic acid (EAW-la, and ordinary whole grain wheat bread (WGW. All test breads were baked at pumpernickel conditions (20 hours, 120°C. A conventionally baked white wheat bread (REF was used as reference. Resistant starch (RS content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis in breads based on EAW than in WGW (p<0.001. Lactic acid further increased RS (p<0.001 compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05, but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI (r= − 0.571, p<0.001.This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response.

  1. Selected Rheological Properties of RS3/4 Type Resistant Starch

    Directory of Open Access Journals (Sweden)

    Kapelko-Żeberska Małgorzata

    2017-12-01

    Full Text Available This study was aimed at determining the effect of acetylation degree and crosslinking of retrograded starch with adipic acid on selected rheological properties of prepared pastes and gels. The esterification of retrograded starch allowed obtaining preparations with various degrees of substitution with residues of acetic (0.7–11.2 g/100 g and adipic acids (0.1–0.3 g/100 g. Acetylation and crosslinking caused a decrease in amylose content of the preparations (3–21 g/100 g. Solubility of the preparations in water, in a wide range of variability, was increasing along with an increasing degree of acetylation and with a decreasing degree of crosslinking (19–100 g/100 g. Values of most of the rheological coefficients determined based on the flow curves of the prepared pastes and mechanical spectra of gels (3.5starch. Changes in the rheological properties upon the effect of double modification were not the sum of changes proceeding as a result of single modifications. Instead, interaction of both factors was observed. The conducted modifications enable modelling the properties of produced preparations.

  2. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children [v1; ref status: indexed, http://f1000r.es/5cb

    Directory of Open Access Journals (Sweden)

    Kayanush Aryana

    2015-06-01

    Full Text Available The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2 from high-amylose maize (HAM ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91 or 13-14 (n=19 years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists (P<0.0001.  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt (P<0.05.  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH (P=0.1 and increased stool short-chain fatty acids (SCFAs (P<0.05 including increased fecal acetate (P=0.02, and butyrate (P=0.089 from resistant starch (RS fermentation and isobutyrate (P=0.01 from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children.

  3. Starch Digestibility and Physicochemical and Cooking Properties of Irradiated Rice Grains

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2017-01-01

    Full Text Available This study evaluated the starch digestibility, physicochemical properties and cooking characteristics of polished rice (varieties IRGA417 and IAC202 subjected to the doses of 0 (as the control, 1, 2 and 5 kGy of gamma radiation. The highest dose decreased the apparent amylose content, peak viscosity, water absorption and volume expansion. Irradiation increased the solid loss by 119% and 187% for IAC202 and IRGA417, respectively, when comparing the higher dose with the control. For IAC202, irradiation decreased the rapidly digestible starch and increased the slowly digestible starch (SDS and resistant starch (RS. IRGA417 showed an elevation of SDS and a reduction in RS. And 1 kGy dose of gamma radiation generated the highest level of RS for both the two varieties and presented the smallest changes in other physicochemical and cooking properties.

  4. Engagement with dietary fibre and receptiveness to resistant starch in Australia.

    Science.gov (United States)

    Mohr, Philip; Quinn, Sinéad; Morell, Matthew; Topping, David

    2010-11-01

    To investigate community engagement with the health benefits of dietary fibre (DF) and its potential as a framework for the promotion of increased consumption of resistant starch (RS). A nationwide postal Food and Health Survey conducted in Australia by CSIRO Human Nutrition. Adults aged 18 years and above, selected at random from the Australian Electoral Roll (n 849). A cross-sectional design was employed to analyse ratings of (i) the importance of various RS health and functional claims and (ii) receptiveness to different foods as RS delivery vehicles, according to the respondents' level of fibre engagement as classified under the Precaution Adoption Process Model (PAPM) of Health Behaviour. There was a high level of recognition (89·5 %) of DF as being important for health. Significant gender differences were found for ratings of RS attributes and RS delivery options. Women were both more fibre-engaged than men and more receptive than men to RS and its potential benefits. Ratings of the acceptability of several foods as means of delivering RS revealed a general preference for healthy staples over indulgences, with the margin between acceptability of staples and indulgences increasing markedly with increased fibre engagement. Application of the PAPM to awareness of DF reveals a ready-made target group for health messages about RS and pockets of differential potential receptiveness. The findings support the promotion of RS as providing health benefits of DF with the added reduction of risk of serious disease, its delivery through healthy staples and the targeting of messages at both fibre-engaged individuals and women in general.

  5. Starch digestibility and predicted glycemic index of fried sweet potato cultivars

    Directory of Open Access Journals (Sweden)

    Amaka Odenigbo

    2012-07-01

    Full Text Available Background: Sweet potato (Ipomoea batatas L. is a very rich source of starch. There is increased interest in starch digestibility and the prevention and management of metabolic diseases.Objective: The aim of this study was to evaluate the levels of starch fractions and predicted glycemic index of different cultivars of sweet potato. Material and Method: French fries produced from five cultivars of sweet potato (‘Ginseng Red’, ‘Beauregard’, ‘White Travis’, ‘Georgia Jet clone #2010’ and ‘Georgia Jet’ were used. The level of total starch (TS, resistant starch (RS, digestible starch (DS, and starch digestion index starch digestion index in the samples were evaluated. In vitro starch hydrolysis at 30, 90, and 120 min were determined enzymatically for calculation of rapidly digestible starch (RDS, predicted glycemic index (pGI and slowly digestible starch (SDS respectively. Results: The RS content in all samples had an inversely significant correlation with pGI (-0.52; P<0.05 while RDS had positive and significant influence on both pGI (r=0.55; P<0.05 and SDI (r= 0.94; P<0.01. ‘White Travis’ and ‘Ginseng Red’ had higher levels of beneficial starch fractions (RS and SDS with low pGI and starch digestion Index (SDI, despite their higher TS content. Generally, all the cultivars had products with low to moderate GI values. Conclusion: The glycemic index of these food products highlights the health promoting characteristics of sweet potato cultivars.

  6. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    International Nuclear Information System (INIS)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G.

    2011-01-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  8. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: graca@qmc.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2011-07-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  9. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children

    Science.gov (United States)

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( Pyogurt than for HAM-RS2-enriched yogurt ( Pyogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( Pfermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  10. Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.

    Science.gov (United States)

    Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng

    2017-11-01

    Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. In vitro starch digestibility and predicted glycemic index of microwaved and conventionally baked pound cake.

    Science.gov (United States)

    Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo

    2007-09-01

    The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.

  12. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Burn, John; Bishop, D Timothy; Chapman, Pamela D

    2011-01-01

    Evidence supporting aspirin and resistant starch (RS) for colorectal cancer prevention comes from epidemiologic and laboratory studies (aspirin and RS) and randomized controlled clinical trials (aspirin). Familial adenomatous polyposis (FAP) strikes young people and, untreated, confers virtually...... and sigmoid colon (at the end of intervention), and the major secondary endpoint was size of the largest polyp. A total of 206 randomized FAP patients commenced intervention, of whom 133 had at least one follow-up endoscopy and were therefore included in the primary analysis. Neither intervention...... significantly reduced polyp count in the rectum and sigmoid colon: aspirin relative risk = 0.77 (95% CI, 0.54-1.10; versus nonaspirin arms); RS relative risk = 1.05 (95% CI, 0.73-1.49; versus non-RS arms). There was a trend toward a smaller size of largest polyp in patients treated with aspirin versus...

  13. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics.

    Science.gov (United States)

    Ashwar, Bilal Ahmad; Gani, Asir; Gani, Adil; Shah, Asima; Masoodi, Farooq Ahmad

    2018-01-15

    The research reported in this article is based on the hypothesis that crosslinking of starch can make it a potential wall material for targeted delivery of probiotics by altering its digestion. Three probiotic strains namely Lactobacillus casei, Lactobacillus brevis and Lactobacillus plantarum were microencapsulated with resistant starch. Encapsulation yield (%) of resistant starch microspheres was in the range of 43.01-48.46. The average diameter of resistant starch microparticles was in the range of 45.53-49.29μm. Fourier transform infrared (FT-IR) spectroscopy of microcapsules showed peaks in the region of 900-1300cm -1 and 2918-2925cm -1 which corresponds to the presence of bacteria. Differential Scanning Calorimeter (DSC) showed better thermal stability of resistant starch microcapsules. Microencapsulated probiotics survived well in simulated gastrointestinal conditions and adverse heat conditions. The viability of the microcapsulated lactobacilli also remained high (>7 log cfu g -1 ) for 2months at 4°C. The results revealed that resistant starch is the potential new delivery carrier for oral administration of probiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  15. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties.

    Science.gov (United States)

    Trung, Phan Thanh Bao; Ngoc, Luu Bui Bao; Hoa, Phan Ngoc; Tien, Nguyen Ngoc Thanh; Hung, Pham Van

    2017-12-01

    The objective of this study is to investigate the change in physicochemical properties and digestibility of starches isolated from colored sweet potato varieties under heat-moisture treatment (HMT) or annealing treatment (ANN). The results showed that morphology and X-ray diffraction patterns of the sweet potato starches remained unchanged after the HMT or ANN. The HMT significantly reduced peak viscosity, breakdown and setback and significantly increased pasting temperature, trough and final viscosities of the sweet potato starches. The swelling powers and solubility of the heat-moisture treated starches were significantly lower than those of the native or annealed starches. The decreased rapid digestible starch and the increased slowly digestible and resistant starch contents of the sweet potato starches after HMT or ANN as compared to those of the native starches were observed. The resistant starch (RS) contents of the heat-moisture treated sweet potato starches were in a range of 30.6-39.3%, significantly higher than those of the annealed starches (28.8-32.0%). The strong impact of the HMT on physicochemical properties and RS formation of the sweet potato starches compared to the ANN might be due to the high stability of the occurred interactions between starch molecules and amylopectin chains during treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture.

    Science.gov (United States)

    Gutiérrez, Tomy J; Herniou-Julien, Clémence; Álvarez, Kelvia; Alvarez, Vera A

    2018-03-15

    A non-conventional starch obtained from guinea arrowroot tubers (Calathea allouia) grown in the Amazon was used as a polymeric matrix for the development of edible films. The films were manufactured by blending/thermo molding and plasticized with glycerol. Agro-industrial wastes from wine manufacture (grape waste flour and grape waste extract) were used as natural fillers of the thermoplastic starch (TPS) matrices. The results showed that the natural fillers caused cross-linking in the TPS matrix. This led to the production of films with higher resistant starch (RS) content, especially RS type 4 (RS4), although the DSC results showed that the films developed also contained RS type 3 (RS3). As expected, the presence of RS reduced the in vitro digestibility rate. Films made with the natural fillers were also less hydrophilic, had a greater thermal resistance, and tended towards ductile mechanical behavior. Finally, the edible film containing grape waste flour as a natural filler proved to be pH-sensitive, although this material disintegrated under alkaline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Physicochemical and digestibility properties of double-modified banana ( Musa paradisiaca L.) starches.

    Science.gov (United States)

    Carlos-Amaya, Fandila; Osorio-Diaz, Perla; Agama-Acevedo, Edith; Yee-Madeira, Hernani; Bello-Pérez, Luis Arturo

    2011-02-23

    Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The degree of substitution of the esterified samples ranged from 0.006 to 0.020. The X-ray diffraction pattern of the modified samples did not show change; however, an increase in crystallinity level was determined (from 23.79 to 32.76%). The ungelatinized samples had low rapidly digestible starch (RDS) (4.23-9.19%), whereas the modified starches showed an increase in SDS (from 10.79 to 16.79%) and had high RS content (74.07-85.07%). In the cooked samples, the esterified starch increased the SDS content (21.32%), followed by cross-linked starch (15.13%). Dual modified starch (cross-linked-esterified) had the lowest SDS content, but the highest RS amount. The esterified and cross-linked-esterified samples had higher peak viscosity than cross-linked and esterified-cross-linked. This characteristic is due to the fact that in dual modification, the groups introduced in the first modification are replaced by the functional group of the second modification. Temperature and enthalpy of gelatinization decreased in modified starches (from 75.37 to 74.02 °C and from 10.42 to 8.68 J/g, respectively), compared with their unmodified starch (76.15 °C and 11.05 J/g). Cross-linked-esterified starch showed the lowest enthalpy of gelatinization (8.68 J/g). Retrogradation temperature decreased in modified starches compared with unmodified (59.04-57.47 °C), but no significant differences were found among the modified samples.

  18. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  19. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Science.gov (United States)

    Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Conrad, Ralf; Riedel, Christian U.; Egert, Markus

    2017-01-01

    The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA

  20. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Elena Herrmann

    2017-07-01

    Full Text Available The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS. In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the

  1. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    Science.gov (United States)

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.

  2. Diets high in resistent starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Lærke, Helle Nygaard; Theil, Peter Kappel

    2014-01-01

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total...... resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P microbial composition towards butyrogenic...

  3. Resistant starch and energy balance: impact on weight loss and maintenance.

    Science.gov (United States)

    Higgins, Janine A

    2014-01-01

    The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.

  4. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  5. Long-term effect of resistant starch on cancer risk in carriers of hereditary colorectal cancer

    DEFF Research Database (Denmark)

    Mathers, John C; Movahedi, Mohammad; Macrae, Finlay

    2012-01-01

    have been done. We assessed the effect of resistant starch on the incidence of colorectal cancer. METHODS: In the CAPP2 study, individuals with Lynch syndrome were randomly assigned in a two-by-two factorial design to receive 600 mg aspirin or aspirin placebo or 30 g resistant starch or starch placebo...

  6. Effect of sourdough addition and storage time on in vitro starch digestibility and estimated glycemic index of tef bread.

    Science.gov (United States)

    Shumoy, Habtu; Van Bockstaele, Filip; Devecioglu, Dilara; Raes, Katleen

    2018-10-30

    The effect of sourdough amount and storage time on starch digestibility and estimated glycemic index (eGI) of tef bread was investigated. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) of 0-30% sourdough fresh tef breads ranged from 49 to 58, 16 to 29 and 20 to 26 g/100 g starch, respectively. Storage of tef breads up to 5 days decreased the RDS by more than 2-fold while SDS and RS increased by 2 and 3 fold, respectively. The eGI for fresh and stored breads ranged from 39 to 89. Addition of sourdough increased the eGI of fresh breads while no uniform pattern was seen in the stored breads. As the storage time increased, all the breads showed a decrease in eGI. In vivo study is necessary to further investigate the effect of sourdough on GI of tef bread. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    Science.gov (United States)

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.

  8. Resistant starch intake at breakfast affects postprandial responses in type 2 diabetics and enhances the glucose-dependent insulinotropic polypeptide--insulin relationship following a second meal.

    Science.gov (United States)

    MacNeil, Stacey; Rebry, Rachel M; Tetlow, Ian J; Emes, Michael J; McKeown, Bruce; Graham, Terry E

    2013-12-01

    Resistant starch (RS) consumption can modulate postprandial metabolic responses, but its effects on carbohydrate (CHO) handling in type 2 diabetics (T2D) are unclear. It was hypothesized that a bagel high in RS would improve glucose and insulin homeostasis following the 1st meal, regardless of the amount of available CHO, and that in association with incretins, the effects would carry over to a 2nd meal. Using a randomized crossover design, 12 T2D ingested four different bagel treatments (their 1st meal) determined by available CHO and the weight or amount of bagel consumed: treatment A, without RS (50 g of available CHO); treatment B, with RS (same total CHO as in A); treatment C, with RS (same available CHO as in A); and treatment D, with the same RS as in B and available CHO as in A and C. A standard 2nd meal was ingested 3 h later. Following the first meal, B elicited a lower glucose incremental area under the curve (iAUC) than C (P portion of the available CHO, while ingesting more RS influenced the GIP-insulin axis following the 2nd meal.

  9. POTENSI SPAGHETTINI KOMPOSIT SEMOLINA DURUM-PATI GANYONG DALAM PEMBENTUKAN SHORT CHAIN FATTY ACID DAN ASAM LAKTAT PADA FERMENTASI MENGGUNAKAN MIKROFLORA FESES MANUSIA (Potential Production of Short Chain Fatty Acid and Lactic Acid from Durum and Canna Starch-Based Spaghettini Through Fermentation by Human Colonic Microflora

    Directory of Open Access Journals (Sweden)

    Stefani Amanda Harmani

    2016-10-01

    Full Text Available Nowadays people have started considering the health beneficial value in selecting food. Government’s demand for utilization of local food and food diversification is also increasing. Considering those reasons, the objective of this study was to create a way of food diversification using local ingredient which has physiological benefits for human health. Resistant starch can improve human colonic health through fermentation by colonic microflora to produce Short Chain Fatty Acid (SCFA and lactic acid. This research was conducted by combining canna starch with semolina durum into a composite flour for spaghettini production. Various type of canna tuber and canna starch proportion were used in the composite flour. Semolina durum contained higher resistant starch (20% than red canna starch (17.7% and green canna starch (15.4%. Combination of durum and red canna starch-based spaghettini produced higher amount of resistant starch, SCFA, and lactic acid than combination of durum and green canna starch- based spaghettini. Durumcanna based spaghettini had the ability to produce SCFA and lactic acid during in vitro fermentation using human colonic microflora although the concentration was lower than those of only durum spaghettini. Keywords: Canna starch, spaghettini, resistant starch, SCFA, lactic acid ABSTRAK Kriteria pemilihan makanan oleh masyarakat kini mulai mempertimbangkan nilai kesehatan dari suatu makanan. Sementara, permintaan pemerintah untuk pemanfaatan bahan baku lokal dan diversifikasi pangan pokok pun semakin meningkat. Oleh karena itu, penelitian ini dilaksanakan untuk mewujudkan penganekaragaman pangan berbasis tepung komposit dari bahan baku lokal yang memiliki nilai fungsional untuk kesehatan kolon. Resistant Starch (RS dapat meningkatkan kesehatan kolon melalui hasil fermentasinya oleh bakteri usus besar yang berupa Short Chain Fatty Acid (SCFA dan asam laktat. Penelitian dilakukan dengan mengkombinasikan pati ganyong dan semolina

  10. Propriedades químicas e de pasta dos amidos de trigo e milho fosforilados Chemical and past properties of wheat and maize starches phosphorilads

    Directory of Open Access Journals (Sweden)

    Williams Pereira Batista

    2010-03-01

    Full Text Available Os amidos de trigo e milho foram fosforilados com tripolifosfato de sódio (TPS em 4 diferentes níveis de adição. As viscosidades máximas da pasta de trigo aumentaram e as temperaturas de pasta diminuíram à medida que cresceram os graus de substituição de grupos fosfato, enquanto que, para o amido de milho, as viscosidades máximas aumentaram e as temperaturas de pasta mantiveram-se constantes. Os amidos fosforilados (amido/água 1:10 foram submetidos à cocção (100,0 ºC/1,0 minuto, secagem (40,0 ºC/~4,0% de umidade e moagem (diâmetro de partícula, Φ = 0,149 mm para determinar o teor de amido resistente (AR. Para o menor grau de substituição de grupos fosfato no amido de trigo (0,0029, foi encontrado um teor de amido resistente de 30,46% e no amido de milho de 24,36%. Para o maior grau de substituição no amido de trigo (0,0127, foi encontrado um teor de AR de 46,69%, enquanto para o amido de milho, 28,40%. O aumento do grau de substituição, em ambos os casos, parece induzir um aumento no teor de amido resistente, e a fosforilação com TPS mostrou ser um excelente método para produzir quantidades significativas de amido resistente tanto no amido de trigo como no amido de milho.Wheat and maize starches were phosphorylated with sodium tripolyphosphate (TPS at 4 different levels of addition. The maximum viscosities of the wheat doughs formed were increased and the dough temperatures decreased as the degrees of substitution of phosphate groups were increased; while for the maize starch the viscosities were increased and the dough temperatures remained constant. The phosphorylated starches (starch/water, 1:10 were subjected to cooking (100 ºC/1 minute, followed by drying (40 ºC/~ 4.0 per cent moisture and milling (particle diameter, Φ = 0.149 mm to determine the resistant starch (RS content. For the lowest degree of substitution of phosphate groups in wheat starch (0.0029, resistant starch content of 30.46 per cent was found

  11. Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch

    Directory of Open Access Journals (Sweden)

    Ayenampudi Surendra Babu

    2018-04-01

    Full Text Available The effect of autoclaving (120 °C/30 min, debranching (2% pullulanase/1 h and storage at 4 °C (DS4 or 32 °C (DS32 or 60 °C (DS60 for 24 h on starch fractions, functional, pasting, thermal and structural properties of sweet potato starch was investigated. Results showed that DS4 sample displayed the lower functional properties than other modified starches. Debranching showed a significant increase in the apparent amylose content of native starch from 18.56% to 25%. A higher yield of RS (28.76% was observed in debranched starch stored at 4 °C (DS4 due to the higher degree of retrogradation. All debranched starches showed a substantial decrease in pasting profile and higher gelatinization temperatures than in native starch. B + V X-ray diffraction pattern was observed in debranched starches with increased crystallinity value. The scanning electron micrographs of debranched starches showed rough plate-like surfaces with irregularly shaped structures were observed due to debranching and retrogradation during storage. The study concludes that a combination of autoclaving, debranching and subsequent storage at 4 °C is best technique to produce a higher amount of resistant starch in the sweet potato starch. Keywords: Pullulanase, Functional properties, Resistant starch, RVA, XRD, SEM

  12. Development of functional milk desserts enriched with resistant starch based on consumers' perception.

    Science.gov (United States)

    Ares, Florencia; Arrarte, Eloísa; De León, Tania; Ares, Gastón; Gámbaro, Adriana

    2012-10-01

    Sensory characteristics play a key role in determining consumers' acceptance of functional foods. In this context, the aim of the present work was to apply a combination of sensory and consumer methodologies to the development of chocolate milk desserts enriched with resistant starch. Chocolate milk desserts containing modified waxy maize starch were formulated with six different concentrations of two types of resistant starch (which are part of insoluble dietary fiber). The desserts were evaluated by trained assessors using Quantitative Descriptive Analysis. Moreover, consumers scored their overall liking and willingness to purchase and answered an open-ended question. Resistant starch caused significant changes in the sensory characteristics of the desserts and a significant decrease in consumers' overall liking and willingness to purchase. Consumer data was analyzed applying survival analysis on overall liking scores, considering the risk on consumers liking and willing to purchase the functional products less than their regular counterparts. The proposed methodologies proved to be useful to develop functional foods taking into account consumers' perception, which could increase their success in the market.

  13. [Optimization of a cake formulation with functional characteristics using resistant starch, Sphagnum magellanicum moss and deffated hazel nut flour (Gevuina avellana, Mol)].

    Science.gov (United States)

    Villarroel, Mario; Reyes, Carla; Hazbun, Julia; Karmelic, Julia

    2007-03-01

    Resistant starch (RS) Hi Maize 260, Sphagnum magellanicum Moss (SM) both natural resources rich in total dietary fiber, and defatted hazel nut flour (DHN) as protein resource were used in the development of a pastry product (queque) with functional characteristics. Taguchi methodology was utilized in the optimization process using the orthogonal array L934 with four control factors: RS, SM. DHN and Master Gluten 4000 (MG), 3 factor levels and 9 experimental trials. The best result of Sensory Quality (SQ) and signal to noise ratio (S/N) was obtained combining the minor levels of the independent variables. Main effect (average effects of factor) analysis and anova analysis showed that SM and DHN were the control factors with a significant influence (pcakes showed very good results when they were submitted to hedonic test with 100% of favorable consumer's opinions.

  14. The Two-Component System CprRS Senses Cationic Peptides and Triggers Adaptive Resistance in Pseudomonas aeruginosa Independently of ParRS

    DEFF Research Database (Denmark)

    Fernandez, Luca; Jenssen, Håvard; Bains, Manjeet

    2012-01-01

    dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides, cprRS mutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated...

  15. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Nathalie; Williams, Paul T.; Lamendella, Regina; Faghihnia, Nastaran; Grube, Alyssa; Li, Xinmin; Wang, Zeneng; Knight, Rob; Jansson, Janet K.; Hazen, Stanley L.; Krauss, Ronald M.

    2016-12-20

    Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2-week baseline diet (41 percentage of energy (%E) CHO, 40 % fat, 19 % protein), followed by 2-week high- and low-RS diets separated by 2-week washouts. RS diets were assigned at random within the context of higher (51–53 %E)v. lower CHO (39–40 %E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine andγ-butyrobetaine concentrations were higher after the high-v. low-RS diet (P<0·01 each). These metabolites were not differentially affected by highv. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P<0·01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health.

  16. Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes12

    Science.gov (United States)

    Slavin, Joanne L.

    2013-01-01

    Vegetables are universally promoted as healthy. Dietary Guidelines for Americans 2010 recommend that you make half of your plate fruits and vegetables. Vegetables are diverse plants that vary greatly in energy content and nutrients. Vegetables supply carbohydrates, dietary fiber, and resistant starch in the diet, all of which have been linked to positive health outcomes. Fiber lowers the incidence of cardiovascular disease and obesity. In this paper, the important role of white vegetables in the human diet is described, with a focus on the dietary fiber and resistant starch content of white vegetables. Misguided efforts to reduce consumption of white vegetables will lower intakes of dietary fiber and resistant starch, nutrients already in short supply in our diets. PMID:23674804

  17. The Effect of Three Gums on the Retrogradation of Indica Rice Starch

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-05-01

    Full Text Available Retrograded starch (RS3 was produced from indica rice starch with three kinds of gums (konjac glucomannan, KGM; carrageenan, CA, USA; and gellan, GA, USA by autoclaving, respectively, and the effect of the gums on the retrogradation behavior of starch was estimated. The influences of polysaccharide concentration, sodium chloride concentration, autoclaving time, refrigerated time, and pH value on RS3 formation were discussed. Except for sodium chloride’s persistent restraint on RS3, the others all forced RS3 yields higher at first, but lowered it after the peak value. The influencing sequence of these impact factors was: sodium chloride concentration > polysaccharide concentration > autoclaving time > refrigerated time > pH value. The results also proved that in the three gums, KGM plays the most significant role in RS3 changing. It was concluded that the incorporation of each of these three gums into starch, especially KGM, results in an increase or decrease of RS3 under different conditions. This phenomenon could be taken into consideration when developing starchy food with appropriate amount of RS3.

  18. Preparation of resistant sweet potato starch by steam explosion ...

    African Journals Online (AJOL)

    resistant sweet potato starch was identified by Fourier transform infrared ... can potentially be used in food or medicine for diabetic patients. ... were suspended in water (1:3.5, w/v), and ..... No conflict of interest associated with this work.

  19. Evaluation of grain nutritional quality and resistant starch content

    African Journals Online (AJOL)

    USER

    contained considerable levels zinc, iron, resistant starch and low levels of the undesirable phytic acid. Key Words: Iron, phytic ... processes, which in turn influence nutrient uptake ..... in diets and level of processing, daily intake can be as high ...

  20. The Effects of Treatments on Batu Banana Flour and Percentage of Wheat Substitution on The Resistant Starch, In Vitro Starch Digestibility Content and Palatability of Cookies Made with Banana (Musa balbisiana Colla) Flour

    Science.gov (United States)

    Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN

    2018-02-01

    Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (ppatients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility

  1. Application of autoclaving-cooling cycling treatment to improve resistant starch content of corn-based rice analogues

    Science.gov (United States)

    Hidayat, B.; Muslihudin, M.; Akmal, S.

    2018-01-01

    Resistant starch is one important component determining the characteristics of a functional food. The aim of the research was to determine the cooling time optimum in the autoclaving-cooling treatment to increase the resistance starch content corn-based rice analogues, with 6 level of cooling time (0 hours/control, 12 hours, 24 hours, 36 hours, 48 hours and 60 hours). The results showed that cooling at 4°C for 60 hours would increase the resistant starch content (6.27% to 15.38%), dietary fiber content (14.53% to 20.17%); and decrease the digestible starch content (61.81% to 52.70%). Cooling time level at 4°C for 24 hours, would increase the sensory score of corn-based rice analogues then back down until cooling time level of 60 hours. Microscopic analysis of granular structure using SEM indicated that cooling time had a linear correlation with cracks intensity on the granule surface of the corn-based rice analogues. The high content of resistant starch showed that the application of cooling time level at 4°C for 24 hours would improve the functional properties of corn-based rice analogues with sensory characteristics remain favorable to panelists.

  2. Functional Characterization of Bean Zaragoza Starch (Phaseolus Lunatus L. and Quantification of the Resistant Starch

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero-Castillo

    2013-06-01

    Full Text Available Legumes are a potential source of starch, representing between 30 and 50% of its dry weight, this is an essential energy source for humans. Currently its use is widespread in the food industry as an additive or raw material in food compounds, due to its nutritional, functional properties as a thickening agent and stabilizer of suspensions and dispersions. We evaluated several functional properties of starch variety zaragoza red bean, was obtained initial gelatinization temperature and final (71°C (81°C respectively, the solubility was 8.3% at 90°C, swelling power was 6.6% at 80°C, and water retention capacity was 4.4% at 80°C. The apparent viscosity was evaluated between 20 and 75 °C giving as results viscosities between 1.096 and 0.98 Cp respectively. The results showed that the tested temperatures significantly affect the solubility, swelling power, water holding capacity and viscosity of the starch. The amylose and amylopectin content was 21.1% and 78.19%. Finally, was obtained 9,24% resistant starch and compared with other conventional non starchy sources in order to acquire new knowledge about this material native to the Colombian Caribbean coast.

  3. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Qendrim Zebeli

    2013-06-01

    Full Text Available High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS. In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants

  4. Effect of Resistant Starch and β-Glucan Combination on Oxidative Stability, Frying Performance, Microbial Count and Shelf Life of Prebiotic Sausage During Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Roghayeh Amini Sarteshnizi

    2017-01-01

    Full Text Available This study aims to evaluate the performance of two types of prebiotic sausages formulated with resistant starch (RS and β-glucan (BG extract (in ratios of 2.22:1.33 and 2.75:1.88 during frying and chilled storage. The oxidative stability indices and microbial counts were determined. The incorporation of two types of prebiotic dietary fibre increased frying loss and oil absorption. However, the moisture content of prebiotic sausages after production was higher than of conventional sausages and it decreased significantly during storage. The use of sausage sample containing 2.22 % RS and 1.33 % BG as a recommended formulation can decrease fat oxidation of sausages during storage due to antioxidant properties of BG extract, but higher levels of RS and BG could not be used due to further increase in fat oxidation. Total viable count increased up to day 45 and decreased afterwards. The addition of BG extract improved the antioxidant properties of sausages. Additionally, the antimicrobial properties of BG and moisture reduction could inhibit microbial growth. Moreover, the addition of RS caused an increase in thiobarbituric acid and peroxide values.

  5. Effect of Resistant Starch and β-Glucan Combination on Oxidative Stability, Frying Performance, Microbial Count and Shelf Life of Prebiotic Sausage During
Refrigerated Storage

    Science.gov (United States)

    2017-01-01

    Summary This study aims to evaluate the performance of two types of prebiotic sausages formulated with resistant starch (RS) and β-glucan (BG) extract (in ratios of 2.22:1.33 and 2.75:1.88) during frying and chilled storage. The oxidative stability indices and microbial counts were determined. The incorporation of two types of prebiotic dietary fibre increased frying loss and oil absorption. However, the moisture content of prebiotic sausages after production was higher than of conventional sausages and it decreased significantly during storage. The use of sausage sample containing 2.22% RS and 1.33% BG as a recommended formulation can decrease fat oxidation of sausages during storage due to antioxidant properties of BG extract, but higher levels of RS and BG could not be used due to further increase in fat oxidation. Total viable count increased up to day 45 and decreased afterwards. The addition of BG extract improved the antioxidant properties of sausages. Additionally, the antimicrobial properties of BG and moisture reduction could inhibit microbial growth. Moreover, the addition of RS caused an increase in thiobarbituric acid and peroxide values. PMID:29540982

  6. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11-14.5 hour perspective; a randomized controlled study in healthy subjects.

    Science.gov (United States)

    Sandberg, Jonna C; Björck, Inger M E; Nilsson, Anne C

    2017-04-21

    The prevalence of obesity is increasing worldwide and prevention is needed. Whole grain has shown potential to lower the risk of obesity, cardiovascular disease and type 2 diabetes. One possible mechanism behind the benefits of whole grain is the gut fermentation of dietary fiber (DF), e.g. non-starch polysaccharides and resistant starch (RS), in whole grain. The purpose of the study is to investigate the effect of whole grain rye-based products on glucose- and appetite regulation. Twenty-one healthy subjects were provided four rye-based evening test meals in a crossover overnight study design. The test evening meals consisted of either whole grain rye flour bread (RFB) or a 1:1 ratio of whole grain rye flour and rye kernels bread (RFB/RKB), with or without added resistant starch (+RS). White wheat flour bread (WWB) was used as reference evening meal. Blood glucose, insulin, PYY, FFA, IL-6 as well as breath H 2 and subjective rating of appetite were measured the following morning at fasting and repeatedly up to 3.5 h after a standardized breakfast consisting of WWB. Ad libitum energy intake was determined at lunch, 14.5 h after evening test and reference meals, respectively. The evening meal with RFB/RKB + RS decreased postprandial glucose- and insulin responses (iAUC) (P appetite regulation in a semi-acute perspective. Meanwhile, RFB and RFB/RKB improved subjective appetite ratings. The effects probably emanate from gut fermentation events. The study was registered at: ClinicalTrials.gov, register number NCT02347293 ( www.clinicaltrials.gov/ct2/show/NCT02347293 ). Registered 15 January 2015.

  7. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    Directory of Open Access Journals (Sweden)

    Johnson Ginger C

    2011-07-01

    Full Text Available Abstract Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats. Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3% or high (5.9% levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  8. Effects of a treatment with Se-rich rice flour high in resistant starch on enteric dysbiosis and chronic inflammation in diabetic ICR mice.

    Science.gov (United States)

    Yuan, Huaibo; Wang, Wenjuan; Chen, Deyi; Zhu, Xiping; Meng, Lina

    2017-05-01

    Enteric dysbiosis is associated with chronic inflammation and interacts with obesity and insulin resistance. Obesity and diabetes are induced in ICR (Institute of Cancer Research) mice fed a high-fat diet and administered a streptozocin injection. These mice were treated with normal rice (NR), normal rice with a high resistant starch content (NRRS) or Se-rich rice (selenium-enriched rice) with a high resistant starch content (SRRS). Faecal cell counts of Bifidobacterium, Lactobacillus and Enterococcus were significantly higher in SRRS-treated mice than in diabetic controls, while Enterobacter cloacae were lower. Similar results were also found in NRRS-treated mice. In contrast, no significant difference was found between NR-treated and diabetic control groups. The treatments with SRRS and NRRS reduced the faecal pH values of the diabetic mice. Regarding the inflammatory factor levels, lower levels of serum C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-k-gene binding (NF-κB) and leptin (LEP) and higher adiponutrin (ADPN) levels were found in the SRRS and NRRS-treated mice compared with the diabetic and NR-treated mice. In addition, the CRP, IL-6 and NF-κB levels in the SRRS-treated mice were significantly reduced compared with those observed in the NRRS-treated mice. The reverse transcription-PCR (RT-PCR) results showed that the SRRS and NRRS-treated mice presented higher expression levels of orphan G protein-coupled receptor 41 (GPR41) and orphan G protein-coupled receptor 43 (GPR43) proteins compared with diabetic mice and NR-treated mice. These results indicate that treatments with rice high in RS exert beneficial effects by improving enteric dysbiosis and chronic inflammation. In addition, selenium and RS may exert synergistic effects on chronic inflammation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Response surface optimization of low-fat ice cream production by using resistant starch and maltodextrin as a fat replacing agent.

    Science.gov (United States)

    Azari-Anpar, Mojtaba; Khomeiri, Morteza; Ghafouri-Oskuei, Hamed; Aghajani, Narjes

    2017-04-01

    In this research, maltodextrin (0, 1 and 2% w/w) and resistant starch (0, 1 and 2% w/w) were used in the formulation of low-fat ice cream (4% fat) and their effects on the physicochemical and sensory properties were investigated. The optimum levels of maltodextrin and resistant starch were determined by response surface methodology. Increment of maltodextrin and resistant starch increased acidity, viscosity, melting rate, time of dripping and overrun but decreased melting rate of ice cream. Results showed that the incorporation of maltodextrin and resistant starch at 0 and 2% w/w respectively, resulted into ice cream with suitable viscosity, melting rate, first dripping time, overrun and acidity.

  10. Effects of dietary resistant starch content on metabolic status, milk composition, and microbial profiling in lactating sows and on offspring performance.

    Science.gov (United States)

    Yan, H; Lu, H; Almeida, V V; Ward, M G; Adeola, O; Nakatsu, C H; Ajuwon, K M

    2017-02-01

    In the present study, the effects of dietary resistant starch (RS) content on serum metabolite and hormone concentrations, milk composition, and faecal microbial profiling in lactating sows, as well as on offspring performance was investigated. Sixteen sows were randomly allotted at breeding to two treatments containing low- and high-RS contents from normal and high-amylose corn varieties, respectively, and each treatment had eight replicates (sows). Individual piglet body weight (BW) and litter size were recorded at birth and weaning. Milk samples were obtained on day 10 after farrowing for composition analysis. On day 2 before weaning, blood and faecal samples were collected to determine serum metabolite and hormone concentrations and faecal microbial populations, respectively. Litter size at birth and weaning were not influenced (p > 0.05) by the sow dietary treatments. Although feeding the RS-rich diet to sows reduced (p = 0.004) offspring birth BW, there was no difference in piglet BW at weaning (p > 0.05). High-RS diet increased (p content, and tended (p = 0.09) to increase milk fat content in lactating sows. Feeding the RS-rich diet to sows increased (p bacterial population diversity. These results indicate that high-RS diets induce fatty acid mobilization and a greater intestinal bacterial richness in lactating sows, as well as a greater nutrient density in maternal milk, without affecting offspring performance at weaning. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  11. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome.

    Science.gov (United States)

    Burn, John; Bishop, D Timothy; Mecklin, Jukka-Pekka; Macrae, Finlay; Möslein, Gabriela; Olschwang, Sylviane; Bisgaard, Marie-Luise; Ramesar, Raj; Eccles, Diana; Maher, Eamonn R; Bertario, Lucio; Jarvinen, Heikki J; Lindblom, Annika; Evans, D Gareth; Lubinski, Jan; Morrison, Patrick J; Ho, Judy W C; Vasen, Hans F A; Side, Lucy; Thomas, Huw J W; Scott, Rodney J; Dunlop, Malcolm; Barker, Gail; Elliott, Faye; Jass, Jeremy R; Fodde, Ricardo; Lynch, Henry T; Mathers, John C

    2008-12-11

    Observational and epidemiologic data indicate that the use of aspirin reduces the risk of colorectal neoplasia; however, the effects of aspirin in the Lynch syndrome (hereditary nonpolyposis colon cancer) are not known. Resistant starch has been associated with an antineoplastic effect on the colon. In a randomized, placebo-controlled trial, we used a two-by-two design to investigate the effects of aspirin, at a dose of 600 mg per day, and resistant starch (Novelose), at a dose of 30 g per day, in reducing the risk of adenoma and carcinoma among persons with the Lynch syndrome. Among 1071 persons in 43 centers, 62 were ineligible to participate in the study, 72 did not enter the study, and 191 withdrew from the study. These three categories were equally distributed across the study groups. Over a mean period of 29 months (range, 7 to 74), colonic adenoma or carcinoma developed in 141 participants. Of 693 participants randomly assigned to receive aspirin or placebo, neoplasia developed in 66 participants receiving aspirin (18.9%), as compared with 65 receiving placebo (19.0%) (relative risk, 1.0; 95% confidence interval [CI], 0.7 to 1.4). There were no significant differences between the two groups with respect to the development of advanced neoplasia (7.4% and 9.9%, respectively; P=0.33). Among the 727 participants receiving resistant starch or placebo, neoplasia developed in 67 participants receiving starch (18.7%), as compared with 68 receiving placebo (18.4%) (relative risk, 1.0; 95% CI, 0.7 to 1.4). Advanced adenomas and colorectal cancers were evenly distributed in the two groups. The prevalence of serious adverse events was low, and the events were evenly distributed. The use of aspirin, resistant starch, or both for up to 4 years has no effect on the incidence of colorectal adenoma or carcinoma among carriers of the Lynch syndrome. (Current Controlled Trials number, ISRCTN59521990.) 2008 Massachusetts Medical Society

  13. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  14. Starch Hydrolysis, Polyphenol Contents, and In Vitro Alpha Amylase Inhibitory Properties of Some Nigerian Foods As Affected by Cooking

    Directory of Open Access Journals (Sweden)

    Sani Saidu

    2017-12-01

    Full Text Available The effect of cooking on starch hydrolysis, polyphenol contents, and in vitro α-amylase inhibitory properties of mushrooms (two varieties Russula virescens and Auricularia auricula-judae, sweet potato (Ipomea batatas, and potato (Solanum tuberosum was investigated. The total, resistant, and digestible starch contents of the raw and cooked food samples (FS ranged from 6.4 to 64.9; 0 to 10.1; and 6.4 to 62.7 g/100 g, respectively, while their percentages of starch digestibility (DS values expressed as percentages of total starch hydrolyzed ranged from 45.99 to 100. Raw and boiled unpeeled potato, raw and boiled peeled potato, raw A. auricula-judae, and sweet potato showed mild to high α-amylase inhibition (over a range of concentration of 10–50 mg/mL, which was lower than that of acarbose (that had 69% inhibition of α-amylase over a range of concentration of 2–10 mg/mL, unlike raw R. virescens, boiled A. auricula-judae, and boiled sweet potatoes that activated α-amylase and boiled R. virescens that gave 0% inhibition. The FS contained flavonoids and phenols in addition. The significant negative correlation (r = −0.55; P = 0.05 between the α-amylase inhibitory properties of the raw and cooked FS versus their SD indicates that the α-amylase inhibitors in these FS also influenced the digestibility of their starches. In addition, the significant positive correlation between the α-amylase inhibitory properties of the raw and cooked FS versus their resistant starch (RS (r = 0.59; P = 0.01 contents indicates that the RS constituents of these FS contributed to their α-amylase inhibitory properties. The study showed the usefulness of boiled unpeeled potato, boiled potato peeled, and raw sweet potato as functional foods for people with type 2 diabetes.

  15. Hypolipidemic effects of starch and γ-oryzanol from wx/ae double-mutant rice on BALB/c.KOR-Apoe(shl) mice.

    Science.gov (United States)

    Nakaya, Makoto; Shojo, Aiko; Hirai, Hiroaki; Matsumoto, Kenji; Kitamura, Shinichi

    2013-01-01

    waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.

  16. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  17. The effects of feeding resistant starch on apparent total tract macronutrient digestibility, faecal characteristics and faecal fermentative end-products in healthy adult dogs.

    Science.gov (United States)

    Beloshapka, Alison N; Alexander, Lucille G; Buff, Preston R; Swanson, Kelly S

    2014-01-01

    The benefits of whole grain consumption have been studied in human subjects, but little research exists on their effects in dogs. The objective of the present study was to test the effects of resistant starch (RS) in the diet of healthy adult dogs. Twelve adult Miniature Schnauzer dogs (eight males, four females; mean age: 3·3 (1·6) years; mean body weight: 8·4 (1·2) kg; mean body condition score: D/ideal) were randomly allotted to one of three treatment groups, which consisted of different amounts of RS supplied in a biscuit format. Dogs received either 0, 10 or 20 g biscuits per d (estimated to be 0, 2·5 or 5 g RS per d) that were fed within their daily energetic allowance. A balanced Latin square design was used, with each treatment period lasting 21 d (days 0-17 adaptation; days 18-21 fresh and total faecal collection). All dogs were fed the same diet to maintain body weight throughout the study. Dogs fed 5 g RS per d had lower (P = 0·03) fat digestibility than dogs fed 0 gRS per d, but DM, organic matter and crude protein digestibilities were not affected. Faecal fermentative end-products, including SCFA and branched-chain fatty acids, ammonia, phenols and indoles, and microbial populations were not affected. The minor changes observed in the present study suggest the RS doses provided to the dogs were too low. Further work is required to assess the dose of RS required to affect gut health.

  18. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome

    DEFF Research Database (Denmark)

    Burn, John; Bishop, D Timothy; Mecklin, Jukka-Pekka

    2008-01-01

    BACKGROUND: Observational and epidemiologic data indicate that the use of aspirin reduces the risk of colorectal neoplasia; however, the effects of aspirin in the Lynch syndrome (hereditary nonpolyposis colon cancer) are not known. Resistant starch has been associated with an antineoplastic effect...... on the colon. METHODS: In a randomized, placebo-controlled trial, we used a two-by-two design to investigate the effects of aspirin, at a dose of 600 mg per day, and resistant starch (Novelose), at a dose of 30 g per day, in reducing the risk of adenoma and carcinoma among persons with the Lynch syndrome...... on the incidence of colorectal adenoma or carcinoma among carriers of the Lynch syndrome. (Current Controlled Trials number, ISRCTN59521990.)...

  19. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  20. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  1. Effect of incorporating finger millet in wheat flour on mixolab behavior, chapatti quality and starch digestibility.

    Science.gov (United States)

    Sharma, Bharati; Gujral, Hardeep Singh; Solah, Vicky

    2017-09-15

    Wheat and finger millet flour (two cultivars) were blended in the ratio (3:1) to form a composite flour and its dough properties were studied on the mixolab. The chapatti making and digestibility behavior of the composite flour was also investigated. The wheat finger millet (WFM) flour blend displayed up to 30.7% higher total phenolic content (TPC), 38.2% higher total flavonoid content (TFC) and 75.4% higher antioxidant activity (AOA) than the wheat flour. Chapattis prepared from the composite blends exhibited lower retrogradation as evident by the mixolab retrogradation index, higher values of soluble starch and soluble amylose in stored chapatti. The slowly digestible starch (SDS) correlated positively (R=0.816, p<0.05) with TPC and water absorption correlated positively (R=0.995, p<0.05) with damage starch content. The chapattis made from the composite flour had higher SDS and resistant starch (RS) values demonstrating potential as a food with functional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  3. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    Science.gov (United States)

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physicochemical properties and starch digestibility of Chinese noodles in relation to optimal cooking time.

    Science.gov (United States)

    Ye, Xiaoting; Sui, Zhongquan

    2016-03-01

    Changes in the physicochemical properties and starch digestibility of white salted noodles (WSN) at different cooking stage were investigated. The noodles were dried in fresh air and then cooked for 2-12 min by boiling in distilled water to determine the properties of cooking quality, textural properties and optical characteristic. For starch digestibility, dry noodles were milled and sieved into various particle size classes ranging from 0.5 mm to 5.0 mm, and hydrolyzed by porcine pancreatic α-amylase. The optimal cooking time of WSN determined by squeezing between glasses was 6 min. The results showed that the kinetics of solvation of starch and protein molecules were responsible for changes of the physicochemical properties of WSN during cooking. The susceptibility of starch to α-amylase was influenced by the cooking time, particle size and enzyme treatment. The greater value of rapidly digestible starch (RDS) and lower value of slowly digestible starch (SDS) and resistant starch (RS) were reached at the optimal cooking stage ranging between 63.14-71.97%, 2.47-10.74% and 23.94-26.88%, respectively, indicating the susceptibility on hydrolysis by enzyme was important in defining the cooked stage. The study suggested that cooking quality and digestibility were not correlated but the texture greatly controls the digestibility of the noodles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    Science.gov (United States)

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  6. Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: a randomized-controlled trial.

    Science.gov (United States)

    Maziarz, Mindy Patterson; Preisendanz, Sara; Juma, Shanil; Imrhan, Victorine; Prasad, Chandan; Vijayagopal, Parakat

    2017-02-21

    High-amylose maize resistant starch type 2 (HAM-RS2) stimulates gut-derived satiety peptides and reduces adiposity in animals. Human studies have not supported these findings despite improvements in glucose homeostasis and insulin sensitivity after HAM-RS2 intake which can lower adiposity-related disease risk. The primary objective of this study was to evaluate the impact of HAM-RS2 consumption on blood glucose homeostasis in overweight, healthy adults. We also examined changes in biomarkers of satiety (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], and leptin) and body composition determined by anthropometrics and dual-energy x-ray absorptiometry, dietary intake, and subjective satiety measured by a visual analogue scale following HAM-RS2 consumption. Using a randomized-controlled, parallel-arm, double-blind design, 18 overweight, healthy adults consumed either muffins enriched with 30 g HAM-RS2 (n = 11) or 0 g HAM-RS2 (control; n = 7) daily for 6 weeks. The HAM-RS2 and control muffins were similar in total calories and available carbohydrate. At baseline, total PYY concentrations were significantly higher 120 min following the consumption of study muffins in the HAM-RS2 group than control group (P = 0.043). Within the HAM-RS2 group, the area under the curve (AUC) glucose (P = 0.028), AUC leptin (P = 0.022), and postprandial 120-min leptin (P = 0.028) decreased independent of changes in body composition or overall energy intake at the end of 6 weeks. Fasting total PYY increased (P = 0.033) in the HAM-RS2 group, but changes in insulin or total GLP-1 were not observed. Mean overall change in subjective satiety score did not correlate with mean AUC biomarker changes suggesting the satiety peptides did not elicit a satiation response or change in overall total caloric intake. The metabolic response from HAM-RS2 occurred despite the habitual intake of a moderate-to-high-fat diet (mean range 34.5% to 39.4% of total calories). Consuming 30

  7. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study.

    Directory of Open Access Journals (Sweden)

    Stine Hald

    Full Text Available Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001, whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01, acetate (P<0.01 and butyrate concentrations (P<0.01 were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05 and isovalerate (P = 0.03 decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on

  8. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  9. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine.

    Science.gov (United States)

    Schwiertz, A; Lehmann, U; Jacobasch, G; Blaut, M

    2002-01-01

    The genus Eubacterium, which is the second most common genus in the human intestine, includes several known butyrate producers. We hypothesized that Eubacterium species play a role in the intestinal butyrate production and are inducible by resistant starch. In a human pilot study species-specific and group-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labelled oligonucleotide probes were used to quantify butyrogenic species of the genera Eubacterium, Clostridium and Ruminococcus. Following the intake of RS type III a significant increase in faecal butyrate but not in total SCFA was observed. However, increase in butyrate was not accompanied by a proliferation in the targeted bacteria. The tested Eubacterium species have the capacity to produce butyrate but do not appear to play a major role for butyric acid production in the human intestine. In view of the fact that the bacteria responsible for butyrate production are largely unknown, it is still difficult to devise a dietary intervention to stimulate butyrogenic bacteria in a targeted way.

  10. Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains.

    Science.gov (United States)

    Memmi, Guido; Nair, Dhanalakshmi R; Cheung, Ambrose

    2012-02-01

    Autolysis plays an essential role in bacterial cell division and lysis with β-lactam antibiotics. Accordingly, the expression of autolysins is tightly regulated by several endogenous regulators, including ArlRS, a two component regulatory system that has been shown to negatively regulate autolysis in methicillin-sensitive Staphylococcus aureus (MSSA) strains. In this study, we found that inactivation of arlRS does not play a role in autolysis of methicillin-resistant S. aureus (MRSA) strains, such as community-acquired (CA)-MRSA strains USA300 and MW2 or the hospital-acquired (HA)-MRSA strain COL. This contrasts with MSSA strains, including Newman, SH1000, RN6390, and 8325-4, where autolysis is affected by ArlRS. We further demonstrated that the striking difference in the roles of arlRS between MSSA and MRSA strains is not due to the methicillin resistance determinant mecA. Among known autolysins and their regulators, we found that arlRS represses lytN, while no effect was seen on atl, lytM, and lytH expression in both CA- and HA-MRSA strains. Transcriptional-fusion assays showed that the agr transcripts, RNAII and RNAIII, were significantly more downregulated in the arlRS mutant of MW2 than the MSSA strain Newman. Importantly, provision of agr RNAIII in trans to the MW2 arlRS mutant via a multicopy plasmid induced autolysis in this MRSA strain. Also, the autolytic phenotype in the arlRS mutant of MSSA strain Newman could be rescued by a mutation in either atl or lytM. Together, these data showed that ArlRS impacts autolysis differently in MSSA and MRSA strains.

  11. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.

    Science.gov (United States)

    Nielsen, Tina S; Lærke, Helle N; Theil, Peter K; Sørensen, Jens F; Saarinen, Markku; Forssten, Sofia; Knudsen, Knud E Bach

    2014-12-14

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total of thirty female pigs (body weight 63.1 (sem 4.4) kg) were fed a low-DF, high-fat Western-style control diet (WSD), an AX-rich diet (AXD) or a RS-rich diet (RSD) for 3 weeks. Diet significantly affected the digestibility of DM, protein, fat, NSP and NSP components, and the arabinose:xylose ratio, as well as the disappearance of NSP and AX in the large intestine. RS was mainly digested in the caecum. AX was digested at a slower rate than RS. The digesta from AXD-fed pigs passed from the ileum to the distal colon more than twice as fast as those from WSD-fed pigs, with those from RSD-fed pigs being intermediate (PEubacterium rectale, Bifidobacterium spp. and Lactobacillus spp. in the faeces sampled at week 3 of the experimental period (P< 0.05). In the caecum, proximal and mid colon, AXD feeding resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P <0.001). In conclusion, the RSD and AXD differently affected digestion processes compared with the WSD, and the AXD most efficiently shifted the microbial composition towards butyrogenic species in the faeces and increased the large-intestinal butyrate pool size.

  12. Effect of drying temperatures on starch-related functional and thermal properties of acorn flours.

    Science.gov (United States)

    Correia, P R; Beirão-da-Costa, M L

    2011-03-01

    The application of starchy flours from different origins in food systems depends greatly on information about the chemical and functional properties of such food materials. Acorns are important forestry resources in the central and southern regions of Portugal. To preserve these fruits and to optimize their use, techniques like drying are needed. The effects of different drying temperatures on starch-related functional properties of acorn flours obtained from dried fruits of Quercus rotundifolia (QR) and Quercus suber (QS) were evaluated. Flours were characterized for amylose and resistant starch (RS) contents, swelling ability, and gelatinization properties. Drying temperature mainly affected amylose content and viscoamylographic properties. Amylograms of flours from fruits dried at 60 °C displayed higher consistency (2102 B.U. and 1560 B.U., respectively, for QR and QS). The transition temperatures and enthalpy were less affected by drying temperature, suggesting few modifications in starch structure during drying. QR flours presented different functional properties to those obtained from QS acorn flours. The effect of drying temperatures were more evident in QR.

  13. Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties.

    Science.gov (United States)

    Chen, Jin; Liang, Yi; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2016-10-05

    The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (To: 81.11°C) and setback viscosity (548.9mPas). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  15. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  16. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  17. Optimization of Extrusion Process of Directly Expanded Snacks Based on Potato Starch in a Single Step for the Formation of Type IV Resistant Starch.

    Science.gov (United States)

    Calvo-López, Amira Daniela; Martínez-Bustos, Fernando

    2017-09-01

    Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m 3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m 3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.

  18. Preparation and Evaluation of Alcohol-Alkaline-Treated Rice Starch ...

    African Journals Online (AJOL)

    lower in the presence of large particles (3.55 ± 0.56 min); high content of MRS ... Conclusion: MRS exhibits improved water solubility and swelling capacity compared with RS, and is ..... excipient: Modification of the permeability of starch by.

  19. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  20. The test of Tensile Properties and Water Resistance of a Novel Cross-linked Starch Prepared by Adding Oil-Flax

    Science.gov (United States)

    Shi, Dawei; Wang, Rui

    2017-12-01

    In this study, to solve the poor water resistance and the low mechanical properties of starch, a mixed-starch composite matrix which including glycerol, sorbitol, and urea, were prepared via single-crew extrusion, then adding oil-flax to improve its physical mechanical and used to a source of biodegradable plastics material. The composite matrix was systematically characterized using various analytic tools including XRD, SEM and TG. The composite showed a maximum tensile strength of 18.11Mpa and moisture absorption 17.67%, while the original starch matrix was only 12.51 Mpa and 24.98%, respectively.

  1. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  2. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Sonja de Vries

    Full Text Available Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose or corn distillers dried grain with solubles (DDGS; (glucuronoarabinoxylans and cellulose with or without inclusion of β-glucans (6% or retrograded tapioca (40% substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction from rapeseed meal (6%-units, P10%-units, P<0.001, indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.

  3. Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1974-01-01

    Because starch of low viscosity is important for industrial purposes this research was carried out to study the possibility of producing this sort of starch by treating rice starch with γ-irradiation. Results indicated than when rice starch was modified by γ-irradiation, the reducing power increased and degradation as well as molecular breakdown occured followed by sharp decrease of its viscosity, specific viscosity and intrisinc viscosity. Results showed that starch became more soluble by treating with γ-irradiation and lost its resistance to water as its swelling capacity decreased. All these changes were proportional to the doses of γ-irradiation. (orig.) [de

  4. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978.

    Science.gov (United States)

    Adams, Felise G; Stroeher, Uwe H; Hassan, Karl A; Marri, Shashikanth; Brown, Melissa H

    2018-01-01

    In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.

  5. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of β-Glucans and resistant starch on fermentation of recalcitrant fibers in growing pigs

    NARCIS (Netherlands)

    Vries, de S.; Gerrits, W.J.J.; Kabel, M.A.; Zijlstra, Ruurd; Vasanthan, Thava

    2017-01-01

    Effects of the presence of β-glucans and resistant starch in diets on nutrient and fiber degradability of rapeseed meal [RSM] (Brassica napus) and Distillers Dried Grain with Solubles (DDGS) were tested in a 2 × 3 factorial arrangement. Two basal diets, containing either 500 g/kg RSM or DDGS and

  7. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  8. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  10. Effects of corn-based diet starch content and corn particle size on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    Science.gov (United States)

    Fredin, S M; Ferraretto, L F; Akins, M S; Bertics, S J; Shaver, R D

    2015-01-01

    An experiment was conducted to determine the effects of dietary starch content in corn-based diets and corn particle size on lactation performance, nutrient digestibility, and bacterial protein flow in dairy cows using the omasal and reticular sampling technique. Eight ruminally cannulated lactating multiparous Holstein cows were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of treatments. Treatments were fine (FG; mean particle size=552µm) and coarse (CG; 1,270µm) ground dry shelled corn in normal- (NS) and reduced- (RS) starch diets fed as total mixed rations. The NS and RS rations contained 27 and 18% starch (dry matter basis), respectively, and were formulated by partially replacing corn with soy hull pellets. Mean dry matter intake was unaffected by treatment (23.2kg/d). Cows fed NS diets produced 1.9kg/d more milk and 0.06kg/d more milk protein compared with cows fed RS diets. Cows fed NSFG and RSCG diets produced more fat-corrected milk than did cows fed NSCG and RSFG diets. Milk urea concentration was decreased for cows fed NS diets (12.4mg/dL) compared with RS diets (13.5mg/dL). Ruminal digestibility of neutral detergent fiber (NDF; % of NDF intake) determined by the omasal sampling technique was increased in cows fed RS diets compared with NS diets (43.4 vs. 34.9%), and total-tract digestibility of NDF (% of NDF intake) was increased in cows fed RS diets compared with those fed NS diets (50.1 vs. 43.1%). Ruminal digestibility of starch (% of starch intake) determined by the omasal sampling technique was greater in cows fed NS diets compared with those fed RS diets (85.6 vs. 81.6%). Total-tract starch digestion was increased in cows fed RS diets compared with those fed NS diets (96.9 vs. 94.6%) and in cows fed FG diets compared with those fed CG diets (98.0 vs. 93.5%). Bacterial protein flow was unaffected by treatment. The omasal and reticular sampling techniques resulted in similar treatment effects for nutrient flow

  11. Phosphate fertilization changes the characteristics of 'Maçã' banana starch.

    Science.gov (United States)

    Mesquita, Camila de Barros; Garcia, Émerson Loli; Bolfarini, Ana Carolina Batista; Leonel, Sarita; Franco, Célia Maria L; Leonel, Magali

    2018-06-01

    The unripe banana has been studied as a potential source of starch for use in various applications. Considering the importance of phosphorus in the biosynthesis of the starch and also the interference of this mineral in starch properties, in this study it was evaluated the effect of rates of phosphate fertilizer applied in the cultivation of 'Maçã' banana on the characteristics of the starch. Starches extracted from fruits from different treatments were analyzed for morphological characteristics, X-ray diffraction pattern, relative crystallinity, granule size, amylose, resistant starch and phosphorus levels, as well as, for pasting and thermal properties. Results showed that the phosphate fertilization has interference on the characteristics of the banana starch led to increase of phosphorus content and size of the granules, reduction of crystallinity and resistant starch content, decrease of viscosity peak, breakdown, final viscosity, setback, transitions temperatures and enthalpy. These changes caused by phosphate fertilizer conditions can be increase the applications of the 'Maçã' banana starch. Copyright © 2018. Published by Elsevier B.V.

  12. Effect of parboiling on the formation of resistant starch, digestibility and functional properties of rice flour from different varieties grown in Sri Lanka.

    Science.gov (United States)

    Gunaratne, Anil; Kao, Wu; Ratnayaka, Jennet; Collado, Lilia; Corke, Harold

    2013-08-30

    Hydrothermal treatment used in parboiling could induce formation of novel starch properties having potential food applications. In the current work, functional, digestible and retrogradation properties of flour from non-parboiled and steamed parboiled six rice varieties with high amylose content of around 30% but differing in length and width ratio were investigated and compared. The parboiling process reduced swelling volume and amylose leaching in all tested varieties. Among the varieties studied, the resistant starch content ranged from 1.6% in AT 306 to 0.46% in BG 357. Parboiling reduced the resistant starch content in AT 306 by about 50%, but it did not significantly affect the resistant starch content of the other varieties. The amylose-lipid complex remained unchanged after parboiling. Amylopectin retrogradation was not observed in parboiled rice. Amylose retrogradation was not seen except for AT 306. Pasting behaviour of parboiled rice flours showed high pasting stability and low setback. Flours were more susceptible to enzymatic hydrolysis after parboiling. Partial gelatinisation during parboiling was sufficient to produce grains with excellent milling quality showing a head rice recovery that ranged from 98% to 100% among the varieties studied. Degree of gelatinisation is the most important factor that determines the high head rice recovery. High pasting stability and low setback of flour of parboiled rice indicate some potential food applications. © 2013 Society of Chemical Industry.

  13. Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes12

    OpenAIRE

    Slavin, Joanne L.

    2013-01-01

    Vegetables are universally promoted as healthy. Dietary Guidelines for Americans 2010 recommend that you make half of your plate fruits and vegetables. Vegetables are diverse plants that vary greatly in energy content and nutrients. Vegetables supply carbohydrates, dietary fiber, and resistant starch in the diet, all of which have been linked to positive health outcomes. Fiber lowers the incidence of cardiovascular disease and obesity. In this paper, the important role of white vegetables in ...

  14. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat.

    Science.gov (United States)

    Paturi, Gunaranjan; Nyanhanda, Tafadzwa; Butts, Christine A; Herath, Thanuja D; Monro, John A; Ansell, Juliet

    2012-10-01

    The effects of red meat consumption with and without fermentable carbohydrates on indices of large bowel health in rats were examined. Sprague-Dawley rats were fed cellulose, potato fiber, or potato-resistant starch diets containing 12% casein for 2 wk, then similar diets containing 25% cooked beef for 6 wk. After week 8, cecal and colonic microbiota composition, fermentation end-products, colon structure, and colonocyte DNA damage were analyzed. Rats fed potato fiber had lower Bacteroides-Prevotella-Porphyromonas group compared to other diet groups. Colonic Bifidobacterium spp. and/or Lactobacillus spp. were higher in potato fiber and potato-resistant starch diets than in the cellulose diet. Beneficial changes were observed in short-chain fatty acid concentrations (acetic, butyric, and propionic acids) in rats fed potato fiber compared with rats fed cellulose. Phenol and p-cresol concentrations were lower in the cecum and colon of rats fed potato fiber. An increase in goblet cells per crypt and longer crypts were found in the colon of rats fed potato fiber and potato-resistant starch diets. Fermentable carbohydrates had no effect on colonic DNA damage. Dietary combinations of red meat with potato fiber or potato-resistant starch have distinctive effects in the large bowel. Future studies are essential to examine the efficacy of different types of nondigestible carbohydrates in maintaining colonic health during long-term consumption of high-protein diets. Improved understanding of interactions between the food consumed and gut microbiota provides knowledge needed to make healthier food choices for large bowel health. The impact of red meat on large bowel health may be ameliorated by consuming with fermentable dietary fiber, a colonic energy source that produces less harmful by-products than the microbial breakdown of colonic protein for energy. Developing functional red meat products with fermentable dietary fiber could be one way to promote a healthy and balanced

  15. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  16. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acute Consumption of Resistant Starch Reduces Food Intake but Has No Effect on Appetite Ratings in Healthy Subjects.

    Science.gov (United States)

    Ble-Castillo, Jorge L; Juárez-Rojop, Isela E; Tovilla-Zárate, Carlos A; García-Vázquez, Carlos; Servin-Cruz, Magda Z; Rodríguez-Hernández, Arturo; Araiza-Saldaña, Claudia I; Nolasco-Coleman, Ana M; Díaz-Zagoya, Juan C

    2017-07-04

    Previous studies have shown the benefits of native banana starch (NBS) supplementation in improving glucose metabolism and reducing body weight (BW) in humans. However, the effect of this starch on appetite regulation is unknown. The aim of this study was to examine the effects of NBS rich resistant starch on subjective measurements of appetite, energy intake, and appetite hormones in healthy subjects. Postprandial glucose and insulin responses were also assessed. In a randomized, single-blind, crossover study, 28 healthy young subjects consumed a beverage containing either 40 g of NBS or 40 g of digestible corn starch (DCS) on two separate occasions. Effects on appetite were estimated using visual analogue scales (VAS) and satiety hormone responses. At the end of the intervention, participants were provided with a pre-weighed ad libitum homogeneous test meal. After a washout period of 1 week, subjects received the alternative treatment. NBS supplementation induced a reduction in food intake, glucose area under the curve (AUC)-180 min, and insulin AUC-180 min. However, there was no associated effect on the subjective appetite ratings or gut hormones. NBS supplementation may help to reduce meal size and control BW.

  18. KAJIAN PENINGKATAN PATI RESISTEN YANG TERKANDUNG DALAM BAHAN PANGAN SEBAGAI SUMBER PREBIOTIK

    Directory of Open Access Journals (Sweden)

    Raden Haryo Bimo Setiarto

    2015-12-01

    Full Text Available Prebiotics are food ingredients that selectively stimulate the growth of probiotic bacteria in the colon. Resistant starch (RS is the starch that can not be digested by digestive enzymes and resistant to gastric acid so it can reach the colon to be fermented by probiotic bacteria. There are treatments to increase the content of RS such as: autoclaving-cooling cycling, combination of lintnerized with autoclaving-cooling, and combination of debranching pullulanase with autoclaving-cooling. The results of techno-economical study showed that the combination of fermentation followed by autoclaving-cooling can be used as an alternative technique to increase the content of resistant starch in food more effectively and efficiently.

  19. Pengaruh pengolahan terhadap Pati Resisten Pisang Kepok (Musa paradisiaca fa. typica) dan Pisang Tanduk (Musa paradisiaca fa. corniculata)

    OpenAIRE

    Marsono, Yustinus

    2016-01-01

    A study on the effect processing on resistant starch (RS) content and chemical composition of kepok (Musa paradisiaca fa. typica) and tanduk banana (Musa paradisiaca fa. corniculata) has been conducted. Mature banana was steamed, steamed - cooled, steamed - frozen, dried and dried - fried and was analyzed for starch, RS, simple sugars and chemical composition. RS content was determined by enzymatic method. It was found that steaming chaned RS from 6.2 mg/g to 9.5 mg/g (53%) for kepok banana a...

  20. Characterization of Digestion Resistance Sweet Potato Starch ...

    African Journals Online (AJOL)

    Purpose: To analyze the physicochemical properties and in vitro digestibility of sweet potato starchphosphodiester prepared using sodium trimetaphosphate. Methods: The physicochemical properties of sweet potato starch phosphodiester were analyzed by using infrared spectrometry (IR), differential scanning calorimetry ...

  1. Preparation and In vitro Digestibility of Corn Starch Phosphodiester ...

    African Journals Online (AJOL)

    Purpose: To optimize the process conditions and analyze in vitro digestibility of corn starch phosphodiester prepared by sodium trimetaphosphate (STMP). Methods: By using response surface method, the effects of STMP concentration, pH, esterification temperature, and urea addition on digestion resistance of corn starch ...

  2. Thermoplastic starch materials prepared from rice starch; Preparacao e caracterizacao de materiais termoplasticos preparados a partir de amido de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S., E-mail: barbarapont@gmail.co [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2009-07-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  3. Calcium or resistant starch does not affect colonic epithelial cell proliferation throughout the colon in adenoma patients : A randomized controlled trial

    NARCIS (Netherlands)

    van Gorkom, Britta A P; Karrenbeld, Arend; van der Sluis, Tineke; Zwart, Nynke; van der Meer, Roelof; de Vries, Elisabeth G E; Kleibeuker, Jan H

    2002-01-01

    Patients with a history of sporadic adenomas have increased epithelial cell proliferative activity, an intermediate risk marker for colorectal cancer. Reduction of proliferation by dietary intervention may reflect a decreased colorectal cancer risk. To evaluate whether calcium or resistant starch

  4. Effect of dietary starch source on milk production and composition of ...

    African Journals Online (AJOL)

    huis

    The larger granules of more enzyme-resistant B-type crystalline starch in ... of nonstructural carbohydrates increases the utilization of ruminal ammonia-N ..... An improved enzymatic method for the determination of native and modified starch. J.

  5. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2014-01-01

    Full Text Available Bubble electrospinning exhibits profound prospect of industrialization of macro/ nano materials. Starch is the most abundant and inexpensive biopolymer. With the drawbacks of poor strength, water resistibility, thermal stability and processability of pure starch, some biodegradable synthetic polymers such as poly (lactic acid, polyvinyl alcohol were composited to electrospinning. To the best of our knowledge, composite nanofibers of polyvinyl alcohol/starch from bubble electrospinning have never been investigated. In the present study, nanofibers of polyvinyl alcohol/starch were prepared from bubble electrospinning. The processability and the morphology were affected by the weight ratio of polyvinyl alcohol and starchy. The rheological studies were in agreement with the spinnability of the electrospinning solutions.

  6. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance.

    Science.gov (United States)

    Fu, Shulan; Ren, Zhenglong; Chen, Xiaoming; Yan, Benju; Tan, Feiquan; Fu, Tihua; Tang, Zongxiang

    2014-11-01

    Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2 n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2 n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4 RL) and 6R (6 RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4 RL and 6 RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4 RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5 DS) on which rye chromosome 4R was fused through the short arm 4 RS (designated 5 DS-4 RS · 4 RL; 4 RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4 RS) that was attached to the short arm of wheat chromosome 5D (5 DS) (designated 4 RS-5 DS · 5 DL; 5 DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5 DS-4 RS · 4 RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.

  7. The influence of diet on the development of swine dysentery upon experimental infection

    DEFF Research Database (Denmark)

    Lindecrona, R.H.; Jensen, Tim Kåre; Jensen, B.B.

    2003-01-01

    , to confirm if low non-starch polysaccharide (NSP)-containing diets reduce swine dysentery the effect of different dietary levels of NSP and resistant starch (RS) was evaluated. These diets were based on cooked rice and animal protein, cooked rice and potato starch, cooked rice and wheat bran, or cooked rice...

  8. Intactness of cell wall structure controls the in vitro digestion of starch in legumes.

    Science.gov (United States)

    Dhital, Sushil; Bhattarai, Rewati R; Gorham, John; Gidley, Michael J

    2016-03-01

    Increasing the level of starch that is not digested by the end of the small intestine and therefore enters the colon ('resistant starch') is a major opportunity for improving the nutritional profile of foods. One mechanism that has been shown to be successful is entrapment of starch within an intact plant tissue structure. However, the level of tissue intactness required for resistance to amylase digestion has not been defined. In this study, intact cells were isolated from a range of legumes after thermal treatment at 60 °C (starch not gelatinised) or 95 °C (starch gelatinised) followed by hydrolysis using pancreatic alpha amylase. It was found that intact cells, isolated at either temperature, were impervious to amylase. However, application of mechanical force damaged the cell wall and made starch accessible to digestive enzymes. This shows that the access of enzymes to the entrapped swollen starch is the rate limiting step controlling hydrolysis of starch in cooked legumes. The results suggest that a single cell wall could be sufficient to provide an effective delivery of starch to the large intestine with consequent nutritional benefits, provided that mechanical damage during digestion is avoided.

  9. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study

    DEFF Research Database (Denmark)

    Hald, Stine; Schioldan, Anne Grethe; Moore, Mary E

    2016-01-01

    with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch......Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched...... and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet...

  10. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii.

    Science.gov (United States)

    Ze, Xiaolei; Ben David, Yonit; Laverde-Gomez, Jenny A; Dassa, Bareket; Sheridan, Paul O; Duncan, Sylvia H; Louis, Petra; Henrissat, Bernard; Juge, Nathalie; Koropatkin, Nicole M; Bayer, Edward A; Flint, Harry J

    2015-09-29

    Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate "resistant" starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockerins possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an "amylosome." Fermentation of dietary nondigestible carbohydrates by the human colonic microbiota supplies much of the energy that supports microbial growth in the intestine. This activity has important consequences for health via modulation of

  11. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  12. Spherical composite particles of rice starch and microcrystalline cellulose: A new coprocessed excipient for direct compression

    OpenAIRE

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-01-01

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcry stalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 μm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although ...

  13. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes.

    Science.gov (United States)

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-08-01

    To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes.A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system.In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4-8.4 vs 7.4 ± 1.6, 95% CI 6.9-7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9-17.4 vs 18.7 ± 4.0, 95% CI 17.6-20.1, P AUC measurements for hypoglycemia (glucose glucose excursion.

  16. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  17. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  18. Modification of Foamed Articles Based on Cassava Starch

    International Nuclear Information System (INIS)

    Ponce, P.

    2006-01-01

    This work reports the influence of radiation, plasticizers and poly vinyl alcohol (PVA) on the barrier properties [water vapour permeability (WVP)) and mechanical properties (tensile strength and elongation; compression resistance and flexibility) of foamed articles based on cassava starch. The starch foam was obtained by thermopressing process. Poly ethylene glycol (PEG, 300) was selected as plasticizer and water was necessary for the preparation of the foams. The foamed articles based on cassava starch were irradiated at low doses of 2 and 5 kGy, commonly used in food irradiation. The mechanical properties of starch foams are influenced by the plasticizer concentration and by irradiation dose. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the foams; also increase the permeability of the foams in water. After irradiation, the barrier properties and mechanical properties of the foams were improved due to chemical reactions among polymer molecules. Irradiated starch cassava foams with poly vinyl alcohol (PVA) have good flexibility and low water permeability. WVP can be reduced by low doses of gamma radiation

  19. Correlation of pasting behaviors with total phenolic compounds and starch digestibility of indigenous pigmented rice grown in upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Jirapa Ponjanta

    2016-03-01

    Full Text Available Background: Thailand has one of the most important rice genetic resources with white, light brown, brown, red, and purple rice bran colors. The latter believed to have potential for health benefits due to their phenolic content. Recently researchers have indicated that starch digestive enzymes, including salivary and pancreatic α-amylases and α-glucosidases, can be inhibited by phenolic compounds. Although pasting properties of rice flour are key determinants of quality significantly impacting the final product texture, there is no in-depth study on their correlation with phenolic compound and starch digestibility. Methods: Rice flour from twelve varieties, three from each of five bran colors (white, brown, red, and purple, were evaluated for pasting properties (RVA-3D, total phenolic compounds, amylose content, resistant starch and estimated glycemic index. Simple correlation coefficients were calculated for the relationships between pasting properties (final viscosity, breakdown, setback and pasting temperature and total phenolic compounds, resistant starch and estimated glycemic index. Results: Within each rice variety, red and purple pigmented flours had higher total phenolic compounds (TPC and more resistant starch than that of white flours. The TPC and resistant starch content of the flours ranged between 7.83- 47.3 mg/L and 2.44–10.50% respectively, and producing 60-80 of estimated glycemic index. Viscosity behavior showed that pigmented with low amylose rice had lower viscosity temperature than that of pigmented with high amylose rice flour, but higher in peak viscosity. Correlation coefficients of pasting temperature, final viscosity, break down and setback with TCP was observed to be inversely related to glycemic index. However, it was positively correlated to the resistant starch and amylose content. Conclusions: Pigmented rice flour is a better source of TPC and resistant starch which in turn provides low glycemic index. This

  20. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film.

    Science.gov (United States)

    Hu, Yingmo; Wang, Qingling; Tang, Mingru

    2013-07-25

    Starch/lactic acid graft copolymer (Starch-g-PLA) was prepared by the in situ copolymerization of starch grafted with lactic acid catalyzed with sodium hydroxide, and then mixed with poly(vinyl alcohol) (PVA) to get composite films. The structures of the graft copolymer and composite films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties, water resistance, and thermal stability were also investigated. It was found that the compatibility of Starch-g-PLA and PVA was better than that of starch and PVA in the composite films. The tensile strength and elongation at break of the Starch-g-PLA/PVA composite film increased by 69.15% and 84.22%, respectively, while the water absorption decreased by 50.39%, which overcame the shortcomings of hydrophilicity and poor mechanical properties of Starch/PVA film. Thermogravimetric analysis (TGA) also showed that the thermal stability of Starch-g-PLA/PVA film was improved compared with Starch/PVA film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  3. Prebiotic properties of potato starch dextrins

    Directory of Open Access Journals (Sweden)

    Renata Barczyńska

    2015-09-01

    Full Text Available The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion – they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains.

  4. Thermoplastic Starch with Improved Properties by Blending with Lignins and Radiation Processing

    International Nuclear Information System (INIS)

    Zheng, D.; Baumberger, S.; Mikus, P.-Y.; Dole, P.; Soulestin, J.; Lacrampe, M.F.; Bliard, C.; Coqueret, X.

    2010-01-01

    The biorefinery of lignocellulosics generates lignin-rich fractions, which are potential source of phenolic molecules for chemistry and polymeric materials. The LignoStarch project aims at using such fractions to functionalize a renewable material, starch, by a clean physical grafting process, without any synthetic chemical additive and without any by-products generation. Previous works suggested that the low-molar-mass phenolic compounds in technical lignin could be responsible for the reactivity of starch-lignin system under electron-beam irradiation and improvement of starch water resistance. A particular aspect of the current studies is focused on the role of lignin phenolic extractables and to investigate the different chemical and physical parameters likely to impact the surface properties of starch-lignin materials. (author)

  5. Isolation and partial characterization of starch from banana cultivars grown in Colombia.

    Science.gov (United States)

    Chávez-Salazar, A; Bello-Pérez, L A; Agama-Acevedo, E; Castellanos-Galeano, F J; Álvarez-Barreto, C I; Pacheco-Vargas, G

    2017-05-01

    Banana starch is resistant to hydrolysis by digestive enzymes due to its structure and dietary fibre content. Starch was isolated from the following three cultivars of Colombian Musaceae: Gros Michel (dessert), Dominico Harton and FHIA 20 (cooking); also, the amylose and amylopectin contents, morphology of the granules, thermal properties, pasting, molecular characteristics and digestibility were determined. The total starch content, amylose content and digestibility (gelatinized starch) were higher in cooking varieties; the purity and gelatinization temperature were similar for the three varieties, but the enthalpy was higher in the dessert variety. The three varieties showed higher viscosities in the pasting profile compared to commercial maize starch in both acid and neutral conditions. Starch granules presented with heterogeneous sizes and shapes (elongated and ovals) that had birefringence. The Dominico Hartón variety showed the lowest rapidly digestible starch (RDS) value in the gelatinized sample that is in agreement with the greater proportion of long chains. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  7. Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications

    OpenAIRE

    Berber Yamak, Hale

    2016-01-01

    In this study, low density polyethylene, LDPE was melt blended with starch using twin screw extruder to form biodegradable polymer blends. The LDPE/starch blend films used in food packing were obtained by hot pressing of the granules produced by extrusion process. The starch content was varied from 0 to 40 wt% of LDPE. To provide fine starch dispersion, glycerol and zinc stearate were used as plasticizer and compatibilizer, respectively. The effect of starch content on the properties of LDPE ...

  8. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  9. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    Science.gov (United States)

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  10. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis.

    Science.gov (United States)

    Bhattarai, Rewati R; Dhital, Sushil; Wu, Peng; Chen, Xiao Dong; Gidley, Michael J

    2017-07-19

    Retention of intact plant cells to the end of the small intestine leads to transport of entrapped macronutrients such as starch and protein for colonic microbial fermentation, and is a promising mechanism to increase the content of resistant starch in diets. However, the effect of gastro-intestinal bio-mechanical processing on the intactness of plant cells and the subsequent resistance to enzymatic digestion of intracellular starch and protein are not well understood. In this study, intact cells isolated from legume cotyledons are digested in a laboratory model which mimics the mechanical and biochemical conditions of the rat stomach and duodenum. The resulting digesta are characterised in terms of cell (wall) integrity as well as intracellular starch and protein hydrolysis. The cells remained essentially intact in the model with negligible (ca. 2-3%) starch or protein digestion; however when the cells were mechanically broken and digested in the model, the hydrolysis was increased to 45-50% suggesting that intact cellular structures could survive the mixing regimes in the model stomach and duodenum sufficiently to prevent digestive enzyme access. Apart from intact cell walls providing effective barrier properties, they also limit digestibility by restricting starch gelatinisation during cooking, and significant non-specific binding of α-amylase is observed to both intact and broken cell wall components, providing a third mechanism hindering starch hydrolysis. The study suggests that the preservation of intactness of plant cells, such as from legumes, could be a viable approach to achieve the targeted delivery of resistant starch to the colon.

  11. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L.

    2015-01-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  12. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  13. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    Directory of Open Access Journals (Sweden)

    Yandeau-Nelson Marna

    2011-05-01

    Full Text Available Abstract Background Two distinct starch branching enzyme (SBE isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.

  14. KARAKTERISTIK FISIKO-KIMIA DAN FUNGSIONAL PATI SAGU IHUR TERMODIFIKASI DENGAN HEAT MOISTURE TREATMENT

    Directory of Open Access Journals (Sweden)

    Priscillia Picauly

    2017-06-01

    Full Text Available The objective of this study was to characterize the properties of Heat Moisture treatment (HMT modified ihur sago starch with different moisture contents. The starch was modified with HMT at 110°C after being adjusted to various moisture contents (23, 28, or 33% for 4 h. The physico-chemical and functional properties of the native and modified HMT Ihur sago starch observed were color, swelling power, solubility, paste clarity, moisture content, ash content, amylose content, phenol content, and resistant starch (RS content. Results of this study showed that the HMT starch has a higher degree of lightness (L*, redness (a*, and yellowness (b*, solubility (4.85-5.38% but lower swelling power (44.06-47.47 g/g than the native starch which has a solubility and swelling power of 4.90% and 50.72 g/g, respectively. Paste clarity was found to decrease along the storage period. In addition, higher moisture content (11.81-13.20%, but lower amylose (14.81-23.52%, phenol (2.50-4.04%, and RS (5.4-6.1% content were observed than the native starch with amylose, phenol, and RS content of 27.18, 7.91, and 6.5%, respectively.

  15. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  17. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  20. Influence of nanoparticles on the properties of bionanocomposites from cassava starch

    International Nuclear Information System (INIS)

    Paglicawan, Marissa A.; Emolaga, Carlo S.; Navarro, Ma. Teresa V.; Celorico, Josefina; Basilia, Blessie A.

    2015-01-01

    /thickness ratios, in a starch matrix significantly improves mechnanical, water resistance and barrier properties of the polymer matrix. (author)

  1. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  2. Gamma irradiation effect on mechanical and barrier properties of foamed articles based on cassava starch

    International Nuclear Information System (INIS)

    Naime, Natalia; Ponce, Patricia; Lugao, Ademar B.

    2009-01-01

    With the increasing environmental concern, replacing the traditional non-biodegradable synthetic materials for biodegradable products is the challenge for many researchers and companies. Starch is considered one of the most promising natural polymers for packaging application because of its renewability, biodegradability and low cost. However, there are some limitations in developing starch-based products due to its poor mechanical properties and high moisture sensitivity. These properties can change when subjected to any process of sterilization, especially by gamma radiation. This work aims to study the mechanical and barrier properties of cassava starch in front of gamma radiation, for cobalt-60 ( 60 C0), when subjected to doses of 3 kGy, 6 kGy, 12 kGy and 25 kGy for the development of packaging, and then it compares the results to those of conventional packaging, as the expanded polystyrene (styrofoam) and paper cards. The starch foams (packaging) were obtained by thermopressing process. After baking, the foams were conditioned for one month at 23 deg C and 60% relative humidity (RH) before mechanical and barrier testing. Polyethyleneglycol (PEG 300) was selected as plasticizer. The packaging in which the cassava starch was subjected to irradiation had higher resistance to compression and higher flexibility compared to that in which the starch had not been irradiated. The expanded polystyrene and paper card packages are less resistant to compression than the cassava starch packages. The styrofoam is more flexible than the paper cards, which in turn is more flexible than packages of starch. After irradiation, the barrier properties of the foams were improved. (author)

  3. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.

    Science.gov (United States)

    Sun, Yujie; Hu, Qiongen; Qian, Jiangtao; Li, Ting; Ma, Piming; Shi, Dongjian; Dong, Weifu; Chen, Mingqing

    2016-03-30

    Based on stearyl chloride and native starch, esterified starch were prepared and the chemical structure was characterized by (1)H NMR and FTIR. It was found that stearyl chloride was an efficient agent to fabricate esterified starch with high degree of substitution (DS). During the melt blending of esterified starch (80 wt%) and poly(caprolactone) (PCL, 20 wt%), it was shown the torque of PCL/esterified starch was much lower than that of PCL/native starch without any plasticizer, and further decreased with increasing DS. Compared with PCL/native starch, the tensile properties of PCL/esterified starch composites were significantly enhanced. The tensile strength and elongation at break were increased from 2.7 MPa to 56% for PCL/native starch composites to 9.1 MPa and 626% for PCL/esterified starch ones with DS of 1.50, respectively. SEM observation revealed the esterified starch particles in matrix became smaller and more uniform. In addition, the water resistance and hydrophobic character of PCL/esterified starch composites were improved. PCL composites containing 80 wt% esterified starch with favorable mechanical properties would have great potential applications in broad areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Determination of glycaemic index; some methodological aspects related to the analysis of carbohydrate load and characteristics of the previous evening meal.

    Science.gov (United States)

    Granfeldt, Y; Wu, X; Björck, I

    2006-01-01

    To determine the possible differences in glycaemic index (GI) depending on (1) the analytical method used to calculate the 'available carbohydrate' load, that is, using carbohydrates by difference (total carbohydrate by difference, minus dietary fibre (DF)) as available carbohydrates vs available starch basis (total starch minus resistant starch (RS)) of a food rich in intrinsic RS and (2) the effect of GI characteristics and/or the content of indigestible carbohydrates (RS and DF) of the evening meal prior to GI testing the following morning. Blood glucose and serum insulin responses were studied after subjects consuming (1) two levels of barley kernels rich in intrinsic RS (15.2%, total starch basis) and (2) after a standard breakfast following three different evening meals varying in GI and/or indigestible carbohydrates: pasta, barley kernels and white wheat bread, respectively. Healthy adults with normal body mass index. (1) Increasing the portion size of barley kernels from 79.6 g (50 g 'available carbohydrates') to 93.9 g (50 g available starch) to adjust for its RS content did not significantly affect the GI or insulin index (11). (2) The low GI barley evening meal, as opposed to white wheat bread and pasta evening meals, reduced the postprandial glycaemic and insulinaemic (23 and 29%, respectively, P base carbohydrate load on specific analyses of the available carbohydrate content. (2) A low GI barley evening meal containing high levels of indigestible carbohydrates (RS and DF) substantially reduced the GI and II of white wheat bread determined at a subsequent breakfast meal.

  5. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  9. Chemical characteristic and functional properties of arenga starch-taro (Colocasia esculanta L.) flour noodle with turmeric extracts addition

    Science.gov (United States)

    Ervika Rahayu N., H.; Ariani, Dini; Miftakhussolikhah, E., Maharani P.; Yudi, P.

    2017-01-01

    Arenga starch-taro (Colocasia esculanta L.) flour noodle is an alternative carbohydrate source made from 75% arenga starch and 25% taro flour, but it has a different color with commercial noodle product. The addition of natural color from turmeric may change the consumer preference and affect chemical characteristic and functional properties of noodle. This research aims to identify chemical characteristic and functional properties of arenga starch-taro flour noodle with turmeric extract addition. Extraction was performed using 5 variances of turmeric rhizome (0.06; 0.12; 0.18; 0.24; and 0.30 g (fresh weight/ml water). Then, noodle was made and chemical characteristic (proximate analysis) as well as functional properties (amylose, resistant starch, dietary fiber, antioxidant activity) were then evaluated. The result showed that addition of turmeric extract did not change protein, fat, carbohydrate, amylose, and resistant starch content significantly, while antioxidant activity was increased (23,41%) with addition of turmeric extract.

  10. Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch.

    Science.gov (United States)

    Lv, Qing-Qing; Li, Gao-Yang; Xie, Qiu-Tao; Zhang, Bao; Li, Xiao-Min; Pan, Yi; Chen, Han-Qing

    2018-08-01

    In order to increase the degree of substitution (DS), a combination of heat-moisture treatment (HMT) and octenyl succinylation (OSA) was used to modify sweet potato starch (SPS). The content of OSA had significant influence on the DS of starch, and DS of HMT OSA-modified SPS (HOSA-SPS) was higher than that of OSA-modified SPS (OSA-SPS), indicating that prior HMT could enhance the reaction. HOSA-SPS showed higher contents of SDS and RS in comparison with OSA-SPS as OSA concentration was beyond 6%. HMT decreased swelling power of starch while OSA modification had a contrary role (p < 0.05). Scanning electron microscopy (SEM) showed starch was destroyed by OSA modification while HMT had slight effect on the structure. X-ray diffraction (XRD) indicated that crystal type of starch was transformed from C- to A-type resulted from HMT, and remained unchanged by OSA modification. The onset, peak, and conclusion gelatinization temperatures of starch increased by HMT and decreased by OSA modification (p < 0.05). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    Science.gov (United States)

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  13. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  14. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    Science.gov (United States)

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  15. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    Directory of Open Access Journals (Sweden)

    Han Tao

    Full Text Available The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS, as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL. The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  16. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    The combination of branching enzyme (BE) and amylomaltase (AM) were selected to modify cassava starch. AM were used to elongate the glucan chains in order to enhance BE activity to create branching linkages. Cassava starch were gelatinized and incubated with BE or AMBE or BEAMBE or simultaneous...... AM and BE. The molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility were examined. Only BE catalysis showed 7.8% of branching linkages. The sequential AMBE-treated starch...... showed 9.9%-10.0% branching linkages, while the sequential BEAMBE-treated starch gained 10.9%-13.1% of branching linkages. Moreover, the sequential AMBE and BEAMBE-treated starch retarded the digestion rate of α-amylase and glucoamylase. Overall, sequential BEAMBE catalysis resulted in more...

  17. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  18. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis.

    Science.gov (United States)

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS-PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: k cat = 343 and 727 s -1 , K m = 0.25 and 0.16 mg mL -1 , k cat / K m (specificity constant) = 1374 and 4510 mg mL -1 s -1 , respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.

  19. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  20. Effects of different durations of acid hydrolysis on the properties of starch-based wood adhesive.

    Science.gov (United States)

    Wang, Yajie; Xiong, Hanguo; Wang, Zhenjiong; Zia-Ud-Din; Chen, Lei

    2017-10-01

    In this study, the effect of different durations of acid hydrolysis on the improvement of the properties of starch-based wood adhesive was investigated through a variety of determination methods The improved properties were analyzed using the pasting properties, viscosity, shear performance in dry and wet states, fourier infrared spectrometer, dynamic time sweep, and low filed nuclear magnetic resonance spectroscopy. Starch hydrolysis improved the viscosity stability, bonding performance, and water resistance of the starch-based wood adhesive. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modificação enzimática da farinha de arroz visando a produção de amido resistente Enzymatic modification on rice flour seeking the production of resitant starch

    Directory of Open Access Journals (Sweden)

    Márcio Garcia Severo

    2010-01-01

    Full Text Available The aim of this work was to study the enzymatic modification on rice flour using lipase pancreatic and amyloglucosidase to obtain resistant starch. For this, Response Surface Methodology (RSM was used to determine the best operating conditions for each enzyme. For lypase pancreatic, the highest value for resistant starch (45% was achieved within 2 h reaction at pH 7 using an enzyme/substrate ratio of 4% (w/w and Dp= 100/200 tyler. For amyloglucosidase, optima conditions corresponded to an enzyme/substrate ratio of 0,006 mL/g and Dp= 100/200 tyler at 45 ºC, yielding 57% of resistant starch in 2 h reaction. These results show the potential of using both enzymes to modified rice flour, increasing the resistant starch in about 5.7 folds in relation to the flour without treatment (resistant starch=10.6%.

  2. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  3. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  5. Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products.

    Science.gov (United States)

    Nasrin, Taslima Ayesha Aktar; Anal, Anil Kumar

    2015-08-01

    Oil in water emulsions were produced by the mixture of culled banana resistant starch (CBRS) & soy protein isolate (SPI), mixture of Hylon VII & SPI and SPI with 7.5 and 5 % (w/w) Menhaden fish oil. The emulsions were further freeze- dried obtaining 33 and 50 % oil load microcapsules. The range of particles diameter was 4.11 to 7.25 μm and viscosity was 34.6 to 146.48 cP of the emulsions. Compressibility index (CI), Hasner ratio (HR) and angle of repose (AR) was significantly (p < 0.01) lower of the microcapsules made with starch and protein (CBRS & SPI and Hylon VII & SPI) than that made with protein (SPI) only. Microcapsules composed of CBRS & SPI with 33 % oil load had maximum microencapsulation efficiency (82.49 %) and highest oxidative stability. Muffin made with emulsions containing mixture of CBRS & SPI exhibited less fishy flavour than that containing mixture of Hylon VII & SPI.

  6. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  7. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and characterization of retrograded starch nanoparticles through homogenization and miniemulsion cross-linking.

    Science.gov (United States)

    Ding, Yongbo; Zheng, Jiong; Zhang, Fusheng; Kan, Jianquan

    2016-10-20

    A new and convenient route to synthesizing retrograded starch nanoparticles (RS3NPs) through homogenization combined with a water-in-oil miniemulsion cross-linking technique was developed. The RS3NPs were optimized using Box-Behnken experimental design. Homogenization pressure (X1), oil/water ratio (X2), and surfactant (X3) were selected as independent variables, whereas particle size was considered as a dependent variable. Results indicated that homogenization pressure was the main contributing variable for particle size. The optimum values for homogenization pressure, oil/water ratio, and surfactant were 30MPa, 9.34:1, and 2.54g, respectively, whereas the particle size was predicted to be 288.2 nm. Morphological, physical, chemical, and functional properties of the RS3NPs were the assessed. Scanning electron microscopy and dynamic light scattering images showed that RS3NP granules were broken down to size of about 222.2nm. X-ray diffraction results revealed a disruption in crystallinity. The RS3NPs exhibited a slight decrease in To, but Tp and Tc increased and narrowest Tc-To. The solubility and swelling power were also increased. New peaks at 1594.84 and 1403.65cm(-1) were observed in the FTIR graph. However, homogenization minimally influenced the antidigestibility of RS3NPs. The absorption properties improved, and the adsorption kinetic described the contact time on the adsorption of captopril onto RS3NPs. In vitro release experiment indicated that the drug was released as follows: 21% after 2h in SGF, 42.78% at the end of 8h (2h in SGF and 6h in SIF), and 92.55% after 12h in SCF. These findings may help better utilize RS3NP in biomedical applications as a drug delivery material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  11. Comparison of Structural and Functional Properties of Starches from the Rhizome and Bulbil of Chinese Yam (Dioscorea opposita Thunb.

    Directory of Open Access Journals (Sweden)

    Biao Zhang

    2018-02-01

    Full Text Available Chinese yam is an important edible starch plant and widely cultivated in China. Its rhizome and bulbil are starch storage tissues below and above ground, respectively. In this paper, starches were isolated from the rhizome and bulbil of Chinese yam, and their structural and functional properties were compared. Both starches had an oval shape with an eccentric hilum and a CA-type crystalline structure. Their short-range ordered structure and lamellar structure had no significant difference. However, the rhizome starch had a significantly bigger granule size and lower amylose content than the bulbil starch. The swelling power and water solubility were significantly lower in the rhizome starch than in the bulbil starch. The onset and peak gelatinization temperatures were significantly higher in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly higher breakdown viscosity and a lower setback viscosity than the bulbil starch. The thermal stability was lower in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly lower resistance to hydrolysis and in vitro digestion than the bulbil starch. The above results provide important information for the utilization of rhizome and bulbil starches of Chinese yam.

  12. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  13. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Role of the RS1 sequence of the cholera vibrio in amplification of the segment of plasmid DNA carrying the gene of resistance to tetracycline and the genes of cholera toxin

    International Nuclear Information System (INIS)

    Fil'kova, S.L.; Il'ina, T.S.; Gintsburg, A.L.; Yanishevskii, N.V.; Smirnov, G.B.

    1988-01-01

    The hybrid plasmid pCO107, representing cointegrate 14(2)-5(2) of two plasmids, an F-derivative (pOX38) and a PBR322-derivative (pCT105) with an RS1 sequence of the cholera vibrio cloned in its makeup, contains two copes of RS1 at the sites of union of the two plasmids. Using a tetracycline resistance marker (Tc R ) of the plasmid pCT105, clones were isolated which have an elevated level of resistance to tetracycline (an increase of from 4- to 30-fold). Using restriction analysis and the Southern blot method of hybridization it was shown that the increase in the level of resistance of tetracycline is associated with the amplification of pCT105 portion of the cointegrate, and that the process of amplification is governed by the presence of direct repeats of the RS1 sequence at its ends. The increase in the number of copies of the pCT105 segment, which contains in its composition the genes of cholera toxin (vct), is accompanied by an increase in toxin production

  15. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  18. Pasting, rheological, and retrogradation properties of low-amylose rice starch with date syrup.

    Science.gov (United States)

    Mohamed, Ibrahim O; Babucurr, Jobe

    2017-09-01

    Effects of date syrup on pasting, rheological, and retrogradation properties of low-amylose rice starch were investigated using three levels of date syrup (starch:syrup 1:1, 1:2, or 1:3). Measurements were carried out using HR-2 Discovery Rheometer equipped with a pasting cell and parallel plate geometry. The pasting measurements showed that the peak viscosity of the control is significantly higher than the samples with date syrup (p date syrup levels. Addition of date syrup increases the solid-like behavior of the gel in reverse order with increased date syrup levels. Low-amylose starch gel used in this study showed minor changes in elastic modulus (G') during one week cold storage indicting that low-amylose rice starch is resistant to retrogradation. Addition of date syrup slightly resulted in increased retrogradation compared to the control.

  19. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  1. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Implementing a low-starch biscuit-free diet in zoo gorillas: the impact on health.

    Science.gov (United States)

    Less, E H; Lukas, K E; Bergl, R; Ball, R; Kuhar, C W; Lavin, S R; Raghanti, M A; Wensvoort, J; Willis, M A; Dennis, P M

    2014-01-01

    In the wild, western lowland gorillas consume a diet high in fiber and low in caloric density. In contrast, many gorillas in zoos consume a diet that is high-calorie and low in fiber. Some items commonly used in captive gorilla diets contain high levels of starch and sugars, which are minimal in the natural diet of gorillas. There is a growing concern that captive gorillas may qualify as obese. Furthermore, the leading cause of death for adult male gorillas in zoos is heart disease. In humans, a diet that is high in simple carbohydrates is associated with both obesity and the incidence of heart disease. In response to these issues, we implemented a biscuit-free diet (free of biscuits and low in fruit) and measured serum biomarkers of obesity and insulin resistance pre- and post-diet change at three institutions: North Carolina Zoological Garden, Cleveland Metroparks Zoo, and Columbus Zoo and Aquarium. We also added a resistant starch supplement to gorilla diets at two of the above institutions. We anticipated that these diet changes would positively affect biomarkers of obesity and insulin resistance. Both diet manipulations led to a reduction in insulin. Resistant starch also decreased overall serum cholesterol levels. Future research will examine these health changes in a greater number of individuals to determine if the results remain consistent with these preliminary findings. © 2014 Wiley Periodicals, Inc.

  3. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  4. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    Science.gov (United States)

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  5. Change of microflora of two starch samples by gamma irradiation

    International Nuclear Information System (INIS)

    Fretton, R.; Fretton, J.; Delattre, J.M.

    1975-01-01

    Starch is the basic component of a larger number of manufactured foods. The disinfection of such a powder by 60 Co is studied here. Gamma irradiation of two starch samples with different degrees of contamination allows the assumption that, in most cases, good radio-pasteurization can be achieved with 300 krad. The radio-pasteurization doses (varying from 300 to 600 krad) are a function of the initial contamination. Irradiation effects are spectacular with moulds. Activation of spores of some Clostridium species leads us to recommend an irradiation level higher than 200 krad. The most resistant organisms to gamma irradiation are the aerobic and anaerobic sporulated bacteria. The thermophilic forms are the most important. Spores of Bacillus, chiefly Bacillus licheniformis and Bacillus brevis, are the most frequent bacteria. Storage of irradiated starch at room temperature has little effect upon the number of revivable survivors. (orig.) [de

  6. In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera.

    Science.gov (United States)

    Shumoy, Habtu; Raes, Katleen

    2017-08-15

    The aim of this study was to investigate the in vitro starch digestibility of injera and porridge from seven tef varieties and to estimate their glycemic index. The total starch, free glucose, apparent amylose, resistant, slowly digestible and rapidly digestible starches of the varieties ranged between 66 and 76, 1.8 and 2.4g/100g flour dry matter (DM), 29 and 31%, 17 and 68, 19 and 53, 12 and 30g/100g starch DM, respectively. After processing into injera and porridge, the rapidly digestible starch content increased by 60-85% and 3-69%, respectively. The estimated glycemic index of porridge and injera of the varieties ranged 79-99 and 94-137 when estimated based on model of Goni et al. (1997) whereas from 69 to 100 and 94 to 161, respectively based on Granfeldtet al. (1992). Tef porridge and injera samples studied here can be classified as medium- high GI foods, not to be considered as a proper food ingredient for diabetic people and patients in weight gain control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  8. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  9. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging.

    Science.gov (United States)

    Muller, Justine; González-Martínez, Chelo; Chiralt, Amparo

    2017-08-15

    The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films.

  10. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging

    Science.gov (United States)

    González-Martínez, Chelo; Chiralt, Amparo

    2017-01-01

    The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films. PMID:28809808

  11. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight.

    Science.gov (United States)

    Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun

    2017-03-01

    Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends

    Science.gov (United States)

    Ali, H. E.; Abdel Ghaffar, A. M.

    2017-01-01

    Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.

  14. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  15. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  16. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  17. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    Science.gov (United States)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  20. Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability.

    Science.gov (United States)

    Leonel, Magali; Carmo, Ezequiel L; Fernandes, Adalton M; Franco, Célia M L; Soratto, Rogério P

    2016-04-01

    Starch is the major component of potato tubers, amounting approximately to 150-200 g kg (-1) of the tuber weight. Starch is considered to be a major factor for the functionality of the potato in food applications. This study evaluated the physical characteristics of potato starches isolated from tubers of different potato cultivars grown in soil with three levels of phosphorus (P) availability. All potatoes were growing according the same method. The starches were isolated by physical methods and the samples were analyzed for the amylose, P content, paste properties (RVA) and thermal properties of gelatinization and retrogradation (DSC). Experimental data were analyzed considering the potato cultivars and the three soil P availability. For all measured parameters significant impact of cultivar and soil P availability was determined. Phosphorus contents in potato starches ranged from 0.252 to 0.647 g kg(-1) and amylose from 27.18 to 30.8%. Starches from different potato cultivars independent of soil showed a small range of gelatinization temperature. All starches showed low resistance heating and shear stress. The results showed the influence of growing conditions (soil P availability) and also of the differences between the potato cultivars on important characteristics of applicability of starches. © 2015 Society of Chemical Industry.

  1. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  2. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermal Characterization of Modified Tacca Leontopetaloides Starch and Natural Rubber Based Thermoplastic Elastomer

    International Nuclear Information System (INIS)

    Ainatul Mardhiah Mohd Amin; Nur Shahidah Ab Aziz; Nurul Shuhada Mohd Makhtar; Miradatul Najwa Mohd Rodhi; Suhaila Mohd Sauid

    2014-01-01

    The purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic elastomers, TPEs. Starch based polymer had been recognized to have highly potential in replace existing source of conventional elastomeric polymer. The modification process of blending starch with natural rubber, plasticizers, additives, and filler contribute to the enhancement and improvement for the properties of starch in order to produce biopolymers by approaching the properties of TPEs. Thermal properties of starch based thermoplastic was studied to evaluate the decomposition and degradation of the samples by using Thermogravimetric Analysis, TGA while the properties of endothermic reactions of the samples were thermally analyzed via Differential Scanning Calorimetry, DSC. From the analysis, it was found that the thermal properties of samples were revealed by recognizing GM-2 (green materials, GM) has high thermal resistance towards high temperature up to 480.06 degree Celsius with higher amount of residue which is 4.97 mg compared to other samples. This indicates GM-2 comprises of superior combination of ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching the properties of Thermoplastic Elastomers, TPEs. (author)

  4. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  5. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  6. Physical and structural characterisation of starch/polyester blends with tartaric acid

    International Nuclear Information System (INIS)

    Olivato, J.B.; Müller, C.M.O.; Carvalho, G.M.; Yamashita, F.; Grossmann, M.V.E.

    2014-01-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ( 13 C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and 13 C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties

  7. Physical and structural characterisation of starch/polyester blends with tartaric acid

    Energy Technology Data Exchange (ETDEWEB)

    Olivato, J.B., E-mail: jubonametti@uel.br [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Müller, C.M.O. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Carvalho, G.M. [Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Yamashita, F.; Grossmann, M.V.E. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil)

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ({sup 13}C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and {sup 13}C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties.

  8. A comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites.

    Science.gov (United States)

    Baishya, Prasanta; Maji, Tarun Kumar

    2018-08-01

    Activated carbon (AC) prepared from Jatropha curcas and graphene oxide (GO) were employed in the preparation of natural polymer based wood starch composites (WSC) through the solution blending technique using water as a solvent. In this study, methyl methacrylate (MMA) was grafted onto the starch polymer and this MMA grafted starch (MMA-g-starch) was cross-linked with the cheap soft wood flour using the citric acid as cross-linker and water as a solvent in the whole process. The prepared GO and AC were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and Raman study. The interaction of GO and AC, with MMA-g-starch, citric acid and wood were studied by FTIR, XRD and SEM analysis. The GO and AC treated composites exhibited outstanding mechanical properties, thermal stability and fire resistance properties. The tensile strength of the composites increased by 178% and 200% with addition of 2 phr AC and GO respectively compared to untreated composites. A significant enhancement in water resistance properties of GO and AC treated composites was also attained. The study showed that the properties of the composites containing AC prepared from the seeds of Jatropha curcas was quite comparable with the composites reinforced with GO. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  10. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  11. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  12. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  14. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  15. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  16. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  17. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.

    Science.gov (United States)

    Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P

    2007-05-01

    Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.

  20. Brosimum Alicastrum as a Novel Starch Source for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Edgar Olguin-Maciel

    2017-10-01

    Full Text Available Ramon (Brosimum alicastrum is a forest tree native to the Mesoamerican region and the Caribbean. The flour obtained from Ramon seeds is 75% carbohydrate, of which 63% is starch, indicating its potential as a novel raw material for bioethanol production. The objective of this study was to produce ethanol from Ramon flour using a 90 °C thermic treatment for 30 min and a native yeast strain (Candida tropicalis for the fermentation process. In addition, the structure of the flour and the effects of pretreatment were observed via scanning electron microscopy. The native yeast strain was superior to the commercial strain, fermenting 98.8% of the reducing sugar (RS at 48 h and generating 31% more ethanol than commercial yeast. One ton of flour yielded 213 L of ethanol. These results suggest that Ramon flour is an excellent candidate for ethanol production. This is the first report on bioethanol production using the starch from Ramon seed flour and a native yeast strain isolated from this feedstock. This alternative material for bioethanol production minimizes the competition between food and energy production, a priority for Mexico that has led to significant changes in public policies to enhance the development of renewable energies.

  1. Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently - CORRIGENDUM

    DEFF Research Database (Denmark)

    Ingerslev, Anne Krog; Theil, Peter Kappel; Hedemann, Mette Skou

    2015-01-01

    The effects of increased colonic fermentation of dietary fibres (DF) on net portal flux (NPF) of carbohydrate-derived metabolites (glucose, SCFA and especially butyrate), hormones (insulin, C-peptide, GLP-1, GIP) and NEFA were studied in a healthy catheterised pig model. Six 59 ± 3.8 kg pigs were...... fitted with catheters in the mesenteric artery, the portal and hepatic vein, and a flowprobe around the portal vein and included in a double 3x3 crossover design with three daily feedings (at 9.00, 14.00 and 19.00 hours). Fasting and 5 hours postprandial blood samples were collected after 7 days...... adaptation to each diet. The pigs were fed a low DF western style control diet (WSD) and two high DF diets; an arabinoxylan (AXD) and a resistant starch (RSD) enriched diet. The NPF of insulin was lower (P = 0.04) in AXD fed pigs (4.6 nmol/h) compared to RSD fed pigs (10.5 nmol/h), despite the lowest NPF...

  2. Enzymatically Modified Starch Ameliorates Postprandial Serum Triglycerides and Lipid Metabolome in Growing Pigs.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim

    2015-01-01

    Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (Pmetabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.

  3. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  4. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  5. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  6. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  7. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.

    Science.gov (United States)

    Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare

    2015-10-01

    Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biodegradable films made from raw and acetylated cassava starch

    Directory of Open Access Journals (Sweden)

    Fábio D. S. Larotonda

    2004-07-01

    Full Text Available Studies were carried out to produce biodegradable films from cassava starch. Two alternatives were investigated. In the first, films were obtained by starch gelatinization followed by thermopressing and glycerol was used at different concentrations as a plasticizer. In the second, starch acetate films were obtained by solubilization of cassava starch acetate in organic solvents, followed by casting on a glass plate and drying at room temperature. The films obtained by gelatinization were transparent and resistant to traction. The starch acetate films were also transparent but breakable. The use of these starch acetate films in paper impregnation improved the mechanical properties of the paper.A reciclagem de produtos constituídos por polímeros sintéticos e sua substituição por materiais biodegradáveis estão sendo estudadas como alternativas para reduzir a poluição ambiental causada por estes materiais. Neste contexto, o amido está recebendo considerável atenção entre os recursos renováveis que podem ser usados para a fabricação de materiais para embalagem. O objetivo deste trabalho foi produzir filmes biodegradáveis a partir do amido da mandioca. Duas alternativas foram investigadas. Na primeira, os filmes foram obtidos pela gelatinização do amido seguida de termoprensagem, utilizando o glicerol em concentrações diferentes como o plastificante. A outra alternativa estudada foi a acetilação do amido de mandioca. Os filmes de acetato de amido foram obtidos pela solubilização do acetato em solventes orgânicos, seguido do espalhamento da solução em uma placa de vidro e secagem em temperatura ambiente. Os filmes obtidos pela gelatinização do amido mostraram-se transparentes e resistentes à tração. Os filmes de acetato de amido mostraram-se transparentes e quebradiços. No entanto, seu uso para a impregnação de papel melhorou as propriedades mecânicas deste último.

  9. Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China.

    Science.gov (United States)

    Zhang, Yanjun; Hu, Meijie; Zhu, Kexue; Wu, Gang; Tan, Lehe

    2018-02-01

    Jackfruit is now receiving extensive attention as a new source of starch. However, jackfruit seeds are discarded as waste, although they are rich in starch. The functional properties of the starches were investigated from new Chinese jackfruit species. All the starches have a high amylose (26.56-38.34%) with a potential to become functional foods rich in resistant starch. The jackfruit starches varied from trigonal and tetragonal, round to semi-oval/bell shapes and showed significant variations in particle sizes (5.53-14.46μm). These variations led to significant differences in their functional properties, and significant correlations were found in their pasting, thermal, crystal and texture parameters. Hierarchical cluster analysis sorted the samples into three groups of 1) Malaysia 8 (M8) and ZhenZhu (ZZ); 2) Malaysia 2, Malaysia 3 and Malaysia 4, (M2, M3, M4); and 3) Xiangyinsuo 11, Xiangyinsuo 4, Xiangyinsuo 3 and Xiangyinsuo 2 (X11, X4, X3, X2). The first group could be used as food thickening or gelling agents. The second group could be applied in glutinous foods. The third group make them suitable for fillings in confectionery or weaning foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  11. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  12. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  13. Association between vitamin D concentration and levels of sex hormones in an elderly Polish population with different genotypes of VDR polymorphisms (rs10735810, rs1544410, rs7975232, rs731236).

    Science.gov (United States)

    Laczmanski, Lukasz; Lwow, Felicja; Mossakowska, Malgorzata; Puzianowska-Kuznicka, Monika; Szwed, Małgorzata; Kolackov, Katarzyna; Krzyzanowska-Swiniarska, Barbara; Bar-Andziak, Ewa; Chudek, Jerzy; Sloka, Natalia; Milewicz, Andrzej

    2015-03-15

    Vitamin D co-regulates the synthesis of sex hormones in part by interaction with its nuclear receptor. The aim of this study was to determine whether there is an association of vitamin D concentration vs the level of sex hormones in elderly Polish individuals with different genotypes of the vitamin D receptor (VDR) gene. Rs10735810, rs1544410, rs7975232, and rs731236 polymorphisms of VDR, the serum sex hormone level, free estrogen index (FEI) and free androgen index (FAI) as well as vitamin D, were evaluated in 766 persons (362 women and 404 men) selected from 5695 Polish population, aged 65-90years from the PolSenior survey. We observed that women with GG (rs731236), TT (rs7975232), BB (rs1544410) and FF (rs10735810) genotypes were characterized by a significant correlation between vitamin D vs testosterone concentration and FAI value. We found a significant correlation between testosterone level and FAI vs vitamin D concentration in men with heterozygote AG in the rs731236 polymorphism and in the GG (rs7975232), the BB (rs1544410), and the Ff (rs10735810) genotypes. In elderly selected Polish population with different genotypes of VDR polymorphisms, a statistically significant relationship between vitamin D concentration vs testosterone level was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  15. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  17. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  18. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads.

    Science.gov (United States)

    Collar, Concha; Jiménez, Teresa; Conte, Paola; Fadda, Costantino

    2014-11-26

    Wheat flour replacement from 22.5% up to 45% by incorporation of ternary blends of teff (T), green pea (GP) and buckwheat (BW) flours provided technologically viable and acceptable sensory rated multigrain breads with superior nutritional value compared to the 100% wheat flour (WT) counterparts. Blended breads exhibited superior nutritional composition, larger amounts of bioaccessible polyphenols, higher anti-radical activity, and lower and slower starch digestibility. Simultaneous lower rapidly digestible starch (57.1%) and higher slowly digestible starch (12.9%) and resistant starch (2.8%) contents (g per 100g fresh bread), considered suitable nutritional trends for dietary starch fractions, were met by the blend formulated 7.5% T, 15% GP, 15% BK. The associated mixture that replaced 37.5% WT, showed a rather lower extent and slower rate of starch hydrolysis with medium-low values for C∞, and H90, and lowest k, and intermediate expected Glycaemic Index (86). All multigrain breads can be labelled as source of dietary fibre (≥ 3 g dietary fibre/100g bread). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Potato Starch/Montmorillonite-Based Nanocomposites: Water Sensitivity, Mechanical and Thermal Properties and XRD Profile Study

    Directory of Open Access Journals (Sweden)

    Ronak Gholami

    2013-06-01

    Full Text Available Studies were carried out on the effect of adding different percentages of montmorillonite (3, 5, 7 and 9% of starch weight on the physical properties of potato starch-MMT nanocomposites. Heat resistance and mechanical properties of films were measured by differential scanning calorimetry (DSC and tensile test. Nanoparticles distribution in polymer matrix was investigated using X-ray diffraction test (XRD. For investigation of water vapor resistance of film samples, moisture sorption and water vapor permeability (WVP were measured. The results showed that the distribution of nanoparticles in the polymer matrix was exfoliated. WVP in pure starch films was 2.62×10-7 g/mhPa and with the addition of 9% MMT it was reduced to 1.43×10-7 g/mhPa. With the addition of nanoclay from zero to 9%, the ultimate tensile strength of nanocomposite samples was increased from 5.9 to 6.63 MPa and strain-to-break was decreased from 34.82 to 26.83%. But the rising trend was not significant for nanocomposite samples containing low concentrations of nanoclay (0-7%. The main reasons for the enhancement of mechanical properties due to the addition of nanoclay were to establish hydrogen bonding between polymer chains and clay layers, filling the empty spaces and increase the crystalline domains. Investigation of thermal resistance of nanocomposite samples showed that they have higher thermal resistance and melting point in comparison with pure starch films. With the addition of nanoclay from zero to 9%, the melting point of film samples was increased from 218 to 232.1°C. With the addition of nanoclay, probably the mobility of amylopectin chains decreased and crystalline domains increased. Also, with increasing nanoclay content, the glass transition temperature of nanocomposite samples was increased. This result corresponded to shrinkage in free volume and thus reduction in the polymer chains mobility in amorphous regions.

  1. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  2. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  3. Role of colonic short-chain fatty acid transport in diarrhea.

    Science.gov (United States)

    Binder, Henry J

    2010-01-01

    Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes. Inhibition of SCFA synthesis by antibiotics and administration of PEG, a substance that is not metabolized by colonic microbiota, both result in diarrhea. In contrast, increased production of SCFA as a result of providing starch that is relatively resistant to amylase digestion [so-called resistant starch (RS)] to oral rehydration solution (RS-ORS) improves the efficacy of ORS and represents an important approach to improve the effectiveness of ORS in the treatment of acute diarrhea in children under five years of age.

  4. Whole Grain Consumption Increases Gastrointestinal Content of Sulfate-Conjugated Oxylipins in Pigs − A Multicompartmental Metabolomics Study

    DEFF Research Database (Denmark)

    Ingerslev, Anne Krog; Karaman, İbrahim; Bağcıoğlu, Murat

    2015-01-01

    The effects of increased intake of dietary fiber as either arabinoxylan (AX) or resistant starch (RS) compared to a typical low dietary fiber Western-style diet (WSD) on the metabolomics responses was studied in gastrointestinal content and tissue, peripheral plasma and urine using a multicompart...... of multicompartmental metabolomics offers information about the correlations between the compartments of the digestive system, providing additional insight into effects of increased whole grain intake.......The effects of increased intake of dietary fiber as either arabinoxylan (AX) or resistant starch (RS) compared to a typical low dietary fiber Western-style diet (WSD) on the metabolomics responses was studied in gastrointestinal content and tissue, peripheral plasma and urine using......, and a low dietary fiber intake were detected using multi block analysis. This study provides insight into microbial fermentation products in the gastrointestinal tract, and suggests a potential role in sulfate conjugation of metabolites on the bioavailability of ingested nutrients. In addition, the use...

  5. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars.

    Science.gov (United States)

    Goldschmidt, E E; Huber, S C

    1992-08-01

    In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined under ambient CO(2) concentrations using a closed gas system, and (b) maximum photosynthetic capacity (A(max)) was determined under 3% CO(2) with a leaf disc O(2) electrode. Starch, hexoses, and sucrose were determined enzymically. Typical starch storers like soybean (Glycine max L.) (up to 87.5 milligrams of starch per square decimeter in girdled leaves), cotton (Gossypium hirsutum L.), and cucumber (Cucumis sativus L.) responded to 7 days of girdling by increased (80-100%) stomatal resistance (r(s)) and decreased A(max) (>50%). On the other hand, spinach (Spinacia oleracea L.), a typical sucrose storer (up to 160 milligrams of sucrose per square decimeter in girdled leaves), showed only a slight reduction in CER and almost no change in A(max). Intermediate plants like tomato (Lycopersicon esculentum Mill.), sunflower (Helianthus annuus L.), broad bean (Vicia faba L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.), which upon girdling store both starch and sucrose, responded to the girdle by a considerable reduction in CER but only moderate inhibition of A(max), indicating that the observed reduction in CER was primarily a stomatal response. Both the wild-type tobacco (Nicotiana sylvestris) (which upon girdling stored starch and hexoses) and the starchless mutant (which stored only hexoses, up to 90 milligrams per square decimeter) showed 90 to 100% inhibition of CER and approximately 50% inhibition of A(max). In general, excised leaves (6 days) behaved like girdled leaves of the respective species, showing 50% reduction of A(max) in wild-type and starchless N. sylvestris but only slight decline of A(max) in spinach. The results of the present study

  6. Interleukin-6-receptor polymorphisms rs12083537, rs2228145, and rs4329505 as predictors of response to tocilizumab in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Enevold, Christian; Baslund, Bo; Linde, Louise

    2014-01-01

    Tocilizumab (TCZ), a monoclonal antibody targeting the human interleukin-6-receptor (IL-6R), is indicated for the treatment of rheumatoid arthritis (RA). We examined whether three IL6R single-nucleotide polymorphisms rs12083537, rs2228145 (formerly rs8192284), and rs4329505 with previously report...

  7. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  8. Association of ITPA polymorphisms rs6051702/rs1127354 instead of rs7270101/rs1127354 as predictor of ribavirin-associated anemia in chronic hepatitis C treated patients.

    Science.gov (United States)

    D'Avolio, Antonio; De Nicolò, Amedeo; Cusato, Jessica; Ciancio, Alessia; Boglione, Lucio; Strona, Silvia; Cariti, Giuseppe; Troshina, Giulia; Caviglia, Gian Paolo; Smedile, Antonina; Rizzetto, Mario; Di Perri, Giovanni

    2013-10-01

    Functional variants rs7270101 and rs1127354 of inosine triphosphatase (ITPA) were recently found to protect against ribavirin (RBV)-induced hemolytic anemia. However, no definitive data are yet available on the role of no functional rs6051702 polymorphism. Since a simultaneous evaluation of the three ITPA SNPs for hemolytic anemia has not yet been investigated, we aimed to understand the contribution of each SNPs and its potential clinical use to predict anemia in HCV treated patients. A retrospective analysis included 379 HCV treated patients. The ITPA variants rs6051702, rs7270101 and rs1127354 were genotyped and tested for association with achieving anemia at week 4. We also investigated, using multivariate logistic regression, the impact of each single and paired associated polymorphism on anemia onset. All SNPs were associated with Hb decrease. The carrier of at least one variant allele in the functional ITPA SNPs was associated with a lower decrement of Hb, as compared to patients without a variant allele. In multivariate logistic regression analyses the carrier of a variant allele in the rs6051702/rs1127354 association (OR=0.11, p=1.75×10(-5)) and Hb at baseline (OR=1.51, p=1.21×10(-4)) were independently associated with protection against clinically significant anemia at week 4. All ITPA polymorphisms considered were shown to be significantly associated with anemia onset. A multivariate regression model based on ITPA genetic polymorphisms was developed for predicting the risk of anemia. Considering the characterization of pre-therapy anemia predictors, rs6051702 SNP in association to rs1127354 is more informative in order to avoid this relevant adverse event. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers

    NARCIS (Netherlands)

    Martinez-Garcia, Marta; Kormpa, Akrivi; van der Maarel, Marc J. E. C.

    2017-01-01

    Highly branched glucose polymers produced from starch are applied in various products, such as peritoneal dialysis solutions and sports drinks. Due to its insoluble, granular nature, the use of native starch as substrate requires an energy consuming pre-treatment to achieve solubilization at the

  10. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  11. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  12. Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, G.; Akoni, S. (International Inst. of Tropical Agriculture, Ibadan (Nigeria)); Swennen, R. (Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Tropical Husbandry)

    1992-04-01

    Starches from mature, unripe fruit pulp of plantain cultivars (Musa supp., AAB group) representing the wide variability in Africa, tetraploid and diploid plantain hybrids and starchy cooking bananas (Musa spp., ABB group) were isolated and characterised. In general, studies revealed very compact irregularly shaped and sized granules, with low amylose content (9.11-17.16%), highly resistant to bacterial {alpha}-amylase attack; Brabender amylograms showed very restricted swelling type patterns with great stability and negligible retrogradation. Results indicate that differences in physico-chemical properties exist amongst the three Musa fruit group starches. Plantains represent a chemical/molecular homogeneous group, but heterogeneous for granule structure. Ploidy level affected hybrid properties. ABB cooking bananas starches exhibited highly pronounced restricted swelling and high gelatinisation and pasting temperatures, indicating a more ordered, very strongly bonded granule structure; chemical and physical properties varied considerably within the ABB genotype. (orig.).

  13. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  14. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  15. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  16. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  17. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  18. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The rs1862513 Variant in Resistin Gene-Modified Insulin Resistance and Insulin Levels after Weight Loss Secondary to Hypocaloric Diet.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; de la Fuente, Beatriz; Mulero, Ines; Aller, Rocío

    2016-01-01

    Polymorphisms of a single nucleotide in RETN have been associated with indexes of insulin resistance. Our aim was to analyze the effects of the rs1862513 RETN gene polymorphism on insulin resistance, insulin levels, and resistin levels changes after 3 months of a low-fat hypocaloric diet. A Caucasian population of 133 obese patients was analyzed before and after 3 months on a low-fat hypocaloric diet. Fifty-six patients (42.1%) had the genotype GG (wild group) and 77 (57.9%) patients had the other genotypes; GC (59 patients, 44.4%) or CC (18 patients, 13.5%; mutant group). In wild and mutant genotype groups, weight, body mass index, fat mass, waist circumference, and systolic blood pressure decreased. In the wild genotype group, the decrease in total cholesterol was -13.1 ± 25.3 mg/dL (vs. -4.4 ± 13.7 mg/dL in mutant group: p = 0.004 for group deltas), low density lipoprotein (LDL)-cholesterol was -13.0 ± 21.5 mg/dL (-4.3 ± 10.5 mg/dL: p = 0.007), glucose -7.2 ± 3.5 mg/dL (-0.8 ± 0.2 mg/dL: p = 0.01), insulin -5.6 ± 2.5 mUI/L (-2.9 ± 1.2 mUI/L: p = 0.03) and homeostasis model assessment-insulin resistance (HOMA-IR) -2.5 ± 1.1 (-0.6 ± 1.4: p = 0.02). Leptin levels decreased in both genotypes (-10.1 ± 9.5 ng/dL in wild type group vs. -13.1 ± 0.2 ng/dL in mutant type group: p > 0.05). The present study suggests that the G/G genotype of RETN rs1862513 could be a predictor of the reduction of HOMA-IR, insulin, fasting glucose and LDL cholesterol secondary to a hypocaloric diet in obese subjects. © 2016 S. Karger AG, Basel.

  20. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  1. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  3. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  4. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  5. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  6. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  7. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Textural behavior of gels formed by rice starch and whey protein isolate: Concentration and crosshead velocities

    Directory of Open Access Journals (Sweden)

    Thiago Novaes Silva

    Full Text Available ABSTRACT Fabricated food gels involving the use of hydrocolloids are gaining polpularity as confectionery/convenience foods. Starch is commonly combined with a hydrocolloid (protein our polyssacharides, particularly in the food industry, since native starches generally do not have ideal properties for the preparation of food products. Therefore the texture studies of starch-protein mixtures could provide a new approach in producing starch-based food products, being thus acritical attribute that needs to be carefully adjusted to the consumer liking. This work investigated the texture and rheological properties of mixed gels of different concentrations of rice starch (15%, 17.5%, and 20% and whey protein isolate (0%, 3%, and 6% with different crosshead velocities (0.05, 5.0, and 10.0 mm/s using a Box-Behnken experimental design. The samples were submitted to uniaxial compression tests with 80% deformation in order to determinate the following rheological parameters: Young’s modulus, fracture stress, fracture deformation, recoverable energy, and apparent biaxial elongational viscosity. Gels with a higher rice starch concentration that were submitted to higher test velocities were more rigid and resistant, while the whey protein isolate concentration had little influence on these properties. The gels showed a higher recoverable energy when the crosshead velocity was higher, and the apparent biaxial elongational viscosity was also influenced by this factor. Therefore, mixed gels exhibit different properties depending on the rice starch concentration and crosshead velocity.

  9. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta

    DEFF Research Database (Denmark)

    Hedemann, Mette S; Theil, Peter K; Bach Knudsen, K E

    2009-01-01

    The present experiment aimed to study the influence of six sources of non-digestible carbohydrates (NDC) on the mucous layer in the colon of rats. The NDC sources used were as follows: cellulose (C); pectin (P); inulin; resistant starch (RS); barley hulls. The diets contained 108-140g NDC/kg DM...

  10. Lack of association between rheumatoid arthritis and genetic variants rs10889677, rs11209026 and rs2201841 of IL-23R gene.

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka; Malinowski, Damian; Haladyj, Ewa; Olesinska, Marzena; Safranow, Krzysztof; Pawlik, Andrzej

    2018-01-19

    Rheumatoid arthritis (RA) is an autoimmune diseases, where different genetic variants in cytokine genes may play a pathogenic role. A GWAS in autoimmune diseases highlighted the IL-23R gene as a one of the susceptibility factors. We examined three candidate single nucleotide polymorphisms (SNPs) rs10889677, rs11209026 and rs2201841 of the IL-23R gene, as well as determined their possible association with RA in a Polish population. The IL-23R gene polymorphisms were genotyped for 422 RA patients and 348 healthy individuals using TaqMan SNP genotyping assay. The genotypes frequency did not deviate from HWE in each examined group. A comparison of the allele as well as genotype frequencies of the IL-23R polymorphisms under codominant, dominant and recessive genetic model revealed no significant differences between RA patients and healthy subjects. We also demonstrated that IL-23R rs2201841 and rs11209026 as well as rs11209026 and rs10889677 were in complete linkage disequilibrium (D'=1.0). Our genotype-phenotype analysis demonstrated that in carriers of rs10889677C and/or rs2201841A allele the RF, extra-articular manifestations and erosion were more frequent present than in patients with rs10889677A and/or rs2201841A allele, although this association was not significant. Present findings indicated that the autoimmune disease-associated genetic variants in IL-23R gene are not associated with RA in the Polish population. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  11. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  12. Effects of cross-linking modification with phosphoryl chloride (POCl3 on pysiochemical properties of barely starch

    Directory of Open Access Journals (Sweden)

    Zahra Malekpour

    2016-05-01

    Full Text Available Chemical methods are one of the comon method in starch modification. This study aimed at investigating of cross-link affection of phosphoryl chloride with two different levels 0.5 and 1g.kg-1 in order to enhance funciotnal proeprties and physiochemical changes on extracted starch from barely variety Bahman which cultivates in Chahr-Mahal Bakhtiari Province of Iran. Obtained results indicated that cross-linking leads to reduce sweeling power of strach granuls compred to natural starch and the amount of reduciton increase via the substitituin level. Powerfull cross-linkingnetween starch chains casue more resistance of granules to seweeling which is increased by means of cross-linking dgree. Additioally,  investigationresults from synersis revealed that releasing water percentage in cross-linked starches increase in comparison to natural starches and this amount depends onthe amount of cross-link surface with a significantly difference in (α <0.05. Gelatinization temperature in both levels negligibly increased by modification where in low level of cross-linking was more. Furthermoe evaluating gelation temperatures of both natural and cross-linked modified starches showed that addition of phosphate groups in starch and creating extra coovalent bonds make granues more compressed reulting in slight increase of To, Tp, Tcin barely starch. Icreasing of temperature observed more in less concentration of cross-links. Evaluation of viscosity changes also revealed that this modification depending on increasing the amount of Phosphoryl Chloride led to increasing peak temperature, diminish peak and setback viscosity. Result also exhibited that in morphological level, cross-link causes to incidence changes in particles' diameter size. The comparison of diameter average and frequency between natural starch and cross-links starch exhibited that in cross-linkd treatment with 0.5% phosphoryl chloride, increase in frequency of granules with diameter of 6 - 10µm

  13. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  14. The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest

    DEFF Research Database (Denmark)

    Alibegovic, Amra C; Sonne, Mette P; Højbjerre, Lise

    2010-01-01

    of FPIR in response to insulin resistance induced by bed rest was lower in carriers of the T-allele (P hepatic insulin resistance......OBJECTIVE: The aim of this study was to determine whether the type 2 diabetes-associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS: A total of 38....... The genetic analyses were done assuming a dominant model of inheritance. RESULTS: The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise...

  15. Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid/Agave Bagasse Fiber Bioplastic Composites

    Directory of Open Access Journals (Sweden)

    F. J. Aranda-García

    2015-01-01

    Full Text Available Water absorption and thermomechanical behavior of composites based on thermoplastic starch (TPS are presented in this work, wherein the concentration of agave bagasse fibers (ABF, 0–15 wt% and poly(lactic acid (PLA, 0–30 wt% is varied. Glycerol (G is used as starch (S plasticizer to form TPS. Starch stands as the polymer matrix (70/30 wt/wt, S/G. The results show that TPS hygroscopicity decreases as PLA and fiber content increase. Storage, stress-strain, and flexural moduli increase with PLA and/or agave bagasse fibers (ABF content while impact resistance decreases. The TPS glass transition temperature increases with ABF content and decreases with PLA content. Micrographs of the studied biocomposites show a stratified brittle surface with a rigid fiber fracture.

  16. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    Science.gov (United States)

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties.

    Science.gov (United States)

    Chen, Xu; He, Xiaowei; Fu, Xiong; Zhang, Bin; Huang, Qiang

    2017-05-01

    This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT, less ordered Maltese and more granule fragments were observed for NRS-/NRF-MO complex. Meanwhile, more aggregation was observed in the HMT samples with higher moisture contents. We found that higher onset temperature, lower enthalpy change and relative crystallinity of the NRS-/NRF-MO complex were associated with a higher moisture content of HMT samples. The higher moisture content of HMT was also favorable for the amylose-lipid complex formation. Differences in starch digestion properties were found for NRS-MO and NRF-MO complex. All of the NRS/NRF complexed MO after cooking showed lower rapidly digestible starch (RDS) contents compared with the control sample, therein NRS-/NRF- MO 20% exhibited the highest sum of the slowly digestible starch and resistant starch contents. In general, HMT had a greater impact on the in vitro digestion and physicochemical properties of flour samples compared with starch counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  19. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  20. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    Science.gov (United States)

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p thermo-resistant multi-enzyme showed higher (p thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  1. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    Science.gov (United States)

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  3. Improvement in the Performance of Potato Starch Used in the Water-Based Drilling Fluid via Its Chemical Modification by Grafting Copolymerization

    Directory of Open Access Journals (Sweden)

    M. Abdollahi

    2013-01-01

    Full Text Available Increasing the thermal stability and resistance to bacterial attack (bioresistance of the potato starch used in the water-based drilling fluid is the aim of this work. Four types of potato starch grafted with acrylamide and a mixture of each one with acrylic acid, 2-acrylamido-2-methyl-1-propane sulfuric acid and itaconic acid were synthesized by manganese (IV-induced redox system at the suitable concentrations of initiator and monomer(s. FTIR spectroscopy was used to verify the grafting of monomers onto the starch. The effect of grafted starches on the rheological and fluid loss properties before and after aging of the water-based drilling fluid prepared with fresh water, 4% saline and the South applied method were investigated. The results showed that temperature and aging of fluid enhance the rheological and fluid loss control properties of water-based drilling fluids prepared in the presence of grafted starches. In other words, grafted starches are stable against thermal degradation and can be used in the formulation of water-based drilling fluids for drilling of deep wells.

  4. The Research on Thermal Properties and Hydrophobility of the Native Starch/hydrolysis Starch Blends with Treated CaCO3 Powder

    Science.gov (United States)

    Liu, Chia-I.; Huang, Chi-Yuan

    2008-08-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60° to 95° when 15wt% treated CaCO3 was added. Treated CaCO3 was confirmed to improve the hydrophobility of starch blends effectively.

  5. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO3 POWDER

    International Nuclear Information System (INIS)

    Liu, C.-I; Huang, C.-Y.

    2008-01-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO 3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO 3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95 deg. when 15wt% treated CaCO 3 was added. Treated CaCO 3 was confirmed to improve the hydrophobility of starch blends effectively

  6. Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix

    Science.gov (United States)

    Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd

    2017-01-01

    The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.

  7. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.

    Science.gov (United States)

    Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula

    2017-08-01

    Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  9. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  10. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  11. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  12. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  13. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  14. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modulating rheo-kinetics of native starch films towards improved wet-strength

    DEFF Research Database (Denmark)

    Gillgren, Thomas; Blennow, Andreas; Pettersson, Anders J.

    2011-01-01

    properties of the films – an increase in the amylose content resulted in both a higher stress and strain at break. Interestingly, there was no correlation between the speed of hydration and mechanical water resistance of the films. Generally, the films were clear and transparent, even after wetting...... highly different starch types derived from potato and cereal sources of normal and mutant and transgenic backgrounds. A new improved technique was developed to permit the dynamic mechanical analysis of films in the presence of water. It was found that the amylose content was decisive for the mechanical....... Transgenic potato starch with a low content of phosphate displayed an extraordinary combination of high robustness, transparency, mechanical strength and extensibility even in a wet condition. The combination of optimal phosphate and amylose concentrations in this sample probably favoured hydration...

  17. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  18. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  19. Study on the mould-resistant properties of moso bamboo treated with high pressure and amylase

    Science.gov (United States)

    Xiao-Dong Huang; Chung-Yun Hse; Todd F. Shupe

    2014-01-01

    Starch of moso bamboo mainly exists in the elongated parenchyma cells, and it is difficult for amylase to enter moso bamboo and dissolve the starch. Therefore, the mould resistance capability of moso bamboo's products cannot meet the need for bamboo to resist fungal decay. In this experiment, moso bamboo blocks were first treated at six levels of pressure and for...

  20. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  1. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  3. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  4. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  5. Study on the Mould-Resistant Properties of Moso Bamboo Treated with High Pressure and Amylase

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Huang

    2013-11-01

    Full Text Available Starch of moso bamboo mainly exists in the elongated parenchyma cells, and it is difficult for amylase to enter moso bamboo and dissolve the starch. Therefore, the mould resistance capability of moso bamboo’s products cannot meet the need for bamboo to resist fungal decay. In this experiment, moso bamboo blocks were first treated at six levels of pressure and for six different treatment durations. The results showed that reducing sugar content was decreased dramatically from 0.92 mg/L to 0.19 mg/L and the starch content decreased from 1.18% to 0.96% when the pressure was increased from 0 psi to 100 psi. Regression analysis showed that the effects of an individual amylase reaction and individual pressure treatment on the starch or reducing sugar content were significant with a high correlation coefficient. Three traditional types of moso bamboo moulds (Aspergillus niger, Penicillium citrinum, and Trichoderma viride were then used for mould resistance testing. The results revealed that the mould resistance capability of moso bamboo blocks could be greatly improved by the combined effect of enzyme activity and pressure treatment. Mould resistance was enhanced by increasing the pressure or prolonging the treatment time. This research could provide a new method for the protection of bamboo from mould attack.

  6. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  7. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  9. Glycemic Index Biscuits Formulation of Pedada Flour (Sonneratia caseolaris) with Tubers Starch

    Science.gov (United States)

    Jariyah; Susiloningsih, E. K. B.; Nilasari, K.

    2018-01-01

    The glycemic index of food is the level of food according to its effect on blood glucose levels. Foods with low glycemic index have been shown to improve glucose and fat levels in people with diabetes mellitus and improve insulin resistance. Pedada Fruits (Sonneratia caseolaris) is the one of mangrove fruits has a high fiber content, so it can be used as a raw material in biscuits production. The aim of this research to evaluate the glycemic index on the formula biscuit from the pedada flour and starch from white sweet potato, arrowroot, taro, potato and cassava mixed. This research used completely randomized design in factorial patern with one factor and five levels on formulation biscuit of pedada flour with tubers starch (20% : 80%). The biscuits product were measured of the proximate, crude fiber, glycemic index and glycemic load on wistar rats. The best treatment was 20% of pedada flour with 80% of taro starch which produced biscuit with 76.24% of yield, 2.58% of protein, 15.55% of fat, 2.72% of crude fiber, 48.83 of glycemic index and 7.39 of glycemic load.

  10. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  11. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean.

    Science.gov (United States)

    Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T

    2012-01-15

    The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.

  12. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  13. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  14. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  15. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  17. RS-WebPredictor

    DEFF Research Database (Denmark)

    Zaretzki, J.; Bergeron, C.; Huang, T.-W.

    2013-01-01

    Regioselectivity-WebPredictor (RS-WebPredictor) is a server that predicts isozyme-specific cytochrome P450 (CYP)-mediated sites of metabolism (SOMs) on drug-like molecules. Predictions may be made for the promiscuous 2C9, 2D6 and 3A4 CYP isozymes, as well as CYPs 1A2, 2A6, 2B6, 2C8, 2C19 and 2E1....... RS-WebPredictor is the first freely accessible server that predicts the regioselectivity of the last six isozymes. Server execution time is fast, taking on average 2s to encode a submitted molecule and 1s to apply a given model, allowing for high-throughput use in lead optimization projects.......Availability: RS-WebPredictor is accessible for free use at http://reccr.chem.rpi.edu/ Software/RS-WebPredictor....

  18. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  19. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  20. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Buleon, A

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... in temperate cereals....

  1. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  2. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  3. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  4. Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process

    Science.gov (United States)

    Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.

    2018-06-01

    Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.

  5. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  6. Association between ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133), FTO (rs9939609) Genes Polymorphism and Type 2 Diabetes with Dyslipidemia.

    Science.gov (United States)

    Raza, Syed Tasleem; Abbas, Shania; Siddiqi, Zeba; Mahdi, Farzana

    2017-01-01

    Diabetic dyslipidemia is one of the leading causes of coronary artery disease (CAD) death. Genetic and environmental factors play an important role in the development of type 2 diabetes mellitus (T2DM) and dyslipidemia. The present study was aimed to investigate the association of ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133) and FTO (rs9939609) genes polymorphism in T2DM with dyslipidemia. Totally, 559 subjects including 221 T2DM cases with dyslipidemia, 158 T2DM without dyslipidemia and 180 controls were enrolled. ACE genes polymorphism was evaluated by polymerase chain reaction (PCR), while MTHFR , FABP2 , FTO genes polymorphisms were evaluated by PCR and restriction fragment length polymorphism (RFLP). Significant association of ACE and MTHFR genes polymorphisms were found in both group of cases [T2DM with dyslipidemia (Pgenes polymorphisms were significantly associated with T2DM without dyslipidemia (P=0.038, and P= 0.019, respectively). This study concludes that ACE , FABP2 , FTO and MTHFR genes are associated with T2DM. Additionally, it also seems that ACE and MTHFR genes might be further associated with the development of dyslipidemia in T2DM cases.

  7. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  8. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  9. Si-O-C ceramic foams derived from polymethylphenylsiloxane precursor with starch as foaming agent

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Chlup, Zdeněk; Strachota, Adam; Svítilová, Jaroslava; Schweigstillová, Jana; Halasová, Martina; Rýglová, Šárka

    2015-01-01

    Roč. 35, č. 13 (2015), s. 3427-3436 ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445 Institutional support: RVO:67985891 ; RVO:68081723 ; RVO:61389013 Keywords : pyrolysis * ceramic foam * precursor * starch * Si-O-C Subject RIV: JI - Composite Materials; JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) Impact factor: 2.933, year: 2015

  10. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  11. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  12. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  13. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  14. [Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].

    Science.gov (United States)

    Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino

    2007-09-01

    Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.

  15. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  16. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  17. A nonlinear HP-type complementary resistive switch

    Directory of Open Access Journals (Sweden)

    Paul K. Radtke

    2016-05-01

    Full Text Available Resistive Switching (RS is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS. Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  18. A nonlinear HP-type complementary resistive switch

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  19. Development of highly-transparent protein/starch-based bioplastics.

    Science.gov (United States)

    Gonzalez-Gutierrez, J; Partal, P; Garcia-Morales, M; Gallegos, C

    2010-03-01

    Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments.

    Science.gov (United States)

    Reshmi, S K; Sudha, M L; Shashirekha, M N

    2017-12-15

    The aim of this study was to evaluate the starch digestibility and predicted glycemic index in breads incorporated with pomelo fruit (Citrus maxima) segments. Volume of the white and brown breads supplemented with pomelo fresh segments increased, while the crumb firmness decreased. Bread with 20% fresh and 5% dry pomelo segments were sensorily acceptable. Bioactive components such as phenolics, flavonoids, naringin and carotenoids were retained to a greater extent in bread containing dry pomelo segments. The pomelo incorporated bread had higher levels of resistant starch fractions (3.87-10.96%) with low predicted glycemic index (62.97-53.13%), despite their higher total starch (69.87-75.47%) content compared to control bread. Thus pomelo segments in the product formulations lowered the glycemic index probably by inhibiting carbohydrate hydrolyzing enzyme activity which could be attributed to naringin. Hence fortified bread prepared from pomelo fruit segment is recommended to gain nutritional value and to decrease the risk of diabetes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust.

    Science.gov (United States)

    Martínez, Mario M; Román, Laura; Gómez, Manuel

    2018-01-15

    The objective of this study was to provide understanding about the efficacy of decreasing dough hydration to slow down starch digestibility in white bread. Breads were made with 45 (low hydration bread, LHB), 60 (intermediate hydration bread, IHB) and 75% (high hydration bread, HHB) water (flour basis). A hydration depletion down to 45%, which is close to the minimum hydration found in commercially available white bread, did not prevent the starch in the crumb from complete gelatinization. However, LHB and IHB crumbs were more resistant to physical breakdown during in vitro digestion than HHB crumbs, resulting in a 96.81% increase of slowly digestible starch (SDS) from 75 to 45% dough hydration. The degree of gelatinization in crust samples was significantly reduced with a depletion in the dough hydration, ranging from 29.90 to 44.36%, which led to an increase of SDS from 7.41 in HHB to 13.78% in LHB (bread basis). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  3. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  4. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  5. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  6. Starch Hydrolysis and Vessel Occlusion Related to Wilt Symptoms in Olive Stems of Susceptible Cultivars Infected by Verticillium dahliae

    Science.gov (United States)

    Trapero, Carlos; Alcántara, Esteban; Jiménez, Jaime; Amaro-Ventura, María C.; Romero, Joaquín; Koopmann, Birger; Karlovsky, Petr; von Tiedemann, Andreas; Pérez-Rodríguez, Mario; López-Escudero, Francisco J.

    2018-01-01

    This study investigated starch content, amount of pathogen DNA and density of occluded vessels in healthy and Verticillium dahliae infected olive shoots and stems. Starch hydrolysis is considered a mechanism to refill xylem vessels that suffered cavitation by either, drought conditions or pathogen infections. The main objective of this work was to evaluate this mechanism in olive plants subjected to V. dahliae infection or to drought conditions, in order to know the importance of cavitation in the development of wilting symptoms. In initial experiments starch content in the shoots was studied in trees of cultivars differing in the level of resistance growing in fields naturally infested with V. dahliae. The starch content, esteemed by microscopic observation of stem transversal sections stained with lugol, decreased with the level of symptom severity. Results were confirmed in a new experiment developed with young plants of cultivars ‘Picual’ (highly susceptible), ‘Arbequina’ (moderately susceptible) and ‘Frantoio’ (resistant), growing in pots under greenhouse conditions, either inoculated or not with V. dahliae. In this experiment, the pathogen DNA content, quantified by real-time PCR, and the density of occluded vessels, recorded by microscopic observations of transversal sections stained with toluidine blue, were related to the symptoms severity caused by the pathogen. Finally, a drought experiment was established with young plants of the cultivar ‘Picual’ grown in pots under greenhouse conditions in order to compare the effects caused by water deficit with those caused by the pathogen infection. In both cases, results show that starch hydrolysis occurred, what indirectly evidence the importance of xylem cavitation in the development of the symptoms caused by V. dahliae but in the water stressed plants no vessel occlusion was detected. PMID:29445388

  7. Starch Hydrolysis and Vessel Occlusion Related to Wilt Symptoms in Olive Stems of Susceptible Cultivars Infected by Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Carlos Trapero

    2018-01-01

    Full Text Available This study investigated starch content, amount of pathogen DNA and density of occluded vessels in healthy and Verticillium dahliae infected olive shoots and stems. Starch hydrolysis is considered a mechanism to refill xylem vessels that suffered cavitation by either, drought conditions or pathogen infections. The main objective of this work was to evaluate this mechanism in olive plants subjected to V. dahliae infection or to drought conditions, in order to know the importance of cavitation in the development of wilting symptoms. In initial experiments starch content in the shoots was studied in trees of cultivars differing in the level of resistance growing in fields naturally infested with V. dahliae. The starch content, esteemed by microscopic observation of stem transversal sections stained with lugol, decreased with the level of symptom severity. Results were confirmed in a new experiment developed with young plants of cultivars ‘Picual’ (highly susceptible, ‘Arbequina’ (moderately susceptible and ‘Frantoio’ (resistant, growing in pots under greenhouse conditions, either inoculated or not with V. dahliae. In this experiment, the pathogen DNA content, quantified by real-time PCR, and the density of occluded vessels, recorded by microscopic observations of transversal sections stained with toluidine blue, were related to the symptoms severity caused by the pathogen. Finally, a drought experiment was established with young plants of the cultivar ‘Picual’ grown in pots under greenhouse conditions in order to compare the effects caused by water deficit with those caused by the pathogen infection. In both cases, results show that starch hydrolysis occurred, what indirectly evidence the importance of xylem cavitation in the development of the symptoms caused by V. dahliae but in the water stressed plants no vessel occlusion was detected.

  8. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  9. The "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology.

    Science.gov (United States)

    Slade, Louise; Levine, Harry

    2018-04-13

    This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.

  10. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  11. Polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CNR2) reveals effects on body weight and insulin resistance in obese subjects.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; de la Fuente, Beatriz; Aller, Rocio

    2017-10-01

    Few studies assessing the relationship between single nucleotide polymorphisms in CNR2 and obesity or its related metabolic parameters are available. To investigate the influence of polymorphism rs3123554 in the CNR2 receptor gene on obesity anthropometric parameters, insulin resistance, and adipokines in subjects with obesity. The study population consisted of 1027 obese subjects, who were performed bioelectrical impedance analyses, blood pressure measurements, serial assessments of dietary intake during three days, and biochemical tests. Genotypes GG, GA, and AA were found in 339 (33.0%), 467 (45.5%), and 221 (21.5%) respectively. Body mass index, weight, fat mass, waist circumference, insulin, HOMA-IR, and triglyceride and leptin levels were higher in A-allele carriers as compared to non A-allele carriers. No differences were seen in these parameters between the GA and AA genotypes. There were no statistical differences in dietary intake. The main study finding was the association of the minor allele of the SNP rs3123554 in the CNR2 gene with body weight and triglyceride, HOMA-IR, insulin, and leptin levels. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Processing effects on four prebiotic carbohydrates supplemented in an extruded cereal and a low pH drink

    Directory of Open Access Journals (Sweden)

    Rebbeca M. Duar

    2015-12-01

    Full Text Available Prebiotic carbohydrates are added as functional ingredients to a variety of processed foods. Data on the stability of prebiotics during food processing in complex matrices remain limited. The objective of this project was to determine the stability of fructooligosaccharides (FOS, inulin, galactooligosaccharides (GOS, and resistant starch (RS2, when added as ingredients (1% w/w to an extruded cereal and a low pH drink. The cereal was prepared using different screw speeds and barrel temperatures. GOS was not affected by any of the extrusion conditions, whereas inulin decreased significantly at 140 and 170°C. FOS levels decreased in all extrusion conditions, while resistant starch (RS unexpectedly increased for each of the parameters. The low pH drink was prepared with different sucrose to corn syrup solids (S:CSS ratios (1:2, 1:1, 2:1 at pH 3.0, 3.5, and 4.0. The 1:1 S:CSS drink at pH 3.0, negatively impacted FOS and inulin. Moreover, FOS levels decreased when exposed to 1:2 S:CSS (pH 3.5 and 4.0 and 1:1 S:CSS (pH 3.0. GOS and RS were unaffected by any drink formulations. As different conditions impact the stability of prebiotics differently, this study addresses the importance of developing product specific processes for each prebiotic when supplemented into a processed food.

  13. Starch accumulation in hulless barley during grain filling.

    Science.gov (United States)

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  14. Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Jia, Xiangze; Miao, Song; Zeng, Shaoxiao; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2018-06-30

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion properties of LS-GMS was investigated. The digestion profiles showed HPH treatment reduced the digestive rate of LS-GMS, and the extent of this change was dependent on homogenized pressure. Scanning electron microscopy displayed HPH treatment change the morphology of LS-GMS, with high pressure producing more compact block-shape structure to resist enzyme digestion. The results of Gel-permeation chromatography and Small-angle X-ray scattering revealed high homogenization pressure impacted molecular weight distribution and semi-crystalline region of complexes, resulting in the formation of new semi-crystalline with repeat unit distance of 16-18 nm and molecular weight distribution of 2.50-2.80 × 10 5  Da, which displayed strong enzymatic resistance. Differential scanning calorimeter results revealed new semi-crystalline lamellar may originate from type-II complexes that exhibited a high transition temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  16. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  17. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  18. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  19. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors......, tannins, and lectins) in legumes has been associated with the slow starch digestion. However, it is still debated in literature to which extent the legume starch digestibility is affected by anti-nutritional factors. The in vitro starch digestion (hydrolytic index, HI) of pea (Pisum sativum) and mixtures...

  1. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Caracterização físico-química do grândulo do amido do feijão caupi Physico-chemical characteristics of the granule of the starch of the cowpea bean

    Directory of Open Access Journals (Sweden)

    S.M. Salgado

    2005-09-01

    by difference, total starch, reductor glícids and non reductor by oxid-reduction in Fehling solution. The isolated starch of the distinct samples was analyzed as to the resistant starch (based in the use of amylolytic enzymes, amylose and amylopectin (by spectrophotometry and typification (X-ray diffraction. The results obtained showed that the fractions of carbohydrates differed according to the stage of maturation of the grains. The starch of the unripe bean showed a higher content of resistant starch (RS type 2 in relation to total starch and low content of amylose. Maturation influenced the crystallinity patterns, type C was found for the unripe bean and type A for the ripe bean. The stage of the maturation influenced the qualitative and quantitative aspects of the constituents of the beans. The morphologic aspect of the granules of starch was not influenced by the stage of maturation of the grains. The unripe bean showed a percentage of soluble alimentary fiber compatible with the FDA standards.

  3. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  4. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  5. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  6. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  7. Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis.

    Science.gov (United States)

    Lei, Zhixin; Fu, Shulin; Yang, Bing; Liu, Qianying; Ahmed, Saeed; Xu, Lei; Xiong, Jincheng; Cao, Jiyue; Qiu, Yinsheng

    2017-08-08

    Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.

  8. Effect of Cross-Linking on the Performances of Starch-Based Biopolymer as Gel Electrolyte for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Pavithra Nagaraj

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSCs have become a validated and economically credible competitor to the traditional solid-state junction photovoltaic devices. DSSCs based on biopolymer gel electrolyte systems offer the perspective of competitive conversion efficiencies with a very low-cost fabrication. In this paper, a new starch-based biopolymer gel electrolyte system is prepared by mixing lithium iodide and iodine with bare and citric acid cross-linked potato starches with glycerol as the plasticizing agent. The effect of the preparation methods on the starch cross-linking degree as well as the photoconversion efficiency of the resulting DSSC cells is carefully analyzed. Fourier transform spectroscopy, X-ray diffraction, and scanning electron microscopy were used to characterize the morphology and conformational changes of starch in the electrolytes. The conductivity of the biopolymer electrolytes was determined by electrochemical impedance spectroscopy. DSSC based on the starch-gel polymer electrolytes were characterized by photovoltaic measurements and electrochemical impedance spectroscopy. Results clearly show that the cross-linking increases the recombination resistance and open circuit voltage (VOC of the DSSC, and thereby the photoconversion efficiency of the cell. In particular, electrolytes containing 1.4 g bare and cross-linked starches showed ionic conductivities of σ = 1.61, 0.59, 0.38, and 0.35 S cm−1, and the corresponding DSSCs showed efficiencies of 1.2, 1.4, 0.93, and 1.11%, respectively.

  9. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  10. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  11. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  12. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  13. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  14. Pharmacogenetics of Risperidone-Induced Insulin Resistance in Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Sukasem, Chonlaphat; Vanwong, Natchaya; Srisawasdi, Pornpen; Ngamsamut, Nattawat; Nuntamool, Nopphadol; Hongkaew, Yaowaluck; Puangpetch, Apichaya; Chamkrachangpada, Bhunnada; Limsila, Penkhae

    2018-07-01

    The purpose of this study was to explore the association of genetic polymorphism of genes related to pharmacokinetics or pharmacodynamics with insulin resistance in children and adolescents with autism spectrum disorder (ASD) and treated with risperidone. All 89 subjects underwent measurement of fasting blood glucose and insulin levels, body-weight and height. Genotyping was performed by TaqMan real-time polymerase chain reaction (PCR) (pharmacokinetics genes: cytochrome P450 2D6 (CYP2D6) *4 (rs3892097), *5 (gene deletion), *10 (rs1065852) and *41 (rs28371725), ATP-binding cassette transporter B1 (ABCB1) 2677 G>T/A (rs2032582) and 3435C>T (rs1045642) and pharmacodynamics genes: dopamine receptor D2 (DRD2) Tag-SNP (C>T) (rs4436578), DRD2 Tag1A (C>T) (rs1800497), leptin gene (LEP) -2548G>A (rs7799039), ghrelin gene (GHRL) -604G>A (rs27647) and brain-derived neurotrophic factor (BDNF) 196G>A (rs6265)). Drug levels were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed that 5 (5.62%) patients presented with hyperglycaemia. Insulin resistance was detected in 15 (16.85%) patients. Insulin resistance was associated with LEP 2548 G>A and BDNF 196 G>A polymorphism (p = 0.051 and p = 0.03). There was no association of pharmacokinetic gene polymorphisms (CYP2D6 and ABCB1) and risperidone levels with insulin resistance. Multiple regression analysis indicated that BDNF 196 G>A polymorphism was significantly associated with insulin resistance (p = 0.025). This finding suggested that BDNF 196 G>A polymorphism may be a genetic marker for predicting insulin resistance before initiating treatment in patients treated with risperidone. Because of the small sample size, further studies are needed to confirm these results. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    by the molar mass rather that the branching density of the glucan per se . Our data demonstrate that a higher amylose content in the substrate starch efficiently produces α-1,6 glucosidic linkages and that the present of amylose generates a higher Μw and more resistant product than amylopectin. The combination...

  16. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  17. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Directory of Open Access Journals (Sweden)

    Grace E. Richmond

    2016-04-01

    Full Text Available The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR, causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.

  18. Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome.

    Science.gov (United States)

    Schioldan, Anne Grethe; Gregersen, Søren; Hald, Stine; Bjørnshave, Ann; Bohl, Mette; Hartmann, Bolette; Holst, Jens Juul; Stødkilde-Jørgensen, Hans; Hermansen, Kjeld

    2018-03-01

    Low intake of dietary fibre is associated with the development of type 2 diabetes. Dyslipidaemia plays a key role in the pathogenesis of type 2 diabetes. Knowledge of the impact of dietary fibres on postprandial lipaemia is, however, sparse. This study aimed in subjects with metabolic syndrome to assess the impact on postprandial lipaemia and features of the metabolic syndrome of a healthy carbohydrate diet (HCD) rich in cereal fibre, arabinoxylan and resistant starch compared to a refined-carbohydrate western-style diet (WSD). Nineteen subjects completed the randomised, crossover study with HCD and WCD for 4-week. Postprandial metabolism was evaluated by a meal-challenge test and insulin sensitivity was assessed by HOMA-IR and Matsuda index. Furthermore, fasting cholesterols, serum-fructosamine, circulating inflammatory markers, ambulatory blood pressure and intrahepatic lipid content were measured. We found no diet effects on postprandial lipaemia. However, there was a significant diet × statin interaction on total cholesterol (P = 0.02) and LDL cholesterol (P = 0.002). HCD decreased total cholesterol (-0.72 mmol/l, 95% CI (-1.29; -0.14) P = 0.03) and LDL cholesterol (-0.61 mmol/l, 95% CI (-0.86; -0.36) P = 0.002) compared with WSD in subjects on but not without statin treatment. We detected no other significant diet effects. In subjects with metabolic syndrome on statins a 4-week diet rich in arabinoxylan and resistant starch improved fasting LDL and total cholesterol compared to subjects not being on statins. However, we observed no diet related impact on postprandial lipaemia or features of the metabolic syndrome. The dietary fibre x statin interaction deserves further elucidation.

  19. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  20. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

    Science.gov (United States)

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2014-08-01

    Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability. © 2014 Institute of Food Technologists®

  1. Effect of resistant wheat starch on subjective appetite and food intake in healthy adults.

    Science.gov (United States)

    Emilien, Christine H; Hsu, Walter H; Hollis, James H

    The aim of this study was to determine the effect of replacing standard wheat flour (SWF) with resistant wheat starch (RWS) on markers of appetite and food intake in healthy adults. A randomized, single-blind, crossover study was conducted with 27 healthy adults (ages 23 ± 2 y with a body mass index of 23.0 ± 3.0 kg/m 2 ). After an overnight fast, muffins that contained only SWF or muffins in which 40% of the SWF was replaced with RWS were consumed as part of the breakfast meal. Appetite questionnaires and plasma samples were collected before the test meal and at 10 time points after meal consumption. An ad libitum meal was provided 240 min after breakfast, and the amount eaten was recorded. Food intake was recorded over the remainder of the day using a diet diary, and appetite was measured hourly using appetite questionnaires. Plasma was assayed to measure biomarkers of satiety and glycemia. Replacing SWF with RWS had no effect on subjective appetite or energy intake at the lunch meal (P > 0.05). Total daily energy intake (including the breakfast meal) was reduced by 179 kcal when participants consumed the RWS muffins (P = 0.05). Replacing SWF with RWS reduced plasma insulin (P  0.05). These results indicate that replacing SWF with RWS decreases plasma insulin concentration and reduces energy intake over a 24-h period. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  3. Major vault protein (MVP) gene polymorphisms and drug resistance in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Balan, Shabeesh; Radhab, Saradalekshmi Koramannil; Radha, Koramannil; Sathyan, Sanish; Vijai, Joseph; Banerjee, Moinak; Radhakrishnan, Kurupath

    2013-09-10

    The human major vault protein (MVP) has been implicated in the development of drug resistance in cancer cells. Over expression of MVP has also been reported in brain tissue samples from antiepileptic drug (AED)-resistant human focal epilepsies. To investigate the relationship between single nucleotide polymorphisms (SNPs) involving the MVP gene and AED-resistance, we compared the distribution of three SNPs in the MVP gene, rs4788187, rs3815824 and rs3815823, among 220 patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype of AED-resistant epilepsy syndrome), 201 patients with juvenile myoclonic epilepsy (JME) (prototype of AED-responsive epilepsy syndrome) and 213 ethnically matched non-epilepsy controls. All the patients and controls were residents of the South Indian state of Kerala for more than three generations. We did not find any significant difference in allele and genotypic frequencies of the studied SNPs between AED-resistant and AED-responsive cohorts, and between AED-resistant and AED-responsive cohorts independently and pooled together when compared with the controls. We conclude that rs4788187, rs3815824, rs3815823 variants of the MVP gene are associated neither with predisposition for epilepsy nor with AED-resistance in the population that we have studied. Our results suggest the need for further research into the link between MVP and AED-resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  5. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  6. Chemical composition and nutritional value of unripe banana flour (Musa acuminata, var. Nanicão).

    Science.gov (United States)

    Menezes, Elizabete Wenzel; Tadini, Carmen Cecília; Tribess, Tatiana Beatris; Zuleta, Angela; Binaghi, Julieta; Pak, Nelly; Vera, Gloria; Dan, Milana Cara Tanasov; Bertolini, Andréa C; Cordenunsi, Beatriz Rosana; Lajolo, Franco M

    2011-09-01

    Banana flour obtained from unripe banana (Musa acuminata, var. Nanicão) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and β-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 μmol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).

  7. Recreating the synthesis of starch granules in yeast

    Science.gov (United States)

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  8. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  9. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  10. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  11. Chemical Composition, Starch Digestibility and Antioxidant Capacity of Tortilla Made with a Blend of Quality Protein Maize and Black Bean

    Directory of Open Access Journals (Sweden)

    Luis A. Bello-Pérez

    2011-12-01

    Full Text Available Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50% and the predicted glycemic index (88 to 80 of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g than control tortilla (7.8 μmol Trolox eq/g. The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.

  12. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  13. Supply of avocado starch (Persea americana mill) as bioplastic material

    Science.gov (United States)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  14. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  15. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  16. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  17. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  18. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  19. Characterization of Lentinus edodes β-glucan influencing the in vitro starch digestibility of wheat starch gel.

    Science.gov (United States)

    Zhuang, Haining; Chen, Zhongqiu; Feng, Tao; Yang, Yan; Zhang, Jingsong; Liu, Guodong; Li, Zhaofeng; Ye, Ran

    2017-06-01

    Lentinus edodes β-glucan (abbreviated LEBG) was prepared from fruiting bodies of Lentinus edodes. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of LEBG were measured to be 1.868×10 6 g/mol and 1.007, respectively. In addition, the monosaccharide composition of LEBG was composed of arabinose, galactose, glucose, xylose, mannose with a molar ratio of 5:11:18:644:16. After adding LEBG, both G' and G″ of starch gel increased. This is mainly because the connecting points between the molecular chains of LEBG and starch formed so that gel network structures were enhanced. The peak temperature in the heat flow diagram shifted to a higher temperature and the peak area of the endothermic enthalpy increased. Furthermore, LEBG can significantly inhibit starch hydrolysis. The predicted glycemic index (pGI) values were reduced when starch was replaced with LEBG at 20% (w/w). It might indicate that LEBG was suitable to develop low GI noodle or bread. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants

    NARCIS (Netherlands)

    Ji, Q.; Oomen, R.J.F.J.; Vincken, J.P.; Bolam, D.N.; Gilbert, H.J.; Suurs, L.C.J.M.; Visser, R.G.F.

    2004-01-01

    Granule size is an important parameter when using starch in industrial applications. An artificial tandem repeat of a family 20 starch-binding domain (SBD2) was engineered by two copies of the SBD derived from Bacillus circulans cyclodextrin glycosyltransferase via the Pro-Thr-rich linker peptice

  2. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  3. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  4. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  5. Low Starch/Low Dairy Diet Results in Successful Treatment of Obesity and Co-Morbidities Linked to Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Phy, Jennifer L; Pohlmeier, Ali M; Cooper, Jamie A; Watkins, Phillip; Spallholz, Julian; Harris, Kitty S; Berenson, Abbey B; Boylan, Mallory

    2015-04-01

    Polycystic Ovary Syndrome (PCOS) affects approximately 15% of reproductive-age women and increases risk of insulin resistance, type 2 diabetes mellitus, cardiovascular disease, cancer and infertility. Hyperinsulinemia is believed to contribute to or worsen all of these conditions, and increases androgens in women with PCOS. Carbohydrates are the main stimulators of insulin release, but research shows that dairy products and starches elicit greater postprandial insulin secretion than non-starchy vegetables and fruits. The purpose of this study was to determine whether an 8-week low-starch/low-dairy diet results in weight loss, increased insulin sensitivity, and reduced testosterone in women with PCOS. Prospective 8-week dietary intervention using an ad libitum low starch/low dairy diet in 24 overweight and obese women (BMI ≥ 25 kg/m 2 and ≤ 45 kg/m 2 ) with PCOS. Diagnosis of PCOS was based on the Rotterdam criteria. Weight, BMI, Waist Circumference (WC), Waist-to-Height Ratio (WHtR), fasting and 2-hour glucose and insulin, homeostasis model assessment of Insulin Resistance (HOMA-IR), HbA1c, total and free testosterone, and Ferriman-Gallwey scores were measured before and after the 8-week intervention. There was a reduction in weight (-8.61 ± 2.34 kg, pPCOS.

  6. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  7. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  8. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  9. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  11. The Birth Weight Lowering C-Allele of rs900400 Near LEKR1 and CCNL1 Associates with Elevated Insulin Release following an Oral Glucose Challenge

    DEFF Research Database (Denmark)

    Andersson, Ehm A; Harder, Marie N; Pilgaard, Kasper

    2011-01-01

    participants, midwife journals were traced through the Danish State Archives and association of rs900400 with birth weight was examined. Associations between rs900400 and fasting serum insulin, fasting plasma glucose, insulinogenic index, homeostasis model assessment of insulin resistance (HOMA-IR...

  12. Determination of dietary starch in animal feeds and pet food by an enzymatic-colorimetric method: collaborative study.

    Science.gov (United States)

    Hall, Mary Beth

    2015-01-01

    Starch, glycogen, maltooligosaccharides, and other α-1,4- and α-1,6-linked glucose carbohydrates, exclusive of resistant starch, are collectively termed "dietary starch". This nutritionally important fraction is increasingly measured for use in diet formulation for animals as it can have positive or negative effects on animal performance and health by affecting energy supply, glycemic index, and formation of fermentation products by gut microbes. AOAC Method 920.40 that was used for measuring dietary starch in animal feeds was invalidated due to discontinued production of a required enzyme. As a replacement, an enzymatic-colorimetric starch assay developed in 1997 that had advantages in ease of sample handling and accuracy compared to other methods was considered. The assay was further modified to improve utilization of laboratory resources and reduce time required for the assay. The assay is quasi-empirical: glucose is the analyte detected, but its release is determined by run conditions and specification of enzymes. The modified assay was tested in an AOAC collaborative study to evaluate its accuracy and reliability for determination of dietary starch in animal feedstuffs and pet foods. In the assay, samples are incubated in screw cap tubes with thermostable α-amylase in pH 5.0 sodium acetate buffer for 1 h at 100°C with periodic mixing to gelatinize and partially hydrolyze α-glucan. Amyloglucosidase is added, and the reaction mixture is incubated at 50°C for 2 h and mixed once. After subsequent addition of water, mixing, clarification, and dilution as needed, free + enzymatically released glucose are measured. Values from a separate determination of free glucose are subtracted to give values for enzymatically released glucose. Dietary starch equals enzymatically released glucose multiplied by 162/180 (or 0.9) divided by the weight of the as received sample. Fifteen laboratories that represented feed company, regulatory, research, and commercial feed

  13. FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of Type 2 Diabetes Mellitus in obese Iraqi population.

    Science.gov (United States)

    Younus, Laith A; Algenabi, Abdul Hussein A; Abdul-Zhara, Mohammed S; Hussein, Majid K

    2017-09-05

    dominant, recessive and additive models (P=0.000,0.000 and 0.0001 respectively). The T allele in rs17817449 was also significantly higher (P=0.0001) in patients group (36.25%) when compared with that of the control group (27.25%). The Heterozygous genotype (TG) significantly (OR=2.24, CI 95% 1.65-3.04, P=0.000) increased the risk of T2DM more than two folds with respect to those of wild type (GG) after adjustment for age, sex and BMI, and it was significantly increased the risk in the dominant models (P=0.000). In the relation to the phenotypic parameters the two SNPs were significantly associated with increased BMI, LDL, insulin and HOMA-IR and a decrease the HDL levels. The FTO gene polymorphisms rs9939609 and rs17817449 play a role in the in the development of insulin resistance and hence occurrence of type 2 DM in obese patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.

    2002-01-01

    Keywords: starch, digestion rate, broiler chickens, peas, tapioca

    Starch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy

  15. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    Science.gov (United States)

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc.

  16. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. SHBG gene polymorphism (rs1799941 associates with metabolic syndrome in children and adolescents.

    Directory of Open Access Journals (Sweden)

    Marquitta J White

    Full Text Available Metabolic syndrome (MetS is a complex disorder characterized by coexistence of several cardiometabolic (CM factors, i.e. hyperlipidemia, obesity, high blood pressure and insulin resistance. The presence of MetS is strongly associated with increased risk of cardiovascular disease (CVD. The syndrome was originally defined as an adult disorder, but MetS has become increasingly recognized in children and adolescents.Genetic variants influence biological components common to the CM factors that comprise MetS. We investigated single locus associations between six single nucleotide polymorphisms (SNPs, previously shown to modulate lipid or sex hormone binding globulin (SHBG levels, with MetS in a Turkish pediatric cohort (37 cases, 323 controls.Logistic regression analysis revealed a significant association between rs1799941, located in SHBG, and MetS (OR = 3.09, p-value = 0.006. The association with MetS remained after sequential adjustment for each CM factor included in the syndrome definition, indicating that the identified association is not being driven by any single trait. A relationship between rs1799941 and SHBG levels, was also discovered, but it was dependent on MetS status. In control subjects, the A allele of rs1799941 associated with a significant increase in SHBG levels (p = 0.012, while in cases there was no association between rs1799941 and SHBG levels (p = 0.963.The significant association between rs1799941 and MetS in children is not contingent on any single CM trait. Additionally, the presence of MetS may abrogate effect of rs1799941 polymorphism on SHBG levels in children.

  18. COX-2 rs689466, rs5275, and rs20417 polymorphisms and risk of head and neck squamous cell carcinoma: a meta-analysis of adjusted and unadjusted data

    International Nuclear Information System (INIS)

    Leng, Wei-Dong; Wen, Xiu-Jie; Kwong, Joey S. W.; Huang, Wei; Chen, Jian-Gang; Zeng, Xian-Tao

    2016-01-01

    Numerous case–control studies have been performed to investigate the association between three cyclooxygenase-2 (COX-2) polymorphisms (rs20417 (−765G > C), rs689466 (−1195G > A), and rs5275 (8473 T > C)) and the risk of head and neck squamous cell carcinoma (HNSCC). However, the results were inconsistent. Therefore, we conducted this meta-analysis to investigate the association. We searched in PubMed, Embase, and Web of Science up to January 20, 2015 (last updated on May 12, 2016). Two independent reviewers extracted the data. Odds ratios (ORs) with their 95 % confidence intervals (CIs) were used to assess the association. All statistical analyses were performed using the Review Manager (RevMan) 5.2 software. Finally 8 case–control studies were included in this meta-analysis. For unadjusted data, an association with increased risk was observed in three genetic models in COX-2 rs689466 polymorphism; however, COX-2 rs5275 and rs20417 polymorphisms were not related to HNSCC risk in this study. The pooled results from adjusted data all revealed non-significant association between these three polymorphisms and risk of HNSCC. We also found a similar result in the subgroup analyses, based on both unadjusted data and adjusted data. Current results suggest that COX-2 rs689466, rs5275, and rs20417 polymorphisms are not associated with HNSCC. Further large and well-designed studies are necessary to validate this association

  19. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.

    Science.gov (United States)

    Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal

    2015-08-10

    Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.

  20. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  1. GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children.

    Science.gov (United States)

    Shen, Yue; Wu, Lijun; Xi, Bo; Liu, Xin; Zhao, Xiaoyuan; Cheng, Hong; Hou, Dongqing; Wang, Xingyu; Mi, Jie

    2013-01-01

    Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults. We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (ptriglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.

  2. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications.

    Science.gov (United States)

    Liu, Bin; Xu, Han; Zhao, Huiying; Liu, Wei; Zhao, Liyun; Li, Yuan

    2017-02-10

    We have developed an intelligent starch/poly-vinyl alcohol (PVA) film that is capable of monitoring pH changes and inhibiting undesired microbial growth in foods. Starch and PVA polymers in the film were doubly cross-linked by sodium trimetaphosphate and boric acid to improve their water-resistance and mechanical strength. Anthocyanins (ANT) and limonene (LIM) were used to achieve simultaneous colorimetric indication and antimicrobial activity. Firstly, the characterization of surface morphology using SEM confirmed that the starch-PVA-ANT-LIM film possessed a smooth surface. Secondly, the results of the mechanical strength test showed that starch-PVA-ANT-LIM possesses the highest mechanical strength. Additionally, there was a distinguishable change of colors as the film was immersed in solutions of pH ranging from 1.0 to 14.0. Moreover, the film showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Bacillus subtilis, Aspergillus niger, and Staphylococcus aureus. Finally, the film exhibited good color indication and antimicrobial activity on pasteurized milk. The results suggest that the intelligent film reported here shows good capability for both alerting and inhibiting food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  4. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

    Directory of Open Access Journals (Sweden)

    Guobin Luo

    2017-05-01

    Full Text Available Objective This trial was performed to examine the effects of ruminally degradable starch (RDS levels in total mixed ration (TMR with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29 were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS or 72.1% ruminally degradable starch (% of total starch, high RDS. Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  5. Digestion site of starch from cereals and legumes in lactating dairy cows

    DEFF Research Database (Denmark)

    Larsen, M; Lund, P; Weisbjerg, M R

    2009-01-01

    The effect of grinding and rolling (i.e. processing) of cereals and legumes (i.e. source) on site of starch digestion in lactating dairy cows was tested according to a 2×2 factorial design using a dataset derived from an overall dataset compiled from four experiments conducted at our laboratory...... digestibility of starch was decreased by rolling for legumes, whereas the three other source by processing combinations did not differ. The duodenal flow of microbial starch was estimated to 276 g/d as the intercept in the regression analysis. Apparent ruminal digestibilities of starch seemed to underestimate...... true ruminal digestibility in rations with low starch intake due to a relatively higher contribution of microbial starch to total duodenal starch flow compared to rumen escape feed starch. The small intestinal and total tract digestibility of legume starch was lower compared with starch from cereals...

  6. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    Science.gov (United States)

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  7. First principles insight into the α-glucan structures of starch

    DEFF Research Database (Denmark)

    Damager, Iben; Engelsen, Søren Balling; Blennow, Andreas

    2010-01-01

    A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated...... that the extent of crystallinity, aggregation and hydration was of fundamental importance for starch and its human analogue glycogen. Starch was deposited in the plant as a stable form in highly organized and semicrystalline granules having specific crystalline polymorphs as determined by powder X......-ray crystallography. The investigations mainly focused on the bottom-up approach of synthesis, conformation, and hydration of starch. Starch and glycogen were found to be polymers that were built up from a single monomer, D-glucopyranose, or for short D-glucose....

  8. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  9. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch.

    Science.gov (United States)

    Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Acosta-Osorio, Andrés A; Bello-Pérez, Luis A; Lucas-Aguirre, Juan C; Quintero, Víctor D; Pineda-Gómez, Posidia; del Real-López, Alicia; Rodríguez-García, Mario E

    2014-04-01

    This work presents the physicochemical and pasting characterization of isolated mafafa starch and mafafa flour (Xanthosoma robustum). According to SEM images of mafafa starches in the tuber, these starches form Lego-like shaped structures with diameters between 8 and 35 μm conformed by several starch granules of wedge shape that range from 2 to 7 μm. The isolated mafafa starch is characterized by its low contents of protein, fat, and ash. The starch content in isolated starch was found to be 88.58% while the amylose content obtained was 35.43%. X-ray diffraction studies confirm that isolated starch is composed mainly by amylopectin. These results were confirmed by differential scanning calorimetry and thermo gravimetric analysis. This is the first report of the molecular parameters for mafafa starch: molar mass that ranged between 2×10(8) and 4×10(8) g/mol, size (Rg) value between 279 and 295 nm, and molecular density value between 9.2 and 9.7 g/(mol nm(3)). This study indicates that mafafa starch shows long chains of amylopectin this fact contributes to higher viscosity development and higher gel stability. The obtained gel phase is transparent in the UV-vis region. The viscosity, gel stability and optical properties suggest that there is potential for mafafa starch applications in the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Utilisation of sago starch for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman Mohd Dahlan; Kamarudin Bahari

    2000-01-01

    Sago starch is utilized in Malaysia mainly for the purpose of food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel wound dressing. The sago starch is blending with water-soluble polymer such as polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene oxide and irradiated with electron beam accelerator to form hydrogel. The parameters such gel strength, elasticity, swelling, gel fraction and tackiness have to be consider for this type of application. We also study the effect of adding additive such as carboxymethyl cellulose and polypropylene glycol into the system to enhance the property of sago starch hydrogel. Works on the use of chitosan in the blend have been performed, in order to prevent microbiological growth such as bacteria and fungi on the hydrogel. (author)

  12. High-throughput hydrolysis of starch during permeation across {alpha}-amylase-immobilized porous hollow-fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi E-mail: marukyo@xtal.tf.chiba-u.ac.jp; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of {alpha}-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An {alpha}-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. {alpha}-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h{sup -1} for the {alpha}-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the {alpha}-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h{sup -1}; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the {alpha}-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the {alpha}-amylase-immobilized EA fiber.

  13. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    Science.gov (United States)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  14. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    International Nuclear Information System (INIS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-01-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1 ; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  15. Determination of the thermo-mechanical properties in starch and starch/gluten systems at low moisture content - a comparison of DSC and TMA.

    Science.gov (United States)

    Homer, Stephen; Kelly, Michael; Day, Li

    2014-08-08

    The impact of heating rate on the glass transition (Tg) and melting transitions observed by differential scanning calorimetry (DSC) on starch and a starch/gluten blend (80:20 ratio) at low moisture content was examined. The results were compared to those determined by thermo-mechanical analysis (TMA). Comparison with dynamic mechanical thermal analysis (DMTA) and phase transition analysis (PTA) is also discussed. Higher heating rates increased the determined Tg as well as the melting peak temperatures in both starch and the starch/gluten blend. A heating rate of 5°C/min gave the most precise value of Tg while still being clearly observed above the baseline. Tg values determined from the first and second DSC scans were found to differ significantly and retrogradation of starch biopolymers may be responsible. Tg values of starch determined by TMA showed good agreement with DSC results where the Tg was below 80°C. However, moisture loss led to inaccurate Tg determination for TMA analyses at temperatures above 80°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  17. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  19. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  20. Is hydroxyethyl starch 130/0.4 safe?

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2012-01-01

    ABSTRACT: It is heavily debated whether or not treatment with hydroxyethyl starch 130/0.4 contributes to the development of acute kidney failure in patients with severe sepsis. In the previous issue of Critical Care, Muller and colleagues report no association between initial resuscitation...... with hydroxyethyl starch 130/0.4 and renal impairment in a cohort of septic patients. Can we then consider hydroxyethyl starch 130/0.4 a safe intervention? The answer is no - observational data should be interpreted with caution and should mainly be used to identify risks, while safety must be assessed...

  1. Food-derived carbohydrates--structural complexity and functional diversity.

    Science.gov (United States)

    Tharanathan, Rudrapatnam N

    2002-01-01

    Carbohydrates are biomolecules abundantly available in nature. They are found in bewildering types ranging from simple sugars through oligo- and polysaccharides to glycoconjugates and saccharide complexes, each exhibiting characteristic bio-physiological and/or nutritional functions both in in vivo and in vitro systems. For example, their presence or inclusion in food dictates the texture (body) and gives desirable customer appeal (satisfaction), or their inclusion in the diet offers beneficial effects of great therapeutic value. Thus, carbohydrates are integrally involved in a multitude of biological functions such as regulation of the immune system, cellular signaling (communication), cell malignancy, antiinfection responses, host-pathogen interactions, etc. If starch is considered the major energy storage carbohydrate, the gums/mucilages and other non-starch carbohydrates are of structural significance. The most investigated properties of starch are its gelatinization and melting behavior, especially during food processing. This has led to the development of the food polymer science approach, which has enabled a new interpretive and experimental frame work for the study of the plasticizing influence of simple molecules such as water, sugars, etc. on food systems that are kinetically constrained. Starch, although considered fully digestible, has been challenged, and starch is found to be partly indigestible in the GI tract of humans. This fraction of starch-resisting digestion in vivo is known as resistant starch (RS). The latter, due to its excellent fermentative capacity in the gut, especially yielding butyric acid is considered a new tool for the creation of fiber-rich foods, which are of nutraceutical importance. By a careful control of the processing conditions the content of RS, a man-made fiber, can be increased to as high as 30%. Arabinoxylans are the major endospermic cell wall polysaccharides of cereals. In wheat they are found complexed with ferulic

  2. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  3. The influence of conventional heating and microwave irradiation on the resolution of (RS)-sec-butylamine catalyzed by free or immobilized lipases

    Energy Technology Data Exchange (ETDEWEB)

    Pilissao, Cristiane; Nascimento, Maria da Graca, E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis,SC (Brazil); Carvalho, Patricia de Oliveira [Curso de Farmacia, Universidade Sao Francisco, Braganca Paulista, SP (Brazil)

    2012-09-15

    The lipases CAL-B, PSL, PSL-C, PSL-D, and A. niger lipase, free or immobilized in starch (obtained from two types of yam, known in Brazil as 'cara' (Discorea alata L.) and 'inhame' (Colocasia esculenta (L.) Schott) or gelatin films, were used in the acylation of (RS)-sec-butylamine with different acyl donors in various organic solvents applying conventional heating (CH) or microwave (MW) irradiation. In the case of free A. niger lipase, the conversion degrees were three times higher using MW irradiation when compared to conventional heating at 35 deg C. Using free A. niger lipase, the (R)-amide was obtained with a conversion degree of 21%, resulting in ee{sub p}> 99% and E-value (enantioselectivity value) > 200, in 1 min of reaction under MW irradiation. When the A. niger lipase was immobilized in yam starch films, the (R)-amide was obtained in moderate conversions of 8-25% after 3 or 5 min of reaction under MW irradiation, but with higher selectivity (eep > 99% and E > 200) in comparison with the free form (conversion degree of 45%, eep 81% and E value of 18). (author)

  4. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  5. Effects of single and dual physical modifications on pinhão starch.

    Science.gov (United States)

    Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra

    2015-11-15

    Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modified starches or stabilizers in preparation of cheese bread

    Directory of Open Access Journals (Sweden)

    Letícia Dias dos Anjos

    2014-09-01

    Full Text Available Cheese bread is a Brazilian product which originated in Minas Gerais and which is highly consumed. In industrial production, there is increasing use of additives which enrich and enhance the physical of this product, adding value in the eyes of the consumer. Thus, the purpose of this paper was to study the effect of addition of modified starch and stabilizers on the physical-chemical of cheese bread. For this reason, measures taken so moisture, pH and acidity, volume, density, coefficient of expansion, and compression resistance (texturometer Results show that the stabilizers used improve these characteristics in the cheese bread, showing better physicochemical characteristics.

  8. Studies on gamma-irradiation of high amylose corn starch, 1

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Ayano, Yuko; Obara, Tetsujiro.

    1976-01-01

    Amylomaize 7, amylomaize 5, normal corn, waxy corn and potato starches were irradiated with 60 Co-gamma rays at the dose levels from 2x10 4 to 100x10 4 rad to determine the changes in physicochemical properties by irradiation. Irradiated starches were characterized by determination of amylography, specific viscosity, blue value, pH, acidity, carbonyl content, reducing value and limit of β-amylolysis. Irradiated starches showed a decrease in viscosity and blue value, and an increase in reducing value with increasing dose levels. These results were seemed to indicate the degradation of starch molecule. A slight oxidation of starch was suggested by a decrease in pH and an increase in acidity and carbonyl content. Amylomaize 7 and amylomaize 5 starches were less sensitive than the other starches in terms of irradiation effects. The rheological properties determined by amylography and Ostwald viscometer changed at the lowest dose (5x10 4 rad) and the other properties changed above 20x10 4 rad. The limits of β-amylase hydrolysis of normal corn, waxy corn and potato starches increased slightly by irradiation (100x10 4 rad). On the other hand, β-amylolysis limits of amylomaize 7 and amylomaize 5 starches were lower about 5.5% and 2.5% respectively than that of nonirradiated samples. The decrease of β-amylolysis limit enlarged with increasing amylose content. (auth.)

  9. Hydroxypropylation of pigeon pea (cajanus cajan) starch: Preparation, functional characterizations and enzymatic digestibility

    International Nuclear Information System (INIS)

    Lawal, O.S.

    2008-05-01

    Hydroxypropyl starch derivatives were prepared from pigeon pea starch (NPPS) which is an unconventional starch source. Functional parameters and characterization of both native and modified starches were carried out. The starch granules appeared oval or elliptical in shape with sizes ranging from 7 - 40 μm in width and 10 . 30 μm in length. Hydroxypropylation did not alter the shape of the starch granules in a pronounced way. Generally, the x-ray diffractograms of both native and hydroxypropyl derivatives showed the 'C' pattern. However, slight reductions were observed in the intensity of starches after modification. At all temperatures studied (30 - 90 deg. C), swelling and solubility of hydroxypropylated starches were higher than the NPPS. Progressive increases in swelling capacity and solubility were observed as the MS increased among the hydroxypropylated starches. Hydroxypropylation reduced starch paste turbidity on storage. Also, studies showed that syneresis reduced after hydroxypropylation. In addition, syneresis reduced as the MS of the hydroxypropyl starches increased. The results indicate that pasting temperature and peak temperature reduced after modification but peak viscosity increased in hydroxypropylated starch derivatives compared with the native starch. Setback reduced in hydroxypropylated starches compared with the native starch. Enthalpy of gelatinization and percentage retrogradation reduced after hydroxypropylation and progressive reductions were observed as the MS increased among the starch derivatives. Hydroxypropylation increased enzymatic digestibility. (author)

  10. Reactive compatibilization of ethylene-co-vinyl acetate/starch blends

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    The dispersion of starch as a filler in hydrophobic ethylene-co-vinyl acetate (EVA) rubber is an issue. To obtain a fine dispersion of starch in EVA rubber, EVA/starch blends were prepared by reactive extrusion in the pres- ence of maleic anhydride (MA), benzoyl peroxide (BPO), and glycerol. MA,

  11. Properties of foam and composite materials made o starch and cellulose fiber

    Science.gov (United States)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  12. Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation.

    Science.gov (United States)

    McCarthy, M M; Yasui, T; Ryan, C M; Pelton, S H; Mechor, G D; Overton, T R

    2015-05-01

    The objective of this study was to evaluate the effect of dietary starch content and monensin (MON) on metabolism of dairy cows during early lactation. Before parturition, primiparous (n=21) and multiparous (n=49) Holstein cows were fed a common controlled-energy close-up diet with a daily topdress of either 0 or 400mg/d monensin. From d 1 to 21 postpartum, cows were fed a high-starch (HS; 26.2% starch, 34.3% neutral detergent fiber, 22.7% acid detergent fiber, 15.5% crude protein) or low-starch (LS; 21.5% starch, 36.9% neutral detergent fiber, 25.2% acid detergent fiber, 15.4% crude protein) total mixed ration with a daily topdress of either 0mg/d monensin (CON) or 450mg/d monensin (MON), continuing with prepartum topdress assignment. From d 22 through 63 postpartum, all cows were fed HS and continued with the assigned topdress treatment until d 63. Cows fed HS had higher plasma glucose and insulin and lower nonesterified fatty acids (NEFA) than cows fed LS during d 1 to 21 postpartum. Cows fed LS had elevated early-lactation β-hydroxybutyrate (BHBA) compared with cows fed HS. Cows fed HS had greater insulin resistance and increased plasma haptoglobin in the early lactation period. There was no effect of MON on postpartum plasma NEFA. Cows fed MON had higher plasma glucose compared with CON cows, which was driven by a MON × parity interaction in which primiparous cows fed MON had greater plasma glucose concentrations than cows fed CON. Cows fed MON had lower plasma BHBA compared with CON, which was contributed to by a MON × parity interaction in which primiparous cows fed MON had lower BHBA concentrations than CON. Starch treatment had no effect on overall liver triglyceride content. Primiparous cows fed MON had increased liver triglyceride content compared with CON primiparous cows, and multiparous cows fed MON had decreased liver triglyceride content compared with CON cows. Multiparous cows fed LS with MON had higher liver glycogen content than multiparous

  13. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  14. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  15. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  16. Correlation of Fetuin-A gene rs1071592 and rs2593813 single nucleotide polymorphisms with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Juan YI

    2016-10-01

    Full Text Available Objective  To investigate the relations of Fetuin-A gene rs1071592 and rs2593813 single nucleotide polymorphisms (SNPs with the affect ability to polycystic ovary syndrome (PCOS and its endocrine and metabolic characteristics in Chongqing Han population. Methods  A case-control study was performed in Chinese Han subjects. The clinical data of 156 cases of normal control and 147 cases of PCOS patients were collected, and their blood glucose, lipids, sex hormone and other biochemical indexes were determined, the SNPs of rs1071592 and rs2593813 were genotyped by TaqMan SNP Genotyping Assay. Hyperinsulinemic-euglycemic clamp was performed in 147 PCOS women and 20 controls. The relative risk of developing PCOS in women with rs1071592 genotype was assessed using a binary logistic regression analysis. Results  The distribution frequency of Fetuin-A gene homozygous rs1071592 AA genotype and A allele was significantly increased in PCOS patients than in controls (Pc0.05. Binary logistic regression analysis showed that the risk of developing PCOS was 4.93 times high in women with AA genotype of rs1071592 (OR=4.933, 95%CI 1.593-15.278, P0.05. Conclusion  People with SNPs variants of rs1071592 in Fetuin-A gene may have an increased genetic susceptibility to PCOS. However, there won't be significant relationship between SNP of rs2593813 at Fetuin-A gene and PCOS. DOI: 10.11855/j.issn.0577-7402.2016.09.07

  17. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  18. Effect of magnetic starch on the clarification of hematite tailings wastewater

    Science.gov (United States)

    Yue, Tao; Wu, Xiqing

    2018-02-01

    The magnetic starch solution, synthesized by mixing the caustic starch, the Fe2+ solution (in some cases containing the Zn2+, Cu2+, Mn2+ or Mg2+ ions) and H2O2 solution, was used as the flocculant to investigate its clarification effect on hematite tailings wastewater. Based on the clarification tests and adsorption analysis it was demonstrated that the magnetic starch produced better clarification effect than the caustic starch, and the adsorption of magnetic starch onto hematite tailings particles was also stronger than the caustic starch. AFM found that the magnetic interaction between magnetic seeds and hematite is characteristic of long range force and greatly strengthens the adsorption of magnetic seeds onto fine hematite for agglomeration. FTIR indicates the starch adsorbed onto the surfaces of hematite and magnetic seeds, thus acting as the bridging between hematite particles and magnetic seeds, resulting in an intensified coverage of the starch onto hematite and positive action in the clarification.

  19. Comparison of various types of starch when used in meat sausages.

    Science.gov (United States)

    Skrede, G

    1989-01-01

    Technological and sensory properties of meat sausages formulated with 4·0% of either potato flour, modified (acetylated distarch phosphate) potato starch, wheat, corn or tapioca starch were compared. Sausages were analyzed after cooking at temperatures between 65 and 85°C followed by storage at 5°C and -25°C. Characteristics evaluated were weight loss during cooking and storage, instrumentally and sensory assessed firmness, taste and smell of sausages. The results revealed differences in the suitability of starches for use in meat sausages. Part of the differences could be ascribed to differences in gelatination properties of the starches. With the criteria used for evaluating quality, potato flour was rated as the best suited starch followed by wheat starch while tapioca was rated as the least suited. Corn starch required cooking temperatures above 75°C and showed relatively low freeze/thaw stability. The modified potato starch stored well both above and below the freezing point. Copyright © 1989. Published by Elsevier Ltd.

  20. Effect of acid hydrolysis on starch structure and functionality: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.