WorldWideScience

Sample records for resistance-associated macrophage proteins

  1. Natural Resistance Associated Macrophage Protein Is Involved in Immune Response of Blunt Snout Bream, Megalobrama amblycephala.

    Science.gov (United States)

    Jiang, Yu-Hong; Mao, Ying; Lv, Yi-Na; Tang, Lei-Lei; Zhou, Yi; Zhong, Huan; Xiao, Jun; Yan, Jin-Peng

    2018-03-29

    The natural resistance-associated macrophage protein gene ( Nramp ), has been identified as one of the significant candidate genes responsible for modulating vertebrate natural resistance to intracellular pathogens. Here, we identified and characterized a new Nramp family member, named as maNramp , in the blunt snout bream. The full-length cDNA of maNramp consists of a 153 bp 5'UTR, a 1635 bp open reading frame encoding a protein with 544 amino acids, and a 1359 bp 3'UTR. The deduced protein (maNRAMP) possesses the typical structural features of NRAMP protein family, including 12 transmembrane domains, three N-linked glycosylation sites, and a conserved transport motif. Phylogenetic analysis revealed that maNRAMP shares the significant sequence consistency with other teleosts, and shows the higher sequence similarity to mammalian Nramp2 than Nramp1 . It was found that maNramp expressed ubiquitously in all normal tissues tested, with the highest abundance in the spleen, followed by the head kidney and intestine, and less abundance in the muscle, gill, and kidney. After lipopolysaccharide (LPS) stimulation, the mRNA level of maNramp was rapidly up-regulated, which reached a peak level at 6 h. Altogether, these results indicated that maNramp might be related to fish innate immunity and similar to mammalian Nramp1 in function.

  2. Bypassing Iron Storage in Endodermal Vacuoles Rescues the Iron Mobilization Defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 Double Mutant.

    Science.gov (United States)

    Mary, Viviane; Schnell Ramos, Magali; Gillet, Cynthia; Socha, Amanda L; Giraudat, Jérôme; Agorio, Astrid; Merlot, Sylvain; Clairet, Colin; Kim, Sun A; Punshon, Tracy; Guerinot, Mary Lou; Thomine, Sébastien

    2015-09-01

    To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that, among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells. This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3, and AtNRAMP4 limits Fe accumulation in vacuolar globoids. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma

    NARCIS (Netherlands)

    Arts, H. J.; Katsaros, D.; de Vries, E. G.; Massobrio, M.; Genta, F.; Danese, S.; Arisio, R.; Scheper, R. J.; Kool, M.; Scheffer, G. L.; Willemse, P. H.; van der Zee, A. G.; Suurmeijer, A. J.

    1999-01-01

    Intrinsic and/or acquired resistance to chemotherapy is the major obstacle to overcome in the treatment of patients with ovarian carcinoma. The aim of the present study was to investigate the prognostic value of drug resistance-associated proteins P-glycoprotein (P-gp), multidrug

  4. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  5. Expression of multidrug resistance-associated proteins predicts prognosis in childhood and adult acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Plasschaert, SLA; de Bont, ESJM; Boezen, M; vander Kolk, DM; Daenen, SMJG; Faber, KN; Kamps, WA; de Vries, EGE; Vellenga, E

    2005-01-01

    PURPOSE: Patients with acute lymphoblastic leukemia (ALL) are treated with a variety of chemotherapeutic drugs, which can be transported by six multidrug resistance-associated proteins (MRP). These MRPs have strongly overlapping functional activities. The aim of this study was to investigate the

  6. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimu

  7. Cranberry Proanthocyanidins - Protein complexes for macrophage activation.

    Science.gov (United States)

    Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D

    2017-09-20

    In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL

  8. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1

    NARCIS (Netherlands)

    van Gorkom, BAP; Timmer-Bosscha, H; de Jong, S; Kleibeuker, JH; de Vries, EGE

    2002-01-01

    Anthranoid laxatives, belonging to the anthraquinones as do anthracyclines, possibly Increase colorectal cancer risk. Anthracyclines Interfere with topoisomerase II, Intercalate DNA and are substrates for P-glycoprotein and multidrug resistance-associated protein I. P-glycoprotein and multidrug

  9. Study of peripheral blood multidrug resistance-associated protein 1 expression of children intractable epilepsy.

    Science.gov (United States)

    Yue, Xuan; Liu, Xiaoming; Chen, Shengzhi; Li, Rui

    2018-04-01

    The aim of this study was to analyze multidrug resistance-associated protein 1 (MRP1) expression of peripheral blood of children intractable epilepsy. Sixty children with epilepsy admitted to outpatient and inpatient services of Xuzhou Children's Hospital between November 2010 and October 2011 were divided into a refractory epilepsy group and a drug-controlled epilepsy group, with 30 cases each. Thirty healthy children who went to the hospital in the same year for health examination were enrolled as a control group. Reverse transcriptase polymerase chain reaction and Western blot method were used to determine peripheral blood MRP1 level, mRNA, and protein content of the 3 groups. MRP1 expression in the refractory epilepsy group was significantly higher than those of the epilepsy group with good drug control and of the control group. All differences had statistical significance (P0.05). Peripheral blood MRP1 expression in patients with refractory epilepsy increases.

  10. Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells

    NARCIS (Netherlands)

    Courtois, A; Payen, L; Vernhet, L; de Vries, EGE; Guillouzo, A; Fardel, O

    1999-01-01

    The multidrug resistance-associated protein (MRP) is a drug efflux membrane pump conferring multidrug resistance on tumor cells. In order to look for compounds that can lead to reversal of such a resistance, the antituberculosis compound rifampicin, belonging to the chemical class of rifamycins, was

  11. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Although multidrug-resistance-associated protein-1 (MRP1 is a major contributor to multi-drug resistance (MDR, the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs--ARE1 and ARE2--were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC. As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.

  12. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics.

    Science.gov (United States)

    Tocchetti, Guillermo Nicolás; Rigalli, Juan Pablo; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells.

    Science.gov (United States)

    Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K

    2007-01-01

    Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.

  14. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  15. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  16. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  17. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  18. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2

    DEFF Research Database (Denmark)

    Litman, Thomas; Jensen, Ulla; Hansen, Alastair

    2002-01-01

    Recent studies have characterized the ABC half-transporter associated with mitoxantrone resistance in human cancer cell lines. Encoded by the ABCG2 gene, overexpression confers resistance to camptothecins, as well as to mitoxantrone. We developed four polyclonal antibodies against peptides...... corresponding to four different epitopes on the mitoxantrone resistance-associated protein, ABCG2. Three epitopes localized on the cytoplasmic region of ABCG2 gave rise to high-affinity antibodies, which were demonstrated to be specific for ABCG2. Western blot analysis of cells with high levels of ABCG2 showed...... membrane localization of ABCG2 in cell lines with high levels of expression. Plasma membrane staining was observed on the surface of the chorionic villi in placenta. These results support the hypothesis that ABCG2 is an ABC half-transporter that forms dimers in the plasma membrane, functioning as an ATP...

  19. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  20. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    Science.gov (United States)

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  1. Mechanisms of multidrug resistance in HL60 cells. Analysis of resistance associated membrane proteins and levels of mdr gene expression.

    Science.gov (United States)

    McGrath, T; Latoud, C; Arnold, S T; Safa, A R; Felsted, R L; Center, M S

    1989-10-15

    HL60 cells isolated for resistance to Adriamycin do not contain P-glycoprotein, as determined with immunological probes. These cells, however, are multidrug resistant and defective in the cellular accumulation of drug. In view of these findings, we have examined in greater detail certain properties of the HL60/Adr cells and have compared these properties to an HL60 drug-resistant isolate (HL60/Vinc) which contains high levels of P-glycoprotein. The results of these studies demonstrated that verapamil induces a major increase in cellular drug accumulation in both HL60/Adr and HL60/Vinc isolates. An 125I-labeled photoaffinity analog of verapamil labeled P-glycoprotein contained in membranes of HL60/Vinc cells. In contrast, this agent did not label any protein selectively associated with drug resistance in membranes of the HL60/Adr isolate. The photoactive dihydropyridine calcium channel blocker [3H]azidopine and [125I]NASV, a photoaffinity analog of vinblastine, labelled P-glycoprotein in membranes from HL60/Vinc cells, whereas in experiments with the HL60/Adr isolate there was no detectable labeling of a drug resistance associated membrane protein. Additional studies have been carried out to analyze membrane proteins of HL60/Adr cells labeled with the photoaffinity agent 8-azido-alpha-[32P]ATP (AzATP32). The results demonstrate that this agent labeled a resistance associated membrane protein of 190 kilodaltons (P190). P190 is essentially absent in membranes of drug-sensitive cells. Labeling of P190 with AzATP32 in membranes of resistant cells was blocked completely when incubations were carried out in the presence of excess unlabeled ATP. Additional studies were carried out to analyze mdr gene amplification and expression in sensitive and resistant cells. Experiments carried out with human 5',mdr1 (1.1 kb) and mdr3 (1.0 kb) cDNAs demonstrate that both of these sequences were highly amplified in the HL60/Vinc isolate. Only the mrd1 gene sequence however, was

  2. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  3. Macrophage Stimulating Protein Enhances Hepatic Inflammation in a NASH Model

    NARCIS (Netherlands)

    Li, Jieyi; Chanda, Dipanjan; van Gorp, Patrick J.; Jeurissen, Mike L. J.; Houben, Tom; Walenbergh, Sofie M. A.; Debets, Jacques; Oligschlaeger, Yvonne; Gijbels, Marion J. J.; Neumann, Dietbert; Shiri-Sverdlov, Ronit

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is a common liver disease characterized by hepatic lipid accumulation (steatosis) and inflammation. Currently, therapeutic options are poor and the long-term burden to society is constantly increasing. Previously, macrophage stimulating protein (MSP)-a serum

  4. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein.

    Science.gov (United States)

    Stefan, Katja; Schmitt, Sven Marcel; Wiese, Michael

    2017-11-09

    P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.

  5. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    Science.gov (United States)

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  6. Intraabdominal sepsis down-regulates transcription of sodium taurocholate cotransporter and multidrug resistance-associated protein in rats.

    Science.gov (United States)

    Kim, P K; Chen, J; Andrejko, K M; Deutschman, C S

    2000-08-01

    Hepatic dysfunction in sepsis is characterized by hyperbilirubinemia and intrahepatic cholestasis. We hypothesize that sepsis causes decreased hepatic transcription of the bile acid transporter sodium taurocholate cotransporter (Ntcp) and the organic anion transporter multidrug resistance-associated protein (Mrp2) and that interleukin (IL)-6 is important in the down-regulation of Ntcp and Mrp2 expression. Male Sprague-Dawley rats underwent induction of mild, nonlethal sepsis by cecal ligation and single puncture (CLP) or fulminant sepsis by cecal ligation and double puncture (2CLP). Hepatic transcription of Ntcp and Mrp2 rapidly decreased after CLP or 2CLP. Seventy-two hours later, transcription was 60% of baseline in CLP and 14% of baseline in 2CLP. Serum bilirubin was elevated from 24 h onward and cholestasis was observed on fixed liver specimens at 24, 48, and 72 h after 2CLP but not after CLP. Steady-state Ntcp and Mrp2 mRNA was decreased in IL-6-treated cultured hepatocytes and in normal rats given 1 mg/kg intravenous IL-6. We conclude that 1) Ntcp and Mrp2 transcription is down-regulated transiently after CLP and persistently after 2CLP; 2) 2CLP results in hyperbilirubinemia and cholestasis, in part due to persistently decreased transcription of Ntcp and Mrp2; and 3) altered Ntcp and Mrp2 transcription is mediated in part by IL-6.

  7. Excretion of fluorescent substrates of mammalian multidrug resistance-associated protein (MRP) in the Schistosoma mansoni excretory system.

    Science.gov (United States)

    Sato, H; Kusel, J R; Thornhill, J

    2004-01-01

    The protonephridium of platyhelminths including Schistosoma mansoni plays a pivotal role in their survival by excretion of metabolic wastes as well as xenobiotics, and can be revealed in the living adult parasite by certain fluorescent compounds which are concentrated in excretory tubules and collecting ducts. To determine the presence of the multidrug resistance-associated protein (MRP) as a possible transporter in protonephridial epithelium, adult schistosomes were exposed to a fluorescent Ca2+ indicator, fluo-3 acetyloxymethyl ester, which is a potential substrate of mammalian MRP. Specific fluorescence related to fluo-3/Ca2+ chelate delineated the whole length of the protonephridial system. Simultaneously, a fluorescent substance was accumulated in the posterior part of collecting ducts and the excretory bladder. Similarly, when other fluorogenic substrates for mammalian MRP such as monoclorobimane, fluorescein diacetate, and 5(6)-carboxyfluorescein diacetate were applied to adult schistosomes, these fluorescent markers were observed in the excretory tubules through to the excretory bladder. The excretory system of mechanically-transformed schistosomula was not labelled with any of these 4 fluorescent markers. These findings suggest that the protonephridial epithelium of adult schistosomes, but not schistosomula, might express the homologue of the mammalian MRP transporting organic anionic conjugates with glutathione, glucuronate or sulphate as well as unconjugated amphiphilic organic anions.

  8. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles

    Science.gov (United States)

    Myint, Khine; Li, Yan; Paxton, James; McKeage, Mark

    2015-01-01

    The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In

  9. Localization of macrophage inflammatory protein : Macrophage inflammatory PROTEIN-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia

    NARCIS (Netherlands)

    Gourmala, NG; Limonta, S; Bochelen, D; Sauter, A; Boddeke, HWGM

    Macrophage inflammatory protein is a member of the C-C subfamily of chemokines, which exhibits, in addition to proinflammatory activities, a potent endogenous pyrogen activity. In this study, we analysed the time-course of expression and cellular source of macrophage inflammatory protein-1 alpha and

  10. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux.

    Science.gov (United States)

    Karla, Pradeep K; Quinn, Tim L; Herndon, Betty L; Thomas, Priscilla; Pal, Dhananjay; Mitra, Ashim

    2009-04-01

    The purpose of this manuscript is to investigate the presence of nucleoside/nucleotide efflux transporter in cornea and to evaluate the role in ocular drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis and immunostaining were employed to establish molecular presence of multidrug resistance associated protein 5 (MRP5) on cornea. Corneal efflux by MRP5 was studied with bis(POM)-PMEA and acyclovir using rabbit and human corneal epithelial cells along with MRP5 over expressing cells (MDCKII-MRP5). Ex vivo studies using excised rabbit cornea and in vivo ocular microdialysis in male New Zealand white rabbits were used to further evaluate the role of MRP5 in conferring ocular drug resistance. RT-PCR confirms the expression of MRP5 in both rabbit and human corneal epithelial cells along with MDCKII-MRP5 cells. Immunoprecipitation followed by Western blot analysis using a rat (M511-54) monoclonal antibody that reacts with human epitope confirms the expression of MRP5 protein in human corneal epithelial cells and MDCKII-MRP5 cells. Immunostaining performed on human cornea indicates the localization of this efflux pump on both epithelium and endothelium. Efflux studies reveal that depletion of ATP decreased PMEA efflux significantly. MRP5 inhibitors also diminished PMEA and acyclovir efflux. However, depletion of glutathione did not alter efflux. MDR1 and MRP2 did not contribute to PMEA efflux. However, MRP2 is involved in acyclovir efflux while MDR1 do not participate in this process. TLC/autoradiography suggested the conversion of bis(POM)-PMEA to PMEA in rabbit and human corneal epithelial cells. Two well known antiglaucoma drugs, bimatoprost and latanoprost were rapidly effluxed by MRP5. Ex vivo study on intact rabbit corneas demonstrated accumulation of PMEA in cornea in the presence of ATP-depleting medium. In vivo ocular pharmacokinetics also revealed a significant increase in maximum aqueous humor concentration (C(max)) and area under the

  11. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function, and sign

  12. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming.

    Science.gov (United States)

    Lumbroso, Delphine; Soboh, Soaad; Maimon, Avi; Schif-Zuck, Sagie; Ariel, Amiram; Burstyn-Cohen, Tal

    2018-01-01

    The complete resolution of inflammation requires the uptake of apoptotic polymorphonuclear cells (PMN) by local macrophages (efferocytosis) and the consequent reprogramming of the engulfing phagocytes to reparative and pro-resolving phenotypes. The tyrosine kinase receptors TYRO3, AXL, and MERTK (collectively named TAM) are fundamental mediators in regulating inflammatory responses and efferocytosis. Protein S (PROS1) is a ligand for all TAM receptors that mediates various aspects of their activity. However, the involvement of PROS1 in the resolution of inflammation is incompletely understood. Here, we report the upregulation of Pros1 in macrophages during the resolution of inflammation. Selective knockout of Pros1 in the myeloid lineage significantly downregulated macrophage pro-resolving properties. Hence, Pros1 -deficient macrophages engulfed fewer apoptotic PMN remnants in vivo , and exogenous PROS1 rescued impaired efferocytosis ex vivo . Moreover, Pros1 -deficient peritoneal macrophages secreted higher levels of the pro-inflammatory mediators TNFα and CCL3, while they secreted lower levels of the reparative/anti-inflammatory IL-10 following exposure to lipopolysaccharide in comparison to their WT counterparts. Moreover, Pros1 -deficient macrophages expressed less of the anti-inflammatory/pro-resolving enzymes arginase-1 and 12/15-lipoxygenase and produced less of the specialized pro-resolving mediator resolvin D1. Altogether, our results suggest that macrophage-derived PROS1 is an important effector molecule in regulating the efferocytosis, maturation, and reprogramming of resolution phase macrophages, and imply that PROS1 could provide a new therapeutic target for inflammatory and fibrotic disorders.

  13. Identification and comparison of macrophage-induced proteins and proteins induced under various stress conditions in Brucella abortus.

    OpenAIRE

    Rafie-Kolpin, M; Essenberg, R C; Wyckoff, J H

    1996-01-01

    Brucella abortus is a facultative intracellular pathogen of cattle and humans that is capable of survival inside macrophages. In order to understand how B. abortus copes with the conditions during intracellular growth in macrophages, the protein synthesis pattern of the bacteria grown inside bovine macrophages has been compared with that of bacteria grown in the cell culture medium by two-dimensional polyacrylamide gel electrophoresis. Approximately 24 new proteins that are not detected in th...

  14. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients

    DEFF Research Database (Denmark)

    Meier, Anders; Hadrup, Sine Reker; Svane, Inge Marie

    2005-01-01

    Expression of the cancer-testis antigen Taxol resistance - associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel ( Taxol) resistance, and is expressed in various cancer types; e. g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target....... The identified HLA-A* 02.01 - restricted TRAG-3-derived epitopes are targets for spontaneous immune responses in breast cancer, hematopoietic cancer, and melanoma patients. Hence, these epitopes represent potential target structures for future therapeutic vaccinations against cancer, possibly appropriate...... for strategies that combine vaccination and chemotherapy; i.e., paclitaxel treatment....

  15. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    OpenAIRE

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY f...

  16. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages

    Science.gov (United States)

    Cui, Yizhi; Zhou, Yanlong; Yin, Xingfeng; Guo, Jiahui; Zhang, Gong; Wang, Tong; He, Qing-Yu

    2016-01-01

    The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit. PMID:27602764

  17. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages.

    Science.gov (United States)

    Chen, Zhipeng; Yang, Lijuan; Cui, Yizhi; Zhou, Yanlong; Yin, Xingfeng; Guo, Jiahui; Zhang, Gong; Wang, Tong; He, Qing-Yu

    2016-10-11

    The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.

  18. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  19. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  20. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  1. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  2. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1.

    Science.gov (United States)

    Liang, Zhongxing; Wu, Hui; Xia, James; Li, Yuhua; Zhang, Yawei; Huang, Ke; Wagar, Nicholas; Yoon, Younghyoun; Cho, Heidi T; Scala, Stefania; Shim, Hyunsuk

    2010-03-15

    Multidrug resistance-associated protein (MRP-1/ABCC1) transports a wide range of therapeutic agents and may play a critical role in the development of multidrug resistance (MDR) in tumor cells. However, the regulation of MRP-1 remains controversial. To explore whether miRNAs are involved in the regulation of MRP-1 expression and modulate the sensitivity of tumor cells to chemotherapeutic agents, we analyzed miRNA expression levels in VP-16-resistant MDR cell line, MCF-7/VP, in comparison with its parent cell line, MCF-7, using a miRNA microarray. MCF-7/VP overexpressed MRP-1 mRNA and protein not MDR-1 and BCRP. miR-326 was downregulated in MCF-7/VP compared to MCF-7. Additionally, miR-326 was downregulated in a panel of advanced breast cancer tissues and consistent reversely with expression levels of MRP-1. Furthermore, the elevated levels of miR-326 in the mimics-transfected VP-16-resistant cell line, MCF-7/VP, downregulated MRP-1 expression and sensitized these cells to VP-16 and doxorubicin. These findings demonstrate for the first time the involvement of miRNAs in multidrug resistance mediated by MRP-1 and suggest that miR-326 may be an efficient agent for preventing and reversing MDR in tumor cells. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  4. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages

    DEFF Research Database (Denmark)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar

    2012-01-01

    proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane...... and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule...... resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed...

  5. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae.

    Science.gov (United States)

    Bewley, Martin A; Pham, Trong K; Marriott, Helen M; Noirel, Josselin; Chu, Hseuh-Ping; Ow, Saw Y; Ryazanov, Alexey G; Read, Robert C; Whyte, Moira K B; Chain, Benny; Wright, Phillip C; Dockrell, David H

    2011-06-01

    Macrophages are central effectors of innate immune responses to bacteria. We have investigated how activation of the abundant macrophage lysosomal protease, cathepsin D, regulates the macrophage proteome during killing of Streptococcus pneumoniae. Using the cathepsin D inhibitor pepstatin A, we demonstrate that cathepsin D differentially regulates multiple targets out of 679 proteins identified and quantified by eight-plex isobaric tag for relative and absolute quantitation. Our statistical analysis identified 18 differentially expressed proteins that passed all paired t-tests (α = 0.05). This dataset was enriched for proteins regulating the mitochondrial pathway of apoptosis or inhibiting competing death programs. Five proteins were selected for further analysis. Western blotting, followed by pharmacological inhibition or genetic manipulation of cathepsin D, verified cathepsin D-dependent regulation of these proteins, after exposure to S. pneumoniae. Superoxide dismutase-2 up-regulation was temporally related to increased reactive oxygen species generation. Gelsolin, a known regulator of mitochondrial outer membrane permeabilization, was down-regulated in association with cytochrome c release from mitochondria. Eukaryotic elongation factor (eEF2), a regulator of protein translation, was also down-regulated by cathepsin D. Using absence of the negative regulator of eEF2, eEF2 kinase, we confirm that eEF2 function is required to maintain expression of the anti-apoptotic protein Mcl-1, delaying macrophage apoptosis and confirm using a murine model that maintaining eEF2 function is associated with impaired macrophage apoptosis-associated killing of Streptococcus pneumoniae. These findings demonstrate that cathepsin D regulates multiple proteins controlling the mitochondrial pathway of macrophage apoptosis or competing death processes, facilitating intracellular bacterial killing.

  6. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production.

    Directory of Open Access Journals (Sweden)

    Jing Jing Li

    Full Text Available BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs, however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ and lipopolysaccharide (LPS drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS stimulation, and further explored the effect of odorant stimulation on macrophage function. METHODOLOGY/PRINCIPAL FINDINGS: OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622 on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. CONCLUSIONS/SIGNIFICANCE: Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1

  7. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    International Nuclear Information System (INIS)

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul; Newman, Debra; Scholz, Karoline; Bondar, Galyna; Zhu Quansheng; Avliyakulov, Nuraly K.; Dekant, Wolfgang; Faull, Kym; Kurtz, Ira; Pushkin, Alexander

    2010-01-01

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.

  8. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines

    NARCIS (Netherlands)

    Kool, M.; de Haas, M.; Scheffer, G. L.; Scheper, R. J.; van Eijk, M. J.; Juijn, J. A.; Baas, F.; Borst, P.

    1997-01-01

    By screening databases of human expressed sequence tags, we have identified three new homologues of MRP1, the gene encoding the multidrug resistance-associated protein, and cMOAT (or MRP2), the canalicular multispecific organic anion transporter gene. We call these new genes MRP3, MRP4, and MRP5.

  9. Lack of Contribution of Multidrug Resistance-associated Protein and Organic Anion-transporting Polypeptide to Pharmacokinetics of Regorafenib, a Novel Multi-Kinase Inhibitor, in Rats.

    Science.gov (United States)

    Hotta, Kazuo; Ueyama, Jun; Tatsumi, Yasuaki; Tsukiyama, Ikuto; Sugiura, Yuka; Saito, Hiroko; Matsuura, Katsuhiko; Hasegawa, Takaaki

    2015-09-01

    We investigated whether hepatic multidrug resistance-associated protein 2 (ABCC2) is involved in the hepatobiliary excretion of regorafenib, a novel multi-kinase inhibitor, using Sprague-Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) lacking the efflux transporter ABCC2. The involvement of organic anion-transporting polypeptide 1 (OATP1; OATP in humans) and OATP2 in the hepatic uptake of regorafenib and their protein levels in the liver were also investigated in the two rat groups. When regorafenib (5 mg/kg) was administered intravenously, the plasma concentrations of regorafenib were higher in EHBR than those in SD rats. However, the slope of the plasma concentration-time curves was the same for the two groups. Although the apparent biliary clearance of regorafenib in EHBR was lower than that of SD rats, no significant difference in the biliary excretion rate was observed between them, suggesting that regorafenib is not a substrate for ABCC2 and is not excreted into bile by ABCC2. It was also found that the contribution of biliary excretion to the systemic elimination of regorafenib is small. The protein-binding profiles of regorafenib were found to be linear in both rat groups. The binding potency, which was very high in both rat groups (>99.5%), was significantly higher in EHBR than that in SD rats. No significant differences in the plasma concentrations of unbound regorafenib were observed between the two rat groups, suggesting that the differences observed in the pharmacokinetic behaviors of regorafenib between the two rat groups were due to differences in protein-binding. When the protein levels of hepatic OATP1 and OATP2 were measured by immunoblot analysis, the expression of both transporters in EHBR was less than 40% of that in SD rats. The present results suggest that regorafenib is not a substrate for OATP1 and OATP2. These findings suggest the possibility that ABCC2-mediated hepatobiliary excretion and OATP1/OATP2-mediated hepatic uptake do

  10. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    International Nuclear Information System (INIS)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2012-01-01

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  11. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Hu, Ming, E-mail: mhu@uh.edu [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030 (United States); Liu, Zhongqiu, E-mail: liuzq@smu.edu.cn [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China)

    2012-12-15

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  12. Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves.

    Science.gov (United States)

    Sypniewska, Roza K; Millenbaugh, Nancy J; Kiel, Johnathan L; Blystone, Robert V; Ringham, Heather N; Mason, Patrick A; Witzmann, Frank A

    2010-12-01

    A macrophage assay and proteomic screening were used to investigate the biological activity of soluble factors in the plasma of millimeter wave-exposed rats. NR8383 rat macrophages were incubated for 24 h with 10% plasma from male Sprague-Dawley rats that had been exposed to sham conditions, or exposed to 42 °C environmental heat or 35 GHz millimeter waves at 75 mW/cm² until core temperature reached 41.0 °C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to analyze approximately 600 protein spots in the cell lysates for changes in protein abundance and levels of 3-nitrotyrosine, a marker of macrophage stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham-exposed rats, plasma from environmental heat- or millimeter wave-exposed rats increased the expression of 11 proteins, and levels of 3-nitrotyrosine in seven proteins, in the NR8383 cells. These altered proteins are associated with inflammation, oxidative stress, and energy metabolism. Findings of this study indicate both environmental heat and 35 GHz millimeter wave exposure elicit the release of macrophage-activating mediators into the plasma of rats.

  13. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  14. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  15. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model.

    Science.gov (United States)

    Tedesco, Pietro; Visone, Marco; Parrilli, Ermenegilda; Tutino, Maria Luisa; Perrin, Elena; Maida, Isabel; Fani, Renato; Ballestriero, Francesco; Santos, Radleigh; Pinilla, Clemencia; Di Schiavi, Elia; Tegos, George; de Pascale, Donatella

    2015-01-01

    This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms' intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms.

  16. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of P-glycoprotein and Multidrug resistance associated proteins.

    Directory of Open Access Journals (Sweden)

    Nora eSandow

    2015-02-01

    Full Text Available Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp and multidrug resistance associated proteins (MRPs expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs (carbamazepine, sodium valproate, phenytoin and two unspecific inhibitors of Pgp and MRPs (verapamil and probenecid on seizure-like events induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices were studied. Although in slice preparations the blood brain barrier is not functional, we found that seizure-like events predominantly persisted in the presence of anticonvulsant drugs (90% and also in the presence of verapamil and probenecid (86%. Following subsequent co-administration of antiepileptic drugs and drug transport inhibitors, seizure-like events continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30% or as suppression (7%, particularly by perfusion with carbamazepine in probenecid containing solutions (43%, 9%. Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7 % of patients. Patients whose tissue was completely or partially sensitive (65 % presented with higher seizure frequencies than those with resistant tissue (35 %. However, corresponding subgroups of patients don’t differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.

  17. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  19. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C

  20. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  1. S100 Proteins As an Important Regulator of Macrophage Inflammation

    Directory of Open Access Journals (Sweden)

    Chang Xia

    2018-01-01

    Full Text Available The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range of intracellular and extracellular functions through regulating calcium balance, cell apoptosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The intracellular functions of S100 proteins involve interaction with intracellular receptors, membrane protein recruitment/transportation, transcriptional regulation and integrating with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered biomarkers for some specific diseases. In this review, we will discuss the multi-functional roles of S100 proteins, especially their potential roles associated with cell migration, differentiation, tissue repair, and inflammation.

  2. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats

    DEFF Research Database (Denmark)

    Schmal, H; Shanley, T P; Jones, M L

    1996-01-01

    Macrophage inflammatory protein-2 (MIP-2) is a C-X-C chemokine that possesses chemotactic activity for neutrophils. Rat MIP-2 was cloned and expressed as a 7.9-kDa peptide that exhibited dose-dependent neutrophil chemotactic activity at concentrations from 10 to 250 nM. Rabbit polyclonal Ab...

  3. Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P

    1995-01-01

    The role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the pathogenesis of acute lung injury in rats after intrapulmonary deposition of IgG immune complexes or intratracheal administration of LPS has been assessed. Critical to these studies was the cloning and functional expression...

  4. Thyroxine (T4 Transfer from Blood to Cerebrospinal Fluid in Sheep Isolated Perfused Choroid Plexus: Role of Multidrug Resistance-Associated Proteins and Organic Anion Transporting Polypeptides

    Directory of Open Access Journals (Sweden)

    Kazem Zibara

    2017-05-01

    Full Text Available Thyroxine (T4 enters the brain either directly across the blood–brain barrier (BBB or indirectly via the choroid plexus (CP, which forms the blood–cerebrospinal fluid barrier (B-CSF-B. In this study, using isolated perfused CP of the sheep by single-circulation paired tracer and steady-state techniques, T4 transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with 125I-T4 and 14C-mannitol. Unlabeled T4 was applied during single tracer technique to assess the mode of maximum uptake (Umax and the net uptake (Unet on the blood side of the CP. On the other hand, in order to characterize T4 protein transporters, steady-state extraction of 125I-T4 was measured in presence of different inhibitors such as probenecid, verapamil, BCH, or indomethacin. Increasing the concentration of unlabeled-T4 resulted in a significant reduction in Umax%, which was reflected by a complete inhibition of T4 uptake into CP. In fact, the obtained Unet% decreased as the concentration of unlabeled-T4 increased. The addition of probenecid caused a significant inhibition of T4 transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4 and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14. Moreover, verapamil, the P-glycoprotein (P-gp substrate, resulted in ~34% decrease in the net extraction of T4, indicating that MDR1 contributes to T4 entry into CSF. Finally, inhibition in the net extraction of T4 caused by BCH or indomethacin suggests, respectively, a role for amino acid “L” system and MRP1/Oatp1 in mediating T4 transfer. The presence of a carrier-mediated transport mechanism for cellular uptake on the basolateral membrane of the CP, mainly P-gp and Oatp2, would account

  5. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES w...

  6. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  7. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice.

    Science.gov (United States)

    Wu, Yun-Ping; Proia, Richard L

    2004-06-01

    Sandhoff disease is a prototypical lysosomal storage disorder in which a heritable deficiency of a lysosomal enzyme, beta-hexosaminidase, results in the storage of the enzyme's substrates in lysosomes. As with many of the other lysosomal storage diseases, neurodegeneration is a prominent feature. Although the cellular and molecular pathways that underlie the neurodegenerative process are not yet fully understood, macrophage/microglial-mediated inflammation has been suggested as one possible mechanism. We now show that the expanded macrophage/microglial population in the CNS of Sandhoff disease mice is compounded by the infiltration of cells from the periphery. Coincident with the cellular infiltration was an increased expression of macrophage-inflammatory protein 1alpha (MIP-1alpha), a leukocyte chemokine, in astrocytes. Deletion of MIP-1alpha expression resulted in a substantial decrease in infiltration and macrophage/microglial-associated pathology together with neuronal apoptosis in Sandhoff disease mice. These mice without MIP-1alpha showed improved neurologic status and a longer lifespan. The results indicate that the pathogenesis of Sandhoff disease involves an increase in MIP-1alpha that induces monocytes to infiltrate the CNS, expand the activated macrophage/microglial population, and trigger apoptosis of neurons, resulting in a rapid neurodegenerative course.

  8. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages.

    Science.gov (United States)

    Fock, Ricardo Ambrósio; Rogero, Marcelo Macedo; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Borges, Maria Carolina; Borelli, Primavera

    2010-04-01

    Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappaB is kept from binding to its consensus sequence by the inhibitor I kappaB alpha, which retains NF-kappaB in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappaB alpha is rapidly degraded and NF-kappaB is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappaB. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-alpha by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappaB alpha and NF-kappaB, NF-kappaB activation and TNF-alpha mRNA and protein synthesis in macrophages. Two-month-old male BALB/C mice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-alpha mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappaB activation after LPS stimulation. These results led us to conclude that PEM changes NF-kB signalling pathway in macrophages to LPS stimulus.

  9. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  10. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  11. Candida albicans Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles.

    Science.gov (United States)

    Reales-Calderón, Jose Antonio; Vaz, Catarina; Monteoliva, Lucía; Molero, Gloria; Gil, Concha

    2017-01-06

    The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, noncoding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus we have undertaken the first quantitative proteomic analysis on the protein composition of THP-1 macrophage-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP-1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP-1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP-1 nondifferenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication.

  12. Identification of phagocytosis-associated surface proteins of macrophages by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Howard, F D; Petty, H R; McConnell, H M

    1982-02-01

    Two-dimensional PAGE (P. Z. O'Farrell, H. M. Goodman, and P. H. O'Farrell. 1977. Cell. 12:1133-1142) has been employed to assess the effects of antibody-dependent phagocytosis on the cell surface protein composition of RAW264 macrophages. Unilamellar phospholipid vesicles containing 1% dinitrophenyl-aminocaproyl-phosphatidylethanolamine (DNP-cap-PE) were used as the target particle. Macrophages were exposed to anti-DNP antibody alone, vesicles alone, or vesicles in the presence of antibody for 1 h at 37 degrees C. Cell surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination at 4 degrees C. After detergent solubilization, membrane proteins were analyzed by two-dimensional gel electrophoresis. The resulting pattern of spots was compared to that of standard proteins. We have identified several surface proteins, not apparently associated with the phagocytic process, which are present either in a multichain structure or in several discretely charged forms. After phagocytosis, we have observed the appearance of two proteins of 45 and 50 kdaltons in nonreducing gels. In addition, we have noted the disappearance of a 140-kdalton protein in gels run under reducing conditions. These alterations would not be detected in the conventional one-dimensional gel electrophoresis. This evidence shows that phagocytosis leads to a modification of cell surface protein composition. Our results support the concept of specific enrichment and depletion of membrane components during antibody-dependent phagocytosis.

  13. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  14. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  15. Influence of particle shape on plasma protein adsorption and macrophage uptake.

    Science.gov (United States)

    Jansch, M; Jindal, A B; Sharmila, B Majee; Samad, A; Devarajan, P V; Müller, R H

    2013-01-01

    The purpose of this study was to evaluate the plasma protein adsorption behavior onto different LIPOMER nanoparticles, especially looking for the first time, if the particle shape affects the protein adsorption pattern. The potential in vivo fate is discussed and compared with previous in vivo animal studies. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used for identification of adsorbed plasma proteins. Qualitative similar patterns were obtained from the protein adsorption analysis and four apolipoproteins with considerable quantitative differences were identified. Besides the quantitative differences in the adsorbed apolipoproteins, in vitro uptake in the human macrophage cell line U-937 of histocytic lymphoma organ revealed significantly lower uptake of the irregular glycerol monostearate LIPOMER nanoparticles. Therefore, protein adsorption does not seem to play a role in the splenotropic behavior in the sense, that adsorption of opsonins, especially spleen-specific opsonins are required for the uptake. The splenotropic uptake might be favored because all LIPOMER nanoparticles did not adsorb opsonins at all, mediating competitive uptake by liver macrophages. Differences in the in vivo uptake by the spleen were attributed to differences in particle shape with potential super position effect by the quantitative differences in the adsorbed proteins.

  16. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  17. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    Science.gov (United States)

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  18. Transient degradation of NF-κB proteins in macrophages after interaction with mast cell granules

    Directory of Open Access Journals (Sweden)

    Noriko Ito

    1998-01-01

    Full Text Available The exposure of the macrophage cell line, J774 to mast cell granules (MCG led to the form ation of altered nuclear transcription factor proteins (NFκBx, which had faster electrophoretic mobility than the p50 homodimer of NF-κB, but retained comparable DNA binding capacity. Antibodies to N-terminal peptides of p50, p52, p65 or c-Rel supershifted only a fraction of NF-κBx. Western blot analyses revealed that nuclear p65 and c-Rel were progressively degraded after exposure to MCG, whereas nuclear p50 appeared to be unaffected. In contrast, cytoplasmic p50, p65, c-Rel as well as IkBα remained intact after MCG treatment, although p52 was clearly degraded. In comparison to J774 cells, incubation of m ouse peritoneal macrophages with MCG resulted in more extensive alterations to NF-κB proteins. The alterations in NF-κB proteins did not affect the expression of inducible nitric oxide synthase (iNOS or TNF-α mRNA in J774 cells. These data indicate that exposure of J774 cells to MCG leads to generation of altered nuclear p52, p65 and c-Rel, which retain intact N-terminal peptides, specific oligonucleotide binding and transactivating activity. On the other hand, in peritoneal macrophages, MCG induce more extensive modifications to NF-κB proteins with associated inhibition of iNOS or TNF-α mRNA expression.

  19. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    Directory of Open Access Journals (Sweden)

    Anna Mazur

    Full Text Available Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM. These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP, a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204. Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  20. Monocyte chemoattractant protein 1 and fractalkine play opposite roles in angiogenesis via recruitment of different macrophage subtypes

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2018-02-01

    Full Text Available AIM: To explore the interaction between macrophages and chemokines [monocyte chemoattractant protein 1 (MCP-1/CCL2 and fractalkine/CX3CL1] and the effects of their interaction on neovascularization. METHODS: Human peripheral blood mononuclear cells, donated by healthy volunteers, were separated and cultured in RPMI-1640 medium containing 10% fetal bovine serum, then induced into macrophages by stimulation with 30 μg/L granulocyte macrophage-colony stimulating factor (GM-CSF. The expression of CCR2 and/or CX3CR1 in the macrophages was examined using flow cytometry. Macrophages were then stimulated with recombinant human CCL2 (rh-CCL2 or recombinant human CX3CL1 (rh-CX3CL1. The expression of angiogenesis-related genes, including VEGF-A, THBS-1 and ADAMTS-1 were examined using real-time quantitative polymerase chain reaction (PCR. Supernatants from stimulated macrophages were used in an assay of human retinal endothelial cell (HREC proliferation. Finally, stimulated macrophages were co-cultured with HREC in a migration assay. RESULTS: The expression rate of CCR2 in macrophages stimulated by GM-CSF was 42%±1.9%. The expression rate of CX3CR1 was 71%±3.3%. Compared with vehicle-treated groups, gene expression of VEGF-A in the macrophages was greater in 150 mg/L CCL2-treated groups (P<0.05, while expression of THBS-1 and ADAMTS-1 was significantly lower (P<0.05. By contrast, compared with vehicle-treated groups, expression of VEGF-A in 150 mg/L CX3CL1-treated groups was significantly lower (P<0.05, while expression of THBS-1 and ADAMTS-1 was greater (P<0.05. Supernatants from CCL2 treated macrophages promoted proliferation of HREC (P<0.05, while supernatants from CX3CL1-treated macrophages inhibited the proliferation of HREC (P<0.05. HREC migration increased when co-cultured with CCL2-treated macrophages, but decreased with CX3CL1-treated macrophages (P<0.05. CONCLUSION: CCL2 and CX3CL1 exert different effects in regulation of macrophage in

  1. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  2. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  3. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability

    OpenAIRE

    Wang, Limei; Palme, Veronika; Schilcher, Nicole; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Bauer, Rudolf; Dirsch, Verena M.; Atanasov, Atanas G.

    2017-01-01

    We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3–20 μM) increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM) treatment. The effect of falcarindiol on ABCA1...

  4. The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Directory of Open Access Journals (Sweden)

    Dalila Cunha de Oliveira

    Full Text Available ABSTRACT It is well established that protein malnutrition (PM impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF and macrophage colony-stimulating factor (M-CSF. GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2% and compared to a control diet (12% mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response.

  5. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  6. Cathepsin D Specifically Cleaves the Chemokines Macrophage Inflammatory Protein-1α, Macrophage Inflammatory Protein-1β, and SLC That Are Expressed in Human Breast Cancer

    Science.gov (United States)

    Wolf, Marlene; Clark-Lewis, Ian; Buri, Caroline; Langen, Hanno; Lis, Maddalena; Mazzucchelli, Luca

    2003-01-01

    Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1α and MIP-1β degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu58 to Trp59 bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1β hybrids indicated that processing of MIP-1β might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1α, MIP-1β, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes. PMID:12651610

  7. Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Vinod Nadella

    2018-01-01

    Full Text Available Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds for the management of infectious and inflammatory diseases relying on macrophage plasticity.

  8. A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1

    International Nuclear Information System (INIS)

    Penfold, Mark; Miao Zhenhua; Wang Yu; Haggerty, Shannon; Schleiss, Mark R.

    2003-01-01

    Cytomegaloviruses encode homologs of cellular immune effector proteins, including chemokines (CKs) and CK receptor-like G protein-coupled receptors (GPCRs). Sequence of the guinea pig cytomegalovirus (GPCMV) genome identified an open reading frame (ORF) which predicted a 101 amino acid (aa) protein with homology to the macrophage inflammatory protein (MIP) subfamily of CC (β) CKs, designated GPCMV-MIP. To assess functionality of this CK, recombinant GPCMV-MIP was expressed in HEK293 cells and assayed for its ability to bind to and functionally interact with a variety of GPCRs. Specific signaling was observed with the hCCR1 receptor, which could be blocked with hMIP -1α in competition experiments. Migration assays revealed that GPCMV-MIP was able to induce chemotaxis in hCCR1-L1.2 cells. Antisera raised against a GST-MIP fusion protein immunoprecipitated species of ∼12 and 10 kDa from GPCMV-inoculated tissue culture lysates, and convalescent antiserum from GPCMV-infected animals was immunoreactive with GST-MIP by ELISA assay. These results represent the first substantive in vitro characterization of a functional CC CK encoded by a cytomegalovirus

  9. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  10. Surfactant Protein D Binds to Coxiella burnetii and Results in a Decrease in Interactions with Murine Alveolar Macrophages.

    Directory of Open Access Journals (Sweden)

    Kelly A Soltysiak

    Full Text Available Coxiella burnetii is a Gram-negative, obligate intracellular bacterium and the causative agent of Q fever. Infections are usually acquired after inhalation of contaminated particles, where C. burnetii infects its cellular target cells, alveolar macrophages. Respiratory pathogens encounter the C-type lectin surfactant protein D (SP-D during the course of natural infection. SP-D is a component of the innate immune response in the lungs and other mucosal surfaces. Many Gram-negative pulmonary pathogens interact with SP-D, which can cause aggregation, bactericidal effects and aid in bacterial clearance. Here we show that SP-D binds to C. burnetii in a calcium-dependent manner with no detectable bacterial aggregation or bactericidal effects. Since SP-D interactions with bacteria often alter macrophage interactions, it was determined that SP-D treatment resulted in a significant decrease in C. burnetii interactions to a mouse alveolar macrophage model cell line MH-S indicating SP-D causes a significant decrease in phagocytosis. The ability of SP-D to modulate macrophage activation by C. burnetii was tested and it was determined that SP-D does not alter the correlates measured for macrophage activation. Taken together these studies support those demonstrating limited activation of alveolar macrophages with C. burnetii and demonstrate interactions with SP-D participate in reduction of phagocyte attachment and phagocytosis.

  11. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  12. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  13. Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins.

    Science.gov (United States)

    Panstruga, Ralph; Baumgarten, Kira; Bernhagen, Jürgen

    2015-04-14

    The human (Homo sapiens) chemokine-like protein macrophage migration inhibitory factor (HsMIF) is a pivotal mediator of inflammatory, infectious and immune diseases including septic shock, colitis, malaria, rheumatoid arthritis, and atherosclerosis, as well as tumorigenesis. HsMIF has been found to exhibit several sequential and three-dimensional sequence motifs that in addition to its receptor binding sites include catalytic sites for oxidoreductase and tautomerase activity, which provide this 12.5 kDa protein with a remarkable functional complexity. A human MIF paralog, D-dopachrome tautomerase (HsDDT), has been identified, but its physiological relevance is incompletely understood. MIF/DDT-like proteins have been described in animals, protists and bacteria. Although based on sequence data banks the presence of MIF/DDT-like proteins has also been recognized in the model plant species Arabidopsis thaliana, details on these plant proteins have not been reported. To broaden the understanding of the biological role of these proteins across kingdoms we performed a comprehensive in silico analysis of plant MIF/DDT-like (MDL) genes/proteins. We found that the A. thaliana genome harbors three MDL genes, of which two are chiefly constitutively expressed in aerial plant organs, while the third gene shows stress-inducible transcript accumulation. The product of the latter gene likely localizes to peroxisomes. Structure prediction suggests that all three Arabidopsis proteins resemble the secondary and tertiary structure of human MIF. MIF-like proteins are found in all species across the plant kingdom, with an increasing family complexity towards evolutionarily advanced plant taxa. Plant MDL proteins are predicted to lack oxidoreductase activity, but possibly share tautomerase activity with human MIF/DDT. Peroxisome localization seems to be a specific feature of a subset of MIF/DDT orthologs found in dicotyledonous plant species, which together with its stress-inducible gene

  14. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    Science.gov (United States)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  15. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    International Nuclear Information System (INIS)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko; Mikami, Toshiyuki; Murayama, Katsuhisa; Arai, Satoko; Miyazaki, Toru

    2012-01-01

    Highlights: ► AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. ► AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. ► AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPARγ), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPARγ-agonist or forced expression of FSP27, while it was synergized by a PPARγ-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by

  16. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    Full Text Available Namrata Anand,1 Rupinder K Kanwar,2 Mohan Lal Dubey,1 R K Vahishta,3 Rakesh Sehgal,1,* Anita K Verma,4 Jagat R Kanwar2,*1Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 4Nanobiotech Laboratory, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India*These authors contributed equally to this workBackground: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs and macrophages (human monocytic cell line-derived macrophages THP1 cells.Methods: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections.Results: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene

  17. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins.

    Science.gov (United States)

    Bieczynski, Flavia; De Anna, Julieta S; Pirez, Macarena; Brena, Beatríz M; Villanueva, Silvina S M; Luquet, Carlos M

    2014-09-01

    We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2

  18. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  19. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy.

    Science.gov (United States)

    Boels, Margien G S; Koudijs, Angela; Avramut, M Cristina; Sol, Wendy M P J; Wang, Gangqi; van Oeveren-Rietdijk, Annemarie M; van Zonneveld, Anton Jan; de Boer, Hetty C; van der Vlag, Johan; van Kooten, Cees; Eulberg, Dirk; van den Berg, Bernard M; IJpelaar, Daphne H T; Rabelink, Ton J

    2017-11-01

    Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase. Four weeks of treatment of diabetic Apoe knockout mice with the mouse-specific NOX-E36 attenuated albuminuria without any change in systemic hemodynamics, despite persistent loss of podocyte function. MCP-1 inhibition, however, increased glomerular endothelial glycocalyx coverage, with preservation of heparan sulfate. Mechanistically, both glomerular cathepsin L and heparanase expression were reduced. MCP-1 inhibition resulted in reduced CCR2-expressing Ly6C hi monocytes in the peripheral blood, without affecting overall number of kidney macrophages at the tissue level. However, the CD206 + /Mac3 + cell ratio, as an index of presence of anti-inflammatory macrophages, increased in diabetic mice after treatment. Functional analysis of isolated renal macrophages showed increased release of IL-10, whereas tumor necrosis factor and cathepsin L release was reduced, further confirming polarization of tissue macrophages toward an anti-inflammatory phenotype during mouse-specific NOX-E36 treatment. We show that MCP-1 inhibition restores glomerular endothelial glycocalyx and barrier function and reduces tissue inflammation in the presence of ongoing diabetic injury, suggesting a therapeutic potential for NOX-E36 in diabetic nephropathy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Additive effect of recombinant Mycobacterium tuberculosis ESAT-6 protein and ESAT-6/CFP-10 fusion protein in adhesion of macrophages through fibronectin receptors.

    Science.gov (United States)

    Hemmati, Mina; Seghatoleslam, Atefeh; Rasti, Mozhgan; Ebadat, Saeedeh; Naghibalhossaini, Fakhraddin; Mostafavi-Pour, Zohreh

    2016-04-01

    Tuberculous granulomas are the sites of interaction between the T cells, macrophages, and extracellular matrix (ECM) to control the infection caused by Mycobacterium tuberculosis (M. tuberculosis). A predominant role of RD-1-encoded secretory proteins, early secreted antigenic target-6 (ESAT-6), and culture filtrate protein-10 (CFP-10) in the formation of granulomas has recently been emphasized. However, the precise molecular events that induce the formation of these granulomatous structures are yet to be elucidated. Macrophages use integrins to adhere to fibronectin (FN) as a major component of the ECM. The major goal of this study was to investigate whether recombinant M. tuberculosis antigens can modulate integrin-mediated macrophage adhesion. Differentiated THP-1 cell line was stimulated with recombinant ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins and evaluated for alterations in the expression levels of α5β1 and α4β1 by semiquantitative real-time polymerase chain reaction. The role of these recombinant antigens in the cytoskeleton rearrangement was determined by adhesion assay and immunofluorescent microscopy. Our data showed that ESAT-6 and ESAT-6/CFP-10 fusion proteins could induce adhesion of macrophages to FN through α4β1 integrin. An increased expression level of α4β1 integrin in comparison with α5β1 integrin in differentiated THP-1 cells was also observed. Results of immunofluorescence studies showed that recombinant proteins-treated THP-1 cells form well-organized stress fibers and focal contacts containing vinculin compared with untreated THP-1 cells. Increased expression level of α4β1 in differentiated THP-1 cells could suggest the important role of α4β1 integrin in adhesion and focal contact formation of macrophages exposed to M. tuberculosis antigens. Copyright © 2014. Published by Elsevier B.V.

  1. Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages.

    Directory of Open Access Journals (Sweden)

    Roberto Rosales-Reyes

    Full Text Available Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1β secretion and pyroptosis. Moreover, IL-1β secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS. We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1β secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

  2. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mikami, Toshiyuki; Murayama, Katsuhisa [Genomic Science Laboratories, Dainippon Sumitomo Pharma Co. Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022 (Japan); Arai, Satoko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Miyazaki, Toru, E-mail: tm@m.u-tokyo.ac.jp [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological

  3. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha......-type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...

  4. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2017-09-01

    Full Text Available We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3–20 μM increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  5. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability.

    Science.gov (United States)

    Wang, Limei; Palme, Veronika; Schilcher, Nicole; Ladurner, Angela; Heiss, Elke H; Stangl, Herbert; Bauer, Rudolf; Dirsch, Verena M; Atanasov, Atanas G

    2017-01-01

    We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3-20 μM) increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM) treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  6. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression.

    Science.gov (United States)

    Sun, S J; Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2013-12-01

    To investigate behaviour and osteogenic cytokine expression of RAW264.7 macrophages grown on TiO2 nanotube layers. The murine macrophage cell line RAW 264.7 was cultured on TiO2 nanotubes of varying diameter; macrophage morphology was examined using scanning electron microscopy. Cell adhesion and viability were assessed with the aid of the MTT method and BMP-2 and TGF-β gene expression were examined by RT-PCR analysis. Levels of BMP-2, TGF-β1 and ICAM-1 proteins secreted into the supernatant were measured by ELISA assay. Macrophages cultured on nanotube layers had spread out morphology, the largest (120 nm) nanotube layer eliciting an elongation by 24 h. Macrophages adhered significantly less to 120 nm TiO2 nanotubes than to control discs at 4 h after application; after 24 h incubation, macrophages were sufficiently viable (P nanotube layers. Increasing nanotube diameter led to increased BMP-2 protein secretion and increased BMP-2 mRNA expression. These results demonstrate that nanoscale topography of TiO2 nanotube layers can affect macrophage morphology, adhesion, viability and BMP-2 expression. Macrophages grown on layers of large nanotubes had the highest potential to enhance bone formation during bone healing. © 2013 John Wiley & Sons Ltd.

  7. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    Science.gov (United States)

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  8. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  9. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity

    Energy Technology Data Exchange (ETDEWEB)

    Beaslas, Olivier; Vihervaara, Terhi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Li, Jiwei [Department of Biology, Jinan University, Guangzhou 510632 (China); Laurila, Pirkka-Pekka [FIMM, Institute for Molecular Medicine Finland, FI-00290 Helsinki (Finland); National Institute for Health and Welfare, Public Health Genomics Unit, FI-00290 Helsinki (Finland); Yan, Daoguang [Department of Biology, Jinan University, Guangzhou 510632 (China); Olkkonen, Vesa M., E-mail: vesa.olkkonen@helsinki.fi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Institute of Biomedicine, Anatomy, University of Helsinki, FI-00014 (Finland)

    2012-09-10

    ORP8 is an oxysterol/cholesterol binding protein anchored to the endoplasmic reticulum and the nuclear envelope, and is abundantly expressed in the macrophage. We created and characterized mouse RAW264.7 macrophages with ORP8 stably silenced using shRNA lentiviruses. A microarray transcriptome and gene ontology pathway analysis revealed significant alterations in several nuclear pathways and ones associated with centrosome and microtubule organization. ORP8 knockdown resulted in increased expression and altered subcellular distribution of an interaction partner of ORP8, nucleoporin NUP62, with an intranuclear localization aspect and association with cytoplasmic vesicular structures and lamellipodial edges of the cells. Moreover, ORP8 silenced cells displayed enhanced migration, and a more pronounced microtubule cytoskeleton than controls expressing a non-targeting shRNA. ORP8 was shown to compete with Exo70 for interaction with NUP62, and NUP62 knockdown abolished the migration enhancement of ORP8-silenced cells, suggesting that the endogenous ORP8 suppresses migration via binding to NUP62. As a conclusion, the present study reveals new, unexpected aspects of ORP8 function in macrophages not directly involving lipid metabolism, but rather associated with nuclear functions, microtubule organization, and migration capacity. -- Highlights: Black-Right-Pointing-Pointer The phenotype of Raw264.7 macrophage with ORP8 silenced is characterized. Black-Right-Pointing-Pointer ORP8 silencing alters mRNA levels of nuclear and microtubule/centrosome pathways. Black-Right-Pointing-Pointer ORP8 silencing results in increased expression and altered distribution of NUP62. Black-Right-Pointing-Pointer ORP8 silenced macrophages show enhanced migration and altered microtubule cytoskeleton. Black-Right-Pointing-Pointer ORP8 competes in vitro with Exo70 for binding to NUP62.

  10. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  11. Functional consequences of the macrophage stimulating protein 689C inflammatory bowel disease risk allele.

    Directory of Open Access Journals (Sweden)

    Steven E Kauder

    Full Text Available Macrophage stimulating protein (MSP is a serum growth factor that binds to and activates the receptor tyrosine kinase, Recepteur d'Origine Nantais (RON. A non-synonymous coding variant in MSP (689C has been associated with genetic susceptibility to both Crohn's disease and ulcerative colitis, two major types of inflammatory bowel disease (IBD characterized by chronic inflammation of the digestive tract. We investigated the consequences of this polymorphism for MSP-RON pathway activity and IBD pathogenesis.RON expression patterns were examined on mouse and human cells and tissues under normal and disease conditions to identify cell types regulated by MSP-RON. Recombinant MSP variants were tested for their ability to bind and stimulate RON and undergo proteolytic activation. MSP concentrations were quantified in the serum of individuals carrying the MSP 689R and 689C alleles.In intestinal tissue, RON was primarily expressed by epithelial cells under normal and disease conditions. The 689C polymorphism had no impact on the ability of MSP to bind to or signal through RON. In a cohort of normal individuals and IBD patients, carriers of the 689C polymorphism had lower concentrations of MSP in their serum.By reducing the quantities of circulating MSP, the 689C polymorphism, or a variant in linkage disequilibrium with this polymorphism, may impact RON ligand availability and thus receptor activity. Given the known functions of RON in regulating wound healing and our analysis of RON expression patterns in human intestinal tissue, these data suggest that decreased RON activity may impact the efficiency of epithelial repair and thus underlie the increased IBD susceptibility associated with the MSP 689C allele.

  12. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    Science.gov (United States)

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at Pproteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  13. Efflux Transport Characterization of Resveratrol Glucuronides in UDP-Glucuronosyltransferase 1A1 Transfected HeLa Cells: Application of a Cellular Pharmacokinetic Model to Decipher the Contribution of Multidrug Resistance-Associated Protein 4.

    Science.gov (United States)

    Wang, Shuai; Li, Feng; Quan, Enxi; Dong, Dong; Wu, Baojian

    2016-04-01

    Resveratrol undergoes extensive metabolism to form biologically active glucuronides in humans. However, the transport mechanisms for resveratrol glucuronides are not fully established. Here, we aimed to characterize the efflux transport of resveratrol glucuronides using UGT1A1-overexpressing HeLa cells (HeLa1A1 cells), and to determine the contribution of multidrug resistance-associated protein (MRP) 4 to cellular excretion of the glucuronides. Two glucuronide isomers [i.e., resveratrol 3-O-glucuronide (R3G) and resveratrol 4'-O-glucuronide (R4'G)] were excreted into the extracellular compartment after incubation of resveratrol (1-100 μM) with HeLa1A1 cells. The excretion rate was linearly related to the level of intracellular glucuronide, indicating that glucuronide efflux was a nonsaturable process. MK-571 (a dual inhibitor of UGT1A1 and MRPs) significantly decreased the excretion rates of R3G and R4'G while increasing their intracellular levels. Likewise, short-hairpin RNA (shRNA)-mediated silencing of MRP4 caused a significant reduction in glucuronide excretion but an elevation in glucuronide accumulation. Furthermore, β-glucuronidase expressed in the cells catalyzed the hydrolysis of the glucuronides back to the parent compound. A cellular pharmacokinetic model integrating resveratrol transport/metabolism with glucuronide hydrolysis/excretion was well fitted to the experimental data, allowing derivation of the efflux rate constant values in the absence or presence of shRNA targeting MRP4. It was found that a large percentage of glucuronide excretion (43%-46%) was attributed to MRP4. In conclusion, MRP4 participated in cellular excretion of R3G and R4'G. Integration of mechanistic pharmacokinetic modeling with transporter knockdown was a useful method to derive the contribution percentage of an exporter to overall glucuronide excretion. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiao [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Whitten, Douglas A. [Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Wu, Ming [Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Chan, Christina [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Wilkerson, Curtis G. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Pestka, James J., E-mail: pestka@msu.edu [Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States)

    2013-04-15

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤ 30 min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250 ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at both known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment. - Highlights: ► Mycotoxin deoxynivalenol (DON) induces immunotoxicity via ribotoxic stress response. ► SILAC phosphoproteomics using

  15. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    OpenAIRE

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.; Christodoulides, Myron

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human protein...

  16. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene.

    Science.gov (United States)

    Hume, David A; Sasmono, Tedjo; Himes, S Roy; Sharma, Sudarshana M; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C; Ross, Ian L

    2008-05-15

    Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

  17. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  18. Solute carrier protein family 11 member 1 (Slc11a1) activation efficiently inhibits Leishmania donovani survival in host macrophages.

    Science.gov (United States)

    Singh, Nisha; Gedda, Mallikarjuna Rao; Tiwari, Neeraj; Singh, Suya P; Bajpai, Surabhi; Singh, Rakesh K

    2017-09-01

    Visceral leishmaniasis (kala-azar), a life threatening disease caused by L. donovani , is a latent threat to more than 147 million people living in disease endemic South East Asia region of the Indian subcontinent. The therapeutic option to control leishmanial infections are very limited, and at present comprise only two drugs, an antifungal amphotericin B and an antitumor miltefosine, which are also highly vulnerable for parasitic resistance. Therefore, identification and development of alternate control measures is an exigent requirement to control leishmanial infections. In this study, we report that functionally induced expression of solute carrier protein family 11 member 1 ( Slc11a1), a transmembrane divalent cationic transporter recruited on the surface of phagolysosomes after phagocytosis of parasites, effectively inhibits Leishmania donovani growth in host macrophages. Further, the increased Slc11a1 functionality also resulted in increased production of NOx, TNF-α and IL-12 by activated macrophages. The findings of this study signify the importance of interplay between Slc11a1 expression and macrophages activation that can be effectively used to control of Leishmania growth and survival.

  19. ABC-transporters and lipid transfer proteins : important players in macrophage cholesterol homeostasis and atherosclerosis

    NARCIS (Netherlands)

    Ye, Dan

    2008-01-01

    Local modulation of macrophage cholesterol metabolism in the arterial wall and systemic regulation of lipoprotein metabolism (LDL-lowering and/or HDL-raising) are both attractive targets for future drug design for the prevention of atherosclerosis. As described in this thesis, bone marrow

  20. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  1. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus.

    Science.gov (United States)

    Sreedhar, Remya; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Koga, Yusuke; Nakamura, Takashi; Harima, Meilei; Watanabe, Kenichi

    2017-07-01

    Diabetic cardiomyopathy (DCM), a metabolic disorder, is one of the leading causes of mortality around the world and its pathogenesis involves cardiac inflammation and altered metabolic profile. Altered fatty acid metabolism during DCM can cause macrophage polarization in which inflammatory M1 phenotype dominates over the anti-inflammatory M2 phenotype. Hence, it is essential to identify a specific target, which could revert the metabolic profile and thereby reducing the M1 macrophage polarization. 14-3-3η protein has several cellular protective functions especially in the heart as plenty of reports available in various animal models of heart failure including diabetes mellitus. However, its role in the cardiac fatty acid metabolism and macrophage polarization remains unidentified. The present study has been designed to delineate the effect of cardiospecific dominant negative mutation of 14-3-3η protein (DN14-3-3) on various lipid metabolism related marker proteins expressions and cardiac macrophage phenotype in high fat diet (HFD) fed mice. Feeding HFD for 12 weeks has produced significant increase in body weight in the DN14-3-3 (TG) mice than C57BL6/J (WT) mice. Western blotting and immunohistochemical staining analysis of the heart tissue has revealed an increase in the expression of markers of cardiac fatty acid synthesis related proteins in addition to the reduced expression of fatty acid oxidation related proteins in TG mice fed HFD than WT mice fed HFD. Furthermore, the M1 macrophage marker proteins were increasingly expressed while M2 markers expressions were reduced in the hearts of TG mice fed HFD. In conclusion, our current study has identified that there is a definite role for the 14-3-3η protein against the pathogenesis of heart failure via regulation of cardiac fatty acid metabolism and macrophage polarization. Copyright © 2017. Published by Elsevier Ltd.

  2. Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production

    OpenAIRE

    Li, Jing Jing; Tay, Hock L.; Plank, Maximilian; Essilfie, Ama-Tawiah; Hansbro, Philip M.; Foster, Paul S.; Yang, Ming

    2013-01-01

    BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activat...

  3. Myosin VI and Associated Proteins Are Expressed in Human Macrophages but Do Not Play a Role in Foam Cell Formation in THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hayley J. Dawson

    2013-01-01

    Full Text Available Myosin VI (Myo6 functions in endocytosis in conjunction with binding partners including adaptor protein (AP-2, disabled 2 (Dab2, and GAIP interacting protein C terminus 1 (GIPC1. This study aimed to investigate the expression and function of Myo6 in macrophages and its possible role in the endocytosis of lipoproteins during the induction of foam cell formation. Expression of Myo6, AP-2 (α2 subunit, and Dab2 in THP-1 macrophages and primary human monocyte-derived macrophages was demonstrated at the mRNA and protein level, but GIPC1 was only detected at the mRNA level. Immunofluorescence showed that Myo6 was distributed similarly to F-actin in both macrophage types. AP-2α2 was found to have a similar subcellular distribution to Myo6 and Dab2 in THP-1 cells. Myo6 was located within membrane ruffles and protrusions of the plasma membrane. These results suggest that in macrophages Myo6 is required for several functions including cell adhesion, cell progression, and macropinocytosis. Low-density lipoprotein (LDL and oxidised LDL (oxLDL decreased Myo6 and GIPC1 mRNA expression in THP-1 cells, but uptake of the fluorescence-labelled lipoproteins was unaffected by knockdown of the expression of Myo6 or associated proteins with siRNA. Our findings, therefore, do not support the idea that Myo6 plays a major role in foam cell formation.

  4. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes.

    Science.gov (United States)

    Fedeli, Chiara; Selvestrel, Francesco; Tavano, Regina; Segat, Daniela; Mancin, Fabrizio; Papini, Emanuele

    2013-07-01

    We tested whether phagocytic monocytes/macrophages are more susceptible than nonphagocytes to nanoparticle (NP) toxicity. We compared in vitro cell death and proinflammatory cytokine production in human monocytes, macrophages, lymphocytes and HeLa cells due to synthetic amorphous silica (SiO2)-NPs in different serum concentrations and correlated them with cellular uptake and distribution. Phagocytes were approximately ten-times more sensitive than nonphagocytes to SiO2-NPs and more effectively endocytosed SiO2-NP-serum protein nanoagglomerates, so determining their accumulation in acidic endocytic compartments well beyond a critical/cytotoxic threshold. Monocyte/macrophage death was paralleled by cytokine secretion. The physiological specialization of monocytes/macrophages to effectively capture NPs may expose them to the risk of catastrophic inflammatory death upon saturation of their maximal storage capacity.

  5. α-Linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40.

    Science.gov (United States)

    Ohue-Kitano, Ryuji; Yasuoka, Yumiko; Goto, Tsuyoshi; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Kasubuchi, Mayu; Takahashi, Haruya; Li, Yongjia; Yeh, Yu-Sheng; Jheng, Huei-Fen; Iwase, Mari; Tanaka, Masashi; Masuda, Shinya; Inoue, Takayuki; Yamakage, Hajime; Kusakabe, Toru; Tani, Fumito; Shimatsu, Akira; Takahashi, Nobuyuki; Ogawa, Jun; Satoh-Asahara, Noriko; Kawada, Teruo

    2018-01-01

    Among dietary fatty acids with immunologic effects, ω-3 polyunsaturated fatty acids, such as α-linolenic acid (ALA), have been considered as factors that contribute to the differentiation of M2-type macrophages (M2 macrophages). In this study, we examined the effect of ALA and its gut lactic acid bacteria metabolites 13-hydroxy-9( Z ),15( Z )-octadecadienoic acid (13-OH) and 13-oxo-9( Z ),15( Z )-octadecadienoic acid (13-oxo) on the differentiation of M2 macrophages from bone marrow-derived cells (BMDCs) and investigated the underlying mechanisms. BMDCs were stimulated with ALA, 13-OH, or 13-oxo in the presence of IL-4 or IL-13 for 24 h, and significant increases in M2 macrophage markers CD206 and Arginase-1 (Arg1) were observed. In addition, M2 macrophage phenotypes were less prevalent following cotreatment with GPCR40 antagonists or inhibitors of PLC-β and MEK under these conditions, suggesting that GPCR40 signaling is involved in the regulation of M2 macrophage differentiation. In further experiments, remarkable M2 macrophage accumulation was observed in the lamina propria of the small intestine of C57BL/6 mice after intragastric treatments with ALA, 13-OH, or 13-oxo at 1 g/kg of body weight per day for 3 d. These findings suggest a novel mechanism of M2 macrophage differentiation involving fatty acids from gut lactic acid bacteria and GPCR40 signaling.-Ohue-Kitano, R., Yasuoka, Y., Goto, T., Kitamura, N., Park, S.-B., Kishino, S., Kimura, I., Kasubuchi, M., Takahashi, H., Li, Y., Yeh, Y.-S., Jheng, H.-F., Iwase, M., Tanaka, M., Masuda, S., Inoue, T., Yamakage, H., Kusakabe, T., Tani, F., Shimatsu, A., Takahashi, N., Ogawa, J., Satoh-Asahara, N., Kawada, T. α-Linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40. © FASEB.

  6. Liposomes or traditional adjuvants: induction of bactericidal activity by the macrophage infectivity potentiator protein (Mip) of Neisseria meningitidis.

    Science.gov (United States)

    Costoya, Liliana; Marzoa, Juan; Ferreirós, Carlos; Criado, Maria Teresa

    2017-08-01

    Currently, one of the main approaches to achieve a vaccine for serogroup B Neisseria meningitidis is based on outer membrane proteins with low antigenic variability among strains. Since these proteins tend to be minor components of the outer membrane, recombinant production is required to obtain them in sufficient amounts for evaluation and development of vaccines. In this study, we analysed the ability of recombinant macrophage infectivity potentiator (rMip) protein to induce protective bactericidal activity in mice. The rMip protein was cloned from N. meningitidis strain H44/76 and was used to immunise mice, and the sera obtained were tested against the homologous and several heterologous N. meningitidis strains. The sera were obtained using the rMip alone, with adjuvant Al(OH) 3 , or after inclusion into liposomes. Bactericidal activity was variable depending on the strain, although high titres were seen against strains H44/76 and NmP27. Liposomes enhanced fourfold the reactivity against the homologous strain. The results presented suggest that the rMip protein should be considered a promising candidate for the improvement of future protein-based vaccines. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    International Nuclear Information System (INIS)

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-01-01

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling

  8. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    Energy Technology Data Exchange (ETDEWEB)

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  9. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.

    Science.gov (United States)

    Kim, Jin Kyung; Lee, Hye-Mi; Park, Ki-Sun; Shin, Dong-Min; Kim, Tae Sung; Kim, Yi Sak; Suh, Hyun-Woo; Kim, Soo Yeon; Kim, In Soo; Kim, Jin-Man; Son, Ji-Woong; Sohn, Kyung Mok; Jung, Sung Soo; Chung, Chaeuk; Han, Sang-Bae; Yang, Chul-Su; Jo, Eun-Kyeong

    2017-02-01

    Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.

  10. Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages.

    Science.gov (United States)

    Dhandayuthapani, S; Via, L E; Thomas, C A; Horowitz, P M; Deretic, D; Deretic, V

    1995-09-01

    The green fluorescent protein (GFP) of the jellyfish Aequorea victoria offers certain advantages over other bioluminescence systems because no exogenously added substrate or co-factors are necessary, and fluorescence can be elicited by irradiation with blue light without exposing the cells producing GFP to invasive treatments. A mycobacterial shuttle-plasmid vector carrying gfp cDNA was constructed and used to generate transcriptional fusions with promoters of interest and to examine their expression in Mycobacterium smegmatis and Mycobacterium bovis BCG grown in macrophages or on laboratory media. The promoters studied were: (i) ahpC from Mycoosis and Mycobacterium leprae, a gene encoding alkyl hydroperoxide reductase which, along with the divergently transcribed regulator oxyR, are homologues of corresponding stress-response systems in enteric bacteria and play a role in isoniazid sensitivity; (ii) mtrA, an M. tuberculosis response regulator belonging to the superfamily of bacterial two-component signal-transduction systems; (iii) hsp60, a previously characterized heat-shock gene from M. bovis; and (iv) tbprc3, a newly isolated promoter from M. tuberculosis. Expression of these promoters in mycobacteria was analysed using epifluorescence microscopy, laser scanning confocal microscopy, fluorescence spectroscopy, and flow cytometry. These approaches permitted assessment of fluorescence prior to and after macrophage infection, and analyses of promoter expression in individual mycobacteria and its distribution within populations of bacterial cells. Bacteria expressing GFP from a strong promoter could be separated by fluorescence-activated cell sorting from cells harbouring the vector used to construct the fusion. In addition, the stable expression of mtrA-gfp fusion in M. bovis BCG facilitated localization and isolation of phagocytic vesicles containing mycobacteria. The experiments presented here suggest that GFP will be a useful tool for analysis of mycobacterial

  11. Investigation of the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability by peritoneal macrophage from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Soleimani N

    2015-04-01

    Full Text Available Abstract Background: The neutrophil-activating protein (HP-NAP of Helicobacter pylori is a protective antigen and a major virulence factor of this bacteria. Stimulating the immune system for helicobacter infection treatment could have an important role. The aim of study is to assess the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability of peritoneal macrophages from BALB/c mice. Materials and Methods: In this experimental study, recombinant Hp-NapA of helicobacter pylori was produced in vitro. Mice peritoneal macrophages were purified and cultured. Different concentrations of recombinant Hp-NapA was used for macrophages stimulation. MTT assay was performed to assess the viability and proliferation of macrophages. Results: The results elucidated that the increasing effect of stimulation with recombinant Hp-NapA was significant at the dose of 30 µg/ml(p=0.01. The rate of viabitity was significantly higher than control group at the doses of 30 and 60 µg/ml and in the concurrency series of recombinant protein with lipopolysaccharid, there was a statistically significarit increase in proliferation at just these doses. Conclusion: According to our findings, recombinant Hp-NapA has a positive effect on proliferation, viability and function of peritoneal macrophages. Therefore, it is proposed that recombinant Hp-NapA can be studied as an immunomodulator for immunotherapy.

  12. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration.

    Science.gov (United States)

    Arana, Lide; Ordoñez, Marta; Ouro, Alberto; Rivera, Io-Guané; Gangoiti, Patricia; Trueba, Miguel; Gomez-Muñoz, Antonio

    2013-06-01

    The bioactive sphingolipid ceramide 1-phosphate (C1P) is implicated in inflammatory responses and was recently shown to promote cell migration. However, the mechanisms involved in these actions are poorly described. Using J774A.1 macrophages, we have now discovered a new biological activity of C1P: stimulation of monocyte chemoattractant protein-1 (MCP-1) release. This novel effect of C1P was pertussis toxin (PTX) sensitive, suggesting the intervention of Gi protein-coupled receptors. Treatment of the macrophages with C1P caused activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase kinase (MEK)/extracellularly regulated kinases (ERK), and p38 pathways. Inhibition of these kinases using selective inhibitors or specific siRNA blocked the stimulation of MCP-1 release by C1P. C1P stimulated nuclear factor-κB activity, and blockade of this transcription factor also resulted in complete inhibition of MCP-1 release. Also, C1P stimulated MCP-1 release and cell migration in human THP-1 monocytes and 3T3-L1 preadipocytes. A key observation was that sequestration of MCP-1 with a neutralizing antibody or treatment with MCP-1 siRNA abolished C1P-stimulated cell migration. Also, inhibition of the pathways involved in C1P-stimulated MCP-1 release completely blocked the stimulation of cell migration by C1P. It can be concluded that C1P promotes MCP-1 release in different cell types and that this chemokine is a major mediator of C1P-stimulated cell migration. The PI3K/Akt, MEK/ERK, and p38 pathways are important downstream effectors in this action.

  13. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits

    Directory of Open Access Journals (Sweden)

    Shoucui Gao

    2017-01-01

    Full Text Available High levels of plasma high-density lipoprotein-cholesterol (HDL-C are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.

  14. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells.

    Science.gov (United States)

    Metzger, Brandon T; Barnes, David M; Reed, Jess D

    2008-05-28

    Carrots ( Daucus carota L.) contain phytochemicals including carotenoids, phenolics, polyacetylenes, isocoumarins, and sesquiterpenes. Purple carrots also contain anthocyanins. The anti-inflammatory activity of extracts and phytochemicals from purple carrots was investigated by determining attenuation of the response to lipopolysaccharide (LPS). A bioactive chromatographic fraction (Sephadex LH-20) reduced LPS inflammatory response. There was a dose-dependent reduction in nitric oxide production and mRNA of pro-inflammatory cytokines (IL-6, IL-1beta, TNF-alpha) and iNOS in macrophage cells. Protein secretions of IL-6 and TNF-alpha were reduced 77 and 66% in porcine aortic endothelial cells treated with 6.6 and 13.3 microg/mL of the LH-20 fraction, respectively. Preparative liquid chromatography resulted in a bioactive subfraction enriched in the polyacetylene compounds falcarindiol, falcarindiol 3-acetate, and falcarinol. The polyacetylenes were isolated and reduced nitric oxide production in macrophage cells by as much as 65% without cytotoxicity. These results suggest that polyacetylenes, not anthocyanins, in purple carrots are responsible for anti-inflammatory bioactivity.

  15. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Zhong, Fei; Chow, Vincent T K

    2007-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) infects host cells with its surface glycosylated spike-protein (S-protein). Here we expressed the SARS-CoV S-protein to investigate its interactions with innate immune mechanisms in the lung. The purified S-protein was detected as a 210 k...

  16. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    So Youn Park

    2017-09-01

    Full Text Available Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA. Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1 and compound C (an inhibitor of AMPK. Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA.

  17. Small heat-shock proteins, IbpAB, protect non-pathogenic Escherichia coli from killing by macrophage-derived reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Laura Goeser

    Full Text Available Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn's disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS. Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt and ROS-deficient (gp91phox(-/- macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox(-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.

  18. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy.

    Science.gov (United States)

    Hoo, Ruby L C; Shu, Lingling; Cheng, Kenneth K Y; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-17

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases.

  19. Troglitazone and Δ2Troglitazone Enhance Adiponectin Expression in Monocytes/Macrophages through the AMP-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Jaw-Shiun Tsai

    2014-01-01

    Full Text Available Accumulating evidence indicates that the regimen to increase adiponectin will provide a novel therapeutic strategy for inflammation and cardiovascular disorders. Here, we tested the effect of troglitazone (TG and its newly synthesized derivative, 5-[4-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl-methoxy-benzylidene]-2,4-thiazolidinedione (Δ2troglitazone, (Δ2TG, on the adiponectin expression in monocytes/macrophages and the relative mechanisms. The expression of adiponectin was located in macrophages of atherosclerotic lesions from patients and cholesterol-fed rabbits. TG and Δ2TG enhanced adiponectin mRNA and protein expression in THP-1 cells by quantitative real-time PCR, Western blot, and immunocytochemistry. TG induced adiponectin mRNA expression through a PPARγ-dependent pathway whereas Δ2TG enhanced adiponectin mRNA expression through a PPARγ-independent pathway in THP-1 cells. Both TG and Δ2TG enhanced adiponectin mRNA expression through AMP-activated protein kinase (AMPK activation. TG and Δ2TG decreased the adhesion of THP-1 cells to TNF-α-treated HUVECs and the inhibitory effect was abolished by specific antiadiponectin antibodies. TG- and Δ2TG-induced suppression on monocyte adhesion were inhibited by a selective AMPK inhibitor compound C. Our data suggest that the inhibitory effect of TG and Δ2TG on monocyte adhesion might be at least in part through de novo adiponectin expression and activation of an AMPK-dependent pathway, which might play an important role in anti-inflammation and antiatherosclerosis.

  20. Induction of Macrophage Chemotaxis by Aortic Extracts from Patients with Marfan Syndrome Is Related to Elastin Binding Protein

    Science.gov (United States)

    Guo, Gao; Gehle, Petra; Doelken, Sandra; Martin-Ventura, José Luis; von Kodolitsch, Yskert; Hetzer, Roland; Robinson, Peter N.

    2011-01-01

    Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62). PMID:21647416

  1. Induction of macrophage chemotaxis by aortic extracts from patients with Marfan syndrome is related to elastin binding protein.

    Directory of Open Access Journals (Sweden)

    Gao Guo

    Full Text Available Marfan syndrome is an autosomal dominantly inherited disorder of connective tissue with prominent skeletal, ocular, and cardiovascular manifestations. Aortic aneurysm and dissection are the major determinants of premature death in untreated patients. In previous work, we showed that extracts of aortic tissues from the mgR mouse model of Marfan syndrome showed increased chemotactic stimulatory activity related to the elastin-binding protein. Aortic samples were collected from 6 patients with Marfan syndrome and 8 with isolated aneurysms of the ascending aorta. Control samples were obtained from 11 organ donors without known vascular or connective tissue diseases. Soluble proteins extracted from the aortic samples of the two patient groups were compared against buffer controls and against the aortic samples from controls with respect to the ability to induce macrophage chemotaxis as measured using a modified Boyden chamber, as well as the reactivity to a monoclonal antibody BA4 against bioactive elastin peptides using ELISA. Samples from Marfan patients displayed a statistically significant increase in chemotactic inductive activity compared to control samples. Additionally, reactivity to BA4 was significantly increased. Similar statistically significant increases were identified for the samples from patients with idiopathic thoracic aortic aneurysm. There was a significant correlation between the chemotactic index and BA4 reactivity, and the increases in chemotactic activity of extracts from Marfan patients could be inhibited by pretreatment with lactose, VGVAPG peptides, or BA4, which indicates the involvement of EBP in mediating the effects. Our results demonstrate that aortic extracts of patients with Marfan syndrome can elicit macrophage chemotaxis, similar to our previous study on aortic extracts of the mgR mouse model of Marfan syndrome (Guo et al., Circulation 2006; 114:1855-62.

  2. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...

  3. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring

    Science.gov (United States)

    Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...

  4. DMPD: LPS-binding proteins and receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9665271 LPS-binding proteins and receptors. Fenton MJ, Golenbock DT. J Leukoc Biol.... 1998 Jul;64(1):25-32. (.png) (.svg) (.html) (.csml) Show LPS-binding proteins and receptors. PubmedID 9665271 Title LPS-binding prot...eins and receptors. Authors Fenton MJ, Golenbock DT. Publication J Leukoc Biol. 199

  5. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  6. Structural and Biochemical Characterization of the Francisella tularensis Pathogenicity Regulator, Macrophage Locus Protein A (MglA.

    Directory of Open Access Journals (Sweden)

    Bonnie J Cuthbert

    Full Text Available Francisella tularensis is one of the most infectious bacteria known and is the etiologic agent of tularemia. Francisella virulence arises from a 33 kilobase (Kb pathogenicity island (FPI that is regulated by the macrophage locus protein A (MglA and the stringent starvation protein A (SspA. These proteins interact with both RNA polymerase (RNAP and the pathogenicity island gene regulator (PigR to activate FPI transcription. However, the molecular mechanisms involved are not well understood. Indeed, while most bacterial SspA proteins function as homodimers to activate transcription, F. tularensis SspA forms a heterodimer with the MglA protein, which is unique to F. tularensis. To gain insight into MglA function, we performed structural and biochemical studies. The MglA structure revealed that it contains a fold similar to the SspA protein family. Unexpectedly, MglA also formed a homodimer in the crystal. Chemical crosslinking and size exclusion chromatography (SEC studies showed that MglA is able to self-associate in solution to form a dimer but that it preferentially heterodimerizes with SspA. Finally, the MglA structure revealed malate, which was used in crystallization, bound in an open pocket formed by the dimer, suggesting the possibility that this cleft could function in small molecule ligand binding. The location of this binding region relative to recently mapped PigR and RNAP interacting sites suggest possible roles for small molecule binding in MglA and SspA•MglA function.

  7. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses1

    Science.gov (United States)

    Belkina, Anna C.; Nikolajczyk, Barbara S.; Denis, Gerald V.

    2013-01-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated pro-inflammatory cytokine response remain poorly characterized. Bromodomain extra terminal (BET) proteins are “readers” of histone acetylation marks with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for pro-inflammatory cytokine production in macrophages. Studies that utilize siRNA knockdown and a small molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the “cytokine storm” in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small molecule inhibitors will benefit hyper-inflammatory conditions associated with high levels of cytokine production. PMID:23420887

  8. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses.

    Science.gov (United States)

    Belkina, Anna C; Nikolajczyk, Barbara S; Denis, Gerald V

    2013-04-01

    Histone acetylation regulates activation and repression of multiple inflammatory genes known to play critical roles in chronic inflammatory diseases. However, proteins responsible for translating the histone acetylation code into an orchestrated proinflammatory cytokine response remain poorly characterized. Bromodomain and extraterminal (BET) proteins are "readers" of histone acetylation marks, with demonstrated roles in gene transcription, but the ability of BET proteins to coordinate the response of inflammatory cytokine genes through translation of histone marks is unknown. We hypothesize that members of the BET family of dual bromodomain-containing transcriptional regulators directly control inflammatory genes. We examined the genetic model of brd2 lo mice, a BET protein hypomorph, to show that Brd2 is essential for proinflammatory cytokine production in macrophages. Studies that use small interfering RNA knockdown and a small-molecule inhibitor of BET protein binding, JQ1, independently demonstrate BET proteins are critical for macrophage inflammatory responses. Furthermore, we show that Brd2 and Brd4 physically associate with the promoters of inflammatory cytokine genes in macrophages. This association is absent in the presence of BET inhibition by JQ1. Finally, we demonstrate that JQ1 ablates cytokine production in vitro and blunts the "cytokine storm" in endotoxemic mice by reducing levels of IL-6 and TNF-α while rescuing mice from LPS-induced death. We propose that targeting BET proteins with small-molecule inhibitors will benefit hyperinflammatory conditions associated with high levels of cytokine production.

  9. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    Science.gov (United States)

    Chakrabarti, Saikat; Roy, Syamal

    2016-01-01

    Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of

  10. The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages

    OpenAIRE

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-01-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent f...

  11. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    Science.gov (United States)

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring.

    Science.gov (United States)

    Tang, Patrick Ming-Kuen; Zhou, Shuang; Li, Chun-Jie; Liao, Jinyue; Xiao, Jun; Wang, Qing-Ming; Lian, Guang-Yu; Li, Jinhong; Huang, Xiao-Ru; To, Ka-Fai; Ng, Chi-Fai; Chong, Charing Ching-Ning; Ma, Ronald Ching-Wa; Lee, Tin-Lap; Lan, Hui-Yao

    2018-01-01

    Src activation has been associated with fibrogenesis after kidney injury. Macrophage-myofibroblast transition is a newly identified process to generate collagen-producing myofibroblasts locally in the kidney undergoing fibrosis in a TGF-β/Smad3-dependent manner. The potential role of the macrophage-myofibroblast transition in Src-mediated renal fibrosis is unknown. In studying this by RNA sequencing at single-cell resolution, we uncovered a unique Src-centric regulatory gene network as a key underlying mechanism of macrophage-myofibroblast transition. A total of 501 differentially expressed genes associated with macrophage-myofibroblast transition were identified. However, Smad3-knockout largely reduced the transcriptome diversity. More importantly, inhibition of Src largely suppresses ureteral obstruction-induced macrophage-myofibroblast transition in the injured kidney in vivo along with transforming growth factor-β1-induced elongated fibroblast-like morphology, α-smooth muscle actin expression and collagen production in bone marrow derived macrophages in vitro. Unexpectedly, we further uncovered that Src serves as a direct Smad3 target gene and also specifically up-regulated in macrophages during macrophage-myofibroblast transition. Thus, macrophage-myofibroblast transition contributes to Src-mediated tissue fibrosis. Hence, targeting Src may represent as a precision therapeutic strategy for macrophage-myofibroblast transition-driven fibrotic diseases. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Blood-flow restricted training leads to myocelullar macrophage infiltration and upregulation of heat-shock proteins, but no apparent muscle damage

    DEFF Research Database (Denmark)

    Nielsen, Jakob L; Aagaard, Per; Prokhorova, Tatyana A

    2017-01-01

    into the intervention (Mid8) and 3 and 10 days after training cessation (Post3,Post10) to examine macrophage (M1/M2) content as well as heat-shock protein (HSP27/70) and tenascin-C expression. Blood samples (1 wk) were collected before and after (0.1-24 h) the first and last training session to examine markers...... of muscle damage (CK), oxidative stress (TAC,GSH) and inflammation (MCP1,IL-6,TNFa). M1-macrophage content increased 108-165% with BFRE and LLE at Post3 (P macrophages increased (163%) with BFRE only (P ... with BFRE (P markers of muscle damage, oxidative stress and inflammation. The amplitude, timing and localization of the above changes indicate that only limited muscle damage was evoked with BFRE. This study is the first to show...

  14. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona

    NARCIS (Netherlands)

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mandieh; Kim, Sung Tae; Moyano, Daniel F.; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M.

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of

  15. Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition.

    Science.gov (United States)

    da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-06-01

    Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.

  16. A potential role of thymic stromal lymphopoietin in the recruitment of macrophages to mouse intervertebral disc cells via monocyte chemotactic protein 1 induction: implications for herniated discs.

    Science.gov (United States)

    Ohba, Tetsuro; Haro, Hirotaka; Ando, Takashi; Koyama, Kensuke; Hatsushika, Kyosuke; Suenaga, Fumiko; Ohnuma, Yuko; Nakamura, Yuki; Katoh, Ryohei; Ogawa, Hideoki; Hamada, Yoshiki; Nakao, Atsuhito

    2008-11-01

    To determine whether thymic stromal lymphopoietin (TSLP) plays a role in the resorption of herniated disc tissue. The expression of TSLP messenger RNA (mRNA) and protein in mouse intervertebral disc cells was assessed by quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analysis. The ability of mouse intervertebral disc cells to respond to TSLP stimulation was examined by Western blot analysis, ELISA, and protein array analysis. Intracellular signaling pathways involved in TSLP signaling in mouse intervertebral disc cells were investigated using several chemical inhibitors. The role of TSLP in macrophage migration into the intervertebral disc was assessed by in vitro migration assay. Finally, TSLP expression in clinical specimens derived from patients with a herniated disc was examined by immunohistochemistry. Mouse intervertebral disc cells expressed TSLP mRNA and protein upon stimulation with NF-kappaB-activating ligands such as tumor necrosis factor alpha. In addition, the mouse intervertebral disc cells expressed the TSLP receptor and produced monocyte chemotactic protein 1 (MCP-1; CCL2) and macrophage colony-stimulating factor in response to TSLP stimulation. Both anulus fibrosus and nucleus pulposus intervertebral disc cells expressed MCP-1 upon TSLP stimulation, which was mediated via the phosphatidylinositol 3-kinase/Akt pathway. Consistently, the supernatants of TSLP-activated intervertebral disc cultures had the capacity to induce macrophage migration in an MCP-1-dependent manner. Finally, TSLP and MCP-1 were coexpressed in human herniated disc specimens in which macrophage infiltration into the tissue was observed. TSLP induced by NF-kappaB-activating ligands in intervertebral discs may contribute to the recruitment of macrophages to the intervertebral disc by stimulating MCP-1 production and may be involved in the resorption of herniated disc tissue.

  17. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A

    Directory of Open Access Journals (Sweden)

    Phelps David S

    2012-07-01

    Full Text Available Abstract Background Male wild type (WT C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A knockout (KO mice compared to WT was significantly reduced. Because the alveolar macrophage (AM is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1 less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2 fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3 more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4 the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta (CCT2, and Rho

  18. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    Directory of Open Access Journals (Sweden)

    Mariana I D S Xisto

    Full Text Available In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.

  19. A microsystem to evaluate the synthesis of [3H]leucine labeled proteins by macrophages

    International Nuclear Information System (INIS)

    Varesio, L.; Eva, A.

    1980-01-01

    A method is described for evaluating protein synthesis by adherent MPHI by measuring the incorporation of [ 3 H]leucine into TCA precipitable material. By using guanidine-HCl it was possible to remove completely the radiolabeled proteins from the adherent cells that were cultured in microwells, and retain TCA precipitable material. This procedure enabled the authors to harvest the TCA precipitable proteins with a semiautomatic cell harvester. The guanidine-HCl treatment did not affect the recovery of the radioactive proteins and did not alter the sensitivity of the assay. This method is very simple and rapid and, since it is suitable for processing microcultures, permits detailed studies on the biology of small numbers of MPHI. (Auth.)

  20. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    International Nuclear Information System (INIS)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-01-01

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  1. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine

    Directory of Open Access Journals (Sweden)

    Chang Mi-Kyung

    2012-10-01

    Full Text Available Abstract Rationale C-reactive protein (CRP and lysophosphatidylcholine (LPC are phosphorylcholine-(PC-containing oxidized phospholipids (oxPLs found in oxidized LDL (oxLDL, which trigger pro-atherogenic activities of macrophages during the process of atherosclerosis. It has been previously reported that CRP binds to the PC head group of oxLDL in a calcium-dependent manner. The aim of this study was to investigate the importance of binding between CRP and LPC to the pro-atherogenic activities of macrophages. Objectives and findings A chemiluminescent immunoassay and HPLC showed that human recombinant CRP formed a stable complex with LPC in the presence of calcium. The Kd value of the binding of the CRP-LPC complex to the receptors FcγRIA or FcγRIIA was 3–5 fold lower than that of CRP alone. The CRP-LPC complex triggered less potent generation of reactive oxygen species and less activation of the transcription factors AP-1 and NF-kB by human monocyte-derived macrophages in comparison to CRP or LPC alone. However, CRP did not affect activities driven by components of oxLDL lacking PC, such as upregulation of PPRE, ABCA1, CD36 and PPARγ and the enhancement of cholesterol efflux by human macrophages. The presence of CRP inhibited the association of Dil-labelled oxLDL to human macrophages. Conclusions The formation of complexes between CRP and PC-containing oxPLs, such as LPC, suppresses the pro-atherogenic effects of CRP and LPC on macrophages. This effect may in part retard the progression of atherosclerosis.

  2. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Energy Technology Data Exchange (ETDEWEB)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  3. Mycobacterium avium subspecies paratuberculosis recombinant proteins modulate antimycobacterial functions of bovine macrophages

    Science.gov (United States)

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinan...

  4. Microparticles released from Mycobacterium tuberculosis-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15.

    Science.gov (United States)

    Hare, Nathan J; Chan, Brian; Chan, Edwina; Kaufman, Kimberley L; Britton, Warwick J; Saunders, Bernadette M

    2015-09-01

    Microparticles (MPs) are small membranous particles (100-1000 nm) released under normal steady-state conditions and are thought to provide a communication network between host cells. Previous studies demonstrated that Mycobacterium tuberculosis (M. tb) infection of macrophages increased the release of MPs, and these MPs induced a proinflammatory response from uninfected macrophages in vitro and in vivo following their transfer into uninfected mice. To determine how M. tb infection modulates the protein composition of the MPs, and if this contributes to their proinflammatory properties, we compared the proteomes of MPs derived from M. tb-infected (TBinf-MP) and uninfected human THP-1 monocytic cells. MP proteins were analyzed by GeLC-MS/MS with spectral counting revealing 68 proteins with statistically significant differential abundances. The 42 proteins increased in abundance in TBinf-MPs included proteins associated with immune function (7), lysosomal/endosomal maturation (4), vesicular formation (12), nucleosome proteins (4), and antigen processing (9). Prominent among these were the type I interferon inducible proteins, ISG15, IFIT1, IFIT2, and IFIT3. Exposure of uninfected THP-1 cells to TBinf-MPs induced increased gene expression of isg15, ifit1, ifit2, and ifit3 and the release of proinflammatory cytokines. These proteins may regulate the proinflammatory potential of the MPs and provide candidate biomarkers for M. tb infection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  6. [The mechanism of polypeptide derived from viral macrophage inflammatory protein II modulates SDF-1α/CXCR4-induced migration].

    Science.gov (United States)

    Yang, Qing-ling; Ding, Yong-xing; Chen, Chang-jie; Yang, Zhi-feng; Gao, Yan-jun

    2012-02-01

    To assess whether NT21MP, the synthetic antagonist 21-mer peptide derived from viral macrophage inflammatory protein II inhibits human SKBR3 cells migration by interfering with SDF-1α/CXCR4 signaling. The levels of CXCR4 were detected in breast cancer cells SKBR3 and MCF-7 by RT-PCR and immunohistochemistry. The effect of SDF-1α-induced SKBR3 migration (chemotaxis) in the presence and absence of NT21MP was determined using the Boyden chamber migration assay. Intracellular Ca(2+); concentration was measured by fluorometric analysis. Western blot analyses were performed to quantify phosphorylated ERK1/2 and FAK expression levels. The expression of CXCR4 was higher in SKBR3 than MCF-7 cells; SKBR3 migration increased in SDF-1α-treated cells. In contrast, AMD3100, an inhibitor of CXCR4 effectively inhibited SKBR3 migration. SKBR3 migration was decreased when the cells were exposed to NT21MPdose dependently(PSKBR3 migration. In addition, NT21MP significantly decreased SDF-1α-induced SKBR3 migration and downregulated SDF-1α-induced express of phospho-ERK1/2 and phospho-FAK(PSKBR3 migration. The plausible mechanism of action could be upstream blockage of Ca(2+); influx and the downstream reduction of ERK1/2 and FAK signals.

  7. CD163-L1 Is an Endocytic Macrophage Protein Strongly Regulated by Mediators in the Inflammatory Response

    DEFF Research Database (Denmark)

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P

    2012-01-01

    exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one......CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163......-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic...

  8. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage.

    Science.gov (United States)

    Ma, Zhe; Zhang, Hui; Yi, Li; Fan, Hongjie; Lu, Chengping

    2012-01-01

    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.

  9. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage.

    Directory of Open Access Journals (Sweden)

    Zhe Ma

    Full Text Available Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM to infection with S. zooepidemicus ATCC35246 wild strain (WD and SzP-knockout strain (KO using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.

  10. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology.

    Science.gov (United States)

    Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian

    2011-07-01

    Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E

  11. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    OpenAIRE

    Tomita, Michiyo; Holman, Brita J; Santoro, Christopher P; Santoro, Thomas J

    2005-01-01

    Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chem...

  12. Involvement of luminal bacteria, heat shock protein 60, macrophages and gammadelta T cells in dextran sulfate sodium-induced colitis in rats.

    Science.gov (United States)

    Leung, F W; Heng, M C; Allen, S; Seno, K; Leung, J W; Heng, M K

    2000-07-01

    The in vivo immunological events in dextran sulfate sodium (DSS) -induced colitis were evaluated. Rats were fed water (control) or 5% DSS. Colonic sections were assessed by light microscopy, Gram stain, immunohistochemistry, and electron microscopy. A progressive decline in number and increase in fragmentation of bacteria in the colonic lumen was observed over time. Luminal bacteria were the first to show heat shock protein 60 (HSP60) staining (day 3). Macrophages in close proximity to these bacteria were next to show such staining (day 6), and finally the damaged epithelial cells when colitis became severe (day 15). Ultrastructural assessment showed cell-cell contact interactions between macrophages and dendritic gammadelta T cells. An increase in the number of gammadelta T cells and ED1-positive macrophages in the affected colonic tissue over time was documented. These results suggest colonic bacteria, host macrophages, and gammadelta T cells play specific roles in the immunological reactions in DSS-induced colitis, possibly via an HSP60-mediated mechanism.

  13. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Marina Kemmerer

    Full Text Available AMP-activated protein kinase (AMPK maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO. The transcription factor peroxisome proliferator-activated receptor δ (PPARδ also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.

  14. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    Science.gov (United States)

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  15. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  16. Interaction between M-like protein and macrophage thioredoxin facilitates antiphagocytosis for Streptococcus equi ssp. zooepidemicus.

    Directory of Open Access Journals (Sweden)

    Zhe Ma

    Full Text Available Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH. TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis.

  17. Interaction between M-like protein and macrophage thioredoxin facilitates antiphagocytosis for Streptococcus equi ssp. zooepidemicus.

    Science.gov (United States)

    Ma, Zhe; Zhang, Hui; Zheng, Junxi; Li, Yue; Yi, Li; Fan, Hongjie; Lu, Chengping

    2012-01-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis.

  18. Protein Phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection

    Science.gov (United States)

    Sun, Jim; Schaaf, Kaitlyn; Duverger, Alexandra; Wolschendorf, Frank; Speer, Alexander; Wagner, Frederic; Niederweis, Michael; Kutsch, Olaf

    2016-01-01

    Co-infection with HIV-1 and Mycobacterium tuberculosis (Mtb) is a major public health issue. While some research has described how each pathogen accelerates the course of infection of the other pathogen by compromising the immune system, very little is known about the molecular biology of HIV-1/Mtb co-infection at the host cell level. This is somewhat surprising, as both pathogens are known to replicate and persist in macrophages. We here identify Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) as a molecular link between Mtb infection and increased HIV-1 susceptibility of macrophages. We demonstrate that both Mtb and HIV-1 infection induce the expression of PPM1A in primary human monocyte/macrophages and THP-1 cells. Genetic manipulation studies revealed that increased PPMA1 expression rendered THP-1 cells highly susceptible to HIV-1 infection, while depletion of PPM1A rendered them relatively resistant to HIV-1 infection. At the same time, increased PPM1A expression abrogated the ability of THP-1 cells to respond to relevant bacterial stimuli with a proper cytokine/chemokine secretion response, blocked their chemotactic response and impaired their ability to phagocytose bacteria. These data suggest that PPM1A, which had previously been shown to play a role in the antiviral response to Herpes Simplex virus infection, also governs the antibacterial response of macrophages to bacteria, or at least to Mtb infection. PPM1A thus seems to play a central role in the innate immune response of macrophages, implying that host directed therapies targeting PPM1A could be highly beneficial, in particular for HIV/Mtb co-infected patients. PMID:27004401

  19. Ribosomal Protein S6 Kinase (RSK-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-05-01

    Full Text Available Abstract Background Epithelial to mesenchymal transition (EMT occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP has been implicated in cellular EMT program; however, the major signaling determinant(s responsible for MSP-induced EMT is unknown. Results The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.

  20. Identification of Protein Targets of 12/15-Lipoxygenase-Derived Lipid Electrophiles in Mouse Peritoneal Macrophages Using Omega-Alkynyl Fatty Acid.

    Science.gov (United States)

    Isobe, Yosuke; Kawashima, Yusuke; Ishihara, Tomoaki; Watanabe, Kenji; Ohara, Osamu; Arita, Makoto

    2018-04-20

    The 12/15-lipoxygenase (12/15-LOX) enzyme introduces peroxyl groups, in a position-specific manner, into polyunsaturated fatty acids to form various kinds of bioactive lipid metabolites, including lipid-derived electrophiles (LDE). The resident peritoneal macrophage is the site of highest 12/15-LOX expression in the mouse. However, the role of the enzyme in the regulation of resident macrophages is not fully understood. Here, we describe a chemoproteomic method to identify the targets of enzymatically generated LDE. By treating mouse peritoneal macrophages with omega-alkynyl arachidonic acid (aAA), we identified a series of proteins adducted by LDE generated through a 12/15-LOX catalyzed reaction. Pathway analysis revealed a dramatic enrichment of proteins involved in energy metabolism and found that glycolytic flux and mitochondrial respiration were significantly affected by the expression of 12/15-LOX. Our findings thus highlight the utility of chemoproteomics using aAA for identifying intracellular targets of enzymatically generated LDE.

  1. Macrophages in Homeostatic Immune Function

    Directory of Open Access Journals (Sweden)

    Jonathan eJantsch

    2014-05-01

    Full Text Available Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism and salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5] expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders.

  2. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Carla S B Viegas

    Full Text Available Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP is a vitamin K dependent protein (VKDP shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP are synthesized and γ-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein γ-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNFα, IL-1β and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel

  3. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  4. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Prendergast, Kelly A; Counoupas, Claudio; Leotta, Lisa; Eto, Carolina; Bitter, Wilbert; Winter, Nathalie; Triccas, James A

    2016-05-17

    Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  6. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  7. Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria

    Directory of Open Access Journals (Sweden)

    Vigerust David J

    2009-07-01

    Full Text Available Abstract Background Surfactant protein A (SP-A is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG by rat macrophages through a nitric oxide-dependent pathway. In the current study we have investigated the role of tyrosine kinases and the downstream mitogen-activated protein kinase (MAPK family, and the transcription factor NFκB in mediating the enhanced signaling in response to BCG in the presence of SP-A. Methods Human SP-A was prepared from alveolar proteinosis fluid, and primary macrophages were obtained by maturation of cells from whole rat bone marrow. BCG-SP-A complexes were routinely prepared by incubation of a ratio of 20 μg of SP-A to 5 × 105 BCG for 30 min at 37°C. Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG complexes for the times indicated. BCG killing was assessed using a 3H-uracil incorporation assay. Phosphorylated protein levels, enzyme assays, and secreted mediator assays were conducted using standard immunoblot and biochemical methods as outlined. Results Involvement of tyrosine kinases was demonstrated by herbimycin A-mediated inhibition of the SP-A-enhanced nitric oxide production and BCG killing. Following infection of macrophages with BCG, the MAPK family members ERK1 and ERK2 were activated as evidence by increased tyrosine phosphorylation and enzymatic activity, and this activation was enhanced when the BCG were opsonized with SP-A. An inhibitor of upstream kinases required for ERK activation inhibited BCG- and SP-A-BCG-enhanced production of nitric oxide by approximately 35%. Macrophages isolated from transgenic mice expressing a NFκB-responsive luciferase gene showed increased luciferase activity following infection with BCG, and this activity was enhanced two-fold in the presence of SP-A. Finally, lactacystin, an inhibitor of IκB degradation, reduced BCG- and SP

  8. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation

    NARCIS (Netherlands)

    Hoebe, Eveline K.; Le Large, Tessa Y. S.; Tarbouriech, Nicolas; Oosterhoff, Dinja; de Gruijl, Tanja D.; Middeldorp, Jaap M.; Greijer, Astrid E.

    2012-01-01

    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus

  9. Hyperglycemia Aggravates Hepatic Ischemia and Reperfusion Injury by Inhibiting Liver-Resident Macrophage M2 Polarization via C/EBP Homologous Protein-Mediated Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Zhuqing Rao

    2017-10-01

    Full Text Available Aggravated liver ischemia and reperfusion (IR injury has been observed in hyperglycemic hosts, but its underlying mechanism remains undefined. Liver-resident macrophages (Kupffer cells, KCs and endoplasmic reticulum (ER stress play crucial roles in the pathogenesis of liver IR injury. In this study, we evaluated the role of ER stress in regulating KC activation and liver IR injury in a streptozotocin-induced hyperglycemic/diabetic mouse model. Compared to the control group (CON group, hyperglycemic mice exhibited a significant increase in liver injury and intrahepatic inflammation following IR. KCs obtained from hyperglycemic mice secreted higher levels of the pro-inflammatory factors TNF-α and IL-6, while they secreted significantly lower levels of the anti-inflammatory factor IL-10. Furthermore, enhanced ER stress was revealed by increased C/EBP homologous protein (CHOP activation in both IR-stressed livers and KCs from hyperglycemic mice. Specific CHOP knockdown in KCs by siRNA resulted in a slight decrease in TNF-α and IL-6 secretion but dramatically enhanced anti-inflammatory IL-10 secretion in the hyperglycemic group, while no significant changes in cytokine production were observed in the CON group. We also analyzed the role of hyperglycemia in macrophage M1/M2 polarization. Interestingly, we found that hyperglycemia inhibited IL-10-secreting M2-like macrophage polarization, as revealed by decreased Arg1 and Mrc1 gene induction accompanied by a decrease in STAT3 and STAT6 signaling pathway activation. CHOP knockdown restored Arg1 and Mrc1 gene induction, STAT3 and STAT6 activation, and most importantly, IL-10 secretion in hyperglycemic KCs. Finally, in vivo CHOP knockdown in KCs enhanced intrahepatic anti-inflammatory IL-10 gene induction and protected the liver against IR injury in hyperglycemic mice but had no significant effects in control mice. Our results demonstrate that hyperglycemia induces hyper-inflammatory activation of KCs

  10. Purification and partial characterization of an acidic α-glucan-protein complex from the fruiting body of Pleurotus sajor-caju and its effect on macrophage activation.

    Science.gov (United States)

    Satitmanwiwat, Saranya; Ratanakhanokchai, Khanok; Laohakunjit, Natta; Pason, Patthra; Tachaapaikoon, Chakrit; Kyu, Khin Lay

    2012-01-01

    The aim of this study was to purify an acidic α-glucan-protein complex from the fruiting bodies of Pleurotus sajor-caju by using the cell wall-degrading enzymes, xylanase and cellulase. The acidic glucan-protein complex was separated from a polysaccharide extract by using DEAE Toyopearl 650M anion-exchange and Sepharose CL-6B chromatography. Its homogeneity was ensured by high-performance size-exclusion chromatography and agarose gel electrophoresis. The acidic glucan-protein complex had a molecular weight of approximately 182 kDa. Fourier transform infrared spectroscopy of the acidic glucan-protein complex revealed an α-glycosidic bond and the typical characteristics of polysaccharides and proteins. The amino acid composition of the protein moiety was dominated by proline, glycine, glutamic acid and aspartic acid, indicating that the protein was highly flexible and had a negative charge. Atomic force microscopy proved that the acidic α-glucan-protein complex existed in a spherical conformation. The acidic α-glucan-protein complex stimulated the activation of macrophages, including the production of nitric oxide and tumor necrosis factor-α.

  11. High mobility group box 1 protein synergizes with lipopolysaccharide and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro.

    Science.gov (United States)

    Chakraborty, Rituparna; Bhatt, Kunal H; Sodhi, Ajit

    2013-05-01

    Extracellular high mobility group box 1 (HMGB1) protein and nitric oxide (NO) has been credited with multiple inflammatory functions using in vivo and in vitro systems. Therefore, delineating their regulation may be an important therapeutic strategy for the treatment of sepsis. In the present study, it is demonstrated that recombinant HMGB1 (rHMGB1) synergizes with sub threshold concentration of TLR2 agonist (PGN; 1 μg/ml) as well as with TLR4 agonist (LPS; 1 ng/ml) to induce NO release in mouse peritoneal macrophages. The enhanced iNOS expression was also observed at the transcription and translational level. Co-incubation of macrophages with rHMGB1 with either PGN or LPS showed enhanced expression of TLR2, TLR4 and RAGE. TLR2, TLR4 or RAGE knockdown macrophages effectively inhibited the rHMGB1+PGN or LPS induced NO synergy. It was further observed that the JNK MAPK inhibitor SP600125 attenuated the PGN+rHMGB1 induced iNOS/NO synergy whereas p38 MAPK inhibitor SB908912 inhibited iNOS/NO synergy induced by LPS+rHMGB1. It was also observed that the activation of NF-κB is essential for the synergy as the pharmacological inhibition or siRNA knockdown of NF-κB (cRel) significantly reduced the rHMGB1+PGN or rHMGB1+LPS induced enhanced iNOS/NO expression. Altogether, the data suggests that the co-incubation of macrophages with rHMGB1 with either LPS or PGN induces the synergistic effect on iNOS expression and NO release by the upregulation of surface receptors (TLR2, TLR4 and RAGE) which in turn amplifies the MAPKs (p38 and JNK) and NF-κB activation and results in enhanced iNOS expression and NO production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages.

    Science.gov (United States)

    Kirkpatrick, R B; Matico, R E; McNulty, D E; Strickler, J E; Rosenberg, M

    1995-02-14

    An abundantly secreted 47-kDa glycoprotein, DS47, was purified from Drosophila melanogaster (Dm) Schneider line-2 cells, a line exhibiting macrophage-like properties. DS47 is also secreted from several Dm cell lines resembling S2 but not from lines that are morphologically distinct. A cDNA cline was isolated from an S2 cell cDNA library using oligodeoxyribonucleotide probes based on the DS47 amino acid (aa) sequence and found to encode a novel secretory glycoprotein of 452 aa. Analysis of DS47 protein production and mRNA expression during fly development indicates that both are present throughout the entire Dm life cycle, suggesting that DS47 may be important at all developmental stages. In larvae, the DS47 message is made in the fat body and by hemocytes, and secreted into the hemolymph. DS47 is related to a human cartilage glycoprotein, HC gp-39, that is secreted from cell types associated with the arthritic joint, such as synovial cells and activated macrophages. Interestingly, the HC gp-39 message is most readily detected in the human liver, an organ that is somewhat analogous to the Dm fat body. DS47 also shares homology to a mouse secretory glycoprotein, YM-1, identified in activated macrophages. These homologies extend to the chitinase gene family and include a conserved cysteine aa motif, as well as two blocks of aa within the enzymatic active site, although neither DS-47 nor HC gp-39 exhibit chitinase activity. Potential functions of this conserved protein family are discussed.

  13. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Morris, Jessica D; Brooks, Michelle N; Carlson, Tracy K; Bakthavachalu, Baskar; Schoenberg, Daniel R; Torrelles, Jordi B; Schlesinger, Larry S

    2011-10-18

    Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPK-activated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3' UTR region of TNF mRNA and destabilizes the transcript, whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M.tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M.tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M.tb to subvert host immunity and potentially increase its virulence.

  14. Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice.

    Directory of Open Access Journals (Sweden)

    Ling-Hua Chang

    Full Text Available BACKGROUND: The up-regulation of CCAAT/enhancer binding protein delta (CEBPD has frequently been observed in macrophages in age-associated disorders, including rheumatoid arthritis (RA. However, the role of macrophage CEBPD in the pathogenesis of RA is unclear. METHODOLOGY AND PRINCIPAL FINDINGS: We found that the collagen-induced arthritis (CIA score and the number of affected paws in Cebpd(-/- mice were significantly decreased compared with the wild-type (WT mice. The histological analysis revealed an attenuated CIA in Cebpd(-/- mice, as shown by reduced pannus formation and greater integrity of joint architecture in affected paws of Cebpd(-/- mice compared with WT mice. In addition, immunohistochemistry analysis revealed decreased pannus proliferation and angiogenesis in Cebpd(-/- mice compared with WT mice. CEBPD activated in macrophages played a functional role in promoting the tube formation of endothelial cells and the migration and proliferation of synoviocytes. In vivo DNA binding assays and reporter assays showed that CEBPD up-regulated CCL20, CXCL1, IL23A and TNFAIP6 transcripts through direct binding to their promoter regions. CCL20, IL23A, CXCL1 and TNFAIP6 contributed to the migration and proliferation of synoviocytes, and the latter two proteins were involved in tube formation of endothelial cells. Finally, two anti-inflammatory chemicals, inotilone and rosmanol, reduced the expression of CEBPD and its downstream targets and mitigated the above phenomena. CONCLUSIONS AND SIGNIFICANCE: Collectively, our findings suggest that CEBPD and its downstream effectors could be biomarkers for the diagnosis of RA and potentially serve as therapeutic targets for RA therapy.

  15. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  16. Transcriptome data and gene ontology analysis in human macrophages ingesting modified lipoproteins in the presence or absence of complement protein C1q

    Directory of Open Access Journals (Sweden)

    Minh-Minh Ho

    2016-12-01

    Full Text Available We characterized the transcriptional effects of complement opsonization on foam cell formation in human monocyte-derived macrophages (HMDM. RNA-sequencing was used to identify the pathways modulated by complement protein C1q during HMDM ingestion of the atherogenic lipoproteins oxidized low density lipoprotein (oxLDL and acetylated low density lipoprotein (acLDL. All raw data were submitted to the MIAME-compliant database Gene Expression Omnibus (accession number GEO: GSE80442; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80442. Data presented here include Venn diagram overviews of up- and down-regulated genes for each condition tested, gene ontology analyses of biological processes, molecular functions and cellular components and KEGG pathway analysis. Further investigation of the pathways modulated by C1q in HMDM during ingestion of atherogenic lipoproteins and their functional relevance are described in “Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q” (M.M. Ho, A. Manughian-Peter, W.R. Spivia, A. Taylor, D.A. Fraser, 2016 [1].

  17. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Rafał Biedroń

    Full Text Available The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl, causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin and glycoproteins (human apo-transferrin, ovalbumin gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206, scavenger receptors A (CD204 and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system

  18. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    Science.gov (United States)

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  19. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins.

    Science.gov (United States)

    Bielecka, Magdalena K; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E; Christodoulides, Myron

    2015-02-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Ethanolic extract of Passiflora edulis Sims leaves inhibits protein glycation and restores the oxidative burst in diabetic rat macrophages after Candida albicans exposure

    Directory of Open Access Journals (Sweden)

    Carolina Fernandes Ribas Martins

    2015-12-01

    Full Text Available abstract This study was conducted to evaluate the effects of the ethanolic extract of Passiflora edulis leaves on blood glucose, protein glycation, NADPH oxidase activity and macrophage phagocytic capacity after Candida albicans exposure in diabetic rats. The Passiflora edulis Sims leaves were dried to 40°C, powdered, extracted by maceration in 70% ethanol, evaporated under reduced pressure and lyophilised. The biochemical tests performed were total phenolic content (TP as determined by the Folin-Ciocalteu assay, trapping potential DPPH assay and total iron-reducing potential. Diabetes was induced by alloxan injection. Protein glycation was determined by AGE and fructosamine serum concentrations. Extract-treated diabetic animals demonstrated lower fructosamine concentrations compared with the diabetic group. Our results suggest that ethanolic Passiflora edulis Sims leaf extraction may have beneficial effects on diabetes and may improve glycaemic control in diabetic rats.

  1. An autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Katsumi [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Nagai, Ryoji, E-mail: nagai-883@umin.ac.jp [Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women' s University, Tokyo (Japan); Takeo, Kazuhiro; Izumi, Miyoko [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Maruyama, Toru [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto (Japan); Otagiri, Masaki [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto (Japan)

    2011-04-08

    Highlights: {yields} A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. {yields} The purified human anti-CEL autoantibody specifically reacted with CEL. {yields} Anti-CEL antibody accelerated the uptake of {sup 125}I-CEL-HSA by macrophage in vitro. {yields} Endocytic uptake of {sup 125}I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when {sup 125}I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of {sup 125}I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  2. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  3. Loss of the adaptor protein ShcA in endothelial cells protects against monocyte macrophage adhesion, LDL-oxydation, and atherosclerotic lesion formation.

    Science.gov (United States)

    Jaoude, Antoine Abou; Badiqué, Lise; Mlih, Mohamed; Awan, Sara; Guo, Sunning; Lemle, Alexandre; Abboud, Clauda; Foppolo, Sophie; Host, Lionel; Terrand, Jérôme; Justiniano, Hélène; Herz, Joachim; Matz, Rachel L; Boucher, Philippe

    2018-03-14

    ShcA is an adaptor protein that binds to the cytoplasmic tail of receptor tyrosine kinases and of the Low Density Lipoprotein-related receptor 1 (LRP1), a trans-membrane receptor that protects against atherosclerosis. Here, we examined the role of endothelial ShcA in atherosclerotic lesion formation. We found that atherosclerosis progression was markedly attenuated in mice deleted for ShcA in endothelial cells, that macrophage content was reduced at the sites of lesions, and that adhesion molecules such as the intercellular adhesion molecule-1 (ICAM-1) were severely reduced. Our data indicate that transcriptional regulation of ShcA by the zinc-finger E-box-binding homeobox 1 (ZEB1) and the Hippo pathway effector YAP, promotes ICAM-1 expression independently of p-NF-κB, the primary driver of adhesion molecules expressions. In addition, ShcA suppresses endothelial Akt and nitric oxide synthase (eNOS) expressions. Thus, through down regulation of eNOS and ZEB1-mediated ICAM-1 up regulation, endothelial ShcA promotes monocyte-macrophage adhesion and atherosclerotic lesion formation. Reducing ShcA expression in endothelial cells may represent an obvious therapeutic approach to prevent atherosclerosis.

  4. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation.

    Science.gov (United States)

    Bai, Fangfang; Ni, Bo; Liu, Maojun; Feng, Zhixin; Xiong, Qiyan; Xiao, Shaobo; Shao, Guoqing

    2013-09-15

    Mycoplasma hyopneumoniae is the primary etiological agent of enzootic pneumonia in swine. Lipid-associated membrane proteins (LAMP) of mycoplasma are the main pathogenicity factors in mycoplasma diseases. In this study, we investigated the effects of M. hyopneumoniae LAMP on porcine alveolar macrophage (PAM) 3D4/21 cell line. Apoptotic features, such as chromatin condensation and apoptotic bodies, were observed in LAMP-treated PAM 3D4/21 cells. Moreover, LAMP significantly increased the number of TUNEL positive apoptotic cells in PAM 3D4/21 cells compared with the untreated control. In addition, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMP of M. hyopneumoniae induced a time-dependent apoptosis in PAM 3D4/21 cells. Moreover, increased levels of superoxide anion production and activated caspase-3 in PAM 3D4/21 cells were observed after exposure to LAMP. Increased production of nitric oxide (NO) was also confirmed in the cell supernatants. Besides, apoptotic rates increase and caspase-3 activation were suppressed by NOS inhibitor or antioxidant. It is suggested that LAMP of M. hyopneumoniae induced apoptosis in porcine alveolar macrophage via NO production, superoxide anion production, and caspase-3 activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Macrophage Inflammatory Proteins MIP1α (CCL3 and MIP2α (CXCL2 in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation

    Directory of Open Access Journals (Sweden)

    Ulrike Dapunt

    2014-01-01

    Full Text Available Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3 and MIP2α (CXCL2 was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.

  6. Soluble Calreticulin Induces Tumor Necrosis Factor-α (TNF-α and Interleukin (IL-6 Production by Macrophages through Mitogen-Activated Protein Kinase (MAPK and NFκB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Cui-Cui Duo

    2014-02-01

    Full Text Available We have recently reported that soluble calreticulin (CRT accumulates in the sera of patients with rheumatoid arthritis or systemic lupus erythematosus. Moreover, following self-oligomerization, soluble recombinant CRT (rCRT polypeptides exhibit potent immunostimulatory activities including macrophage activation in vitro and antibody induction in vivo. This study was designed to further investigate the underlying molecular mechanisms for soluble CRT-induced macrophage activation. Treatment of murine macrophages with oligomerized rCRT (OrCRT led to (i TNF-α and IL-6 transcription and protein expression without affecting intracellular mRNA stability; and (ii IκBα degradation, NFκB phosphorylation and sustained MAPK phosphorylation in cells. Inhibition of IKK and JNK in macrophages substantially abrogated production of TNF-α and IL-6 induced by OrCRT, while ERK suppression only reduced IL-6 expression in parallel experiments. In vitro, fucoidan, a scavenger receptor A (SRA-specific ligand, significantly reduced the uptake of FITC-labeled OrCRT by macrophages and subsequent MAPK and NFκB activation, thereby suggesting SRA as one of the potential cell surface receptors for soluble CRT. Together, these data indicate that soluble CRT in oligomerized form could play a pathogenic role in autoimmune diseases through induction of pro-inflammatory cytokines (e.g., TNF-α and IL-6 by macrophages via MAPK-NFκB signaling pathway.

  7. 3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages.

    Science.gov (United States)

    Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph

    2017-04-01

    We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.

  8. DMPD: Pellino proteins: novel players in TLR and IL-1R signalling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17635639 Pellino proteins: novel players in TLR and IL-1R signalling. Schauvliege R..., Janssens S, Beyaert R. J Cell Mol Med. 2007 May-Jun;11(3):453-61. (.png) (.svg) (.html) (.csml) Show Pellino proteins...: novel players in TLR and IL-1R signalling. PubmedID 17635639 Title Pellino proteins: novel play

  9. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins... (.svg) (.html) (.csml) Show Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. ...PubmedID 17667936 Title Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins

  10. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  11. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-m...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...sorders. PubmedID 14643884 Title Protein kinase C epsilon: a new target to control inflammation

  12. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    Science.gov (United States)

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  13. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  14. Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity

    OpenAIRE

    Duan, Yuzhong; Chen, Fanglin; Zhang, Anmei; Zhu, Bo; Sun, Jianguo; Xie, Qichao; Chen, Zhengtang

    2014-01-01

    Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE2 in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE2 upregulation, IκBα degradation, NFκB activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and PGE2 levels, but the PTP inh...

  15. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring.

    Directory of Open Access Journals (Sweden)

    Linglin Xie

    Full Text Available Adipose tissue macrophages (ATM are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein diet followed by a postnatal high fat energy diet (HE, 45% fat or low fat normal energy diet (NE, 10% fat for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.

  16. Effects of diets with whole plant-origin proteins added with different ratios of taurine:methionine on the growth, macrophage activity and antioxidant capacity of rainbow trout (Oncorhynchus mykiss fingerlings

    Directory of Open Access Journals (Sweden)

    Omar Ezequiel Aguillón Hernández

    2017-06-01

    Full Text Available A 70-days feeding trial was performed to determine the effect of diets with whole plant-origin proteins added with different ratios of taurine:methionine on the growth, macrophage burst activity and antioxidant capacity of rainbow trout (Oncorhynchus mykiss fingerlings. Triplicated groups of 70 fingerlings of an initial weight of 0.54±0.1 g (mean±±SD were fed diets with soy protein isolate and Spirulina powder as protein sources (46% crude protein and added (10 g/kg diet with different taurine and methionine ratios: 0.0 and 10.0 (diet T0/M100, 2.5 and 7.5 (diet T25/M75, 5.0 and 5.0 (diet T50/M50, 7.5 and 2.5 (diet T75/M25 and 10.0 and 0.0 (diet T100/M0, respectively. At the end of the trial, growth performance, lipid and protein contents in liver and muscle, macrophage burst activity and liver antioxidant activity, were determined. The growth performance, macrophage burst activity and antioxidant activity were improved as the taurine increased in the diets. The ratio of 7.5 and 2.5 g/kg of taurine:methionine in diets with SPI and Spirulina powder as protein sources (diet T75/M25, seems to be the best inclusion for rainbow trout fingerlings.

  17. Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of Mycobacterium smegmatis in Human Macrophages Cell Line

    Directory of Open Access Journals (Sweden)

    Arbind Kumar

    2017-06-01

    Full Text Available Mycobacterium tuberculosis Rv0774c protein was reported previously to express under stress conditions. Therefore, Rv0774c gene was cloned and expressed in Mycobacterium smegmatis, a surrogate host, to determine its role in bacterial persistence and immune modulation in natural environment. The bacterial colonies expressing Rv0774c (Ms_rv0774c were larger, smoother, more moist, and flatter than the control ones (Ms_ve. Enhanced survival of Ms_rv0774c after treatment with streptomycin was observed when compared with control. The cell envelope of Ms_rv0774c was demonstrated to have more trehalose di-mycolate (TDM and lesser amount of mycolylmannosylphosphorylheptaprenol (Myc-PL in comparison to control. Higher intracellular survival rate was observed for Ms_rv0774c as compared to Ms_ve in the THP-1 cells. This could be correlated to the reduction in the levels of reactive NO and iNOS expression. Infection of macrophages with Ms_rv0774c resulted in significantly increased expression of TLR2 receptor and IL-10 cytokines. However, it lowered the production of pro-inflammatory cytokines such as IL-12, TNF-α, IFN-γ, and MCP-1 in Ms_rv0774c infected macrophages in comparison to the control and could be associated with decreased phosphorylation of p38 MAPK. Though, predicted with high antigenicity index bioinformatically, extracellular in nature and accessible to host milieu, Rv0774c was not able to generate humoral response in patient samples. Overall, the present findings indicated that Rv0774c altered the morphology and streptomycin sensitivity by altering the lipid composition of M. smegmatis as well as modulated the immune response in favor of bacterial persistence.

  18. Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity.

    Science.gov (United States)

    Duan, Yuzhong; Chen, Fanglin; Zhang, Anmei; Zhu, Bo; Sun, Jianguo; Xie, Qichao; Chen, Zhengtang

    2014-01-01

    Aspirin has been demonstrated to be effective in inhibiting COX-2 and PGE(2) in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and PGE(2) upregulation, IκBα degradation, NFκB activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and PGE(2) levels, but the PTP inhibitor peroxovanadium (POV) significantly increased the COX-2 mRNA and PGE(2) levels. Furthermore, the PTP inhibitor mitigated the inhibitory effect of aspirin on COX-2 and PGE(2) upregulation and NF-κB activation, whereas the PKC inhibitor enhanced the inhibitory effects of aspirin on the production of COX-2 and PGE(2). Our data indicate a novel mechanism by which aspirin acts as a potent anti-inflammatory agent in alveolus macrophages and ALI.

  19. Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines.

    Science.gov (United States)

    Abe, Takayuki; Kaname, Yuuki; Hamamoto, Itsuki; Tsuda, Yoshimi; Wen, Xiaoyu; Taguwa, Shuhei; Moriishi, Kohji; Takeuchi, Osamu; Kawai, Taro; Kanto, Tatsuya; Hayashi, Norio; Akira, Shizuo; Matsuura, Yoshiharu

    2007-09-01

    Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries; however, the mechanism through which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) play a pivotal role in the recognition of viral infection and the induction of innate and adaptive immune responses. Several reports suggest that HCV infection induces the dysfunction of DCs in patients with chronic hepatitis C. Toll-like receptor (TLR) has been shown to play various roles in many viral infections; however, the involvement of HCV proteins in the TLR signaling pathway has not yet been precisely elucidated. In this study, we established mouse macrophage cell lines stably expressing HCV proteins and determined the effect of HCV proteins on the TLR signaling pathways. Immune cells expressing NS3, NS3/4A, NS4B, or NS5A were found to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9 signaling pathways. Various genotypes of NS5A bound to MyD88, a major adaptor molecule in TLR, inhibited the recruitment of interleukin-1 receptor-associated kinase 1 to MyD88, and impaired cytokine production in response to TLR ligands. Amino acid residues 240 to 280, previously identified as the interferon sensitivity-determining region (ISDR) in NS5A, interacted with the death domain of MyD88, and the expression of a mutant NS5A lacking the ISDR partially restored cytokine production. These results suggest that the expression of HCV proteins modulates the TLR signaling pathway in immune cells.

  20. DMPD: Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ns. Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Cytokine Growth Factor Rev. 2006 Dec;17(6):431-9. ...SOCS) 2, a protein with multiple functions. Authors Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Pu

  1. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available oteins. Dalpke A, Heeg K, Bartz H, Baetz A. Immunobiology. 2008;213(3-4):225-35. Epub 2007 Nov 28. (.png) (....ignaling (SOCS)proteins. Authors Dalpke A, Heeg K, Bartz H, Baetz A. Publication Immunobiology. 2008;213(3-4

  2. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    Science.gov (United States)

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  3. Burkholderia pseudomallei Evades Nramp1 (Slc11a1- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Veerachat Muangsombut

    2017-08-01

    Full Text Available Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1 which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+ control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1, the Bsa Type III Secretion System (T3SS-3 and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence

  4. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  5. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages

    OpenAIRE

    Freedman, Tanya S; Tan, Ying X; Skrzypczynska, Katarzyna M; Manz, Boryana N; Sjaastad, Frances V; Goodridge, Helen S; Lowell, Clifford A; Weiss, Arthur

    2015-01-01

    eLife digest Macrophages are white blood cells that protect the body from infection by bacteria and other microbes. Proteins and sugars on the microbe bind to receptor proteins on the surface of the macrophage, which triggers the macrophage to engulf the cell and destroy it. Macrophages also release molecules that are toxic to the microbe and activate other immune responses in the body. It is vital that macrophages can tell the difference between normal body cells and microbes because if macr...

  6. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages

    Science.gov (United States)

    2016-01-01

    Annona muricata, commonly known as Graviola, has been utilized as a traditional medicine to treat various human diseases. The aim of this study was to examine the immune-enhancing activity of Graviola leaf extracts in RAW 264.7 macrophage cells. Active ingredients in Graviola leaf extracts (GE) were identified as kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside by LC-MS/MS. When treated with steam or 50% ethanol GE, cell morphology was altered due to initiation of cell differentiation. While the cell viability was not altered by the steam GE, it was reduced by the ethanol GE. Both steam and ethanol GE induced the transcriptional expression of cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β, but only the steam extract upregulated inducible nitric oxide synthase (iNOS). In consistence with mRNA expression, the production of TNF-α and nitrite was elevated by both steam and ethanol extracts of Graviola leaves. This is mainly due to activation of mitogen-activated protein (MAP) kinase signaling pathways. These results suggest that Graviola leaves enhance immunity by activation of the MAP kinase pathways. These bioactive properties of Graviola indicate its potential as a health-promoting ingredient to boost the immune system. PMID:28096884

  7. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Goon-Tae Kim

    2016-01-01

    Full Text Available Annona muricata, commonly known as Graviola, has been utilized as a traditional medicine to treat various human diseases. The aim of this study was to examine the immune-enhancing activity of Graviola leaf extracts in RAW 264.7 macrophage cells. Active ingredients in Graviola leaf extracts (GE were identified as kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside by LC-MS/MS. When treated with steam or 50% ethanol GE, cell morphology was altered due to initiation of cell differentiation. While the cell viability was not altered by the steam GE, it was reduced by the ethanol GE. Both steam and ethanol GE induced the transcriptional expression of cytokines, including tumor necrosis factor-α (TNF-α and interleukin-1β, but only the steam extract upregulated inducible nitric oxide synthase (iNOS. In consistence with mRNA expression, the production of TNF-α and nitrite was elevated by both steam and ethanol extracts of Graviola leaves. This is mainly due to activation of mitogen-activated protein (MAP kinase signaling pathways. These results suggest that Graviola leaves enhance immunity by activation of the MAP kinase pathways. These bioactive properties of Graviola indicate its potential as a health-promoting ingredient to boost the immune system.

  8. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Goon-Tae; Tran, Nguyen Khoi Song; Choi, Eun-Hye; Song, Yoo-Jeong; Song, Jae-Hwi; Shim, Soon-Mi; Park, Tae-Sik

    2016-01-01

    Annona muricata , commonly known as Graviola, has been utilized as a traditional medicine to treat various human diseases. The aim of this study was to examine the immune-enhancing activity of Graviola leaf extracts in RAW 264.7 macrophage cells. Active ingredients in Graviola leaf extracts (GE) were identified as kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside by LC-MS/MS. When treated with steam or 50% ethanol GE, cell morphology was altered due to initiation of cell differentiation. While the cell viability was not altered by the steam GE, it was reduced by the ethanol GE. Both steam and ethanol GE induced the transcriptional expression of cytokines, including tumor necrosis factor- α (TNF- α ) and interleukin-1 β , but only the steam extract upregulated inducible nitric oxide synthase (iNOS). In consistence with mRNA expression, the production of TNF- α and nitrite was elevated by both steam and ethanol extracts of Graviola leaves. This is mainly due to activation of mitogen-activated protein (MAP) kinase signaling pathways. These results suggest that Graviola leaves enhance immunity by activation of the MAP kinase pathways. These bioactive properties of Graviola indicate its potential as a health-promoting ingredient to boost the immune system.

  9. [Construction of SSH library from haemocyte of variously colored abalone challenged with bacteria and differential expression analysis of macrophage expressed protein].

    Science.gov (United States)

    Ren, Hong-Lin; Xu, Dan-Dan; Qiao, Kun; Cai, Ling; Huang, Wei-Bin; Zhang, Nai; Wang, Ke-Jian

    2008-08-01

    Abalones are considered to be the most precious delicacy from the sea, and become very important commercial seafood in aquaculture worldwide. Variously colored abalone (Haliotis diversicolor Reeve, 1846) has been widely cultured on the southeast coast for more than twenty years. However, abalone culture frequently suffers from bacterial infection and mass mortality of reared abalones causes serious economic losses. Unfortunately, knowledge of the defense mechanism in this animal is still lacking. In this study, using suppression subtractive hybridization (SSH) technology, a forward SSH library was constructed from haemocytes of H. diversicolor, with the content of 1.37x10(6) pfu and the recombinant rate of 98.18%. After the recombinant plasmids were sequenced, partial cDNA of macrophage expressed protein (MEP) was recognized based on BLAST searches in NCBI, with the size of 1,551 bp, and continuously encoding 517 amino acids. Semi-quantitative PCR and quantitative real-time PCR results showed that MEP cDNA was distinctly up-regulated in haemocytes of the bacterial-challenged group compared to the unchallenged group. The gene information obtained from this library will provide new insights into the immune mechanism of H. diversicolor and facilitate future study of target genes involved in the response to invading microorganisms.

  10. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II.

    Science.gov (United States)

    Weber, K S; Gröne, H J; Röcken, M; Klier, C; Gu, S; Wank, R; Proudfoot, A E; Nelson, P J; Weber, C

    2001-08-01

    The viral CC chemokine macrophage inhibitory protein-II (vMIP-II) encoded by human herpes virus 8 (HHV-8) binds to multiple chemokine receptors, however, its ability to control the initial recruitment of specific leukocyte subtypes from the peripheral circulation has not been fully clarified. Here we show that vMIP-II blocks the firm arrest and transmigration of monocytes or Th1-like T lymphocytes triggered by RANTES immobilized on activated human microvascular endothelium (HMVEC) under flow conditions. The internalization of the receptors CCR1 and CCR5 that mediate arrest and transmigration of these cells in response to RANTES was prevented by vMIP-II, supporting its role as an antagonist of CCR1 and CCR5. In contrast, vMIP-II triggered the firm arrest of eosinophils and Th2-like T cells by engaging CCR3, as confirmed by its down-regulation. Immunohistochemical analysis of HHV-8-associated Kaposi's sarcoma lesions marked by vMIP-II expression and mononuclear cell infiltration revealed a predominance of Th2-type CCR3(+) lymphocytes over Th1-type CXCR3(+)/CCR5(+) leukocytes, indicating that as a CCR3 agonist vMIP-II can drive a Th2-type immune response in vivo. Thus, our data provide evidence for a immunomodulatory role of vMIP-II in directing inflammatory cell recruitment away from a Th1-type towards a Th2-type response and thereby facilitating evasion from cytotoxic reactions.

  11. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  12. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu; Yoon, Wan-Hee

    2009-01-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues

  13. [Effect of macrophage inflammatory protein-1β on proliferation and apoptosis of human tongue squamous cell carcinoma CAL-27 cells in vitro].

    Science.gov (United States)

    Jia, Bo; Qiu, Xiao-Ling; Chu, Hong-Xing; Sun, Xiang; Pan, Jie; Wang, Zhi-Ping; Zhao, Jian-Jiang

    2017-08-20

    To detect CCR5 protein expression in different human tongue squamous cell carcinoma cells and observe the effect of macrophage inflammatory protein-1β (MIP-1β) on the proliferation and apoptosis of CAL-27 cells. Western blotting and immunofluorescence staining were used to detect the expression of the CCR5, the receptor of MIP-1β, in 3 human tongue squamous cell carcinoma cells UM-1, CAL-27, and Tca-8113. CCK-8 assay was used to assess the proliferation of CAL-27 cells stimulated with 10, 20, and 40 ng/mL MIP-1β for 12, 24, or 48 h. The apoptosis of the cells stimulated with MIP-1β (10, 20, and 40 ng/mL) for 24 h was analyzed using flow cytometry with Annexin V/PI double staining. CCR5 expression was detected both on the membrane and in the cytoplasm in all the 3 tongue squamous cell carcinoma cell lines. At the concentrations of 10, 20, and 40 ng/mL, MIP-1β stimulation for 12 and 24 h significantly promoted the proliferation of CAL-27 cells (Pproliferation of CAL-27 cells (Pcells (Pcells (P>0.05). CCR5 is expressed in all the 3 human tongue squamous cell carcinoma cells. MIP-1β can promote the proliferation of CAL-27 cells but high concentrations of MIP-1β also induced cell apoptosis. Prolonged stimulation of the cells with a high concentration of MIP-1β shows attenuated effect in promoting cell proliferation probably as a result of cell apoptosis induced by MIP-1β.

  14. Monocyte chemotactic protein-1, RANTES and macrophage migration inhibitory factor levels in gingival crevicular fluid of metabolic syndrome patients with gingivitis.

    Science.gov (United States)

    Gürkan, Ali; Eren, Gülnihal; Çetinkalp, Şevki; Akçay, Yasemin Delen; Emingil, Gülnur; Atilla, Gül

    2016-09-01

    The aim of the present study was to determine gingival crevicular fluid (GCF) levels of monocyte chemotactic protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted protein (RANTES) and macrophage migration inhibitory factor (MIF) in metabolic syndrome patients with gingivitis. Twenty metabolic syndrome patients with gingivitis (MSG), 20 MetS patients with clinically healthy periodontium (MSH), 20 systemically healthy subjects with gingivitis and 20 subjects who were both systemically and periodontally healthy were included. Periodontal and systemical parameters were recorded. GCF MCP-1, RANTES and MIF levels were assayed by enzyme-linked immunosorbent assay method. MSG and MSH groups had elevated blood pressure, triglyceride, waist circumference and fasting glucose values in comparison to gingivitis and healthy groups (Pgingivitis groups when compared to those of the MSH and healthy groups (Pgingivitis group had higher MCP-1, RANTES and MIF levels compared to the healthy group (P=0.011, P=0.0001, P=0.011 respectively). The RANTES level of MSG group was significantly higher than those of the gingivitis group (P=0.01), but MCP-1 and MIF levels were similar in the MSG and gingivitis groups (P>0.05). Elevated levels of GCF RANTES in MetS patients with gingivitis might associate with the presence of increased gingival inflammation by MetS. Low-grade systemic inflammation associated with MetS and adipose tissue-derived RANTES might lead to altered GCF RANTES levels in the presence of gingival inflammation. Copyright © 2016. Published by Elsevier Ltd.

  15. Backbone and side-chain ¹H, ¹³C and ¹⁵N assignments of the PPIase domain of macrophage infectivity potentiator (Mip) protein from Coxiella burnetii.

    Science.gov (United States)

    Tse, Man-Kit; Cheung, Stanley K K; Ke, Yi-hong; Lau, Candy C Y; Sze, Kong-Hung; Yuen, Kwok-Yung

    2014-04-01

    Coxiella burnetii is an obligate intracellular gram-negative bacterium uniquely evolved to thrive in the inhospitable phagolysosome of macrophage. C. burnetii causes Q fever in humans and animals, which is emerging as a global public health concern. It is highly infectious and designated as a category B biowarfare agent because of its ubiquitous nature, abundant natural reservoirs, high resistance to environmental conditions, ease of transmission and low infectious dose. The lack of knowledge and awareness of C. burnetii leads to under-reporting and under-diagnosing of Q fever cases. Therefore, further understanding of the interactions between the infected host and the bacteria is necessary. C. burnetii macrophage infectivity potentiator (cb-Mip) is a secreted protein of 230 amino acids involving in intracellular survival of the pathogen. cb-Mip belongs to the family of FK506 binding protein, which possesses peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a PPIase, Mip protein homolog has been identified as virulence factor of many intracellular pathogenic microorganisms. In the present study, we report the near complete resonance assignments of the PPIase domain-containing region of Mip protein of C. burnetii. Secondary structure prediction based on chemical shift index analysis indicates that the protein adopts a predominately beta-strand structure, which is consistent with the crystal structure of homologous Mip protein in Legionella pneumophila.

  16. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  17. miR-126-5p by direct targeting of JNK-interacting protein-2 (JIP-2) plays a key role in Theileria-infected macrophage virulence

    KAUST Repository

    Haidar, Malak

    2018-03-23

    Theileria annulata is an apicomplexan parasite that infects and transforms bovine macrophages that disseminate throughout the animal causing a leukaemia-like disease called tropical theileriosis. Using deep RNAseq of T. annulata-infected B cells and macrophages we identify a set of microRNAs induced by infection, whose expression diminishes upon loss of the hyper-disseminating phenotype of virulent transformed macrophages. We describe how infection-induced upregulation of miR-126-5p ablates JIP-2 expression to release cytosolic JNK to translocate to the nucleus and trans-activate AP-1-driven transcription of mmp9 to promote tumour dissemination. In non-disseminating attenuated macrophages miR-126-5p levels drop, JIP-2 levels increase, JNK1 is retained in the cytosol leading to decreased c-Jun phosphorylation and dampened AP-1-driven mmp9 transcription. We show that variation in miR-126-5p levels depends on the tyrosine phosphorylation status of AGO2 that is regulated by Grb2-recruitment of PTP1B. In attenuated macrophages Grb2 levels drop resulting in less PTP1B recruitment, greater AGO2 phosphorylation, less miR-126-5p associated with AGO2 and a consequent rise in JIP-2 levels. Changes in miR-126-5p levels therefore, underpin both the virulent hyper-dissemination and the attenuated dissemination of T. annulata-infected macrophages.

  18. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D. [Centenary Institute of Cancer Medicine and Cell Biology, Sydney (Australia)] [and others

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  19. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    Directory of Open Access Journals (Sweden)

    Santoro Thomas J

    2005-02-01

    Full Text Available Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2 is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS. The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. Methods Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. Results The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti

  20. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription.

    Science.gov (United States)

    Tomita, Michiyo; Holman, Brita J; Santoro, Christopher P; Santoro, Thomas J

    2005-02-25

    BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin

  1. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    Amelogenins are extracellular matrix proteins used for the topical treatment of chronically inflamed tissues. The influence of amelogenins on human monocyte-derived macrophages was studied by measuring the concentrations of cytokines in culture supernatants. The interactions of cells and protein...... increased the macrophage release of key cell mediators involved in tissue repair. The effect was independent of phagocytosis, implying a receptor-mediated signal. The markedly increased levels of AMAC-1 suggest that amelogenins promote a reparative macrophage phenotype....

  2. Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-alpha through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages.

    Science.gov (United States)

    Kim, Sung-Jo; Choi, Eun-Young; Kim, Eun Gyung; Shin, Su-Hwa; Lee, Ju-Youn; Choi, Jeom-Il; Choi, In-Soon

    2007-11-01

    The purpose of this study was to investigate the effects of lipopolysaccharide from Prevotella intermedia, a major cause of inflammatory periodontal disease, on the production of tumor necrosis factor (TNF)-alpha and the expression of TNF-alpha mRNA in differentiated THP-1 cells, a human monocytic cell line. The potential involvement of the three main mitogen-activated protein kinase (MAPK) signaling pathways in the induction of TNF-alpha production was also investigated. Lipopolysaccharide from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. It was found that P. intermedia lipopolysaccharide can induce TNF-alpha mRNA expression and stimulate the release of TNF-alpha in differentiated THP-1 cells without additional stimuli. Treatment of the cells with P. intermedia lipopolysaccharide resulted in a simultaneous activation of three MAPKs [extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2) and p38]. Pretreatment of the cells with MAPK inhibitors effectively suppressed P. intermedia lipopolysaccharide-induced TNF-alpha production without affecting the expression of TNF-alpha mRNA. These data thus provided good evidence that the MAPK signaling pathways are required for the regulation of P. intermedia lipopolysaccharide-induced TNF-alpha synthesis at the level of translation more than at the transcriptional level.

  3. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6......Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation...... to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...

  4. Inhibitory Effect of Ferulic Acid and Isoferulic Acid on the Production of Macrophage Inflammatory Protein-2 in Response to Respiratory Syncytial Virus Infection in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    S. Sakai

    1999-01-01

    Full Text Available We investigated the effect of ferulic acid (FA and isoferulic acid (IFA, which are the main active components of the rhizoma of Cimicifuga heracleifolia (CH, an anti-inflammatory drug used frequently in Japanese traditional medicine, on the production of macrophage inflammatory protein-2 (MIR-2 in a murine macrophage cell line, RAW264.7, in response to respiratory syncytial virus (RSV infection. Following the exposure of cells to RSV for 20 h, the MIP-2 level in condition medium was increased to about 20 ng/ml, although this level in mock-infected cells was negligible. In the presence of either FA or IFA, RSV-infected cells reduced MIP-2 production in a dose-dependent manner. These data suggest that FA and IFA might be responsible, at least in part, for the anti-inflammatory drug effect of CH extract through the inhibition of MIP-2 production.

  5. The membrane-type estrogen receptor G-protein-coupled estrogen receptor suppresses lipopolysaccharide-induced interleukin 6 via inhibition of nuclear factor-kappa B pathway in murine macrophage cells.

    Science.gov (United States)

    Okamoto, Mariko; Suzuki, Takuto; Mizukami, Yoichi; Ikeda, Teruo

    2017-11-01

    The female sex hormone estrogen exerts anti-inflammatory effects. The G-protein-coupled estrogen receptor (GPER) has been recently identified as a novel membrane-type estrogen receptor that can mediate non-genomic estrogenic effects on many cell types. We previously demonstrated that GPER inhibits tumor necrosis factor alpha-induced expression of interleukin 6 (IL-6) through repression of nuclear factor-kappa B (NF-κB) promoter activity using human breast cancer cells. Although several reports have indicated that GPER suppresses Toll-like receptor-induced inflammatory cytokine expression in macrophages, the molecular mechanisms of the inhibition of cytokine production via GPER remain poorly understood. In the present study, we examined GPER-mediated inhibition of IL-6 expression induced by lipopolysaccharide (LPS) stimulation in a mouse macrophage cell line. We found that the GPER agonist G-1 inhibited LPS-induced IL-6 expression in macrophage cells, and this inhibition was due to the repression of NF-κB promoter activity by GPER. G-1 treatment also decreased the phosphorylation of inhibitor of κB kinases. Among the mitogen-activated protein kinases, the phosphorylation of c-jun N-terminal kinase (JNK) was increased by G-1. These findings delineate the novel mechanism of the inhibition of LPS-induced IL-6 through GPER-activated JNK-mediated negative regulation of the NF-κB pathway in murine macrophage cells, which links anti-inflammatory effects to estrogen. © 2017 Japanese Society of Animal Science.

  6. Monocyte/macrophage-derived soluble CD163

    DEFF Research Database (Denmark)

    Andersen, Morten N; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have......OBJECTIVES: Macrophages play an important role in cancer by suppression of adaptive immunity and promotion of angiogenesis and metastasis. Tumor-associated macrophages strongly express the hemoglobin scavenger receptor CD163, which can also be found as a soluble protein in serum and other body...

  7. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC.

    Directory of Open Access Journals (Sweden)

    Nancy E Caceres

    Full Text Available Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient. Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1 and 69 (F2 showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.

  8. Cytokine gene expression in murine epidermal cell suspensions: interleukin 1 beta and macrophage inflammatory protein 1 alpha are selectively expressed in Langerhans cells but are differentially regulated in culture.

    Science.gov (United States)

    Heufler, C; Topar, G; Koch, F; Trockenbacher, B; Kämpgen, E; Romani, N; Schuler, G

    1992-10-01

    Epidermal Langerhans cells (LC) are considered direct yet immature precursors of dendritic cells (DC) in the draining lymph nodes. Although the development of LC into potent immunostimulatory DC occurs in vitro and has been studied in detail, little is known about their profile of cytokine gene expression. By using reverse transcriptase polymerase chain reaction analysis to screen 16 cytokines followed by Northern blotting for selected analysis, we determined the cytokine gene expression profile of murine LC at different time points in culture when T cell stimulatory activity is increasing profoundly. LC regularly expressed macrophage inflammatory proteins, MIP-1 alpha and MIP-2, and interleukin 1 beta (IL-1 beta). Both MIPs were downregulated upon culture and maturation into DC, whereas IL-1 beta was strongly upregulated in culture. MIP-1 alpha and IL-1 beta mRNA were found only in LC, but not in other epidermal cells. Apart from trace amounts of IL-6 in cultured LC, several macrophage and T cell products were not detected. The cytokine expression profile of LC thus appears distinct from typical macrophages. The exact role of the cytokine genes we found transcribed in LC remains to be determined.

  9. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells.

    Science.gov (United States)

    Kim, Ji Hyung; Chung, Doo Hyun

    2011-02-01

    Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.

  10. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    aggregates were visualised by transmission electron microscopy. The amelogenin treatment of macrophages increased several pro- and anti-inflammatory cytokines, including alternative macrophage activation marker AMAC-1 (p ...Amelogenins are extracellular matrix proteins used for the topical treatment of chronically inflamed tissues. The influence of amelogenins on human monocyte-derived macrophages was studied by measuring the concentrations of cytokines in culture supernatants. The interactions of cells and protein...... independent of cytochalasin B, although amelogenin aggregates were ingested by macrophages. Amelogenin effect was compared with that of tyrosine-rich amelogenin peptide, which apart from augmented VEGF levels (p

  11. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Roman Covarrubias

    Full Text Available Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr on antigen presenting cells (APCs has been shown to enhance invariant natural killer T (iNKT cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP, plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ. We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO. LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  12. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Choi YH

    2014-10-01

    Full Text Available Yung Hyun Choi,1,2 Gi-Young Kim,3 Hye Hyeon Lee4 1Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 2Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan, 3Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 4Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. Keywords

  13. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  14. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo.

  16. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype

    Science.gov (United States)

    Zulcic, Muamera; Jiang, Min; Pardo, Annie; Selman, Moises; Hagood, James S.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo. PMID:28817691

  17. Macrophages and bone inflammation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2017-07-01

    Full Text Available Bone metabolism is tightly regulated by the immune system. Accelerated bone destruction is observed in many bone diseases, such as rheumatoid arthritis, fracture, and particle-induced osteolysis. These pathological conditions are associated with inflammatory responses, suggesting the contribution of inflammation to bone destruction. Macrophages are heterogeneous immune cells and are polarized into the proinflammatory M1 and antiinflammatory M2 phenotypes in different microenvironments. The cytokines produced by macrophages depend on the macrophage activation and polarization. Macrophages and macrophage-derived cytokines are important to bone loss in inflammatory bone disease. Recent studies have shown that macrophages can be detected in bone tissue and interact with bone cells. The interplay between macrophages and bone cells is critical to bone formation and repair. In this article, we focus on the role of macrophages in inflammatory bone diseases, as well as discuss the latest studies about macrophages and bone formation, which will provide new insights into the therapeutic strategy for bone disease.

  18. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages.

    Directory of Open Access Journals (Sweden)

    Lynne A Murray

    Full Text Available Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP, a member of the pentraxin family of proteins, signals through Fcgamma receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2 macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses.

  19. Increased replication of T-cell-tropic HIV strains and CXC-chemokine receptor-4 induction in T cells treated with macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines.

    Science.gov (United States)

    Dolei, A; Biolchini, A; Serra, C; Curreli, S; Gomes, E; Dianzani, F

    1998-01-22

    To study, in T-lymphoid cells, the effects of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines on the replication of T-cell-tropic HIV-1 strains, since it has been reported that beta-chemokines interfere with the replication of macrophage-tropic HIV-1 strains, but not T-cell-tropic strains. Freshly phytohaemagglutinin (PHA)-activated peripheral blood lymphocytes (PBL) and cultured PHA-activated T cells from healthy volunteers, as well as the C8166 T-cell line, were treated overnight with beta-chemokines before infection with T-cell-tropic HIV-1 isolates, or human T-lymphotropic virus type IIIB. HIV replication was followed by detecting the production of infectious particles, p24 antigen, and viral sequences. CXC-chemokine receptor (CXCR)-4 expression was followed by detection and quantification of specific transcripts. Pretreatment of T cells with MIP-1alpha, MIP-1beta and RANTES affected T-cell-tropic strains, increased the replication of HIV-1beta and HIV-1RPdT strains dose-dependently, as well as virus absorption and provirus DNA accumulation. These findings were associated with increased accumulation of CXCR-4 transcripts, and mediated by the protein tyrosine kinase signalling. Moreover, beta-chemokines stimulated PBL proliferation. Beta-chemokines increase the adsorption and replication of at least some T-cell-tropic HIV-1 strains, and this is related to stimulated expression of the CXCR-4 coreceptor.

  20. MEK1/2 Inhibition Promotes Macrophage Reparative Properties1

    Science.gov (United States)

    Long, Matthew E.; Eddy, William E.; Gong, Ke-Qin; Lovelace-Macon, Lara L.; McMahan, Ryan S.; Charron, Jean; Liles, W. Conrad; Manicone, Anne M.

    2016-01-01

    Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. While many of the intracellular signaling pathways involved in the pro-inflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological inhibition of the MEK1/2 pathway (MEKi) significantly increased expression of IL-4/IL-13 (M2) responsive genes in murine bone marrow-derived and alveolar macrophages. Deletion of the MEK1 gene using LysMCre+/+MEK1fl/fl macrophages as an alternate approach yielded similar results. MEKi enhanced STAT6 phosphorylation, and MEKi induced changes in M2 polarization were dependent on STAT6. In addition, MEKi-treatment significantly increased both murine and human macrophage efferocytosis of apoptotic cells (AC) independent of macrophage polarization and STAT6. These phenotypes were associated with increased gene and protein expression of Mertk, Tyro3, and Abca1, three proteins that promote macrophage efferocytosis. We also studied the effects of MEKi on in vivo macrophage efferocytosis and polarization. MEKi treated mice had increased efferocytosis of apoptotic PMNs instilled into the peritoneum. Furthermore, administration of MEKi after LPS-induced lung injury led to improved recovery of weight, fewer neutrophils in the alveolar compartment, and greater macrophage M2 polarization. Collectively, these results show that MEK1/2 inhibition is capable of promoting reparative properties of both murine and human macrophages. These studies suggest that the MEK1/2 pathway may be a therapeutic target to promote the resolution of inflammation via modulation of macrophage functions. PMID:28003382

  1. Fresh mouse peritoneal macrophages have low scavenger receptor activity.

    Science.gov (United States)

    Kim, J G; Keshava, C; Murphy, A A; Pitas, R E; Parthasarathy, S

    1997-11-01

    Peritoneal macrophages are easily isolated by lavage, suggesting that they are either nonadherent or weakly adherent in situ. Cultured macrophages express class A scavenger receptors (SCR), which mediate Ca2+-independent adhesion in vitro. We examined fresh peritoneal macrophages from mice and from women with endometriosis to determine whether the adherence of these cells was associated with increased expression of class A SCR. Fresh human macrophages were not immunoreactive to SCR antibodies; however, SCR immunoreactivity increased with time in culture. Fresh mouse and human macrophages took up minimal amounts of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI)-acetyl-low density lipoproteins (Ac-LDL), a class A SCR ligand. Murine macrophages in culture for 24-72 h internalized four times more Ac-LDL than fresh cells. Cells cultured for 2 days incorporated 3.2 times more [14C] oleate than freshly isolated cells (55.7 +/- 7.9 versus 17.6 +/- 3.0 nmol/mg cell protein). In contrast to SCR activity, mouse macrophage SCR mRNA expression was similar in freshly isolated macrophages and those cultured for 3 days. These results suggest that peritoneal macrophages express only low levels of SCR activity in situ and that posttranscriptional regulation after isolation leads to an increase in SCR activity that correlates with adherence of the macrophages in vitro.

  2. Metabotropic glutamate receptor 5 may be involved in macrophage plasticity

    Directory of Open Access Journals (Sweden)

    Lali Shanshiashvili

    Full Text Available Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages and non-modified macrophages (RAW-macrophages has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2. Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ and secreted more IL-10, high mobility group box 1 proteins (HMGB1 and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.

  3. Macrophages and nerve fibres in peritoneal endometriosis.

    Science.gov (United States)

    Tran, Lu Vinh Phuc; Tokushige, Natsuko; Berbic, Marina; Markham, Robert; Fraser, Ian S

    2009-04-01

    Endometriosis is considered to be an inflammatory disease, and macrophages are the most numerous immune cells in endometriotic lesions. However, the mechanisms underlying the elevation of macrophages and their role in the pathogenesis and manifestations of endometriosis still remain unclear. The number of macrophages stained for CD68 in endometriotic lesions (n = 24) and in peritoneum distant from the lesions (n = 14) from women with endometriosis was compared with the number of macrophages in normal peritoneum from women without endometriosis (n = 18). Peritoneal lesions were also double-stained for CD68 and protein gene product 9.5 to study the relationship between macrophages and nerve fibres. The densities of macrophages in peritoneal endometriotic lesions and unaffected peritoneum from women with endometriosis were both significantly higher than that in normal peritoneum from women without endometriosis (P peritoneal lesions from women with endometriosis compared with normal peritoneum from women without endometriosis. These cells may well play roles in the growth and development of endometriotic lesions and in the generation of pain through interaction with nerve fibres.

  4. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  5. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages

    OpenAIRE

    Kim, Goon-Tae; Tran, Nguyen Khoi Song; Choi, Eun-Hye; Song, Yoo-Jeong; Song, Jae-Hwi; Shim, Soon-Mi; Park, Tae-Sik

    2016-01-01

    Annona muricata, commonly known as Graviola, has been utilized as a traditional medicine to treat various human diseases. The aim of this study was to examine the immune-enhancing activity of Graviola leaf extracts in RAW 264.7 macrophage cells. Active ingredients in Graviola leaf extracts (GE) were identified as kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside by LC-MS/MS. When treated with steam or 50% ethanol GE, cell morphology was altered due to initiation of cell differentiation. ...

  6. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    that siderocalin expression is upregulated following M.tb infection of mouse macrophage cell lines and primary murine alveolar macrophages. Furthermore, siderocalin added exogenously as a recombinant protein or overexpressed in the RAW264.7 macrophage cell line inhibited the intracellular growth of the pathogen......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show....... A variant form of siderocalin, which is expressed only in the macrophage cytosol, inhibited intracellular M.tb growth as effectively as the normal, secreted form, an observation that provides mechanistic insight into how siderocalin might influence iron acquisition by the bacteria in the phagosome. Our...

  7. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated protein kinase/nuclear... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  8. Alternatively Activated (M2 Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Stefano Soldano

    Full Text Available Alternatively activated (M2 macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163 and mannose receptor-1 (CD206, and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1 and metalloproteinase (MMP-9. Endothelin-1 (ET-1 is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB. The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells.Cultured human monocytes (THP-1 cell line were activated into macrophages (M0 macrophages with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls or treated with either ET-1 (100nM or interleukin-4 (IL-4, 10ng/mL, M2 inducer for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR. Gene expression of interleukin(IL-10 and macrophage derived chemokine (CCL-22 was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography.ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  9. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H{sub 2}O{sub 2} in HL-1 mouse cardiac muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, F. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Deng, C.Y. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Zhang, Q.H.; Xue, Y.M. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Xiao, D.Z.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X.; Liu, X.Y.; Zhu, J.N. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Yu, X.Y. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Wu, S.L. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China)

    2013-09-06

    Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H{sub 2}O{sub 2}), but not angiotensin II, stimulated MIF expression in HL-1 cells. H{sub 2}O{sub 2}-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H{sub 2}O{sub 2}-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.

  10. PEP-1-PON1 protein regulates inflammatory response in raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model.

    Directory of Open Access Journals (Sweden)

    Mi Jin Kim

    Full Text Available Paraoxonase 1 (PON1 is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS or hydrogen peroxide (H2O2-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS levels, the inflammatory mediator's expression, activation of mitogen-activated protein kinases (MAPKs and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.

  11. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility.

    Science.gov (United States)

    Muller, Paul Andrew; Koscsó, Balázs; Rajani, Gaurav Manohar; Stevanovic, Korey; Berres, Marie-Luise; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Li, Xiu-Min; Mucida, Daniel; Stanley, E Richard; Dahan, Stephanie; Margolis, Kara Gross; Gershon, Michael David; Merad, Miriam; Bogunovic, Milena

    2014-07-17

    Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK: Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility

    Science.gov (United States)

    Muller, Paul Andrew; Koscsó, Balázs; Rajani, Gaurav Manohar; Stevanovic, Korey; Berres, Marie-Luise; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Li, Xiu-Min; Mucida, Daniel; Stanley, E. Richard; Dahan, Stephanie; Margolis, Kara Gross; Gershon, Michael David; Merad, Miriam; Bogunovic, Milena

    2014-01-01

    SUMMARY Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that in the steady state muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven, crosstalk between muscularis macrophages and enteric neurons, which controls gastrointestinal motility. PMID:25036630

  13. DMPD: Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1373512 Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, therec....html) (.csml) Show Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS.../LBP complexes: a short review. PubmedID 1373512 Title Function of lipopolysaccha

  14. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages.

    Science.gov (United States)

    Palacz-Wrobel, Marta; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Suchanek-Raif, Renata; Kowalski, Jan

    2017-09-01

    Polyphenols such as apigenin, kaempferol or resveratrol are typically found in plants, including fruits, vegetables, herbs and spices, which have a wide range of biological functions such as antioxidative, anti-inflammatory, vasodilative, anticoagulative and proapoptotic. Discovering such multifunctional compounds in widely consumed plant-based products - ones that both inhibit the release of TNF-α from tissue macrophages and at the same time enhance the secretion of IL-10 - would be an important signpost in the quest for effective pharmacological treatment of numerous diseases that have an inflammatory etiology. The aim of the study is to investigate the impact of biologically active polyphenols such as apigenin, resveratrol and kaempferol on gene expression and protein secretion of IL-10 and TNF-α in line RAW-264.7. Cells were cultured under standard conditions. IL-10 and TNF-α genes expression were examined using QRT-PCR and to assess cytokines concentration ELISA have been used. Apigenin, kaempferol and resveratrol at a dose 30μM significantly decrease the TNF-α expression and secretion. Apigenin decrease the IL-10 expression and secretion. Furthermore, increase in IL-10 secretion after administration of kaempferol and resveratrol were observed. In the process of administration of tested compounds before LPS, which activate macrophages, decrease of TNF-α secretion after apigenin and kaempferol and increase of IL-10 secretion after resveratrol were observed. The results of present work indicate that 1) apigenin, resveratrol and kaempferol may reduce the intensity of inflammatory processes by inhibiting the secretion of proinflammatory cytokine TNF-α, and resveratrol and kaempferol additionally by increasing the secretion of anti-inflammatory cytokine IL-10 2) the studies indicate the potentially beneficial - anti-inflammatory - impact of diet rich in products including apigenin, resveratrol and kaempferol. Copyright © 2017 Elsevier Masson SAS. All rights

  15. Degradation of parathyroid hormone in macrophage endosomes

    International Nuclear Information System (INIS)

    Diment, S.; Martin, K.J.; Stahl, P.D.

    1986-01-01

    Parathyroid hormone (PTH) is secreted as an 84 amino acid protein that is rapidly cleaved between amino acids 34 and 35 by Kupffer cells in liver. The resulting amino terminal peptide (1-34) is active at PTH target organs (kidney and bone). Cathepsin D can process PTH to 1-34 in vitro, and a cathepsin D-like protease, which may rapidly process proteins, is present in endosomes of alveolar macrophages. The authors set out to determine whether PTH is degraded to 1-34 in endosomes, and to elucidate the mechanism of hormone processing in vivo. Intracellular transport of 125 I-PTH was assessed by binding to alveolar macrophages at 4 0 C, followed by internalization at 37 0 C. Distribution of PTH among plasma membranes, endosomes and lysosomes was determined by subcellular fractionation. Degradation of the ligand to TCA-soluble fragments in each compartment was assayed at neutral and acid pH. 1-34 in supernatants was separated from undergraded PTH by gel filtration and detected by bioassay on kidney membranes. The authors data suggest that: 1) macrophages rapidly degrade PTH to TCA-soluble fragments. 2) macrophages do not secrete proteases that degrade extracellular PTH. 3) PTH is internalized into endocytic vesicles after 5 mins, but not delivered to lysosomes within 30 mins. 4) A bioactive peptide is released into the extracellular medium after 20 mins. 5) PTH is degraded in endosomes at acid pH by a pepstatin-sensitive protease

  16. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  17. Hepatitis C virus drug resistance associated substitutions and their clinical relevance: Update 2018.

    Science.gov (United States)

    Sorbo, Maria C; Cento, Valeria; Di Maio, Velia C; Howe, Anita Y M; Garcia, Federico; Perno, Carlo F; Ceccherini-Silberstein, Francesca

    2018-03-01

    Nowadays, due to the development of potent Direct-Acting Antiviral Agents (DAAs) that specifically target NS3, NS5A and NS5B viral proteins, several new and highly efficacious options to treat chronic Hepatitis C virus (HCV) infection are available. The natural presence of resistance associated substitutions (RASs), as well as their rapid emergence during incomplete drug-pressure, are intrinsic characteristics of HCV that greatly affect treatment outcome and the chances to achieve a virolgical cure. To date, a high number of RASs in NS3, NS5A, and NS5B have been associated in vivo and/or in vitro with reduced susceptibility to DAAs, but no comprehensive RASs list is available. This review thus provides an updated, systematic overview of the role of RASs to currently approved DAAs or in phase II/III of clinical development against HCV-infection, discriminating their impact in different HCV-genotypes and DAAs, providing assistance for a fruitful use of HCV resistance testing in clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  19. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  20. Immunomodulatory beta-glucan from Lentinus edodes activates mitogen-activated protein kinases and nuclear factor-kappaB in murine RAW 264.7 macrophages.

    Science.gov (United States)

    Xu, Xiaojuan; Pan, Chen; Zhang, Lina; Ashida, Hitoshi

    2011-09-09

    Lentinan, a cell wall β-glucan from the fruiting bodies of Lentinus edodes, is well known to be a biological defense modifier, but the signal transduction pathway(s) induced by Lentinan have not been elucidated. In this study, we extracted Lentinan (LNT-S) by ultrasonication from Lentinus edodes and report that, in murine RAW 264.7 macrophages, LNT-S glucan activated NF-κB p65 and triggered its nuclear translocation as determined by Western blotting. Moreover, LNT-S enhanced NF-κB-luciferase activity in the Dual-Luciferase gene system assay. Its upstream signaling molecules, MAPKs such as ERK1/2 and JNK1/2, were shown to be activated by assessing the level of phosphorylation in a time- and concentration-dependent manner, but its downstream proinflammatory enzyme, inducible NOS, was not observed. The data evaluated using a TNF-α ELISA kit and Griess reagent further demonstrated that no proinflammatory mediators such as TNF-α and NO were produced by LNT-S stimulation in RAW 264.7 cells. In contrast, LPS significantly induced inducible NOS expression and increased NO and TNF-α production, which are associated with activation of the NF-κB p65/p50 heterodimer complex. It is possible that LNT-S did not activate NF-κB p65/p50, and the activation of NF-κB p65 was not sufficient to stimulate cytokine production. These data demonstrate that LNT-S glucan carries out its immunomodulating activity by activating MAPK signaling pathways without secretion of TNF-α and NO.

  1. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  2. Ecotin-Like ISP of L. major Promastigotes Fine-Tunes Macrophage Phagocytosis by Limiting the Pericellular Release of Bradykinin from Surface-Bound Kininogens: A Survival Strategy Based on the Silencing of Proinflammatory G-Protein Coupled Kinin B2 and B1 Receptors

    Directory of Open Access Journals (Sweden)

    Erik Svensjö

    2014-01-01

    Full Text Available Inhibitors of serine peptidases (ISPs expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE, a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS. Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R. Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.

  3. Ecotin-like ISP of L. major promastigotes fine-tunes macrophage phagocytosis by limiting the pericellular release of bradykinin from surface-bound kininogens: a survival strategy based on the silencing of proinflammatory G-protein coupled kinin B2 and B1 receptors.

    Science.gov (United States)

    Svensjö, Erik; Nogueira de Almeida, Larissa; Vellasco, Lucas; Juliano, Luiz; Scharfstein, Julio

    2014-01-01

    Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.

  4. Wormhole Travel for Macrophages.

    Science.gov (United States)

    Okabe, Yasutaka; Medzhitov, Ruslan

    2016-04-21

    Leukocyte recruitment is generally achieved by rapid migration of inflammatory cells out of circulation, through modified blood vessels, and into affected tissues. Now, Wang and Kubes show that macrophages can be rapidly recruited from body cavities to the liver, via a non-vascular route, where they help to coordinate tissue repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan; Chen, Zi; He, Bo

    2017-02-01

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found that vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.

  6. The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/reperfusion

    NARCIS (Netherlands)

    Dessing, M.C.; Tammaro, A.; Pulskens, W.P.C.; Teske, G.J.; Butter, L.M.; Claessen, N.; Eijk, M. van; Poll, T. van der; Vogl, T.; Roth, J.; Florquin, S.; Leemans, J.C.

    2015-01-01

    Upon ischemia/reperfusion (I/R)-induced injury, several damage-associated molecular patterns are expressed including the calcium-binding protein S100A8/A9 complex. S100A8/A9 can be recognized by Toll-like receptor-4 and its activation is known to deleteriously contribute to renal I/R-induced injury.

  7. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    Science.gov (United States)

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  8. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  9. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  10. Macrophage cytokines: Involvement in immunity and infectious diseases

    Directory of Open Access Journals (Sweden)

    Guillermo eArango Duque

    2014-10-01

    Full Text Available The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting ‘classically activated’, to anti-inflammatory or ‘alternatively activated’ macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  11. Macrophage cytokines: involvement in immunity and infectious diseases.

    Science.gov (United States)

    Arango Duque, Guillermo; Descoteaux, Albert

    2014-01-01

    The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  12. Macrophage serum markers in pneumococcal bacteremia

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Moestrup, Søren K; Weis, Nina

    2006-01-01

    OBJECTIVE: Soluble CD163 (sCD163) is a new macrophage-specific serum marker. This study investigated sCD163 and other markers of macrophage activation (neopterin, ferritin, transcobalamin, and soluble urokinase plasminogen activator receptor [suPAR]) as prognostic factors in patients...... analyses at the time of first positive blood culture. MEASUREMENTS AND MAIN RESULTS: sCD163 was highly correlated with other macrophage markers and was significantly elevated (median [25-75 percentiles], 4.6 mg/L [2.8-8.9]) compared with healthy controls (2.7 mg/L [2.1-3.3], p ..., all macrophage markers were increased in patients who died from their infection compared with survivors, whereas no change was observed in any of the markers in the very old age. At cutoff levels of 9.5 mg/L (sCD163) and 1650 nmol/L (C-reactive protein), the relative risk for fatal outcome in patients...

  13. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection.To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication.HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic

  14. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  15. Substance P Increases Cell-Surface Expression of CD74 (Receptor for Macrophage Migration Inhibitory Factor: In Vivo Biotinylation of Urothelial Cell-Surface Proteins

    Directory of Open Access Journals (Sweden)

    Katherine L. Meyer-Siegler

    2009-01-01

    N-hydroxysulfosuccinimide biotin ester-labeled surface urothelial proteins in rats treated either with saline or substance P (SP, 40 μg/kg. The bladder was examined by histology and confocal microscopy. Biotinylated proteins were purified by avidin agarose, immunoprecipitated with anti-MIF or anti-CD74 antibodies, and detected with strepavidin-HRP. Only superficial urothelial cells were biotinylated. These cells contained a biotinylated MIF/CD74 cell-surface complex that was increased in SP-treated animals. SP treatment increased MIF and CD74 mRNA in urothelial cells. Our data indicate that intraluminal MIF, released from urothelial cells as a consequence of SP treatment, interacts with urothelial cell-surface CD74. These results document that our previously described MIF-CD74 interaction occurs at the urothelial cell surface.

  16. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Directory of Open Access Journals (Sweden)

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  17. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    Science.gov (United States)

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-04-20

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.

  18. Impact of in vitro gallium arsenide exposure on macrophages

    International Nuclear Information System (INIS)

    Harrison, M.Travis; Hartmann, Constance B.; McCoy, Kathleen L.

    2003-01-01

    The semiconductor gallium arsenide (GaAs) is classified as an immunotoxicant and a carcinogen. We previously showed that GaAs in vivo induces several phenotypic changes in macrophages located at the exposure site, indicative of an activated state. These physiological alterations may be a primary or secondary consequence of chemical exposure. To discern primary influences, our current study examined the in vitro effects of the chemical on macrophage cell lines and murine peritoneal macrophages. GaAs augmented cathepsins L and B proteolytic activities in all three sources of macrophages. Expression of the two mature isoforms of invariant chain and its cleavage fragment was also significantly increased, indicating that the chemical directly affects macrophages. However, GaAs did not alter the overall cell surface expression of major histocompatibility complex class II molecules on macrophages nor influence their ability to stimulate antigen-specific helper T cell hybridomas to respond to intact antigens that require processing. These findings raise the possibility that the chemical's complete in vivo impact may involve cytokines. Further, GaAs in vitro enhanced steady-state cathepsin L protein, and cathepsins L and B mRNA expression in macrophages, indicating that GaAs may alter gene expression, which may contribute to the chemical's adverse biological effects

  19. Impact of in vitro gallium arsenide exposure on macrophages.

    Science.gov (United States)

    Harrison, M Travis; Hartmann, Constance B; McCoy, Kathleen L

    2003-01-01

    The semiconductor gallium arsenide (GaAs) is classified as an immunotoxicant and a carcinogen. We previously showed that GaAs in vivo induces several phenotypic changes in macrophages located at the exposure site, indicative of an activated state. These physiological alterations may be a primary or secondary consequence of chemical exposure. To discern primary influences, our current study examined the in vitro effects of the chemical on macrophage cell lines and murine peritoneal macrophages. GaAs augmented cathepsins L and B proteolytic activities in all three sources of macrophages. Expression of the two mature isoforms of invariant chain and its cleavage fragment was also significantly increased, indicating that the chemical directly affects macrophages. However, GaAs did not alter the overall cell surface expression of major histocompatibility complex class II molecules on macrophages nor influence their ability to stimulate antigen-specific helper T cell hybridomas to respond to intact antigens that require processing. These findings raise the possibility that the chemical's complete in vivo impact may involve cytokines. Further, GaAs in vitro enhanced steady-state cathepsin L protein, and cathepsins L and B mRNA expression in macrophages, indicating that GaAs may alter gene expression, which may contribute to the chemical's adverse biological effects. Copyright 2003 Elsevier Science (USA)

  20. Macrophages, PPARs, and Cancer

    Directory of Open Access Journals (Sweden)

    Jo A. Van Ginderachter

    2008-01-01

    Full Text Available Mononuclear phagocytes often function as control switches of the immune system, securing the balance between pro- and anti-inflammatory reactions. For this purpose and depending on the activating stimuli, these cells can develop into different subsets: proinflammatory classically activated (M1 or anti-inflammatory alternatively activated (M2 macrophages. The expression of the nuclear peroxisome proliferator-activated receptors (PPARs is regulated by M1- or M2-inducing stimuli, and these receptors are generally considered to counteract inflammatory M1 macrophages, while actively promoting M2 activation. This is of importance in a tumor context, where M1 are important initiators of inflammation-driven cancers. As a consequence, PPAR agonists are potentially usefull for inhibiting the early phases of tumorigenesis through their antagonistic effect on M1. In more established tumors, the macrophage phenotype is more diverse, making it more difficult to predict the outcome of PPAR agonism. Overall, in our view current knowledge provides a sound basis for the clinical evaluation of PPAR ligands as chemopreventive agents in chronic inflammation-associated cancer development, while cautioning against the unthoughtful application of these agents as cancer therapeutics.

  1. G Protein-Dependent CCR5 Signaling Is Not Required for Efficient Infection of Primary T Lymphocytes and Macrophages by R5 Human Immunodeficiency Virus Type 1 Isolates

    OpenAIRE

    Amara, Ali; Vidy, Aurore; Boulla, Genevieve; Mollier, Karine; Garcia-Perez, Javier; Alcamí, Jose; Blanpain, Cedric; Parmentier, Marc; Virelizier, Jean-Louis; Charneau, Pierre; Arenzana-Seisdedos, Fernando

    2003-01-01

    The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4+-transformed cells or pharmacological inhibition of Gαi proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. ...

  2. Effects of nanoparticles on murine macrophages

    Science.gov (United States)

    Chevallet, M.; Aude-Garcia, C.; Lelong, C.; Candéias, S.; Luche, S.; Collin-Faure, V.; Triboulet, S.; Diallo, D.; Diemer, H.; van Dorsselaer, A.; Rabilloud, T.

    2011-07-01

    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO2 and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophages.

  3. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  4. Human macrophage hemoglobin-iron metabolism in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of /sup 59/Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of /sup 59/Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in /sup 59/Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models.

  5. Human macrophage hemoglobin-iron metabolism in vitro

    International Nuclear Information System (INIS)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of 59 Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of 59 Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in 59 Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models

  6. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of Echinacea extracts on macrophage antiviral activities.

    Science.gov (United States)

    Senchina, David S; Martin, Aisha E; Buss, Janice E; Kohut, Marian L

    2010-06-01

    Type I interferons are a class of cytokines synthesized by leukocytes such as macrophages that limit viral replication. We hypothesized that one mechanism whereby Echinacea spp. extracts may enhance immunity is through modulating interferon-associated macrophage pathways. We used herpes simplex viral infection in the murine macrophage cell line RAW264.7 and monitored virus-induced cell death, interferon secretion, and two intracellular proteins that indicate activation of interferon pathways. Cells were incubated with control media or extracts from four different species (E. angustifolia, E. purpurea, E. tennesseensis, E. pallida). Cells incubated with extracts prior to infection showed very modest enhancement of viability, and no increase in the secretion of interferons alpha or beta as compared to control cells. Virus-infected macrophages treated with extracts from E. purpurea showed a small (Echinacea spp. extracts are likely not mediated through large inductions of Type I interferon, but may involve iNOS. (c) 2009 John Wiley & Sons, Ltd.

  8. Btk regulates macrophage polarization in response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Joan Ní Gabhann

    Full Text Available Bacterial Lipopolysaccharide (LPS is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\\- mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/- macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/- macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/- macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/- mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

  9. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues

    DEFF Research Database (Denmark)

    Fetsch, Patricia A; Abati, Andrea; Litman, Thomas

    2006-01-01

    was consistently found in alveolar pneumocytes, sebaceous glands, transitional epithelium of bladder, interstitial cells of testes, prostate epithelium, endocervical cells of uterus, squamous epithelium of cervix, small and large intestinal mucosa/epithelial cells, islet and acinar cells of pancreas, zona...... ABCG2 have a significant secretory function. These data suggest a dual function for ABCG2 in some tissues: the excretion of toxins and xenobiotics including anti-cancer agents and a potential, as-yet undefined role in the secretion of endogenous substrates....

  10. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice.

    Science.gov (United States)

    Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan

    2017-10-26

    Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  11. The role of HFE genotype in macrophage phenotype.

    Science.gov (United States)

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  12. Effects of Glycated Whey Protein Concentrate on Pro-inflammatory Cytokine Expression and Phagocytic Activity in RAW264.7 Macrophages.

    Science.gov (United States)

    Chun, Su-Hyun; Lee, Hyun Ah; Lee, Keon Bong; Kim, Sae Hun; Park, Kun-Young; Lee, Kwang-Won

    2016-01-01

    The aim of this study was to determine the stimulatory effects of Maillard reaction, a non-enzymatic browning reaction on the expression of pro-inflammatory cytokines and phagocytic activity induced by whey protein concentrate (WPC). Glycated WPC (G-WPC) was prepared by a reaction between WPC and the lactose it contained. The fluorescence intensity of G-WPC dramatically increased after one day, and high molecular weight complexes formed via the Maillard reaction were also observed in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles. G-WPC demonstrated immunomodulatory effects, including stimulation of increased nitric oxide production and cytokine expressions (i.e., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6), compared to WPC. Furthermore, the phagocytic activity of RAW264.7 cells was significantly increased upon treatment with G-WPC, compared to WPC. Therefore, we suggest that G-WPC can be utilized as an improved dietary source for providing immune modulating activity.

  13. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant.

    Directory of Open Access Journals (Sweden)

    Abebe Genetu Bayih

    2014-12-01

    Full Text Available To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1 is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF DNA adjuvant.A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system.The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To

  14. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show...

  15. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  16. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  17. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

    Science.gov (United States)

    de Bruin, Ruben G; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C; Singh, Anjana; Fagg, W Samuel; van Gils, Janine M; Duijs, Jacques M G J; Katzman, Sol; Kraaijeveld, Adriaan O; Böhringer, Stefan; Leung, Wai Y; Kielbasa, Szymon M; Donahue, John P; van der Zande, Patrick H J; Sijbom, Rick; van Alem, Carla M A; Bot, Ilze; van Kooten, Cees; Jukema, J Wouter; Van Esch, Hilde; Rabelink, Ton J; Kazan, Hilal; Biessen, Erik A L; Ares, Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P

    2016-03-31

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.

  18. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Science.gov (United States)

    de Bruin, Ruben G.; Shiue, Lily; Prins, Jurriën; de Boer, Hetty C.; Singh, Anjana; Fagg, W. Samuel; van Gils, Janine M.; Duijs, Jacques M. G. J.; Katzman, Sol; Kraaijeveld, Adriaan O.; Böhringer, Stefan; Leung, Wai Y.; Kielbasa, Szymon M.; Donahue, John P.; van der Zande, Patrick H.J.; Sijbom, Rick; van Alem, Carla M. A.; Bot, Ilze; van Kooten, Cees; Jukema, J. Wouter; Van Esch, Hilde; Rabelink, Ton J.; Kazan, Hilal; Biessen, Erik A. L.; Ares Jr., Manuel; van Zonneveld, Anton Jan; van der Veer, Eric P.

    2016-01-01

    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function. PMID:27029405

  19. Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: Solution structure of recombinant macrophage colony stimulating factor-beta (rhM-CSFβ)

    Science.gov (United States)

    Yan, Xuguang; Zhang, Heidi; Watson, Jeffrey; Schimerlik, Michael I.; Deinzer, Max L.

    2002-01-01

    Studies with the homodimeric recombinant human macrophage colony-stimulating factor beta (rhM-CSFβ), show for the first time that a large number (9) of disulfide linkages can be reduced after amide hydrogen/deuterium (H/D) exchange, and the protein digested and analyzed successfully for the isotopic composition by electrospray mass spectrometry. Analysis of amide H/D after exchange-in shows that in solution the conserved four-helix bundle of (rhM-CSFβ) has fast and moderately fast exchangeable sections of amide hydrogens in the αA helix, and mostly slow exchanging sections of amide hydrogens in the αB, αC, and αD helices. Most of the amide hydrogens in the loop between the β1 and β4 sheets exhibited fast or moderately fast exchange, whereas in the amino acid 63–67 loop, located at the interface of the two subunits, the exchange was slow. Solvent accessibility as measured by H/D exchange showed a better correlation with the average depth of amide residues calculated from reported X-ray crystallographic data for rhM-CSFα than with the average B-factor. The rates of H/D exchange in rhM-CSFβ appear to correlate well with the exposed surface calculated for each amino acid residue in the crystal structure except for the αD helix. Fast hydrogen isotope exchange throughout the segment amino acids 150–221 present in rhM-CSFβ, but not rhM-CSFα, provides evidence that the carboxy-terminal region is unstructured. It is, therefore, proposed that the anomalous behavior of the αD helix is due to interaction of the carboxy-terminal tail with this helical segment. PMID:12192067

  20. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  1. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  2. Biology of Bony Fish Macrophages

    Directory of Open Access Journals (Sweden)

    Jordan W. Hodgkinson

    2015-11-01

    Full Text Available Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type, and resolution and repair functions (anti-inflammatory/regulatory, M2-type. The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  3. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  4. Epigenetic regulation of macrophage function

    NARCIS (Netherlands)

    Hoeksema, M.A.

    2016-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability.

  5. Roles of alternatively activated M2 macrophages in allergic contact dermatitis

    Directory of Open Access Journals (Sweden)

    Kotaro Suzuki

    2017-07-01

    Full Text Available Alternatively activated macrophages (M2 macrophages play key roles in the suppression of Th1 cell responses and the orchestration of tissue repair. However, recent studies have shown that M2 macrophages have potentials to produce high levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α, suggesting that M2 macrophages may exacerbate inflammation in some settings. In this regard, we have recently shown that large numbers of M2 macrophages accumulate in the sites of hapten-induced contact hypersensitivity (CHS, an animal model of allergic contact dermatitis, and that M2 macrophages exacerbate hapten-induced CHS by producing matrix metalloproteinase 12 (MMP12. We have also shown that suppressor of cytokine signaling-3 (SOCS3, a member of SOCS family proteins that are cytokine-inducible negative regulators of the JAK/STAT signaling pathways, is highly and preferentially expressed in M2 macrophages in hapten-induced CHS and that SOCS3 expressed in M2 macrophages is involved in the attenuation of CHS by suppressing MMP12 production. These findings underscore the importance of M2 macrophage-derived MMP12 in the development of CHS, and suggest that inhibition of M2 macrophages or MMP12 could be a potential therapeutic strategy for the treatment of allergic contact dermatitis.

  6. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    International Nuclear Information System (INIS)

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of 3 H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness

  7. Suppression of breast cancer proliferation and induction of apoptosis via AKT and ERK1/2 signal transduction pathways by synthetic polypeptide derived from viral macrophage inflammatory protein II.

    Science.gov (United States)

    Yang, Qingling; Chen, Changjie; Yang, Zhifeng; Gao, Yangjun; Tang, Jie

    2011-08-01

    SDF-1α, a ligand for the chemokine receptor CXCR4, is well known for mediating the migration of breast cancer cells. In a previous study we demonstrated that a synthetic 21-mer peptide antagonist of CXCR4 (NT21MP) derived from the viral macrophage inflammatory protein II could antagonize tumor growth in vivo by inhibiting cellular proliferation and inducing apoptosis in breast cancer cells. However, the role of SDF-1α in the signaling pathways underlying the proliferation of human breast cancer cells and associated signaling pathways and inhibiting signal pathways of NT21MP remained unclear. The present study investigated the mechanism of NT21MP on anti-tumor in breast cancer in vitro. The effect of NT21MP on the viability of cells was determined by the MTT assay. Annexin V-FITC and PI staining was performed to detect early stage apoptosis in SKBR3 cells treated with SDF-1α and AMD3100 or NT21MP. Western blotting techniques were used to assay the composition of phosphoproteomics and total proteins present in the SKBR3 breast cancer cells. RT-PCR and Western blotting technique were used to detect the effect of NT21MP and AMD3100 on Bcl-2 and Bax expression. The results indicated that SDF-1α prevented apoptosis and promoted the proliferation of SKBR3 human breast cancer cells. As compared with untreated SKBR3 cells, Treatment with SDF-1α significantly increased cell viability, and NT21MP abolished the protective effects of SDF-1α dose-dependently (PSKBR3 cells with NT21MP significantly attenuated the antiapoptotic effects of SDF-1α as compared with SKBR3 cells without NT21MP pretreatment. The proliferative and anti-apoptotic effects of SDF-1α in SKBR3 cells were associated with an increase in AKT and ERK1/2 phosphorylation as well as a decrease in Bax expression and an increase in Bcl-2 expression. These changes in intracellular processes were blocked by NT21MP in a dose-dependent manner(PSKBR3 cells by reducing the levels of phosphorylated AKT and ERK1/2, as

  8. Imaging micro-glial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by Positron Emission Tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Theze, Benoit; Dubois, Albertine; Tavitian, Bertrand; Boisgard, Raphael; Maroy, Renaud; Brulon, Vincent; Fontyn, Yoann; Dolle, Frederic

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Activated micro-glia/macrophages play a key role in the immuno-pathogenesis of MS and its corresponding animal models, experimental autoimmune encephalomyelitis (EAE). Micro-glia activation begins at early stages of the disease and is associated with elevated expression of the 18 kDa mitochondrial translocator protein (TSPO). Thus, positron emission tomography (PET) imaging of micro-glial activation using TSPO-specific radioligands could be valuable for monitoring disease-associated neuro-inflammatory processes. EAE was induced in rats using a fragment of myelin basic protein, yielding acute clinical disease that reflects extensive spinal cord inflammation. Enhanced TSPO expression in spinal cords of EAE rats versus those of controls was confirmed by Western blot and immunohistochemistry. Biodistribution studies in control and EAE rats were performed using the TSPO radioligand [ 18 F]DPA-714 [N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5- a]pyrimidin-3-yl)acetamide]. At 1 h after injection, almost fivefold higher levels of [ 18 F]DPA-714 were measured in spinal cords of EAE rats versus controls. The specific binding of [ 18 F]DPA-714 to TSPO in spinal cords was confirmed in competition studies, using unlabeled (R,S)-PK11195 [(R,S)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl) - isoquinoline-3-carboxamide)] or DPA-714 in excess. MicroPET studies affirm that this differential radioactivity uptake in spinal cords of EAE versus control rats could be detected and quantified. Using [ 18 F]DPA-714, neuro-inflammation in spinal cords of EAE-induced rats could be visualized by PET, offering a sensitive technique for monitoring neuro-inflammatory lesions in the CNS and particularly in the spinal cord. In addition to current MRI protocols, this approach could provide molecular images of neuro-inflammation for detection, monitoring, and research in MS. (authors)

  9. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  10. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk.

    Science.gov (United States)

    Feng, Mingye; Chen, James Y; Weissman-Tsukamoto, Rachel; Volkmer, Jens-Peter; Ho, Po Yi; McKenna, Kelly M; Cheshier, Samuel; Zhang, Michael; Guo, Nan; Gip, Phung; Mitra, Siddhartha S; Weissman, Irving L

    2015-02-17

    Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein α to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. Here we demonstrate that the activation of Toll-like receptor (TLR) signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance PrCR. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be an eat-me signal on cancer cells, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.

  11. Temporal phenotypic features distinguish polarized macrophages in vitro.

    Science.gov (United States)

    Melton, David W; McManus, Linda M; Gelfond, Jonathan A L; Shireman, Paula K

    2015-05-01

    Macrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established. We measured phenotypic markers and cytokines in cellular and CM of murine bone marrow-derived macrophages at multiple time points following stimulation with IFN-γ + LPS (M1), IL-4 (M2a) or IL-10 (M2c). Cytokines/proteins in M1-polarized macrophages exhibited two distinct temporal patterns; an early (0.5-3 h), transient increase in cellular cytokines (GM-CSF, KC-GRO, MIP-2, IP-10 and MIP-1β) and a delayed (3-6 h) response that was more sustained [IL-3, regulated on activation normal T cell expressed and secreted (RANTES), and tissue inhibitor of metalloproteinases 1 (TIMP-1)]. M2a-related cytokine/cell markers (IGF-1, Fizz1 and Ym1) were progressively (3-24 h) increased post-stimulation. In addition, novel patterns were observed. First, and unexpectedly, cellular pro-inflammatory chemokines, MCP-1 and MCP-3 but not MCP-5, were comparably increased in M1 and M2a macrophages. Second, Vegfr1 mRNA was decreased in M1 and increased in M2a macrophages. Finally, VEGF-A was increased in the CM of M1 cultures and strikingly reduced in M2a coinciding with increased Vegfr1 expression, suggesting decreased VEGF-A in M2a CM was secondary to increased soluble VEGFR1. In conclusion, macrophage cytokine production and marker expression were temporally regulated and relative levels compared across polarizing conditions were highly dependent upon the timing and location (cellular versus CM) of the sample collection. For most cytokines, cellular production preceded increases in the CM suggesting that cellular regulatory pathways should be studied within 6 h of stimulation. The divergent polarization-dependent expression

  12. Metabolic reprogramming in macrophage polarization

    Directory of Open Access Journals (Sweden)

    Silvia eGalván-Peña

    2014-09-01

    Full Text Available Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand, are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase CARKL is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect.

  13. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells. © 2017 American Heart Association, Inc.

  14. Macrophage heterogeneity in lymphoid tissues.

    Science.gov (United States)

    den Haan, Joke M M; Martinez-Pomares, Luisa

    2013-09-01

    Macrophages in lymphoid organs exhibit a wide variety of phenotypes and functions. These cells excel in the removal of apoptotic cells that arise during the generation of immune cells and are thereby essential for the prevention of auto-immune responses. In addition to this macrophages in the secondary lymphoid organs form an important barrier for spreading of infections by phagocytosis of pathogens and the activation of both innate and adaptive immune responses. Thus, the remarkable ability of macrophages to phagocytose and handle a wide range of self and non-self material and to produce immunomediators is effectively exploited within lymphoid organs to regulate immune activation.

  15. Regulation and control of nitric oxide (NO) in macrophages

    DEFF Research Database (Denmark)

    Kovacevic, Zaklina; Sahni, Sumit; Lok, K.H.

    2017-01-01

    We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores and transp...

  16. CECR1-mediated cross talk between macrophages and vascular mural cells promotes neovascularization in malignant glioma

    NARCIS (Netherlands)

    C. Zhu (Changbin); I. Chrifi (Ihsan); D.A.M. Mustafa (Dana); M.M. van der Weiden (Marcel); P.J. Leenen (Pieter); D.J.G.M. Duncker (Dirk); J.M. Kros (Johan); C. Cheng (Caroline)

    2017-01-01

    textabstractGlioblastomas (glioblastoma multiforme, GBM) are most malignant brain tumors characterized by profound vascularization. The activation of macrophages strongly contributes to tumor angiogenesis during GBM development. Previously, we showed that extracellular adenosine deaminase protein

  17. The macrophage switch in obesity development

    Directory of Open Access Journals (Sweden)

    Angela eCastoldi

    2016-01-01

    Full Text Available Immune cell infiltration in (white adipose tissue during obesity is associated with the development of insulin resistance. In adipose tissue, the main population of leukocytes are macrophages. Macrophages can be classified into two major populations: M1, classically activated macrophages, and M2, alternatively activated macrophages, although recent studies have identified a broad range of macrophage subsets. During obesity, adipose tissue M1 macrophage numbers increase and correlate with adipose tissue inflammation and insulin resistance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. By contrast, in lean humans and mice, the number of M2 macrophages predominates. M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism to maintain adipose tissue homeostasis. Here we review the immunologic and metabolic functions of adipose tissue macrophages and their different facets in obesity and the metabolic syndrome.

  18. Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-a Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes

    NARCIS (Netherlands)

    Lupinacci, E.; Meijerink, J.; Vincken, J.P.; Gabriele, B.; Gruppen, H.; Witkamp, R.F.

    2009-01-01

    Activated macrophages in adipose tissue play a major role in the chronic inflammatory process that has been linked to the complications of overweight and obesity. The hop plant (Humulus lupulus L.) has been described to possess both anti-inflammatory and antidiabetic effects. In the present study,

  19. Proteomic Investigation of the Time Course Responses of RAW 264.7 Macrophages to Infection with Salmonella enterica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Chowdhury, Saiful M.; Smallwood, Heather S.; Yoon, Hyunjin; Mottaz-Brewer, Heather M.; Norbeck, Angela D.; McDermott, Jason E.; Clauss, Therese RW; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-08-01

    Macrophages plan important roles in controlling Salmonella-mediated systemic infection. To investigate the responses of macrophages to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serovar Typhimurium (STM) and then performed a comparative liquid chromatography-tandem mass spectrometry [LC-MS(/MS)]-based proteomics analysis of the infected macrophages. A total of 1006 macrophage and 115 STM proteins were indentified from this study. Most of STM proteins were found at late stage of the time course of infection, consistent with the fact that STM proliferates inside RAW 264.7 macrophages. Majority of the identified macrophage proteins were house keeping-related, including cytoplasmic superoxide dismutase 1 (SOD1), whose peptide abundances were relatively constant during the time course of infection. Compared to those in no infection control, the peptide abundances of 244 macrophage proteins (or 24% of total indentified macrophage proteins) changed considerably after STM infection. The functions of these STM infection-affected macrophage proteins were diverse and ranged from production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase or iNOS) or production of prostaglandin H2 (i.e., prostaglandin-endoperoxide synthase 2, also know as cyclooxygenase-2 or COX-2) to regulation of intracellular traffic (e.g., sorting nexin or SNX 5, 6 and 9), demonstrating a global impact of STM infection on macrophage proteome. Western-blot analysis not only confirmed the LC-MS(/MS) results of SOD1, COX-2 and iNOS, but also revealed that the protein abundances of mitochondrial SOD2 increased after STM infection, indicating an infection-induced oxidative stress in mitochondria.

  20. Progress on macrophage's proinflammatory products as markers of acute endometriosis

    Directory of Open Access Journals (Sweden)

    Alicja Ziętek

    2015-08-01

    Full Text Available To provide the review of the macrophage activity products as pathophysiological markers of endometriosis by literature survey (PubMed, Cochrane. Immunoreactive cells and several of their synthesis products concentrations are elevated in the serum and peritoneal fluid in patients with endometriosis. The enhanced reactive proteins contributed to local inflammation and aggregation of endometriotic lesions. Immune response and immune surveillance of tissue play an important role in pathogenesis of endometriosis. Activated macrophages in peritoneal environment secrete immunoreactive cytokines which are responsible for inflammatory cascade of reactions. The immunoreactive cytokines should be a target not only as a disease marker but also as a part of therapeutic protocol.

  1. Buprenorphine differentially affects M1- and M2-polarized macrophages from human umbilical cord blood.

    Science.gov (United States)

    Sun, Juan; Guo, Wei; Du, Xingguang

    2017-06-01

    As a partial μ-opioid receptor agonist with long half-life time, buprenorphine has been widely used to relieve chronic cancer and nonmalignant pain. The maintenance of chronic pain involves inflammation; however whether buprenorphine has anti-inflammation property remains unclear. Macrophages, the immune cells that initiate and maintain inflammation, were isolated from human umbilical cord blood, and were polarized into M1 or M2 macrophages with IFN-γ in the presence of lipopolysaccharide (LPS) or IL-4, respectively. Quantitative PCR, ELISA, Western blotting analysis, and chromatin immunoprecipitation assays were employed to characterize M1 and M2 macrophages. 1) Buprenorphine did not change not only the apoptosis, survival, and morphology of resting macrophages, but also the antigen-presenting function of macrophages. 2) Buprenorphine inhibited the levels of mRNA and protein of several cytokines in M1 macrophages, and enhanced the expression of Ym1 and Fizz1 in M2 macrophages. 3) Buprenorphine did not affect the modulation of NF-κB and MAPK cascades by LPS in M1 macrophages. 4) Buprenorphine inhibited the expression of IRF5 and reduced binding of DNA to IRF5. Buprenorphine may downregulate IRF5 pathway and limit M1 macrophage phenotype. These effects may contribute to its therapeutic benefit for chronic neuropathic pain.

  2. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Science.gov (United States)

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  3. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    Science.gov (United States)

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  4. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  5. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages.

    Science.gov (United States)

    McKenzie, C G J; Koser, U; Lewis, L E; Bain, J M; Mora-Montes, H M; Barker, R N; Gow, N A R; Erwig, L P

    2010-04-01

    The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to escape destruction by the host immune system. Using mutant strains that are defective in cell surface glycosylation, cell wall protein synthesis, and yeast-hypha morphogenesis, we have investigated three important aspects of C. albicans innate immune interactions: phagocytosis by primary macrophages and macrophage cell lines, hyphal formation within macrophage phagosomes, and the ability to escape from and kill macrophages. We show that cell wall glycosylation is critically important for the recognition and ingestion of C. albicans by macrophages. Phagocytosis was significantly reduced for mutants deficient in phosphomannan biosynthesis (mmn4Delta, pmr1Delta, and mnt3 mnt5Delta), whereas O- and N-linked mannan defects (mnt1Delta mnt2Delta and mns1Delta) were associated with increased ingestion, compared to the parent wild-type strains and genetically complemented controls. In contrast, macrophage uptake of mutants deficient in cell wall proteins such as adhesins (ece1Delta, hwp1Delta, and als3Delta) and yeast-locked mutants (clb2Delta, hgc1Delta, cph1Delta, efg1Delta, and efg1Delta cph1Delta), was similar to that observed for wild-type C. albicans. Killing of macrophages was abrogated in hypha-deficient strains, significantly reduced in all glycosylation mutants, and comparable to wild type in cell wall protein mutants. The diminished ability of glycosylation mutants to kill macrophages was not a consequence of impaired hyphal formation within macrophage phagosomes. Therefore, cell wall composition and the ability to undergo yeast-hypha morphogenesis are critical determinants of the macrophage's ability to ingest and process C. albicans.

  6. Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.A. (Univ. of Southern California, Los Angeles); Werb, Z.

    1980-12-01

    Thioglycollate-elicited mouse peritoneal macrophages were cultured in contact with the mixture of extracellular matrix proteins produced by rat smooth muscle cells in culture. Both live macrophages and their conditioned media hydrolyzed glycoproteins, elastin, and collagen. Live macrophages also degraded extracellular connective tissue proteins secreted by endothelial cells and fibroblasts. The glycoproteins in the matrix markedly inhibited the rate of digestion of the other macromolecules, particularly elastin. When plasminogen was added to the matrix, activation of plasminogen to plasmin resulted in the hydrolysis of the glycoprotein components, which then allowed the macrophage elastase easier access to its substrate, elastin. Thus, although plasmin has no direct elastinolytic activity, its presence accelerated the rate of hydrolysis of elastin and therefore the rate of matrix degradation. These findings may be important in an understanding of disease states, such as emphysema and atherosclerosis, that are characterized by the destruction of connective tissue.

  7. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  8. Distinct Hepatic Macrophage Populations in Lean and Obese Mice.

    Science.gov (United States)

    Mayoral Monibas, Rafael; Johnson, Andrew M F; Osborn, Olivia; Traves, Paqui G; Mahata, Sushil K

    2016-01-01

    Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.

  9. Distinct macrophage populations in lean and obese mice

    Directory of Open Access Journals (Sweden)

    Rafael Mayoral Monibas

    2016-12-01

    Full Text Available Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, nonalcoholic fatty liver disease (NAFLD and type 2 diabetes (T2D. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited play a significant role in hepatic inflammation and insulin resistance (IR. Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation and IR. Kupffer cells (KCs, liver resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules and help to maintain the liver in a tolerogenic immune environment. During high fat diet (HFD feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs in the liver and activation of KCs to a more inflammatory or M1 state. In this review we will focus on the role of liver macrophages (KCs and RHMs during obesity.

  10. Cytotoxicity of Polyaniline Nanomaterial on Rat Celiac Macrophages In Vitro

    Science.gov (United States)

    Li, Xiao-Jun; Zhang, Wei Kevin; Tang, He-Bin

    2014-01-01

    Polyaniline nanomaterial (nPANI) is getting popular in many industrial fields due to its conductivity and stability. The fate and effect of nPANI in the environment is of paramount importance towards its technological applications. In this work, the cytotoxicity of nPANI, which was prepared by rapid surface polymerization, was studied on rat celiac macrophages. Cell viability of macrophages treated with various concentrations of nPANI and different periods ranging from 24 to 72 hours was tested by a MTT assay. Damages of nPANI to structures of macrophages were evaluated according to the exposure level of cellular reactive oxygen species (ROS) and change of mitochondrial membrane potential (MMP). We observed no significant effects of nPANI on the survival, ROS level and MMP loss of macrophages at concentrations up to 1 µg/ml. However, higher dose of nPANI (10 µg/ml or above) induced cell death, changes of ROS level and MMP. In addition, an increase in the expression level of caspase-3 protein and its activated form was detected in a Western blot assay under the high dose exposure of nPANI. All together, our experimental results suggest that the hazardous potential of nPANI on macrophages is time- and dose-dependent and high dose of nPANI can induce cell apoptosis through caspase-3 mediated pathway. PMID:25250578

  11. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  12. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  13. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing.

    Science.gov (United States)

    Lurier, Emily B; Dalton, Donald; Dampier, Will; Raman, Pichai; Nassiri, Sina; Ferraro, Nicole M; Rajagopalan, Ramakrishan; Sarmady, Mahdi; Spiller, Kara L

    2017-07-01

    Alternatively activated "M2" macrophages are believed to function during late stages of wound healing, behaving in an anti-inflammatory manner to mediate the resolution of the pro-inflammatory response caused by "M1" macrophages. However, the differences between two main subtypes of M2 macrophages, namely interleukin-4 (IL-4)-stimulated "M2a" macrophages and IL-10-stimulated "M2c" macrophages, are not well understood. M2a macrophages are characterized by their ability to inhibit inflammation and contribute to the stabilization of angiogenesis. However, the role and temporal profile of M2c macrophages in wound healing are not known. Therefore, we performed next generation sequencing (RNA-seq) to identify biological functions and gene expression signatures of macrophages polarized in vitro with IL-10 to the M2c phenotype in comparison to M1 and M2a macrophages and an unactivated control (M0). We then explored the expression of these gene signatures in a publicly available data set of human wound healing. RNA-seq analysis showed that hundreds of genes were upregulated in M2c macrophages compared to the M0 control, with thousands of alternative splicing events. Following validation by Nanostring, 39 genes were found to be upregulated by M2c macrophages compared to the M0 control, and 17 genes were significantly upregulated relative to the M0, M1, and M2a phenotypes (using an adjusted p-value cutoff of 0.05 and fold change cutoff of 1.5). Many of the identified M2c-specific genes are associated with angiogenesis, matrix remodeling, and phagocytosis, including CD163, MMP8, TIMP1, VCAN, SERPINA1, MARCO, PLOD2, PCOCLE2 and F5. Analysis of the macrophage-conditioned media for secretion of matrix-remodeling proteins showed that M2c macrophages secreted higher levels of MMP7, MMP8, and TIMP1 compared to the other phenotypes. Interestingly, temporal gene expression analysis of a publicly available microarray data set of human wound healing showed that M2c-related genes were

  14. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report.

    Science.gov (United States)

    Zhang, Hanrui; Shi, Jianting; Hachet, Melanie A; Xue, Chenyi; Bauer, Robert C; Jiang, Hongfeng; Li, Wenjun; Tohyama, Junichiro; Millar, John; Billheimer, Jeffrey; Phillips, Michael C; Razani, Babak; Rader, Daniel J; Reilly, Muredach P

    2017-11-01

    To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA ( LIPA -/- ) had barely detectable LAL enzymatic activity. Control and LIPA -/- IPSDM were loaded with [ 3 H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [ 3 H]-cholesterol to apolipoprotein A-I was abolished in LIPA -/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [ 3 H]-cholesterol-labeled AcLDL, [ 3 H]-cholesterol efflux was, however, not different between control and LIPA -/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA -/- IPSDM. In nonlipid loaded state, LIPA -/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA -/- IPSDM. LIPA -/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B , IL6 , and CCL5. CONCLUSIONS: LIPA -/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human

  15. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...... RAW 264.7 macrophages to C. albicans for 3h and used SILAC to quantify macrophage proteins and phosphoproteins by mass spectrometry to study the effects of infection. We identified 53 macrophage up-regulated proteins and 15 less abundant in the presence of C. albicans out of a total of 2071 identified...... of apoptotic markers revealed that anti-apoptotic signals prevailed during the interaction of the yeast. Our proteomics study suggests that besides inflammation, apoptosis is a central pathway in the immune defense against C. albicans infection....

  16. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    Science.gov (United States)

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  17. Macrophage Heterogeneity in Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Carian E. Boorsma

    2013-01-01

    Full Text Available Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD, and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis, and how they are thought to contribute to the etiology and resolution of these diseases.

  18. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Macrophages play a dual role during pulmonary tuberculosis in mice

    NARCIS (Netherlands)

    Leemans, Jaklien C.; Thepen, Theo; Weijer, Sebastiaan; Florquin, Sandrine; van Rooijen, Nico; van de Winkel, Jan G.; van der Poll, Tom

    2005-01-01

    Pulmonary macrophages provide the preferred hiding and replication site of Mycobacterium tuberculosis but display antimicrobial functions. This raises questions regarding the role of macrophages during tuberculosis. We depleted lungs of activated macrophages (activated macrophage(-) mice) and

  20. M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes

    Directory of Open Access Journals (Sweden)

    Isa Suleiman A

    2011-12-01

    Full Text Available Abstract Background In obesity, phenotypic switches occur in macrophage populations such that the predominantly M2-polarised anti-inflammatory state seen in lean individuals changes to a predominantly M1-polarised pro-inflammatory state in those who are obese. However, the mechanisms by which these phenotypic shifts occur have not yet been fully elucidated. Results The effects of oxLDL (1-40 μg/ml; 24 h on several parameters relevant to the Unfolded Protein Response (UPR-mediated lipotoxic effects of oxLDL (disruption of ER Ca2+ handling; activation of the UPR transcription factor XBP-1; upregulation of the UPR target genes BiP and CHOP; apoptosis; cell viability were investigated in human primary monocyte-derived macrophages, and also in monocyte-macrophages derived from the THP-1 monocytic cell line. A consistent pattern was observed: M2-polarised macrophages were more sensitive to the lipotoxic effects of oxLDL than either non-polarised macrophages or non-differentiated monocytic cells. Specifically, M2-polarised macrophages were the only cell type to undergo significantly increased apoptosis (Primary cells: 1.23 ± 0.01 basal; THP-1-derived: 1.97 ± 0.12 basal; P P Conclusions We propose that the enhanced susceptibility of M2-polarised macrophages to lipotoxicity seen in the present in vitro study could, over time, contribute to the phenotypic shift seen in obese individuals in vivo. This is because a higher degree of oxLDL-induced lipotoxic cell death within M2 macrophages could contribute to a decrease in numbers of M2 cells, and thus a relative increase in proportion of non-M2 cells, within macrophage populations. Given the pro-inflammatory characteristics of a predominantly M1-polarised state, the data presented here may constitute a useful contribution to our understanding of the origin of the pro-inflammatory nature of obesity, and of the pathogenesis of obesity-associated inflammatory disorders such as Type 2 Diabetes and

  1. Cysteamine-mediated clearance of antibiotic-resistant pathogens in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Chandra L Shrestha

    Full Text Available Members of the Burkholderia cepacia complex are virulent, multi-drug resistant pathogens that survive and replicate intracellularly in patients with cystic fibrosis (CF. We have discovered that B. cenocepacia cannot be cleared from CF macrophages due to defective autophagy, causing continued systemic inflammation and infection. Defective autophagy in CF is mediated through constitutive reactive oxygen species (ROS activation of transglutaminase-2 (TG2, which causes the sequestration (accumulation of essential autophagy initiating proteins. Cysteamine is a TG2 inhibitor and proteostasis regulator with the potential to restore autophagy. Therefore, we sought to examine the impact of cysteamine on CF macrophage autophagy and bacterial killing. Human peripheral blood monocyte-derived macrophages (MDMs and alveolar macrophages were isolated from CF and non-CF donors. Macrophages were infected with clinical isolates of relevant CF pathogens. Cysteamine caused direct bacterial growth killing of live B. cenocepacia, B. multivorans, P. aeruginosa and MRSA in the absence of cells. Additionally, B. cenocepacia, B. multivorans, and P. aeruginosa invasion were significantly decreased in CF MDMs treated with cysteamine. Finally, cysteamine decreased TG2, p62, and beclin-1 accumulation in CF, leading to increased Burkholderia uptake into autophagosomes, increased macrophage CFTR expression, and decreased ROS and IL-1β production. Cysteamine has direct anti-bacterial growth killing and improves human CF macrophage autophagy resulting in increased macrophage-mediated bacterial clearance, decreased inflammation, and reduced constitutive ROS production. Thus, cysteamine may be an effective adjunct to antibiotic regimens in CF.

  2. Investigating the role of macrophages in tumor formation using a MaFIA mouse model.

    Science.gov (United States)

    Clifford, A B; Elnaggar, A M; Robison, R A; O'Neill, K

    2013-08-01

    Tumor-associated macrophages (TAMs) interact with tumors in their development, growth and metastatic activities. Using a transgenic mouse model that allows for the selective depletion of macrophages we were able to access the macrophage's potential to facilitate metastasis. In the MaFIA (Macrophage Fas-Induced Apoptosis) mouse, transgene-expressing cells of the myeloid lineage undergo death by apoptosis in the presence of the drug AP20187. Enhanced green fluorescent protein (EGFP) was fused to the suicide gene to allow identification of transgene-expressing cells. Tumor induction was accomplished by subdermal and intravenous injections of B16-F10 melanoma cells. Metastasis in mice with depleted macrophages was compared to metastasis in normal control mice. The lungs and kidneys were examined for metastatic cells. The macrophage-depleted groups showed significantly less metastasis (P>0.001) compared to the control groups. We theorize that macrophages may aid the metastatic process by fusing with melanoma cells. Using appropriate cell markers and fluorescence-activated cell sorting, we were able to detect a small population of double-positive cells. We confirmed cell fusion by microscopic analysis, visualizing the cell's morphology by both immunohistochemistry and immunofluorescence. The presence of double-positive cells suggests macrophage/cancer cell fusion could be a possible mechanism for metastasis.

  3. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    Science.gov (United States)

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2015-01-01

    Full Text Available Cardiovascular disease (CVD is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD.

  5. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  6. Microbial stasis of Leishmania enriettii in activated guinea pig macrophages

    International Nuclear Information System (INIS)

    Groocock, C.M.; Soulsby, E.J.L.

    1980-01-01

    Peritoneal exudate cells (PEC) from Leishmania-sensitized guinea pigs were cultured in vitro in the presence (activated) or absence (non-activated) of leishmanial antigen for 24 or 48 hours. These were then labelled with 51 Cr and challenged with 125 I-labelled promastigotes. The changing relationship between the macrophage and the parasite was monitored by observing changes in the ratio of the cell-associated isotopes. Highly significant differences in the ratio change developed during culture. These differences were a result of the activated cultures showing a higher release of 51 Cr and a lower release of 125 I when compared with the non-activated cells, at 12 hours the percentage release of 125 I from the parasite within the activated macrophage was fourfold less than that released by parasites within non-activated cells (9.2% versus 38.3%) and tenfold less than that released from glutaraldehyde-killed organisms phagocytosed by activated macrophages (91.6%). These studies indicate that stasis rather than killing of leishmaniae occurs in the activated macrophage in vitro. Parallel experiments evaluated by the visual counting of leishmaniae within the macrophages support these data. PEC from tuberculin-sensitized guinea pigs activated in vitro by purified protein derivative showed little or no activity against leishmaniae, indicating a specific requirement for this microbial stasis by activated macrophages. As a corollary of this, peritoneal exudate lymphocytes separated from the same preparations of PEC were shown to be specifically reactive to leishmanial antigen by transformation and incorporation of 3 H-thymidine. (author)

  7. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  8. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  9. Heterogeneity of macrophage activation in fish

    NARCIS (Netherlands)

    Forlenza, M.; Fink, I.R.; Raes, G.; Wiegertjes, G.F.

    2011-01-01

    In this review, we focus on four different activation states of fish macrophages. In vitro, stimulation with microbial ligands induces the development of innate activated macrophages whereas classically activated macrophages can be induced by stimulation with LPS in combination with (recombinant)

  10. miR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα

    Directory of Open Access Journals (Sweden)

    Jia Bi

    2016-01-01

    Full Text Available Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages; alternatively activated macrophages (M2 macrophages. However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2 macrophages than in M1 macrophages. miR-181a expression was decreased when M2 phenotype converted to M1, whereas it increased when M1 phenotype converted to M2. Overexpression of miR-181a in M1 macrophages diminished M1 phenotype expression while promoting polarization to the M2 phenotype. In contrast, knockdown of miR-181a in M2 macrophages promoted M1 polarization and diminished M2 phenotype expression. Mechanistically, Bioinformatic analysis revealed that Kruppel-like factor 6 (KLF6 and CCAAT/enhancer binding protein-α (C/EBPα is a potential target of miR-181a and luciferase assay confirmed that KLF6 and C/EBPα translation is suppressed by miR-181a through interaction with the 3′UTR of KLF6 and C/EBPα mRNA. Further analysis showed that induction of miR-181a suppressed KLF6 and C/EBPα protein expression. Importantly, miR-181a also diminishes M2 macrophages-mediated migration and invasion capacity of tumor cells. Collectively, our results suggest that miR-181a plays a significant role in regulating macrophage polarization through directly target KLF6 and C/EBPα.

  11. Alterations of zinc homeostasis in response to Cryptococcus neoformans in a murine macrophage cell line.

    Science.gov (United States)

    Dos Santos, Francine Melise; Piffer, Alícia Corbellini; Schneider, Rafael de Oliveira; Ribeiro, Nicole Sartori; Garcia, Ane Wichine Acosta; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley Christian

    2017-05-01

    To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes - metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families - was analyzed by quantitative PCR. Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.

  12. Inflammatory Stimuli Reprogram Macrophage Phagocytosis to Macropinocytosis for the Rapid Elimination of Pathogens

    Science.gov (United States)

    BoseDasgupta, Somdeb; Pieters, Jean

    2014-01-01

    Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation. PMID:24497827

  13. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens.

    Directory of Open Access Journals (Sweden)

    Somdeb Bosedasgupta

    2014-01-01

    Full Text Available Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation.

  14. Characterization of macrophage adhesion molecule

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Savage, B.

    1988-01-01

    Macrophage adhesion molecule (MAM), an abundant surface molecule which functions in the adhesion and spreading of guinea pig macrophages on surfaces, is characterized as a heterodimer of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-α) and the glycopeptide gp93 (MAM-β). The density of MAM molecules is estimated at 630,000 per macrophage on the basis of quantitative binding of 125 I-labeled monoclonal antibody. The glycopeptide subunits display microheterogeneity on isoelectrofocusing; the pI is 5.8-6.3 for gp160 (MAM-α) and 6.4-7.0 for gp93 (MAM-β). A neutrophil gp160, gp93 molecule was shown to be indistinguishable from macrophage MAM on the basis of electrophoresis, isoelectrofocusing, and reactivity with 10 monoclonal antibodies. A related heterodimer of gp93 associated with a larger, antigenically different glycopeptide (gp180, gp93)was identified on circulating lymphocytes. Cumulative properties indicate that MAM is the guinea pig analog of human Mo1 and mouse Mac-1

  15. HIV-1 and the macrophage

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  16. Sestrin2 Suppresses Classically Activated Macrophages-Mediated Inflammatory Response in Myocardial Infarction through Inhibition of mTORC1 Signaling

    Directory of Open Access Journals (Sweden)

    Keping Yang

    2017-06-01

    Full Text Available Myocardial infarction (MI triggers an intense inflammatory response that is essential for dead tissue clearance but also detrimental to cardiac repair. Macrophages are active and critical players in the inflammatory response after MI. Understanding the molecular mechanisms by which macrophage-mediated inflammatory response is regulated is important for designing new therapeutic interventions for MI. In the current study, we examined the role of Sestrin2, which is a stress-inducible protein that regulate metabolic homeostasis, in the regulation of inflammatory response of cardiac macrophages after MI. We found that cardiac macrophages upregulated Sestrin2 expression in a mouse MI model. Using a lentiviral transduction system to overexpress Sestrin2 in polarized M1 and M2 macrophages, we revealed that Sestrin2 predominantly functioned on M1 rather than M2 macrophages. Sestrin2 overexpression suppressed inflammatory response of M1 macrophages both in vitro and in vivo. Furthermore, in the mouse MI model with selective depletion of endogenous macrophages and adoptive transfer of exogenous Sestrin2-overexpressing macrophages, the anti-inflammatory and repair-promoting effect of Sestrin2-overexpressing macrophages was demonstrated. Furthermore, Sestrin2 significantly inhibited mTORC1 signaling in M1 macrophages. Taken together, our study indicates the importance of Sestrin2 for suppression of M1 macrophage-mediated cardiac inflammation after MI.

  17. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show...... findings are consistent with an important role for siderocalin in protection against M.tb infection and suggest that exogenously administered siderocalin may have therapeutic applications in tuberculosis....

  18. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers.

    Science.gov (United States)

    Klopfleisch, R

    2016-10-01

    The foreign body reaction (FBR) is a response of the host tissue against more or less degradation-resistant foreign macromolecular material. The reaction is divided into five different phases which involve most aspects of the innate and the adaptive immune system: protein adsorption, acute and chronic inflammation, foreign body giant cell formation and fibrosis. It is long known, that macrophages play a central role in all of these phases except for protein adsorption. Initially it was believed that the macrophage driven FBR has a complete negative effect on biocompatibility. Recent progress in biomaterial and macrophage research however describe macrophages as more than pure antigen phagocytosing and presenting cells and thus pro-inflammatory cells involved in biomaterial encapsulation and failure. Quite contrary, both, pro-inflammatory M1 macrophages, the diverse regulatory M2 macrophage subtypes and even foreign body giant cells (FBGC) are after necessary for integration of non-degradable biomaterials and degradation and replacement of degradable biomaterials. This review gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed. The view on role of macrophages in the foreign body reaction against biomaterials is rapidly changing. Despite the initial idea that macrophage are mainly involved in undesired degradation and biomaterial rejection it becomes now clear that they are nevertheless necessary for proper integration of non-degradable biomaterials and degradation of placeholder, degradable biomaterials. As a pathologist I experienced a lack on a good summary on the current taxonomy, functions and phenotypes of macrophages in my recent projects on the biocompatibility of biomaterials in the mouse model. The submitted review therefore intends to gives a

  19. M2 macrophages participate in the biological tissue healing reaction to mineral trioxide aggregate.

    Science.gov (United States)

    Ito, Takafumi; Kaneko, Tomoatsu; Yamanaka, Yusuke; Shigetani, Yoshimi; Yoshiba, Kunihiko; Okiji, Takashi

    2014-03-01

    This study examined the protein and messenger RNA (mRNA) expression of molecules associated with M2 (wound healing) macrophages in mineral trioxide aggregate (MTA)-implanted rat subcutaneous tissue to elucidate the involvement of M2 macrophages in the connective tissue response to MTA. Silicone tubes containing freshly mixed MTA or a calcium hydroxide cement (Life; Kerr, Romulus, MI) were subcutaneously implanted into the backs of Wistar rats. Solid silicone rods implanted in different animals served as controls. The specimens were then double immunostained for ED1 (CD68, a general macrophage marker) and ED2 (CD163, an M2 macrophage marker). Immunostaining for CD34 (a marker for vascularization and wound healing) was also performed. Expression levels of CD34, CD163, and mannose receptor c type 1 (an M2 macrophage marker) mRNAs were determined with real-time polymerase chain reaction. MTA-implanted subcutaneous tissues showed significant increases in the density of ED1+ED2+ macrophages beneath the implantation site and expression levels of CD163 and MMR mRNAs compared with Life-implanted and control tissues. MTA-implanted subcutaneous tissues also showed a significant increase of CD34-immunostained areas and up-regulation of CD34 mRNAs compared with Life-implanted and control tissues. MTA implantation induced the accumulation of M2 macrophage marker (ED2)-expressing macrophages and enhanced the expression of M2 macrophage marker genes. MTA implantation also enhanced the expression of CD34, suggesting acceleration of the healing/tissue repair process. Taken together, biological connective tissue response to MTA may involve wound healing/tissue repair processes involving M2 macrophages. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ping-Ge [Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Zhi-Xin [Centre Laboratory, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China); Li, Jian-Hua [Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853 (China); Zhou, Zhe, E-mail: zhouzhe76@126.com [Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Qing-Hua, E-mail: 1056055170@qq.com [Department of Cardiology, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China)

    2015-08-07

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.

  1. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.

  2. Extracellular Vesicles Secreted by Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration.

    Science.gov (United States)

    Nguyen, My-Anh; Karunakaran, Denuja; Geoffrion, Michèle; Cheng, Henry S; Tandoc, Kristofferson; Perisic Matic, Ljubica; Hedin, Ulf; Maegdefessel, Lars; Fish, Jason E; Rayner, Katey J

    2018-01-01

    During inflammation, macrophages secrete vesicles carrying RNA, protein, and lipids as a form of extracellular communication. In the vessel wall, extracellular vesicles (EVs) have been shown to be transferred between vascular cells during atherosclerosis; however, the role of macrophage-derived EVs in atherogenesis is not known. Here, we hypothesize that atherogenic macrophages secrete microRNAs (miRNAs) in EVs to mediate cell-cell communication and promote proinflammatory and proatherogenic phenotypes in recipient cells. We isolated EVs from mouse and human macrophages treated with an atherogenic stimulus (oxidized low-density lipoprotein) and characterized the EV miRNA expression profile. We confirmed the enrichment of miR-146a, miR-128, miR-185, miR-365, and miR-503 in atherogenic EVs compared with controls and demonstrate that these EVs are taken up and transfer exogenous miRNA to naive recipient macrophages. Bioinformatic pathway analysis suggests that atherogenic EV miRNAs are predicted to target genes involved in cell migration and adhesion pathways, and indeed delivery of EVs to naive macrophages reduced macrophage migration both in vitro and in vivo. Inhibition of miR-146a, the most enriched miRNA in atherogenic EVs, reduced the inhibitory effect of EVs on macrophage migratory capacity. EV-mediated delivery of miR-146a repressed the expression of target genes IGF2BP1 (insulin-like growth factor 2 mRNA-binding protein 1) and HuR (human antigen R or ELAV-like RNA-binding protein 1) in recipient cells, and knockdown of IGF2BP1 and HuR using short interfering RNA greatly reduced macrophage migration, highlighting the importance of these EV-miRNA targets in regulating macrophage motility. EV-derived miRNAs from atherogenic macrophages, in particular miR-146a, may accelerate the development of atherosclerosis by decreasing cell migration and promoting macrophage entrapment in the vessel wall. © 2017 American Heart Association, Inc.

  3. Alveolar macrophage dysregulation in Hermansky-Pudlak syndrome type 1.

    Science.gov (United States)

    Rouhani, Farshid N; Brantly, Mark L; Markello, Thomas C; Helip-Wooley, Amanda; O'Brien, Kevin; Hess, Richard; Huizing, Marjan; Gahl, William A; Gochuico, Bernadette R

    2009-12-01

    Individuals with Hermansky-Pudlak syndrome type 1 (HPS-1), an autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles, develop an accelerated form of progressive fibrotic lung disease. The etiology of pulmonary fibrosis associated with HPS-1 is unknown. To investigate the potential pathogenesis of pulmonary fibrosis in HPS-1, lung cells and proteins from individuals with HPS-1 were studied. Forty-one subjects with HPS-1 with and without pulmonary fibrosis were evaluated with pulmonary function tests, high-resolution computed tomography scan, and bronchoscopy. Bronchoalveolar lavage cells and analytes were analyzed. Concentrations of total bronchoalveolar lavage cells and alveolar macrophages were significantly higher in epithelial lining fluid from subjects with HPS-1 with and without pulmonary fibrosis compared with healthy research volunteers. Concentrations of cytokines and chemokines (i.e., monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha, and granulocyte-macrophage colony-stimulating factor) in alveolar epithelial lining fluid were significantly higher in subjects with HPS-1 with and without pulmonary fibrosis compared with healthy research volunteers (P system in which to study the pathogenesis and treatment of HPS pulmonary fibrosis.

  4. The phenotype of murine wound macrophages.

    Science.gov (United States)

    Daley, Jean M; Brancato, Samielle K; Thomay, Alan A; Reichner, Jonathan S; Albina, Jorge E

    2010-01-01

    The phenotype of wound macrophages has not been studied by direct examination of these cells, yet macrophages recruited to sites of injury are described as alternatively activated macrophages, requiring IL-4 or IL-13 for phenotypic expression. This study characterized wound macrophage phenotype in the PVA sponge wound model in mice. Eighty-five percent of wound macrophages isolated 1 day after injury expressed Gr-1, but only 20% of those isolated at 7 days expressed this antigen. Macrophages from 1-, 3-, and 7-day wounds expressed markers of alternative activation,including mannose receptor, dectin-1, arginase 1,and Ym1, but did not contain iNOS. Day 1 wound macrophages produced more TNF-alpha, more IL-6, and less TGF-beta than Day 7 wound macrophages. Wound macrophages did not produce IL-10. The cytokines considered necessary for alternative activation of macrophages,IL-4 and IL-13, were not detected in the wound environment and were not produced by wound cells.Wound macrophages did not contain PStat6. Wound fluids inhibited IL-13-dependent phosphorylation of Stat6 and contained IL-13Ralpha2, a soluble decoy receptor for IL-13. The phenotype of wound macrophages was not altered in mice lacking IL-4Ralpha, which is required for Stat6-dependent signaling of IL-4 and IL-13.Wound macrophages exhibit a complex phenotype,which includes traits associated with alternative and classical activation and changes as the wound matures.The wound macrophage phenotype does not require IL-4 or IL-13.

  5. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism.

    Science.gov (United States)

    Zhou, Xiaoye; He, Wei; Huang, Zhiping; Gotto, Antonio M; Hajjar, David P; Han, Jihong

    2008-01-25

    Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.

  6. Characteristics and potential role of M2 macrophages in COPD

    Directory of Open Access Journals (Sweden)

    He S

    2017-10-01

    Full Text Available Shengyang He, Lihua Xie, Junjuan Lu, Shenghua SunDepartment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China Background: COPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role.Materials and methods: COPD models were built in the C57BL/6 mouse by cigarette smoke (CS exposure combined with intraperitoneal injection of cigarette smoke extract (CSE. The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-βRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR. The expression levels of TGF-β/Smad pathway-related makers (TGF-βRII, p-Smad2, p-Smad3, Smad7 and TGF-β in alveolar M2 macrophages were detected by two consecutive paraffin section IHS.Results: The COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05. The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-βRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05 in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-β/Smad pathway-related markers are

  7. Storage xyloglucans: potent macrophages activators.

    Science.gov (United States)

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. TNFα-induced macrophage death via caspase-dependent and independent pathways

    Science.gov (United States)

    Tran, Tri M.; Temkin, Vladislav; Shi, Bo; Pagliari, Lisa; Daniel, Soizic; Ferran, Christiane; Pope, Richard M.

    2009-01-01

    Macrophages are the principal source of TNFα, yet they are highly resistant to TNFα-mediated cell death. Previously, employing in vitro differentiated human macrophages, we showed that following the inhibition of NF-κB, TNFα-induced caspase-8 activation contributes to DNA fragmentation but is not necessary for the loss of the inner mitochondrial transmembrane potential (ΔΨm) or cell death. We here extend these observations to demonstrate that, when NF-κB is inhibited in macrophages, TNFα alters lysosomal membrane permeability (LMP). This results in the release of cathepsin B with subsequent loss of ΔΨm and caspase-8 independent cell death. Interestingly, the cytoprotective, NF-κB-dependent protein A20 was rapidly induced in macrophages treated with TNFα. Ectopic expression of A20 in macrophages preserves LMP following treatment with TNFα, and as a result, mitochondrial integrity is safeguarded and macrophages are protected from cell death. These observations demonstrate that TNFα triggers both caspase 8-dependent and -independent cell death pathways in macrophages and identify a novel mechanism by which A20 protects these cells against both pathways. PMID:19152111

  9. Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus

    Directory of Open Access Journals (Sweden)

    Kowalczyk Andrzej

    2015-12-01

    Full Text Available Macrophages and cytokines are important in the control of inflammation and regulation of the immune response. However, they can also contribute to immunopathology in the host after viral infection and the regulatory network can be subverted by infectious agents, including viruses, some of which produce cytokine analogues or have mechanisms that inhibit cytokine function. African swine fever virus (ASFV encodes a number of proteins which modulate cytokine and chemokine induction, host transcription factor activation, stress responses, and apoptosis. The aim of this review is to elucidate the mechanisms of immune responses to ASFV in different subpopulations of porcine macrophages. A transcriptional immune response in different resident tissue macrophages following ASFV infection was presented in many publications. ASFV-susceptible porcine macrophages can be of several origins, such as peripheral blood, lungs, bone marrow, etc. blood monocytes, blood macrophages, and lung macrophages have demonstrated a modulation of phenotype. Monocyte-derived macrophages could express surface markers not found on their monocyte precursors. Moreover, they can undergo further differentiation after infection and during inflammation. When viruses infect such cells, immunological activity can be seriously impaired or modified.

  10. Celery Seed Extract Blocks Peroxide Injury in Macrophages via Notch1/NF-κB Pathway.

    Science.gov (United States)

    Si, Yanhong; Guo, Shoudong; Fang, Yongqi; Qin, Shucun; Li, Furong; Zhang, Ying; Jiao, Peng; Zhang, Chunduo; Gao, Linlin

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and injury is one of the major atherogenic factors. This study is aimed to investigate the protective effect of celery seed extract (CSE) on ox-LDL-induced injury of macrophages and the underlying signaling pathway. RAW264.7 macrophages were pre-incubated with CSE for 24 h, followed by stimulation with ox-LDL. Oil red O staining and enzymatic colorimetry indicated CSE significantly lessened lipid droplets and total cholesterol (TC) content in ox-LDL-injured macrophages. ELISA revealed that CSE decreased the secretion of inflammatory cytokine TNF-α and IL-6 by 12-27% and 5-15% respectively. MTT assay showed CSE promoted cell viability by 16-40%. Cell apoptosis was also analyzed by flow cytometry and laser scanning confocal microscope and the data indicated CSE inhibited ox-LDL-induced apoptosis of macrophages. Meanwhile, western blot analysis showed CSE suppressed NF-κBp65 and notch1 protein expressions stimulated by ox-LDL in macrophages. These results suggest that CSE inhibits ox-LDL-induced macrophages injury via notch1/NF-κB pathway.

  11. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages

    Science.gov (United States)

    Miettinen, Minja; Pietilä, Taija E.; Kekkonen, Riina A.; Kankainen, Matti; Latvala, Sinikka; Pirhonen, Jaana; Österlund, Pamela; Korpela, Riitta; Julkunen, Ilkka

    2012-01-01

    In this study, we have utilized global gene expression profiling to compare the responses of human primary macrophages to two closely related, well-characterized Lactobacillus rhamnosus strains GG and LC705, since our understanding of the responses elicited by nonpathogenic bacteria in human innate immune system is limited. Macrophages are phagocytic cells of the innate immune system that perform sentinel functions to initiate appropriate responses to surrounding stimuli. Macrophages that reside on gut mucosa encounter ingested and intestinal bacteria. Bacteria of Lactobacillus genus are nonpathogenic and used in food and as supplements with health-promoting probiotic potential. Our results demonstrate that live GG and LC705 induced quantitatively different gene expression profiles in macrophages. A gene ontology analysis revealed functional similarities and differences in responses to GG and LC705 that were reflected in host defense responses. Both GG and LC705 induced interleukin-1β production in macrophages that required caspase-1 activity. LC705, but not GG, induced type I interferon -dependent gene activation that correlated with its ability to prevent influenza A virus replication and production of viral proteins in macrophages. Our results indicate that nonpathogenic bacteria are able to activate the inflammasome. In addition, our results suggest that L. rhamnosus may prime the antiviral potential of human macrophages. PMID:22895087

  12. EFhd2/swiprosin-1 regulates LPS-induced macrophage recruitment via enhancing actin polymerization and cell migration.

    Science.gov (United States)

    Tu, Ye; Zhang, Lichao; Tong, Lingchang; Wang, Yue; Zhang, Su; Wang, Rongmei; Li, Ling; Wang, Zhibin

    2018-02-01

    Macrophage motility is vital in innate immunity, which contributes strategically to the defensive inflammation process. During bacterial infection, lipopolysaccharide (LPS) potently activates the migration of macrophages via the NF-κB/iNOS/c-Src signaling pathway. However, the downstream region of c-Src that participates in macrophage migration is unclear. EFhd2, a novel actin bundling protein, was evaluated for its role in LPS-stimulated macrophage migration in this study. We found that LPS stimulated the up-regulation, tyrosine phosphorylation and membrane translocation of EFhd2 in macrophages. The absence of EFhd2 inhibited the recruitment of macrophages in the lungs of LPS-induced septic mice. LPS-induced macrophage migration was neutralized by the deletion of EFhd2. EFhd2-mediated up-regulation of NFPs (including Rac1/Cdc42, N-WASP/WAVE2 and Arp2/3 complex) induced by LPS could be used to explain the role of EFhd2 in promoting actin polymerization. Furthermore, the purified EFhd2 could directly promote actin polymerization in vitro. Dasatinib, a c-Src specific inhibitor, inhibited the up-regulation of EFhd2 stimulated by LPS. Therefore, our study demonstrated that EFhd2 might be involved in LPS-stimulated macrophage migration, which provides a potential target for LPS-activated c-Src during macrophage mobilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  14. Neutralizing antibody against granulocyte/macrophage colony-stimulating factor inhibits inflammatory response in experimental otitis media.

    Science.gov (United States)

    Kariya, Shin; Okano, Mitsuhiro; Higaki, Takaya; Makihara, Seiichiro; Haruna, Takenori; Eguchi, Motoharu; Nishizaki, Kazunori

    2013-06-01

    Granulocyte/macrophage colony-stimulating factor is important in the pathogenesis of acute and chronic inflammatory disease. We hypothesized that granulocyte/macrophage colony-stimulating factor plays a pivotal role in middle ear inflammation and that neutralization of granulocyte/macrophage colony-stimulating factor would inhibit neutrophil migration into the middle ear and production of inflammatory mediators. Animal experiment. We used transtympanic administration of lipopolysaccharide, a major component of gram-negative bacteria, into mice to induce an experimental otitis media. Control mice received injection of phosphate-buffered saline into the middle ear cavity. Mice were systemically treated with granulocyte/macrophage colony-stimulating factor neutralizing antibody or control immunoglobulin G via intraperitoneal injection 2 hours before transtympanic injection of lipopolysaccharide or phosphate-buffered saline. Middle ear effusions were collected. Concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in middle ear effusions were measured by enzyme-linked immunosorbent assay. Histologic examination of the middle ear was also performed. Transtympanic injection of lipopolysaccharide upregulated levels of granulocyte/macrophage colony-stimulating factor, IL-1β, TNF-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in the middle ear. Concentrations of cytokines and chemokines were significantly decreased in mice injected with granulocyte/macrophage colony-stimulating factor neutralizing antibody. Infiltration of inflammatory cells into the middle ear cavity induced by lipopolysaccharide was also significantly reduced by neutralization of granulocyte/macrophage colony-stimulating factor. Systemic injection of granulocyte/macrophage colony-stimulating factor neutralizing antibody inhibits the middle ear inflammation induced by lipopolysaccharide in mice

  15. Irradiation Promotes an M2 Macrophage Phenotype in Tumor Hypoxia

    International Nuclear Information System (INIS)

    Chiang, Chi-Shiun; Fu, Sheng Yung; Wang, Shu-Chi; Yu, Ching-Fang; Chen, Fang-Hsin; Lin, Chi-Min; Hong, Ji-Hong

    2012-01-01

    Macrophages display different phenotypes with distinct functions and can rapidly respond to environmental changes. Previous studies on TRAMP-C1 tumor model have shown that irradiation has a strong impact on tumor microenvironments. The major changes include the decrease of microvascular density, the increase of avascular hypoxia, and the aggregation of tumor-associated macrophages in avascular hypoxic regions. Similar changes were observed no matter the irradiation was given to tissue bed before tumor implantation (pre-IR tumors), or to established tumors (IR tumors). Recent results on three murine tumors, TRAMP-C1 prostate adenocarcinoma, ALTS1C1 astrocytoma, and GL261 glioma, further demonstrate that different phenotypes of inflammatory cells are spatially distributed into different microenvironments in both IR and pre-IR tumors. Regions with avascular hypoxia and central necrosis have CD11b high /Gr-1+ neutrophils in the center of the necrotic area. Next to them are CD11b low /F4/80+ macrophages that sit at the junctions between central necrotic and surrounding hypoxic regions. The majority of cells in the hypoxic regions are CD11b low /CD68+ macrophages. These inflammatory cell populations express different levels of Arg I. This distribution pattern, except for neutrophils, is not observed in tumors receiving chemotherapy or an anti-angiogenesis agent which also lead to avascular hypoxia. This unique distribution pattern of inflammatory cells in IR tumor sites is interfered with by targeting the expression of a chemokine protein, SDF-1α, by tumor cells, and this also increases radiation-induced tumor growth delay. This indicates that irradiated-hypoxia tissues have distinct tumor microenvironments that favor the development of M2 macrophages and that is affected by the levels of tumor-secreted SDF-1α.

  16. Role of tumour associated macrophages in tumour angiogenesis and lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Julia eKzhyshkowska

    2014-03-01

    Full Text Available Tumour angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumour cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumour cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumour endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM into tumor sites. Tumour-associated macrophages (TAM sense hypoxia in avascular areas of tumours, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC and macrophages. In some tumours, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include bFGF, thymidine phosphorylase (TP, urokinase-type plasminogen activator (uPA, and adrenomedullin. The same factors used by macrophages for the induction of angiogenesis (like VEGF-A and MMP9 support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumour lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39 and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumour models. YKL-40-neutralizing monoclonal antibody blocks tumour angiogenesis and progression. The role of YKL-39 and SI-CLP in tumour angiogenesis and lymphangiogenesis remains to be

  17. Reactions of macrophages exposed to particles <10 μm

    International Nuclear Information System (INIS)

    Monn, Christian; Naef, Roland; Koller, Theo

    2003-01-01

    This study describes experiments on cytotoxic effects and the production of oxidative radicals and the proinflammatory cytokine tumor growth factor alpha (TNFα) in a cell line of rat lung macrophages exposed to aqueou extracts from ambient air particles 10 ) collected on Teflon filters. The particles were collected during the four seasons at two urban sites, one rural site, and one alpine site in Switzerland. Cytotoxic effects determined as a reduction in the metabolic activity, were found in particle extracts from all sites and seasons. Taking together the data from all site and seasons, a dose-response function was observed between the particle mass on the filter and toxicity (r 2 =0.633, linear regression). The release of the pro-inflammatory cytokine TNFα as well as of oxidative radicals was most pronounced in particles collected in spring-summer and autumn. While a Montana (alpine), the stimulation of the cells was positively correlated with the particle mass on the filters, this correlation was negative at the urban sites Zuerich and Lugano. It is interpreted that at high PM 10 levels, as in these cities, macrophages are inhibited by increasing air pollution due to toxic effects. Cytotoxic effects and the release of oxidative radicals could be inhibited when the extracts were treated with an endotoxin-neutralizing protein. This suggests that endotoxin, a cell-wall constituent of gram-negative bacteria, is one of the factors which modulates macrophag activity. All together, the experiments indicate that in the PM 10 fraction water-soluble macrophage-toxic and macrophage-stimulating compounds ar present. The data offer an explanation for at least some of the known harmful effects of PM 10 , and confirm endotoxin as a possible reactant

  18. Gallium arsenide exposure impairs processing of particulate antigen by macrophages: modification of the antigen reverses the functional defect.

    Science.gov (United States)

    Hartmann, Constance B; McCoy, Kathleen L

    2004-06-11

    Gallium arsenide (GaAs), a semiconductor used in the electronics industry, causes systemic immunosuppression in animals. The chemical's impact on macrophages to process the particulate antigen, sheep red blood cells (SRBC), for a T cell response in culture was examined after in vivo exposure of mice. GaAs-exposed splenic macrophages were defective in activating SRBC-primed lymph node T cells that could not be attributed to impaired phagocytosis. Modified forms of SRBC were generated to examine the compromised function of GaAs-exposed macrophages. SRBC were fixed to maintain their particulate nature and subsequently delipidated with detergent. Delipidation of intact SRBC was insufficient to restore normal antigen processing in GaAs-exposed macrophages. However, chemically exposed cells efficiently processed soluble sheep proteins. These findings suggest that the problem may lie in the release of sequestered sheep protein antigens, which then could be effectively cleaved to peptides. Furthermore, opsonization of SRBC with IgG compensated for the macrophage processing defect. The influence of signal transduction and phagocytosis via Fcgamma receptors on improved antigen processing could be dissociated. Immobilized anti-Fcgamma receptor antibody activated macrophages to secrete a chemokine, but did not enhance processing of unmodified SRBC by GaAs-exposed macrophages. Restoration of normal processing of particulate SRBC by chemically exposed macrophages involved phagocytosis through Fcgamma receptors. Hence, initial immune responses may be very sensitive to GaAs exposure, and the chemical's immunosuppression may be averted by opsonized particulate antigens.

  19. Control of the Inflammatory Macrophage Transcriptional Signature by miR-155

    Science.gov (United States)

    Jablonski, Kyle A.; Gaudet, Andrew D.; Amici, Stephanie A.; Popovich, Phillip G.

    2016-01-01

    Inflammatory M1 spectrum macrophages protect from infection but can cause inflammatory disease and tissue damage, whereas alternatively activated/M2 spectrum macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA), which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. We hypothesized that the inflammation-associated miRNA, miR-155, would be required for typical development of macrophage inflammatory state. miR-155 was rapidly up-regulated over 100-fold in inflammatory M1(LPS + IFN-γ), but not M2(IL-4), macrophages. Inflammatory genes Inos, Il1b and Tnfa and their corresponding protein or enzymatic products were reduced up to 72% in miR-155 knockout mouse M1(LPS + IFN-γ) macrophages, but miR-155 deficiency did not affect expression of the M2-associated gene Arg1 in M2(IL-4) macrophages. Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed Inos and Tnfa gene expression in wild-type M1(LPS + IFN-γ) macrophages. Comparative transcriptional profiling of unstimulated and M1(LPS + IFN-γ) macrophages derived from wild-type (WT) and miR-155 knockout (KO) mice revealed that half (approximately 650 genes) of the signature we previously identified in WT M1(LPS + IFN-γ) macrophages was dependent on miR-155. Real-Time PCR of independent datasets confirmed that miR-155 contributed to suppression of its validated mRNA targets Inpp5d, Tspan14, Ptprj and Mafb and induction of Inos, Il1b, Tnfa, Il6 and Il12. Overall, these data indicate that miR-155 plays an essential role in driving the inflammatory phenotype of M1(LPS+ IFN-γ) macrophages. PMID:27447824

  20. Control of the Inflammatory Macrophage Transcriptional Signature by miR-155.

    Directory of Open Access Journals (Sweden)

    Kyle A Jablonski

    Full Text Available Inflammatory M1 spectrum macrophages protect from infection but can cause inflammatory disease and tissue damage, whereas alternatively activated/M2 spectrum macrophages reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may be therapeutically beneficial and requires further understanding of the molecular programs that control macrophage differentiation. A potential mechanism by which macrophages differentiate may be through microRNA (miRNA, which bind to messenger RNA and post-transcriptionally modify gene expression, cell phenotype and function. We hypothesized that the inflammation-associated miRNA, miR-155, would be required for typical development of macrophage inflammatory state. miR-155 was rapidly up-regulated over 100-fold in inflammatory M1(LPS + IFN-γ, but not M2(IL-4, macrophages. Inflammatory genes Inos, Il1b and Tnfa and their corresponding protein or enzymatic products were reduced up to 72% in miR-155 knockout mouse M1(LPS + IFN-γ macrophages, but miR-155 deficiency did not affect expression of the M2-associated gene Arg1 in M2(IL-4 macrophages. Additionally, a miR-155 oligonucleotide inhibitor efficiently suppressed Inos and Tnfa gene expression in wild-type M1(LPS + IFN-γ macrophages. Comparative transcriptional profiling of unstimulated and M1(LPS + IFN-γ macrophages derived from wild-type (WT and miR-155 knockout (KO mice revealed that half (approximately 650 genes of the signature we previously identified in WT M1(LPS + IFN-γ macrophages was dependent on miR-155. Real-Time PCR of independent datasets confirmed that miR-155 contributed to suppression of its validated mRNA targets Inpp5d, Tspan14, Ptprj and Mafb and induction of Inos, Il1b, Tnfa, Il6 and Il12. Overall, these data indicate that miR-155 plays an essential role in driving the inflammatory phenotype of M1(LPS+ IFN-γ macrophages.

  1. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    Science.gov (United States)

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  2. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production.

    Science.gov (United States)

    Mashiba, Michael; Collins, David R; Terry, Valeri H; Collins, Kathleen L

    2014-12-10

    The HIV-1 accessory protein Vpr enhances infection of primary macrophages through unknown mechanisms. Recent studies demonstrated that Vpr interactions with the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex limit activation of innate immunity and interferon (IFN) induction. We describe a restriction mechanism that targets the HIV-1 envelope protein Env, but is overcome by Vpr and its interaction with DCAF1. This restriction is active in the absence of Vpr in HIV-1-infected primary macrophages and macrophage-epithelial cell heterokaryons, but not epithelial cell lines. HIV-1-infected macrophages lacking Vpr express more IFN following infection, target Env for lysosomal degradation, and produce fewer Env-containing virions. Conversely, Vpr expression reduces IFN induction, rescues Env expression, and enhances virion release. Addition of IFN or silencing DCAF1 reduces the amount of cell-associated Env and virion production in wild-type HIV-1-infected primary macrophages. These findings provide insight into an IFN-stimulated macrophage-specific restriction pathway targeting HIV-1 Env that is counteracted by Vpr. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Wound Macrophages as Key Regulators of Repair

    Science.gov (United States)

    Brancato, Samielle K.; Albina, Jorge E.

    2011-01-01

    Recent results call for the reexamination of the phenotype of wound macrophages and their role in tissue repair. These results include the characterization of distinct circulating monocyte populations with temporally restricted capacities to migrate into wounds and the observation that the phenotype of macrophages isolated from murine wounds partially reflects those of their precursor monocytes, changes with time, and does not conform to current macrophage classifications. Moreover, findings in genetically modified mice lacking macrophages have confirmed that these cells are essential to normal wound healing because their depletion results in retarded and abnormal repair. This mini-review focuses on current knowledge of the phenotype of wound macrophages, their origin and fate, and the specific macrophage functions that underlie their reparative role in injured tissues, including the regulation of the cellular infiltration of the wound and the production of transforming growth factor-β and vascular endothelial growth factor. PMID:21224038

  4. LppM impact on the colonization of macrophages by Mycobacterium tuberculosis

    Science.gov (United States)

    Deboosère, Nathalie; Iantomasi, Raffaella; Queval, Christophe J.; Song, Ok‐Ryul; Deloison, Gaspard; Jouny, Samuel; Debrie, Anne‐Sophie; Chamaillard, Mathias; Nigou, Jérôme; Cohen‐Gonsaud, Martin; Locht, Camille

    2016-01-01

    Summary Mycobacterium tuberculosis produces several bacterial effectors impacting the colonization of phagocytes. Here, we report that the putative lipoprotein LppM hinders phagocytosis by macrophages in a toll‐like receptor 2‐dependent manner. Moreover, recombinant LppM is able to functionally complement the phenotype of the mutant, when exogenously added during macrophage infection. LppM is also implicated in the phagosomal maturation, as a lppM deletion mutant is more easily addressed towards the acidified compartments of the macrophage than its isogenic parental strain. In addition, this mutant was affected in its ability to induce the secretion of pro‐inflammatory chemokines, interferon‐gamma‐inducible protein‐10, monocyte chemoattractant protein‐1 and macrophage inflammatory protein‐1α. Thus, our results describe a new mycobacterial protein involved in the early trafficking of the tubercle bacillus and its manipulation of the host immune response. PMID:27220037

  5. Purple perilla extracts allay ER stress in lipid-laden macrophages.

    Directory of Open Access Journals (Sweden)

    Sin-Hye Park

    Full Text Available There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1-10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1 by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1, scavenger receptor-B1 (SR-B1 and intracellular adhesion molecule-1 (ICAM-1 was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

  6. Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages.

    Science.gov (United States)

    Montserrat-de la Paz, S; de la Puerta, R; Fernandez-Arche, A; Quilez, A M; Muriana, F J G; Garcia-Gimenez, M D; Bermudez, B

    2015-07-21

    Uncaria tomentosa (Willdenow ex Roemer & Schultes) DC. (Rubiaceae) is a Peruvian thorny liana, commonly known as "cat׳s claw", and traditionally used in folk medicine to deal with several inflammatory diseases. Mitraphylline (MTP) is the most abundant pentacyclic oxindolic alkaloid (POA) from U. Tomentosa and has been reported to modify the inflammatory response. Herein, we have sought to identify the mechanisms underlying this modulatory effect of MTP on primary human monocytes and its ability to regulate differentiation processes on human primary monocyte and monocyte-derived macrophages. In vitro studies with human primary monocytes and monocyte-derived macrophages were performed. Monocytes and M0 macrophages were exposed to MTP (25μM) and LPS (100ng/mL). M0 macrophages were polarized to M1 and M2 phenotypes in the absence or presence of MTP. The activation state of monocytes/macrophages was assessed by flow cytometry, gene expression and protein analysis of different specific markers. In human primary monocytes, the incubation of MTP for 24h reduced the number of classical (CD14(++)CD16(-)) and intermediate (CD14(++)CD16(+)) subsets when compared to untreated or LPS-treated cells. MTP also reduced the chemotactic capacity of human primary monocytes. In addition, MTP promoted the polarization of M0 macrophages toward an anti-inflammatory M2 phenotype, the abrogation of the release of pro-inflammatory cytokines such as TNFα, IL-6 or IL-1β, as well as the restoration of markers for M2 macrophages in LPS-treated M1 macrophages. Our results suggest that MTP may be a key modulator for regulating the plasticity of monocytes/macrophages and the attenuation of the inflammatory response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  8. Macrophage and nerve interaction in endometriosis.

    Science.gov (United States)

    Wu, Jinjie; Xie, Hongyu; Yao, Shuzhong; Liang, Yanchun

    2017-03-14

    Dysregulation of the immune system in endometriotic milieus has been considered to play a pivotal role in the pathogenesis of endometriosis. Macrophage recruitment and nerve fiber infiltration are the two major characteristics of this aberrant immune environment. First, the recruitment of macrophages and their polarization phenotype within the endometriotic lesion have been demonstrated to facilitate the development and maintenance of endometriosis. M1 phenotype of macrophages has the capacity to secrete multiple cytokines for inflammatory response, while M2 macrophage possesses an opposite property that can mediate the process of immunosuppression and neuroangiogenesis. Upon secretion of multiple abnormal signal molecules by the endometriotic lesion, macrophages could alter their location and phenotype. These changes facilitate the accommodation of the aberrant microenvironment and the exacerbation of disease progression. Second, the infiltration of nerve fibers and their abnormal distribution are proved to be involved in the generation of endometriosis-associated pain and inflammatory response. An imbalance in sensory and sympathetic innervation and the abnormal secretion of different cytokines could mediate neurogenesis and subsequent peripheral neuroinflammation in endometriosis. Although endometriosis creates an inflammatory milieu promoting macrophage infiltration and an imbalanced innervation, interaction between macrophages and nerve fibers in this process remains unknown. The aim of this review is to highlight the role of macrophage and nerve interaction in endometriosis, where macrophage recruitment and neurogenesis can be the underlying mechanism of neuroinflammation and pathogenesis of endometriosis.

  9. Development and maintainance of resident macrophages

    Science.gov (United States)

    Perdiguero, Elisa Gomez; Geissmann, Frederic

    2016-01-01

    The molecular and cellular mechanisms that underlie the many roles of macrophages in health and disease states in vivo remain poorly understood. The purpose of this Review is to present and discuss current knowledge on the developmental biology of macrophages, as it underlies the concept of a layered myeloid system composed of ‘resident’ macrophages that mostly originate from yolk sac progenitors and of ‘passenger’ or ‘transitory’ myeloid cells that originate and renew from bone marrow hematopoietic stem cells, and to provide a framework to investigate the functions of macrophages in vivo. PMID:26681456

  10. Macrophage Plasticity in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Elena Rigamonti

    2014-01-01

    Full Text Available Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1 or an alternative anti-inflammatory (M2 phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.

  11. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  12. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

    Science.gov (United States)

    Kim, Jong Hun; Lee, Eunjung; Friedline, Randall H; Suk, Sujin; Jung, Dae Young; Dagdeviren, Sezin; Hu, Xiaodi; Inashima, Kunikazu; Noh, Hye Lim; Kwon, Jung Yeon; Nambu, Aya; Huh, Jun R; Han, Myoung Sook; Davis, Roger J; Lee, Amy S; Lee, Ki Won; Kim, Jason K

    2018-04-01

    Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78 -/- ) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78 -/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78 -/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78 -/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

  13. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic m...acrophage TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  14. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati... Show Nuclear receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title ...Nuclear receptors in macrophages: a link between metabolism and inflammation. Aut

  15. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis : a new aspect of macrophage heterogeneity

    NARCIS (Netherlands)

    Shamaei, Masoud; Mortaz, Esmaeil; Pourabdollah, Mihan; Garssen, Johan; Tabarsi, Payam; Velayati, Aliakbar; Adcock, Ian M

    BACKGROUND: Sarcoidosis is a granulomatous disease of unknown etiology. Macrophages play a key role in granuloma formation with the T cells, having a significant impact on macrophage polarization (M1 and M2) and the cellular composition of the granuloma. This study evaluates macrophage polarization

  16. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  17. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  18. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18251777 Macrophage differentiation and function in health and disease. Naito M. Pa...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function in health... and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease

  19. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  20. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  1. Impact of Leishmania Metalloprotease GP63 on Macrophage Signalling

    Directory of Open Access Journals (Sweden)

    Amandine eIsnard

    2012-05-01

    Full Text Available Several Leishmania surface molecules are known to be important virulence factors. For instance, LPG is recognized as one of the key virulence factor for Leishmania. Interestingly, recent findings permit to believe that the Leishmania GP63 could be also a critical one. GP63 is a metalloprotease found in all Leishmania species under different forms going from membrane-bound to extracellularly secreted ones. Even before parasite entries into the host macrophage, GP63 provides parasite resistance to the complement-mediated lysis and facilitate promastigote engulfment by macrophages. Additionally, it has been found that the degradation of proteins from the macrophage extracellular matrix by GP63 could confer protection to promastigotes, as well as amastigotes, during their initial interaction with the host cell. More recently, GP63 has been observed to rapidly enter within the host macrophage -in part via lipid raft microdomains- and to be pivotal for the subversion of host innate immune response. For instance, it has been found to be responsible for the activation of negative regulatory mechanisms involving activation of protein tyrosine phosphatases (PTPs; SHP-1, PTP1B and TCPTP that lead to the alteration of several key signalling pathways utilizing JAK and MAP kinases family members, as well as the pivotal IRAK-1 kinase for toll like-dependent signalling. In addition, it has been recently reported that inactivation of some transcription factors such as AP-1 occurs directly in the nuclear environment of the infected cells, and to involve the cleavage and degradation of c-jun and c-fos family members by GP63. Altogether, this signalling inactivation under the mediation of GP63 concurs to inhibit important antimicrobial actions usually under the regulation of the innate immune response, and therefore favouring the survival and propagation of the parasite once into its host intracellular environment.

  2. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Endothelial lipase is highly expressed in macrophages in advanced human atherosclerotic lesions

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, John E; Lindegaard, Marie Louise Skakkebæk

    2007-01-01

    Endothelial lipase (EL) is expressed in endothelial cells, and affects plasma lipoprotein metabolism by hydrolyzing phospholipids in HDL. To determine the cellular expression of EL mRNA and protein in human atherosclerotic lesions, we performed in situ hybridization and immunohistochemical studies......RNA expression increased markedly when either type of monocytes was differentiated into macrophages. Upon further differentiation into foam cells EL mRNA decreased whereas protein levels remained high compared to monocytes. In conclusion, macrophages in advanced human atherosclerotic lesions display high levels...

  4. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  5. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  6. TGFβ signaling plays a critical role in promoting alternative macrophage activation

    Directory of Open Access Journals (Sweden)

    Gong Dapeng

    2012-06-01

    Full Text Available Abstract Background Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages. Alternatively activated (or M2 macrophages are defined by their expression of specific gene products and play an important role in containing inflammation, removing apoptotic cells and repairing tissue damage. Whereas it is well-established that IL-4 can drive alternative activation, if lack of TGFβ signaling at physiological levels affects M2 polarization has not been addressed. Results Vav1-Cre x TβRIIfx/fx mice, lacking TβRII function in hematopoietic cells, exhibited uncontrolled pulmonary inflammation and developed a lethal autoimmune syndrome at young age. This was accompanied by significantly increased numbers of splenic neutrophils and T cells as well as elevated hepatic macrophage infiltration and bone marrow monocyte counts. TβRII-/- CD4+ and CD8+ T-cells in the lymph nodes and spleen expressed increased cell surface CD44, and CD69 was also higher on CD4+ lymph node T-cells. Loss of TβRII in bone marrow-derived macrophages (BMDMs did not affect the ability of these cells to perform efferocytosis. However, these cells were defective in basal and IL-4-induced arg1 mRNA and Arginase-1 protein production. Moreover, the transcription of genes that are typically upregulated in M2-polarized macrophages, such as ym1, mcr2 and mgl2, was also decreased in peritoneal macrophages and IL-4-stimulated TβRII-/- BMDMs. We found that cell surface and mRNA expression of Galectin-3, which also regulates M2 macrophage polarization, was lower in TβRII-/- BMDMs. Very interestingly, the impaired ability of these null mutant BMDMs to differentiate into IL-4 polarized macrophages was Stat6- and Smad3-independent, but correlated with reduced levels of phospho-Akt and β-catenin. Conclusions Our results establish a novel biological role for TGFβ signaling in controlling expression of genes

  7. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface.

    Science.gov (United States)

    Cypher, Luke R; Bielecki, Timothy Alan; Huang, Lu; An, Wei; Iseka, Fany; Tom, Eric; Storck, Matthew D; Hoppe, Adam D; Band, Vimla; Band, Hamid

    2016-09-01

    Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A.; Harrod, Kevin S.; Deshane, Jessy S.; Athar, Mohammad

    2016-01-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4 +/+ wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4 +/− heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca ++ homeostasis. ATO induces Ca ++ -dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca ++ homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4 +/− mice. • Changes in macrophage

  9. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  10. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes.

    Science.gov (United States)

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif; Bing, Chen

    2014-08-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. Copyright

  11. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  12. Real-world efficacy of daclatasvir and asunaprevir with respect to resistance-associated substitutions.

    Science.gov (United States)

    Fujii, Hideki; Umemura, Atsushi; Nishikawa, Taichiro; Yamaguchi, Kanji; Moriguchi, Michihisa; Nakamura, Hideki; Yasui, Kohichiroh; Minami, Masahito; Tanaka, Saiyu; Ishikawa, Hiroki; Kimura, Hiroyuki; Takami, Shiro; Nagao, Yasuyuki; Shima, Toshihide; Itoh, Yoshito

    2017-09-08

    To investigate daclatasvir (DCV) and asunaprevir (ASV) efficacy in hepatitis C (HCV) patients, with respect to resistance-associated substitutions (RASs). A total of 392 HCV-infected patients from multiple centers were included in this study. We evaluated their clinical courses and sustained virologic responses (SVR) according to pretreatment factors (gender, age, history of interferon-based regimens, platelet counts, level of viremia, pretreatment NA5A:L31, and Y93 substitutions). We also analyzed the pretreatment and post-treatment major RASs of NS3:D168, NS5A:L31 and Y93 substitutions using a direct-sequencing method in 17 patients who were unable to achieve SVR at 12 wk after treatment completion (SVR12). The overall SVR12 rate was 88.3%. Thirty-one patients discontinued treatment before 24 wk because of adverse events, 23 of whom achieved SVR12. There were no significant differences in SVR12 rates with respect to gender, age, history of interferon-based regimens, and platelet counts. The SVR12 rate in patients with viral loads of ≥ 6.0 log IU/mL was significantly lower than those with viral loads of < 6.0 log IU/mL ( P < 0.001). The SVR12 rate in patients with Y93 substitution-positive was significantly lower than those with Y93 substitution-negative ( P < 0.001). The L31 substitution-positive group showed a lower SVR12 rate than the L31 substitution-negative group, but the difference was not statistically significant. Seventeen patients who did not achieve SVR12 and had available pretreatment and post-treatment sera had additional RASs in NS3:D168, NS5:L31, and Y93 substitution at treatment failure. Combination of DCV and ASV is associated with a high SVR rate. Baseline RASs should be thoroughly assessed to avoid additional RASs after treatment failure.

  13. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    Science.gov (United States)

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  14. The Plasminogen Receptor, Plg-RKT, and Macrophage Function

    Directory of Open Access Journals (Sweden)

    Lindsey A. Miles

    2012-01-01

    Full Text Available When plasminogen binds to cells its activation to plasmin is markedly enhanced compared to the reaction in solution. Thus, cells become armed with the broad spectrum proteolytic activity of plasmin. Cell-surface plasmin plays a key role in macrophage recruitment during the inflammatory response. Proteins exposing basic residues on the cell surface promote plasminogen activation on eukaryotic cells. We have used a proteomics approach combining targeted proteolysis with carboxypeptidase B and multidimensional protein identification technology, MudPIT, and a monocyte progenitor cell line to identify a novel transmembrane protein, the plasminogen receptor, Plg-RKT. Plg-RKT exposes a C-terminal lysine on the cell surface in an orientation to bind plasminogen and promote plasminogen activation. Here we review the characteristics of this new protein, with regard to membrane topology, conservation of sequence across species, the role of its C-terminus in plasminogen binding, its function in plasminogen activation, cell migration, and its role in macrophage recruitment in the inflammatory response.

  15. A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Directory of Open Access Journals (Sweden)

    Lydia Dmochewitz

    Full Text Available BACKGROUND: The C3bot1 protein (~23 kDa from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.

  16. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2001-01-01

    activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of irradiation...

  17. Transport of the coumarin metabolite 7-hydroxycoumarin glucuronide is mediated via multidrug resistance-associated proteins 3 and 4.

    NARCIS (Netherlands)

    Wittgen, H.G.M.; Heuvel, J.J.M.W. van den; Broek, P.H.H. van den; Siissalo, S.; Groothuis, G.M.; Graaf, I.A. de; Koenderink, J.B.; Russel, F.G.M.

    2012-01-01

    Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans,

  18. Transport of the Coumarin Metabolite 7-Hydroxycoumarin Glucuronide Is Mediated via Multidrug Resistance-Associated Proteins 3 and 4

    NARCIS (Netherlands)

    Wittgen, Hanneke G. M.; van den Heuvel, Jeroen J. M. W.; van den Broek, Petra H. H.; Siissalo, Sanna; Groothuis, Geny M. M.; de Graaf, Inge A. M.; Koenderink, Jan B.; Russel, Frans G. M.

    Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans,

  19. A broken krebs cycle in macrophages.

    Science.gov (United States)

    O'Neill, Luke A J

    2015-03-17

    Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Macrophages in skin injury and repair

    NARCIS (Netherlands)

    Mahdavian Delavary, B.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J.

    2011-01-01

    After recruitment to the wound bed, monocytes differentiate into macrophages. Macrophages play a central role in all stages of wound healing and orchestrate the wound healing process. Their functional phenotype is dependent on the wound microenvironment, which changes during healing, hereby altering

  1. Metabolic regulation of macrophages in tissues

    NARCIS (Netherlands)

    van den Bossche, Jan; Saraber, Doina L.

    2018-01-01

    Macrophages are innate immune cells that provide host defense and have tissue-specific roles in the maintenance of organ homeostasis and integrity. In most cases macrophages keep us healthy but when their balanced response to damage or homeostatic signals is perturbed, they can drive chronic