WorldWideScience

Sample records for resistance proteins mrp1

  1. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  2. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  3. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  4. Lignans and norlignans inhibit multidrug resistance protein 1 (MRP1/ABCC1)-mediated transport.

    Science.gov (United States)

    Wróbel, Anna; Eklund, Patrik; Bobrowska-Hägerstrand, Malgorzata; Hägerstrand, Henry

    2010-11-01

    Multidrug resistance protein 1 (MRP1/ABCC1) is one of the drug efflux pumps mediating multidrug resistance in several cancer types. Efficient nontoxic inhibitors of MRP1-mediated transport are sought to potentially sensitise cancer cells to anticancer drugs. This study examined the potency of a series of plant lignans and norlignans of various structures to inhibit MRP1-mediated transport from human erythrocytes. The occurrence of MRP1 in the human erythrocyte membrane makes this cell a useful model in searching for efficient MRP1inhibitors. The inhibition of 2',7'-bis-(carboxypropyl)-5(6)-carboxyfluorescein (BCPCF) transport from human erythrocytes was measured fluorymetrically. In order to study possible membrane-perturbing effects of lignans and norlignans, the potency of these compounds to induce haemolysis, erythrocyte shape change, and phosphatidylserine (PS) exposure in the external layer of the erythrocyte membrane was examined. Nine compounds (six norlignans and three lignans) of the fourteen that were tested inhibited BCPCF transport from human erythrocytes. The most efficient inhibitor, the norlignan coded L1, had IC(50)=50 μM. Structure-activity relationship analysis showed that the strongest inhibitors were found among lignans and norlignans bearing a carbonyl function at position C-9. The highly oxidised structures and the presence of an ionisable group such as the carboxylic acid function enhance activity. All compounds that significantly decreased BCPCF transport were non-haemolytic, did not cause PS exposure and did not have any effect on erythrocyte shapes up to 200 μM. Lignans and norlignans can inhibit MRP1-mediated transport from human erythrocytes and should be further investigated as possible agents reversing multidrug resistance.

  5. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    Science.gov (United States)

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  6. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This

  7. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.

    Science.gov (United States)

    Mansilla, Sylvia; Rojas, Marta; Bataller, Marc; Priebe, Waldemar; Portugal, José

    2007-04-01

    Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.

  8. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  9. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  11. Expression of multidrug resistance-related protein (MRP-1), lung resistance-related protein (LRP) and topoisomerase-II (TOPO-II) in Wilms' tumor: immunohistochemical study using TMA methodology.

    Science.gov (United States)

    Fridman, Eduard; Skarda, Jozef; Pinthus, Jonatan H; Ramon, Jonathan; Mor, Yoran

    2008-06-01

    MRP-1, LRP and TOPO-II are all associated with protection of the cells from the adverse effects of various chemotherapeutics. The aim of this study was to measure the expression of these proteins in Wilms' tumor (WT). TMA block was constructed from 14 samples of WT's and from xenografts derived from them. Sections of the TMA were used for immunostaining against MRP-1, LRP and TOPO-IIa. All normal kidneys expressed MRP-1 but were either weakly or negatively stained for LRP and TOPO-IIa. In WT samples, MRP-1 was universally expressed, exclusively in the tubular component, while there was no expression of LRP and TOPO-IIa showed heterogeneous distribution. The xenografts varied in their MRP-1 and TOPO-IIa expression and exhibited weak/negative staining of LRP. This study shows that although all the proteins evaluated, had different expression patterns in the tumor samples, the most prominent changes in expression were found for MRP-1. The exact clinical implications of these changes in expression and their relevance to the resistance of these tumors to chemotherapy requires further investigation. The finding of different expression profiles for the multidrug resistance proteins in the original WT's and their xenografts suggests that the results of animal cancer models may be difficult to interpret.

  12. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs.

    Science.gov (United States)

    Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham

    2016-05-31

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.

  14. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability.

    Science.gov (United States)

    Lingineni, Karthik; Belekar, Vilas; Tangadpalliwar, Sujit R; Garg, Prabha

    2017-05-01

    Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood-brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.

  15. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines

    NARCIS (Netherlands)

    Kool, M.; de Haas, M.; Scheffer, G. L.; Scheper, R. J.; van Eijk, M. J.; Juijn, J. A.; Baas, F.; Borst, P.

    1997-01-01

    By screening databases of human expressed sequence tags, we have identified three new homologues of MRP1, the gene encoding the multidrug resistance-associated protein, and cMOAT (or MRP2), the canalicular multispecific organic anion transporter gene. We call these new genes MRP3, MRP4, and MRP5.

  16. High pretherapeutic thymidylate synthetase and MRP-1 protein levels are associated with nonresponse to neoadjuvant chemotherapy in oesophageal adenocarcinoma patients.

    Science.gov (United States)

    Langer, Rupert; Ott, Katja; Feith, Marcus; Lordick, Florian; Specht, Katja; Becker, Karen; Hofler, Heinz

    2010-10-01

    The aim of this study was to determine whether pretherapeutic protein expression levels of the excision repair cross-complementing (ERCC1) enzyme, thymidylate synthetase (TS), multidrug-resistance protein 1 (MRP-1) and P-glycoprotein (P-gp) are associated with tumour response to cisplatin and fluorouracil (5-FU)-based neoadjuvant chemotherapy in oesophageal adenocarcinomas. The expression levels of ERCC1, TS, MDR-1 and P-gp were determined immunohistochemically in pretherapeutic tumour biopsies from 40 oesophageal adenocarcinoma patients and were correlated with histopathological tumour regression and with patient survival. Protein expression was compared to mRNA data, which was previously published for ERCC1, TS and MRP-1 and newly determined for the purpose of this study for MDR-1/P-gp. High-TS and -MRP-1 protein expression was correlated with tumour non-response to chemotherapy (P = 0.001 and P = 0.036, respectively). For ERCC-1 and P-gp, no association between pretherapeutic protein expression and response was found. There was no correlation between mRNA levels and protein expression for all investigated markers. Survival analysis revealed a trend towards increased survival for low-ERCC-1 expression (P = 0.079). The pattern of pretherapeutic expression of TS and MRP-1 is related to chemotherapy response in oesophageal adenocarcinoma patients. Immunohistochemical assessment of these markers may be helpful for response prediction. J. Surg. Oncol. 2010;102:503-508. © 2010 Wiley-Liss, Inc.

  17. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  18. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...... to be dependent on the appropriate type of chemoresistance; correlating with a classical or atypical MDR phenotype. Within the thermoresistant variants, however, the increase in ABC transporter expression did obviously not influence the MDR phenotype....

  19. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  20. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  1. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jingjing [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Hu, Jia [School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu (China); Chen, Mingli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Huancai [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Miao, Peng; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2017-05-15

    Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl{sub 2}) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd{sup 2+} and BαP could be attributed to the fact that Cd{sup 2+} and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.

  2. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene

    International Nuclear Information System (INIS)

    Tian, Jingjing; Hu, Jia; Chen, Mingli; Yin, Huancai; Miao, Peng; Bai, Pengli; Yin, Jian

    2017-01-01

    Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl 2 ) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd 2+ and BαP could be attributed to the fact that Cd 2+ and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.

  3. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  4. Membrane expression of MRP-1, but not MRP-1 splicing or Pgp expression, predicts survival in patients with ESFT.

    Science.gov (United States)

    Roundhill, E; Burchill, S

    2013-07-09

    Primary Ewing's sarcoma family of tumours (ESFTs) may respond to chemotherapy, although many patients experience subsequent disease recurrence and relapse. The survival of ESFT cells following chemotherapy has been attributed to the development of resistant disease, possibly through the expression of ABC transporter proteins. MRP-1 and Pgp mRNA and protein expression in primary ESFTs was determined by quantitative reverse-transcriptase PCR (RT-qPCR) and immunohistochemistry, respectively, and alternative splicing of MRP-1 by RT-PCR. We observed MRP-1 protein expression in 92% (43 out of 47) of primary ESFTs, and cell membrane MRP-1 was highly predictive of both overall survival (PMRP-1 was detected in primary ESFTs, although the pattern of splicing variants was not predictive of patient outcome, with the exception of loss of exon 9 in six patients, which predicted relapse (P=0.041). Pgp protein was detected in 6% (38 out of 44) of primary ESFTs and was not associated with patient survival. For the first time we have established that cell membrane expression of MRP-1 or loss of exon 9 is predictive of outcome but not the number of splicing events or expression of Pgp, and both may be valuable factors for the stratification of patients for more intensive therapy.

  5. Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts

    NARCIS (Netherlands)

    Meszaros, Peter; Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2011-01-01

    MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly

  6. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  7. The glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol overcomes the MDR1-P-glycoprotein and MRP1-mediated multidrug resistance in acute myeloid leukemia cells.

    Science.gov (United States)

    Ascione, Alessandro; Cianfriglia, Maurizio; Dupuis, Maria Luisa; Mallano, Alessandra; Sau, Andrea; Pellizzari Tregno, Francesca; Pezzola, Silvia; Caccuri, Anna Maria

    2009-07-01

    There has been an ever growing interest in the search for new anti-tumor compounds that do not interact with MDR1-Pgp and MRP1 drug transporters and so circumvent the effect of these proteins conferring multidrug resistance (MDR) and poor prognosis in AML patients. We have investigated the cytotoxic activity of the strong glutathione S-transferase (GST) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on AML (HL60) cell lines. Functional drug efflux studies and cell proliferation assays were performed on both sensitive and MDR AML (HL60) cells after incubation with NBDHEX. Moreover, the mode of cell death (apoptosis vs. necrosis) as well as the correlation between NBDHEX susceptibility and GST activity or Bcl-2 expression was investigated. NBDHEX is not a substrate of either MDR1-Pgp or MRP1 efflux pumps; in fact, it is not only cytotoxic toward the parental HL60 cell line, but also overcomes the MDR phenotype of its HL60/DNR and HL60/ADR variants. The data herein reported show that NBDHEX mediates efficient killing of both MDR1-Pgp and MRP1 over-expressing AML cells. Therefore, this drug can potentially be used as an effective agent for treating MDR in AML patients.

  8. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells.

    Science.gov (United States)

    Li, Sen; Lei, Yu; Jia, Yingjie; Li, Na; Wink, Michael; Ma, Yonggang

    2011-12-15

    Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and protect tumor cells. During a screening of MDR reversal agents among alkaloids of various structural types, a piperidine alkaloid, piperine (a main piperidine alkaloid in Piper nigurm) was identified as an inhibitor. Piperine can potentiate the cytotoxicity of anti-cancer drugs in resistant sublines, such as MCF-7/DOX and A-549/DDP, which were derived from MCF-7 and A-549 cell lines. At a concentration of 50 μM piperine could reverse the resistance to doxorubicin 32.16 and 14.14 folds, respectively. It also re-sensitized cells to mitoxantrone 6.98 folds. In addition, long-term treatment of cells by piperine inhibits transcription of the corresponding ABC transporter genes. These results suggest that piperine can reverse MDR by multiple mechanisms and it may be a promising lead compound for future studies. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Mechanism of RPE cell death in α-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux.

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    Full Text Available Absence of α-crystallins (αA and αB in retinal pigment epithelial (RPE cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1 MRP1 mediates GSH and GSSG efflux in RPE cells; 2 MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3 the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.

  10. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    Science.gov (United States)

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. Copyright © 2016 the American Physiological Society.

  11. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    Science.gov (United States)

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    and thermoresistance was investigated in the parental human gastric carcinoma cell line EPG85-257P, the atypical MDR subline EPG85-257RNOV, the classical MDR subline EPG85-257RDB and their thermoresistant counterparts EPG85-257P-TR, EPG85-257RNOV-TR and EPG85-257RDB-TR. Within the atypical MDR subline EPG85-257RNOV...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...

  13. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Although multidrug-resistance-associated protein-1 (MRP1 is a major contributor to multi-drug resistance (MDR, the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs--ARE1 and ARE2--were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC. As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.

  14. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1.

    Science.gov (United States)

    Liang, Zhongxing; Wu, Hui; Xia, James; Li, Yuhua; Zhang, Yawei; Huang, Ke; Wagar, Nicholas; Yoon, Younghyoun; Cho, Heidi T; Scala, Stefania; Shim, Hyunsuk

    2010-03-15

    Multidrug resistance-associated protein (MRP-1/ABCC1) transports a wide range of therapeutic agents and may play a critical role in the development of multidrug resistance (MDR) in tumor cells. However, the regulation of MRP-1 remains controversial. To explore whether miRNAs are involved in the regulation of MRP-1 expression and modulate the sensitivity of tumor cells to chemotherapeutic agents, we analyzed miRNA expression levels in VP-16-resistant MDR cell line, MCF-7/VP, in comparison with its parent cell line, MCF-7, using a miRNA microarray. MCF-7/VP overexpressed MRP-1 mRNA and protein not MDR-1 and BCRP. miR-326 was downregulated in MCF-7/VP compared to MCF-7. Additionally, miR-326 was downregulated in a panel of advanced breast cancer tissues and consistent reversely with expression levels of MRP-1. Furthermore, the elevated levels of miR-326 in the mimics-transfected VP-16-resistant cell line, MCF-7/VP, downregulated MRP-1 expression and sensitized these cells to VP-16 and doxorubicin. These findings demonstrate for the first time the involvement of miRNAs in multidrug resistance mediated by MRP-1 and suggest that miR-326 may be an efficient agent for preventing and reversing MDR in tumor cells. Copyright 2009 Elsevier Inc. All rights reserved.

  15. P-gp and MRP1 Expression in Parathyroid Tumors Related to Histology, Weight and Tc-99m-Sestamibi Imaging Results

    NARCIS (Netherlands)

    Jorna, F. H.; Hollema, H.; Hendrikse, H. N.; Bart, J.; Brouwers, A. H.; Plukker, J. T. M.

    Objective: P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) are membrane efflux pumps that may have a role in the kinetics of Tc-99m-sestamibi (MIBI) in parathyroid tumors. P-gp and MRP1 expression in parathyroid tumors was studied and related to histology, weight and pre- and

  16. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  17. Dual-phase 99mTc-MIBI imaging and the expressions of P-gp, GST-π, and MRP1 in hyperparathyroidism.

    Science.gov (United States)

    Xue, Jianjun; Liu, Yan; Yang, Danrong; Yu, Yan; Geng, Qianqian; Ji, Ting; Yang, Lulu; Wang, Qi; Wang, Yuanbo; Lu, Xueni; Yang, Aimin

    2017-10-01

    The aim of this study was to further elucidate the mechanisms of dual-phase technetium-99m methoxyisobutylisonitrile (Tc-MIBI) parathyroid imaging by exploring the association between early uptake results (EUR), delayed uptake results (DUR), and the retention index (RI) in dual-phase Tc-MIBI parathyroid imaging and P glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and glutathione S-transferase-π (GST-π) expression in hyperparathyroidism (HPT). Preoperative dual-phase (early and delayed) Tc-MIBI imaging was performed on 74 patients undergoing parathyroidectomy for HPT. EUR, DUR, and RI were calculated. P-gp, MRP1, and GST-π expressions were assessed using immunohistochemistry in resected tissue from HPT and control patients. The association between P-gp, MRP1, and GST-π expressions and EUR, DUR, and RI in HPT was evaluated. The positive rate of dual-phase T c-MIBI imaging was 91.89% (68/74) and the false-negative rate was 8.11% (6/74). P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients (47.37 and 81.5%, P<0.05); there was no difference in MRP1. EUR were associated with P-gp and GST-π expressions, and DUR were associated with MRP1 expression. There was a significant difference in MRP1 expression between RI greater than or equal to 0 and RI less than 0. There was no relationship between the sensitivity of dual-phase Tc-MIBI imaging and P-gp, MRP1, and GST-π expressions in resected parathyroid tissue. The six false-negative HPT cases consisted of three P-gp (-)/MRP1 (-) tissues, three P-gp (-)/GST-π (-) tissues, and four MRP1 (-)/GST-π (-) tissues. As P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients, Tc-MIBI may wash out faster from normal parathyroid tissue surrounding the lesion compared with the lesion itself, facilitating detection.

  18. Study of peripheral blood multidrug resistance-associated protein 1 expression of children intractable epilepsy.

    Science.gov (United States)

    Yue, Xuan; Liu, Xiaoming; Chen, Shengzhi; Li, Rui

    2018-04-01

    The aim of this study was to analyze multidrug resistance-associated protein 1 (MRP1) expression of peripheral blood of children intractable epilepsy. Sixty children with epilepsy admitted to outpatient and inpatient services of Xuzhou Children's Hospital between November 2010 and October 2011 were divided into a refractory epilepsy group and a drug-controlled epilepsy group, with 30 cases each. Thirty healthy children who went to the hospital in the same year for health examination were enrolled as a control group. Reverse transcriptase polymerase chain reaction and Western blot method were used to determine peripheral blood MRP1 level, mRNA, and protein content of the 3 groups. MRP1 expression in the refractory epilepsy group was significantly higher than those of the epilepsy group with good drug control and of the control group. All differences had statistical significance (P0.05). Peripheral blood MRP1 expression in patients with refractory epilepsy increases.

  19. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  20. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein.

    Science.gov (United States)

    Stefan, Katja; Schmitt, Sven Marcel; Wiese, Michael

    2017-11-09

    P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.

  1. Nucleotide sequence analyses of the MRP1 gene in four populations suggest negative selection on its coding region

    Directory of Open Access Journals (Sweden)

    Ryan Stephen

    2006-05-01

    Full Text Available Abstract Background The MRP1 gene encodes the 190 kDa multidrug resistance-associated protein 1 (MRP1/ABCC1 and effluxes diverse drugs and xenobiotics. Sequence variations within this gene might account for differences in drug response in different individuals. To facilitate association studies of this gene with diseases and/or drug response, exons and flanking introns of MRP1 were screened for polymorphisms in 142 DNA samples from four different populations. Results Seventy-one polymorphisms, including 60 biallelic single nucleotide polymorphisms (SNPs, ten insertions/deletions (indel and one short tandem repeat (STR were identified. Thirty-four of these polymorphisms have not been previously reported. Interestingly, the STR polymorphism at the 5' untranslated region (5'UTR occurs at high but different frequencies in the different populations. Frequencies of common polymorphisms in our populations were comparable to those of similar populations in HAPMAP or Perlegen. Nucleotide diversity indices indicated that the coding region of MRP1 may have undergone negative selection or recent population expansion. SNPs E10/1299 G>T (R433S and E16/2012 G>T (G671V which occur at low frequency in only one or two of four populations examined were predicted to be functionally deleterious and hence are likely to be under negative selection. Conclusion Through in silico approaches, we identified two rare SNPs that are potentially negatively selected. These SNPs may be useful for studies associating this gene with rare events including adverse drug reactions.

  2. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation

    International Nuclear Information System (INIS)

    Li, Xinxing; Wang, Haolu; Wang, Juan; Chen, Yuying; Yin, Xiaobin; Shi, Guiying; Li, Hui; Hu, Zhiqian; Liang, Xiaowen

    2016-01-01

    Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer. The online version of this article (doi:10.1186/s12885-016-2640-3) contains supplementary material, which is

  3. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation.

    Science.gov (United States)

    Li, Xinxing; Wang, Haolu; Wang, Juan; Chen, Yuying; Yin, Xiaobin; Shi, Guiying; Li, Hui; Hu, Zhiqian; Liang, Xiaowen

    2016-08-02

    Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer.

  4. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16.

    Science.gov (United States)

    Yang, Hua; Yao, Jun; Yin, Jiangpin; Wei, Xuan

    2016-05-01

    The leucine-rich repeats and immunoglobulin-like domains (LRIG) are used as tumor suppressors in clinical applications. Although the LRIG has been identified to manipulate the cell proliferation via various oncogenic receptor tyrosine kinases in diverse cancers, its role in multidrug resistance needs to be further elucidated, especially in human ovarian cancer. We herein established that the etoposide (VP16)-resistant SKOV3 human ovarian cancer cell clones (SKOV3/VP16 cells) and mRNA expression of LRIG1 were significantly reduced by the treatment of VP16 in a concentration-dependent manner. Moreover, downregulated LRIG1 in SKOV3 could enhance the colony formation and resist the inhibition of proliferation by VP16, leading to the elevated expression of Bcl-2 and decreased apoptosis of SKOV3. Interestingly, our results uncovered that the multidrug resistance-associated protein 1 (MRP-1) was upregulated for the chemoresistance of VP16. To overcome the chemoresistance of SKOV3, SKOV3/VP16 was ectopically expressed of LRIG1. We found that the inhibition of VP16 on colony formation and proliferation was remarkably enhanced with increased apoptosis in SKOV3/VP16. Furthermore, the expression of MRP-1 and Bcl-2 was also inhibited, suggesting that the LRIG1could negatively control MRP-1 and the apoptosis to improve the sensitivity of VP16-related chemotherapy.

  5. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  6. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin

    DEFF Research Database (Denmark)

    Beedholm-Ebsen, Rasmus; van de Wetering, Koen; Hardlei, Tore

    2010-01-01

    Cobalamin (Cbl, vitamin B(12)) deficiency in humans is a cause of hematologic and neurologic disorders. We show here that the cellular export of Cbl, in contrast to the carrier- and receptor-dependent cellular import of Cbl, occurs by transmembrane transport of "free" Cbl. Screening of candidate...

  7. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3)

    NARCIS (Netherlands)

    Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J. H.; Borst, P.

    2001-01-01

    We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones

  8. Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells

    NARCIS (Netherlands)

    Roelofsen, H; Vos, TA; Schippers, IJ; Kuipers, F; Moshage, H; Jansen, PLM; Muller, M

    Background & Aims: The multidrug resistance protein (MRP) functions as an organic anion efflux carrier. Recent studies suggest that hepatocytes contain two mrp homologues, named mrp1 and mrp2, localized on the lateral and canalicular membrane, respectively. The aim of this study was to evaluate the

  9. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  10. Expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder.

    Science.gov (United States)

    Ai, Xing; Zhang, Xu; Wu, Zhun; Ma, Xin; Ju, Zhenghua; Wang, Baojun; Shi, Taoping

    2007-02-01

    The expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder (TCCB) and its clinical significance were investigated. Immunohistochemistry was used to detect KAI1/CD82 and MRP-1/CD9 protein expression in 52 TCCB specimens. Correlation between the expression of KAI1/CD82 and MRP-1/CD9 to clinicopathologic factors was statistically analyzed. The results showed that the positive rate of KAI1/CD82 and MRP-1/CD9 in TCCB was 50% and 61.5%, respectively. The MRP-1/CD9 and KAI1/CD82 expression was significantly associated with grade of TCCB (PMRP-1/CD9 or KAI1/CD82 expression and clinical stage of TCCB (P>0.05). The expression level of MRP-1/CD9 and KAI1/CD82 in recurrent TCCB samples was lower than that in non-recurrent samples (PMRP-1/CD9 expression was statistically significant (r=0.316, PMRP-1/CD9 expression may be important prognostic indicators and potentially useful for assessing the biological behavior of TCCB.

  11. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an

  12. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  13. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  14. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  15. Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane.

    NARCIS (Netherlands)

    Kavishe, R.A.; Heuvel, J.M.W. van den; Vegte-Bolmer, M.G. van de; Luty, A.J.F.; Russel, F.G.M.; Koenderink, J.B.

    2009-01-01

    BACKGROUND: The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding

  16. Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats.

    Science.gov (United States)

    Zhu, Qiong-Ni; Hou, Wei-Yu; Xu, Shang-Fu; Lu, Yuan-Fu; Liu, Jie

    2017-02-01

    Multidrug resistance proteins (Mrps) are efflux transporters playing important roles in endogenous substances and xenobiotics transport out of the liver. Children, elderly, gender and physio-pathological conditions could influence their expression and result in changes in drug disposition. This study was aimed to examine the development-, aging-, and sex-dependent changes in Mrp1-4 and ATP-binding cassette sub-family G member 2 (Abcg2) gene expressions in livers of rats. The livers from male and female SD rats at development (-2, 1,7,14,21,28,35, and 60d) and aging (28, 60, 180 and 540d) were collected and total RNA was isolated, purified and subjected to real-time RT-PCR analysis. Results showed that expression of Mrp1 was low, while Abcg2 and Mrp2 were the high in the liver. Mrp1 expression decreased with maturity but remained constant to 540d, while Mrp3 and 4 increased with liver development, reached the peak with maturity at 35-60days of age, and slightly reduced with aging. Mrp2 and Abcg2 were high at 7days of age and maintained at relative high levels till maturity, while Abcg2 was reduced during aging. Females had higher Mrp3 and Abcg2 mRNA expression than male rats, while male rats had higher Mrp2 and Mrp4 mRNA expression. The expression of hepatic Mrp1-4 and Abcg2 mRNA during development, aging in male and female rats was characterized, which could be fundamental to our understanding of age- and sex-associated variations in drug disposition in children, elderly, and women. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of Glycyrrhetinic Acid on GSH Synthesis Induced by Realgar in the Mouse Hippocampus: Involvement of System [Formula: see text], System [Formula: see text], MRP-1, and Nrf2.

    Science.gov (United States)

    Wang, Yan-Lei; Chen, Mo; Huo, Tao-Guang; Zhang, Ying-Hua; Fang, Ying; Feng, Cong; Wang, Shou-Yun; Jiang, Hong

    2017-05-01

    Realgar, a type of mineral drug-containing arsenic, exhibits neurotoxicity. Brain glutathione (GSH) is crucial to protect the nervous system and to resist arsenic toxicity. Therefore, the main aim of this study was to explore the neurotoxic mechanisms of realgar and the protective effects of glycyrrhetinic acid (GA) by observing the effects of GA on the hippocampal GSH biosynthetic pathway after exposure to realgar. Institute of Cancer Research (ICR) mice were randomly divided into five groups: a control group, a GA control group, a realgar alone group, a low-dose GA intervention group, and a high-dose GA intervention group. Cognitive ability was tested using an object recognition task (ORT). The ultrastructures of the hippocampal neurons and synapses were observed. mRNA and protein levels of EAAT1, EAAT2, EAAT3, xCT, Nrf2, HO-1, γ-GCS (GCLC, GCLM), and MRP-1 were measured, as was the cellular localization of EAAT3, xCT, MRP-1, and Nrf2. The levels of GSH in the hippocampus, the levels of glutamate (Glu) and cysteine (Cys) in the extracellular fluid of hippocampal CA1 region, and the levels of active sulfur in the brain were also investigated. The results indicate that realgar lowered hippocampal GSH levels, resulting in ultrastructural changes in hippocampal neurons and synapses and deficiencies in cognitive ability, ultimately inducing neurotoxicity. GA could trigger the expression of Nrf2, HO-1, EAAT1, EAAT2, EAAT3, xCT, MRP-1, GCLC, and GCLM. Additionally, the expression of γ-GT and the supply levels of Glu and Cys increased, ultimately causing a significant increase in hippocampal GSH to alleviate realgar-induced neurotoxicity. In conclusion, the findings from our study indicate that GA can antagonize decreased brain GSH levels induced by realgar and can lessen the neurotoxicity of realgar.

  18. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2001-01-01

    activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of irradiation...

  19. The Amelioration of N-Acetyl-p-Benzoquinone Imine Toxicity by Ginsenoside Rg3: The Role of Nrf2-Mediated Detoxification and Mrp1/Mrp3 Transports

    Directory of Open Access Journals (Sweden)

    Sang Il Gum

    2013-01-01

    Full Text Available Previously, we found that Korean red ginseng suppressed acetaminophen (APAP-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI, a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL, the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.

  20. Effects of realgar on GSH synthesis in the mouse hippocampus: Involvement of system XAG(-), system XC(-), MRP-1 and Nrf2.

    Science.gov (United States)

    Wang, Yanlei; Chen, Mo; Zhang, Yinghua; Huo, Taoguang; Fang, Ying; Jiao, Xuexin; Yuan, Mingmei; Jiang, Hong

    2016-10-01

    Realgar is a type of mineral drug that contains arsenic and has neurotoxicity. Glutathione (GSH), which is the main antioxidant in the central nervous system, plays a key role in antioxidant defenses and the detoxification of arsenic. However, whether realgar interferes with the synthesis of GSH in the brain and the molecular mechanisms underlying its effects are largely unknown. Here, we used mouse models of exposure to realgar to show that realgar affects the synthesis of GSH in the hippocampus, leading to ultrastructural changes in hippocampal neurons and synapses and deficiencies in cognitive abilities, and that the mechanisms that cause this effect may be associated with alterations in the expression of system XAG(-), system XC(-), multidrug resistance-associated protein 1(MRP-1), nuclear factor E2-related factor 2 (Nrf2), γ-glutamylcysteine synthetase (γ-GCS), and the levels of glutamate (Glu) and cysteine (Cys) in the extracellular fluid. These findings provide a theoretical basis for preventing the drug-induced chronic arsenic poisoning in the nervous system that is triggered by realgar. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  2. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna

    NARCIS (Netherlands)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L.; Grysan, Patrick; Audinot, Jean Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C.; Murk, A.J.

    2016-01-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR).

  3. Role of MRP-1 and GST-Pi in MDR and their inhibition by ...

    African Journals Online (AJOL)

    Background: MDR continues to be a major challenge to effective chemotherapeutic interventions against cancer. Defining major factor contributing to MDR and inhibiting their action may thus be used for reversing MDR. Aim: This work aimed to evaluate the role played by MRP-1 and GST-Pi in MDR, and to explore the ...

  4. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  5. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition.

    OpenAIRE

    Gelsomino, G; Gazzano, E

    2013-01-01

    Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the respo...

  6. Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo.

    Science.gov (United States)

    Bouvy, Céline; Wannez, Adeline; Laloy, Julie; Chatelain, Christian; Dogné, Jean-Michel

    2017-11-01

    The treatment of acute leukemia is still challenging due in part to the development of resistance and relapse. This chemotherapeutics resistance is established by clonal selection of resistant variants of the cancer cells. Recently, a horizontal transfer of chemo-resistance among cancer cells via extracellular vesicles (EVs) has been suggested. The aim of this research was to investigate the role of EVs in chemo-resistance in acute myeloid leukemia. For this purpose, the sensitive strain of the promyelocytic leukemia HL60 cell line was studied along with its multi-resistant strain, HL60/AR that overexpresses the multidrug resistance protein 1 (MRP-1). A chemo-resistance transfer between the two strains was established by treating HL60 cells with EVs generated by HL60/AR. This study reveals that EVs from HL60/AR can interact with HL60 cells and transfer at least partially, their chemo-resistance. EVs-treated cells begin to express MRP-1 probably due to a direct transfer of MRP-1 and nucleic acids transported by EVs. In this context, two microRNAs were highlighted for their high differential expression in EVs related to sensitive or chemo-resistant cells: miR-19b and miR-20a. Because circulating microRNAs are found in all biological fluids, these results bring out their potential clinical use as chemo-resistance biomarkers in acute myeloid leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multidrug-resistance proteins are weak tumor associated antigens for colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Linnebacher Michael

    2011-07-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a clinically, highly relevant phenomenon. Under chemotherapy many tumors show an increasing resistance towards the applied substance(s and to a certain extent also towards other agents. An important molecular cause of this phenomenon is an increased expression of transporter proteins. The functional relationship between high expression levels and chemotherapy resistance makes these MDR and MRP (MDR related protein proteins to interesting therapeutic targets. We here wanted to systematically analyze, whether these proteins are tumor specific antigens which could be targeted immunologically. Results Using the reverse immunology approach, 30 HLA-A2.1 restricted MDR and MRP derived peptides (MDP were selected. Stimulated T cell lines grew well and mainly contained activated CD8+ cells. Peptide specificity and HLA-A2.1 restriction were proven in IFN-γ-ELISpot analyses and in cytotoxicity tests against MDP loaded target cells for a total of twelve peptides derived from MDR-1, MDR-3, MRP-1, MRP-2, MRP-3 and MRP-5. Of note, two of these epitopes are shared between MDR-1 and MDR-3 as well as MRP-2 and MRP-3. However, comparably weak cytotoxic activities were additionally observed against HLA-A2.1+ tumor cells even after upregulation of MDR protein expression by in vitro chemotherapy. Conclusions Taken together, these data demonstrate that human T cells can be sensitised towards MDPs and hence, there is no absolute immunological tolerance. However, our data also hint towards rather low endogenous tumor cell processing and presentation of MDPs in the context of HLA-A2.1 molecules. Consequently, we conclude that MDR and MRP proteins must be considered as weak tumor specific antigens-at least for colorectal carcinoma. Their direct contribution to therapy-failure implies however, that it is worth to further pursue this approach.

  8. Crystal structures of Trypanosoma brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism

    Czech Academy of Sciences Publication Activity Database

    Schumacher, M. A.; Karamooz, E.; Zíková, Alena; Trantírek, Lukáš; Lukeš, Julius

    2006-01-01

    Roč. 126, č. 4 (2006), s. 701-711 ISSN 0092-8674 R&D Projects: GA ČR GP204/04/P191 Grant - others:National Institutes of Health(US) 5R03TW6445; Burroughs Wellcome Career Development Award(US) 992863 Institutional research plan: CEZ:AV0Z60220518 Keywords : MRP 1/ MRP 2 * structure * RNA matchmaker Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.194, year: 2006

  9. Reporter Dyes Demonstrate Functional Expression of Multidrug Resistance Proteins in the Marine Flatworm Macrostomum lignano: The Sponge-Derived Dye Ageladine A Is Not a Substrate of These Transporters

    Directory of Open Access Journals (Sweden)

    Ulf Bickmeyer

    2013-10-01

    Full Text Available The marine plathyhelminth Macrostomum lignano was recently isolated from Adriatic shore sediments where it experiences a wide variety of environmental challenges, ranging from hypoxia and reoxygenation, feeding on toxic algae, to exposure to anthropogenic contaminants. As multidrug resistance transporters constitute the first line of defense against toxins and toxicants we have studied the presence of such transporters in M. lignano in living animals by applying optical methods and pharmacological inhibitors that had been developed for mammalian cells. Application of the MDR1 inhibitor Verapamil or of the MRP1 inhibitors MK571 or Probenecid increased the intracellular fluorescence of the reporter dyes Fura-2 am, Calcein am, Fluo-3 am in the worms, but did not affect their staining with the dyes Rhodamine B, CMFDA or Ageladine A. The marine sponge alkaloid Ageladine A remained intracellularly trapped for several days in the worms, suggesting that it does not serve as substrate of multidrug resistance exporters. In addition, Ageladine A did not affect multidrug resistance-associated protein (MRP-mediated dye export from M. lignano or the MRP1-mediated glutathione (GSH export from cultured rat brain astrocytes. The data obtained demonstrate that life-imaging is a useful tool to address physiological drug export from intact marine transparent flatworms by using multiphoton scanning microscopy.

  10. Reporter dyes demonstrate functional expression of multidrug resistance proteins in the marine flatworm Macrostomum lignano: the sponge-derived dye Ageladine A is not a substrate of these transporters.

    Science.gov (United States)

    Tietje, Kristin; Rivera-Ingraham, Georgina; Petters, Charlotte; Abele, Doris; Dringen, Ralf; Bickmeyer, Ulf

    2013-10-16

    The marine plathyhelminth Macrostomum lignano was recently isolated from Adriatic shore sediments where it experiences a wide variety of environmental challenges, ranging from hypoxia and reoxygenation, feeding on toxic algae, to exposure to anthropogenic contaminants. As multidrug resistance transporters constitute the first line of defense against toxins and toxicants we have studied the presence of such transporters in M. lignano in living animals by applying optical methods and pharmacological inhibitors that had been developed for mammalian cells. Application of the MDR1 inhibitor Verapamil or of the MRP1 inhibitors MK571 or Probenecid increased the intracellular fluorescence of the reporter dyes Fura-2 am, Calcein am, Fluo-3 am in the worms, but did not affect their staining with the dyes Rhodamine B, CMFDA or Ageladine A. The marine sponge alkaloid Ageladine A remained intracellularly trapped for several days in the worms, suggesting that it does not serve as substrate of multidrug resistance exporters. In addition, Ageladine A did not affect multidrug resistance-associated protein (MRP)-mediated dye export from M. lignano or the MRP1-mediated glutathione (GSH) export from cultured rat brain astrocytes. The data obtained demonstrate that life-imaging is a useful tool to address physiological drug export from intact marine transparent flatworms by using multiphoton scanning microscopy.

  11. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs

    Science.gov (United States)

    Reid, Glen; Wielinga, Peter; Zelcer, Noam; van der Heijden, Ingrid; Kuil, Annemieke; de Haas, Marcel; Wijnholds, Jan; Borst, Piet

    2003-01-01

    Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the ATP-binding cassette (ABC) transporter ABCC [multidrug resistance protein (MRP)] family of membrane export pumps. In inside-out membrane vesicles derived from insect cells or HEK293 cells, MRP4 catalyzed the time- and ATP-dependent uptake of prostaglandin E1 (PGE1) and PGE2. In contrast, MRP1, MRP2, MRP3, and MRP5 did not transport PGE1 or PGE2. The MRP4-mediated transport of PGE1 and PGE2 displayed saturation kinetics, with Km values of 2.1 and 3.4 μM, respectively. Further studies showed that PGF1α, PGF2α, PGA1, and thromboxane B2 were high-affinity inhibitors (and therefore presumably substrates) of MRP4. Furthermore, several nonsteroidal antiinflammatory drugs were potent inhibitors of MRP4 at concentrations that did not inhibit MRP1. In cells expressing the prostaglandin transporter PGT, the steady-state accumulation of PGE1 and PGE2 was reduced proportional to MRP4 expression. Inhibition of MRP4 by an MRP4-specific RNA interference construct or by indomethacin reversed this accumulation deficit. Together, these data suggest that MRP4 can release prostaglandins from cells, and that, in addition to inhibiting prostaglandin synthesis, some nonsteroidal antiinflammatory drugs might also act by inhibiting this release. PMID:12835412

  12. Immunohistochemical detection of MDR proteins in Wilms' tumour.

    Science.gov (United States)

    Hodorova, I; Rybarova, S; Vecanova, J; Plank, L; Kluchova, D

    2008-01-01

    The aim of our work was to determine the expression of three MDR proteins (MDR1/Pgp, MRP1 and LRP/MVP) in 15 tissue samples of nephroblastoma (Wilms' tumour). The majority of Wilms' tumours respond well to chemotherapy and are successfully cured, but a small subset displays resistance to therapy. The molecular mechanisms of drug resistance in this tumour type of childhood are still poorly analyzed. In our opinion, the elucidation of reasons for therapy failure in nephroblastomas is urgently needed before cure becomes a reality for children with this cancer. To demonstrate these proteins the enzyme indirect immunohistochemical method was used. The brown colour of the diaminobenzidine reaction product allowed us to define the distribution of stain clearly. Our immunohistochemical analysis did not demonstrate any expression of MDR1 in all cases of nephroblastoma (14 cases were after pre-operative chemotherapy, 1 case wasn't). The analysis of MRP1 and LRP expression in our set revealed 60% positivity for MRP1 and 26.7% positivity for LRP. The ability to recognize the multidrug resistance phenotype might assist in choosing specific chemotherapeutic regimens to improve prognosis and therapy (Tab. 2, Fig. 2, Ref. 20). Full Text (Free, PDF) www.bmj.sk.

  13. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Keshet, Alex; Mertenskötter, Ansgar; Winter, Sarah A; Brinkmann, Vanessa; Dölling, Ramona; Paul, Rüdiger J

    2017-12-01

    The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.

  14. Diversity in fosfomycin resistance proteins

    Directory of Open Access Journals (Sweden)

    Matthew K. Thompson

    2015-03-01

    Full Text Available Certain strains of the soil microorganism Streptomyces produce an antibiotic, fosfomycin [(1 R,2 S-epoxypropylphosphonic acid], which is effective against both Gram-positive and Gram-negative pathogens by inhibiting the first committed step in cell-wall biosynthesis. Fosfomycin resistance proteins are metallo-enzymes that are known to inactivate the antibiotic by the addition of nucleophiles such as water, glutathione (GSH, l-cysteine and bacillithiol (BSH to the oxirane ring of the molecule. Progress in the characterisation of FosB-type fosfomycin resistance proteins found in many Gram-positive organisms has been slow. This paper provides a brief description of the diversity of fosfomycin resistance proteins in general and, more specifically, new data characterising the substrate selectivity, structure, mechanism and metal-ion dependence of FosB enzymes from pathogenic strains of Staphylococcus and Bacillus. These new findings include the high-resolution X-ray diffraction structures of FosB enzymes from Staphylococcus aureus and Bacillus cereus in various liganded states and kinetic data that suggest that Mn(II and BSH are the preferred divalent cation and thiol substrate for the reaction, respectively. The discovery of the inhibition of the enzyme by Zn(II led to the determination of a ternary structure of the FosB·Zn(II·fosfomycin·l-Cys complex which reveals both substrates present in a pose prior to reaction.

  15. Reversal of cisplatin resistance in non-small cell lung cancer stem cells by Taxus chinensis var.

    Science.gov (United States)

    Jiang, Y Q; Xu, X P; Guo, Q M; Xu, X C; Liu, Q Y; An, S H; Xu, J L; Su, F; Tai, J B

    2016-09-02

    Drug resistance in cells is a major impedance to successful treatment of lung cancer. Taxus chinensis var. inhibits the growth of tumor cells and promotes the synthesis of interleukins 1 and 2 and tumor necrosis factor, enhancing immune function. In this study, T. chinensis var.-induced cell death was analyzed in lung cancer cells (H460) enriched for stem cell growth in a defined serum-free medium. Taxus-treated stem cells were also analyzed for Rhodamine 123 (Rh-123) expression by flow cytometry, and used as a standard functional indicator of MDR. The molecular basis of T. chinensis var.-mediated drug resistance was established by real-time PCR analysis of ABCC1, ABCB1, and lung resistance-related protein (LRP) mRNA, and western blot analysis of MRP1, MDR1, and LRP. Our results revealed that stem cells treated with higher doses of T. chinensis var. showed significantly lower growth inhibition rates than did H460 cells (P var. and cisplatin was also significantly inhibited (P var. (P var.-treated stem cells showed significant downregulation of the ABCC1, ABCB1, and LRP mRNA and MRP1, MDR1, and LRP (P var.-mediated downregulation of MRP1, MDR1, and LRP might contribute to the reversal of drug resistance in non-small cell lung cancer stem cells.

  16. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster.

    Science.gov (United States)

    Gellatly, Kyle J; Yoon, Kyong Sup; Doherty, Jeffery J; Sun, Weilin; Pittendrigh, Barry R; Clark, J Marshall

    2015-06-01

    4,4'-dichlorodiphenyltrichloroethane (DDT) has been re-recommended by the World Health Organization for malaria mosquito control. Previous DDT use has resulted in resistance, and with continued use resistance will increase in terms of level and extent. Drosophila melanogaster is a model dipteran that has many available genetic tools, numerous studies done on insecticide resistance mechanisms, and is related to malaria mosquitoes allowing for extrapolation. The 91-R strain of D. melanogaster is highly resistant to DDT (>1500-fold), however, there is no mechanistic scheme that accounts for this level of resistance. Recently, reduced penetration, increased detoxification, and direct excretion have been identified as resistance mechanisms in the 91-R strain. Their interactions, however, remain unclear. Use of UAS-RNAi transgenic lines of D. melanogaster allowed for the targeted knockdown of genes putatively involved in DDT resistance and has validated the role of several cuticular proteins (Cyp4g1 and Lcp1), cytochrome P450 monooxygenases (Cyp6g1 and Cyp12d1), and ATP binding cassette transporters (Mdr50, Mdr65, and Mrp1) involved in DDT resistance. Further, increased sensitivity to DDT in the 91-R strain after intra-abdominal dsRNA injection for Mdr50, Mdr65, and Mrp1 was determined by a DDT contact bioassay, directly implicating these genes in DDT efflux and resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differential expression of sphingolipids in MRP1 overexpressing HT29 cells

    NARCIS (Netherlands)

    Kok, JW; Veldman, Robert; Klappe, K; Koning, H; Filipeanu, Catalin M.; Muller, Michael

    2000-01-01

    We have obtained a novel multidrug resistant cell line, derived from HT29 G(+) human colon carcinoma cells, by selection with gradually increasing concentrations of the anti-mitotic, microtubule-disrupting agent colchicine. This HT29(col) cell line displayed a 25-fold increase in colchicine

  18. Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase.

    Science.gov (United States)

    Sugawara, Shigeki; Hosono, Masahiro; Ogawa, Yukiko; Takayanagi, Motoaki; Nitta, Kazuo

    2005-03-01

    Rhamnose-binding lectin from catfish (Silurus asotus) eggs (SAL) has the ability to induce externalization of phosphatidylserine (PS), followed by cell shrinkage in globotriaosylceramide (Gb3)-expressing Burkitt's lymphoma Raji cells. Because phospholipid scramblase and aminophospholipid translocase did not participate in SAL-induced PS externalization, we examined the relationship of ATP-binding cassette (ABC) transporters, such as multidrug resistance (MDR) 1 P-glycoprotein (MDR1 P-gp) and MDR-associated protein 1 (MRP1), for translocation of PS. Since cyclosporin A (MDR1 P-gp inhibitor) but not MK571 (MRP1 inhibitor) inhibited SAL-induced PS externalization, it was suggested that MDR1 P-gp is involved in this phenomenon. On the other hand, SAL activated both of the ABC transporters for efflux of rhodamine123 (MDR1 P-gp substrate, Rho123) and 5-carboxyfluorescein diacetate (MRP1 substrate, 5-CFDA) in Raji cells. In contrast, SAL did not activate these two transporters in Gb3-negative cell lines, such as K562 and doxorubicin-resistant K562 cells, involving not only PS externalization but also efflux of Rho123 or 5-CFDA. Since Gb3 and both transporters in Raji cells are located in the glycosphingolipid-enriched microdomain (GEM), it is suggested that the binding of SAL to Gb3 localized in the GEM specifically induces MDR1 P-gp activation in Raji cells.

  19. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Dönmez, Yaprak; Gündüz, Ufuk

    2011-03-01

    Resistance to anticancer drugs is a serious obstacle to cancer chemotherapy. A common form of multidrug resistance (MDR) is caused by the overexpression of transmembrane transporter proteins P-glycoprotein (P-gp) and multidrug resistance-associated protein-1 (MRP1), encoded by MDR1 and MRP1 genes, respectively. These proteins lead to reduced intracellular drug concentration and decreased cytotoxicity by means of their ability to pump the drugs out of the cells. Breast cancer tumor resistance is mainly associated with overexpression of P-gp/MDR1. Although some chemical MDR modulators aim to overcome MDR by interfering functioning of P-gp, their toxicities limit their usage in clinics. Consequently, RNA interference mediated sequence specific inhibition of the expression of P-gp/MDR1 mRNA may be an efficient tool to reverse MDR phenotype and increase the success of chemotherapy. Aim of this study was resensitizing doxorubicin-resistant breast cancer cells to anticancer agent doxorubicin by selective downregulation of P-gp/MDR1 mRNA. The effect of the selected MDR1 siRNA, and MRP1 expression after MDR1 silencing was determined by qPCR analysis. Intracellular drug accumulation and localization was investigated by confocal laser scanning microscopy after treatment with MDR1 siRNA. XTT cell proliferation assay was performed to determine the effect of MDR1 silencing on doxorubicin sensitivity. The results demonstrated that approximately 90% gene silencing occurred by the selected siRNA targeting MDR1 mRNA. However, the level of MRP1 mRNA did not change after MDR1 downregulation. Silencing of P-gp encoding MDR1 gene resulted in almost complete restoration of the intracellular doxorubicin accumulation and relocalization of the drug in the nuclei. Introduction of siRNA resulted in about 70% resensitization to doxorubicin. Selected siRNA duplex was shown to effectively inhibit MDR1 gene expression, restore doxorubicin accumulation and localization, and enhance

  20. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Manasi Das

    Full Text Available Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined and single or dual drug loaded nanoparticles (unconjugated/folate conjugated. The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype.

  1. Modulation of the mRNA-binding protein HuR as a novel reversal mechanism of epirubicin-triggered multidrug resistance in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Guan-Liang Lin

    Full Text Available HuR (ELAVL1, a RNA-binding protein, plays a key role in posttranscriptional regulation of multidrug resistance (MDR-related genes. Among various HuR-regulated oncogenic transcripts, the activation of galectin-3/β-catenin survival pathway is critical to induce transcription of cyclin D1, P-glycoprotein (P-gp and/or multidrug resistance-associated proteins (MRPs. In this study, we aim to elucidate the HuR-regulating pathways related to epirubicin-mediated resistance in human colorectal carcinoma cells. The effects and mechanisms of epirubicin treatment on the expressions of upstream survival signals (e.g., β-catenin and downstream MDR transporters (e.g., P-gp and anti-apoptotic pathways (e.g., Bcl-2 were assessed with or without HuR knockdown (siHuR or overexpression (overHuR; ectopic HuR or pcDNA3/HA-HuR. Our results showed that siHuR decreased transcriptional expressions of galectin-3, β-catenin, cyclin D1, Bcl-2, P-gp, MRP1, and MRP2 in epirubicin-treated colon cancer cells. Consistently, the co-treatment of epirubicin and siHuR diminished the expressions of galectin-3, ß-catenin, c-Myc, P-gp and MRP1. HuR silencing enhanced the intracellular accumulation of epirubicin in colon cancer cells. On the other hand, overHuR abolished such effects. Furthermore, siHuR significantly intensified epirubicin-mediated apoptosis via increasing reactive oxygen species and thus promoted the cytotoxic effect of epirubicin. The combined treatments of siHuR and epirubicin significantly reduced the expression of Bcl-2, but increased the expression of Bax, as well as activity and expression levels of caspase-3 and -9. In contrast, overHuR abrogated these effects. Our findings provide insight into the mechanisms by which siHuR potentiated epirubicin-induced cytotoxicity via inhibiting galectin-3/β-catenin signaling, suppressing MDR transporters and provoking apoptosis. To our best knowledge, this is an innovative investigation linking the post

  2. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  3. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden); Johansson, Anders [Department of Odontology, Umeå University, S-901 85 Umea (Sweden); Karlsson, Terese [Department of Radiation Sciences, Oncology, S-901 85 Umea (Sweden); Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden)

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  4. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Huiqin Guo

    2012-10-01

    Full Text Available The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp, ABCC1/multidrug resistance protein 1 (MRP1 and ABCG2/breast cancer resistance protein (BCRP. These transporters are part of the ATP-binding cassette (ABC superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker and cyclosporin A (immunosuppressive agent, etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.

  5. [Establishment of 5 resistant ovarian cancer cell strains and expression of resistance-related genes].

    Science.gov (United States)

    Luan, Ying-zi; Li, Li; Li, Dang-rong; Zhang, Wei; Tang, Bu-jian

    2004-06-01

    To investigate expression difference of several drug resistance related genes between sensitive and resistant ovarian carcinoma cells. Cell lines resistant to cisplatin, carboplatin and taxol were established from ovarian carcinoma cell lines of SKOV3 and A2780, and their biological features were detected. The expressions of several genes related to drug resistance were measured by RT-PCR method. (1) The values of resistance index (RI) of resistant cells to relevant drugs were elevated 3 times or more, with different degrees of cross-resistance to several other drugs (RI 2 approximately 20). They grew more slowly than primary cells (Td elongated 1.4 approximately 2.4 times, P 0.05). Intracellular concentrations of relevant drugs were reduced 2.0 approximately 8.5 times in resistant cells (P p53, lung resistance protein-1 (LRP-1), multiple drug resistance related protein-1 (MRP-1) genes were expressed at lower levels in resistant cells than in sensitive cells; while protein kinase C (PKC), topoisomerase (topo) I, and topo II beta were expressed higher, no obvious alterations were found concerning glutathione S transferase-pi (GST-pi), and topo II alpha. Expression of multiple drug resistance-1 (MDR-1) gene was either elevated or reduced in different cells. The expressions of resistance related genes were widely different in different kinds of resistant cells, suggesting more than one pathway leading to resistance transformation. This adds more difficulties for clinical management.

  6. Thyroxine (T4 Transfer from Blood to Cerebrospinal Fluid in Sheep Isolated Perfused Choroid Plexus: Role of Multidrug Resistance-Associated Proteins and Organic Anion Transporting Polypeptides

    Directory of Open Access Journals (Sweden)

    Kazem Zibara

    2017-05-01

    Full Text Available Thyroxine (T4 enters the brain either directly across the blood–brain barrier (BBB or indirectly via the choroid plexus (CP, which forms the blood–cerebrospinal fluid barrier (B-CSF-B. In this study, using isolated perfused CP of the sheep by single-circulation paired tracer and steady-state techniques, T4 transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with 125I-T4 and 14C-mannitol. Unlabeled T4 was applied during single tracer technique to assess the mode of maximum uptake (Umax and the net uptake (Unet on the blood side of the CP. On the other hand, in order to characterize T4 protein transporters, steady-state extraction of 125I-T4 was measured in presence of different inhibitors such as probenecid, verapamil, BCH, or indomethacin. Increasing the concentration of unlabeled-T4 resulted in a significant reduction in Umax%, which was reflected by a complete inhibition of T4 uptake into CP. In fact, the obtained Unet% decreased as the concentration of unlabeled-T4 increased. The addition of probenecid caused a significant inhibition of T4 transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4 and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14. Moreover, verapamil, the P-glycoprotein (P-gp substrate, resulted in ~34% decrease in the net extraction of T4, indicating that MDR1 contributes to T4 entry into CSF. Finally, inhibition in the net extraction of T4 caused by BCH or indomethacin suggests, respectively, a role for amino acid “L” system and MRP1/Oatp1 in mediating T4 transfer. The presence of a carrier-mediated transport mechanism for cellular uptake on the basolateral membrane of the CP, mainly P-gp and Oatp2, would account

  7. Yeast ABC proteins involved in multidrug resistance.

    Science.gov (United States)

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.

  8. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  9. Tamoxifen induces resistance to activated protein C.

    Science.gov (United States)

    Rühl, Heiko; Schröder, Lars; Müller, Jens; Fimmers, Rolf; Sukhitashvili, Shorena; Welz, Julia; Kuhn, Walther C; Oldenburg, Johannes; Rudlowski, Christian; Pötzsch, Bernd

    2014-05-01

    The estrogen antagonist tamoxifen (TAM) increases the thrombotic risk similar to estrogen containing oral contraceptives (OC). In OC users this risk is attributed to alterations of hemostasis resulting in acquired resistance to activated protein C (APC). TAM-induced APC resistance has not been reported yet. Blood samples were collected prospectively from women with breast cancer before (n=25) and monthly after start of adjuvant TAM treatment (n=75). APC resistance was evaluated on basis of the effect of APC on the endogenous thrombin generation potential. To detect increased in vivo APC generation APC plasma levels were measured using a highly sensitive oligonucleotide-based enzyme capture assay. Routine hemostasis parameters were measured additionally. APC sensitivity decreased by 41% (p=0.001) compared to baseline after one month of TAM application and remained significantly decreased during the study period. Free protein S increased (p=0.008) while other analyzed procoagulant factors, inhibitors, and activation markers of coagulation decreased or did not change significantly. In five patients the APC concentration increased to non-physiological levels but an overall significant increase of APC was not observed. This is the first study showing acquired APC resistance under TAM therapy. Acquired APC resistance might explain the increased thrombotic risk during TAM treatment. Observed changes of hemostasis parameters suggest different determinants of TAM-induced APC resistance than in OC-induced APC resistance. The presence of acquired APC resistance in TAM patients warrants further evaluation if these patients may benefit from antithrombotic prophylaxis in the presence of additional thrombotic risk factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  11. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2.

    Science.gov (United States)

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Hu, Sasa; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-06-15

    Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer. Copyright © 2014 Elsevier GmbH. All

  12. P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients

    International Nuclear Information System (INIS)

    Tang, Ruoping; Legrand, Ollivier; Marie, Jean-Pierre; Cohen, Simy; Perrot, Jean-Yves; Faussat, Anne-Marie; Zuany-Amorim, Claudia; Marjanovic, Zora; Morjani, Hamid; Fava, Fanny; Corre, Elise

    2009-01-01

    AVE9633 is a new immunoconjugate comprising a humanized monoclonal antibody, anti-CD33 antigen, linked through a disulfide bond to the maytansine derivative DM4, a cytotoxic agent and potent tubulin inhibitor. It is undergoing a phase I clinical trial. Chemoresistance to anti-mitotic agents has been shown to be related, in part, to overexpression of ABC proteins. The aim of the present study was to investigate the potential roles of P-gp, MRP1 and BCRP in cytotoxicity in AVE9633-induced acute myeloid leukaemia (AML). This study used AML cell lines expressing different levels of P-gp, MRP1 or BCRP proteins and twenty-five samples from AML patients. Expression and functionality of the transporter protein were analyzed by flow cytometry. The cytotoxicity of the drug was evaluated by MTT and apoptosis assays. P-gp activity, but not MRP1 and BCRP, attenuated AVE9633 and DM4 cytotoxicity in myeloid cell lines. Zosuquidar, a potent specific P-gp inhibitor, restored the sensitivity of cells expressing P-gp to both AVE9633 and DM4. However, the data from AML patients show that 10/25 samples of AML cells (40%) were resistant to AVE9633 or DM4 (IC 50 > 500 nM), and this was not related to P-gp activity (p-Value: 0.7). Zosuquidar also failed to re-establish drug sensitivity. Furthermore, this resistance was not correlated with CD33 expression (p-Value: 0.6) in those cells. P-gp activity is not a crucial mechanism of chemoresistance to AVE9633. For patients whose resistance to conventional anthracycline AML regimens is related to ABC protein expression, a combination with AVE9633 could be beneficial. Other mechanisms such as microtubule alteration could play an important role in chemoresistance to AVE9633

  13. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signaling pathway.

    Science.gov (United States)

    Zhou, Bing-Gang; Wei, Chang-Sheng; Zhang, Song; Zhang, Zhi; Gao, Huan-Min

    2018-05-01

    Matrine is an alkaloid extracted from a Chinese herb Sophora flavescens Ait, and has been used clinically for breast cancer with marked therapeutic efficacy in China. However, the mechanism has not been well known. Thus, the present study was to explore whether Matrine reverses multidrug resistance for breast cancer cells through the regulation of PI3K/AKT signaling pathway. Methyl thiazolyl tetrazolium (MTT) assay was used to detect the inhibitory action; Annexin V to detect apoptosis; fluorospectrophotometry to examine intracellular adriamycin (ADR) accumulation; and Western blot to label the proteins of P-glycoprotein (P-gp), MRP1, PTEN, p-AKT, Bcl-2, Bax, and Caspase-3. Matrine (0-2.5 mg/mL) inhibited MCF-7/ADR cell growth and induced apoptosis (P MCF-7/ADR cells increased 3.56 times. Compared with control group, 0.6, 1.2 mg/mL Matrine reduced protein expressions of P-gp, MRP1, p-AKT, Bcl-2, but increased PTEN, Bax, and cleaved caspase-3 gradually, and unchanged caspase-3. Matrine was more likely to reduce the expression of P-gp, MRP1, and p-AKT at the same inhibition radio of Matrine, (0.6 mg/mL) and MK2206 (0.05 μmol/L). Matrine inhibited MCF-7/ADR cell growth, induced apoptosis, and reversed multidrug resistance for breast cancer cells through the regulation of downstream apoptosis factors of PI3K/AKT signaling pathway by decreasing cell phosphorylation of AKT level. © 2017 Wiley Periodicals, Inc.

  14. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    Science.gov (United States)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  15. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  16. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  17. Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Celia Maria Freitas [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal)]. E-mail: cgomes@ibili.uc.pt; van Paassen, Heidi [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Romeo, Salvatore [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Welling, Mick M. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Feitsma, R.I.J. [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Abrunhosa, Antero J. [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Botelho, M. Filomena [Faculty of Medicine, Institute of Biophysics/Biomathematics, IBILI, 3000-354 Coimbra (Portugal); Hogendoorn, Pancras C.W. [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Pauwels, Ernest [Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Cleton-Jansen, Anne Marie [Department of Pathology, Leiden University Medical Center, 2300 RC Leiden (Netherlands)

    2006-10-15

    Drug resistance remains a significant impediment to successful chemotherapy and constitutes a major prognostic factor in osteosarcoma (OS) patients. This study was designed to identify the role and prognostic significance of multidrug-resistance (MDR)-related transporters, such as multidrug resistance protein 1 (MDR1), multidrug-resistance-associated protein (MRP1) and breast-cancer-related protein (BCRP), in OS using cationic lipophilic radiotracers. We evaluated the chemosensitivity of four OS cell lines (Saos-2, 143B, MNNG/HOS and U-2OS) to doxorubicin (DOX), cisplatin (CIS) and methotrexate. The expression of MDR-related transporters was analyzed at mRNA level by quantitative polymerase chain reaction and at functional level by {sup 99m}Tc sestamibi and {sup 99m}Tc tetrofosmin. The effectiveness of MDR modulators [cyclosporin A (CsA) and imatinib] on transporter inhibition and on the reversal of resistance was also assessed. MNNG/HOS and U-2OS cells expressing high levels of MDR1 were highly resistant to DOX and showed reduced accumulation and higher efflux for radiotracers. Although MRP1 was uniformly expressed in all cells, only U-2OS was resistant to CIS. CsA restored sensitivity to DOX and CIS, and enhanced the accumulation and efflux half-life of radiotracers in MDR1-expressing cell lines. The chemosensitivity of OS cells to DOX was strongly dependent on mRNA MDR1 expression and could be circumvented by adding CsA. The kinetic parameters of radiotracers correlated with MDR1 expression levels, hence predicting DOX resistance. We concluded that sensitivity to chemotherapy is strongly dependent on the expression of MDR1 transporter and that radiotracer studies could prove clinically useful in predicting chemotherapy response and in evaluating the efficacy of MDR-reversing agents.

  18. Structural Basis of Protein Oxidation Resistance: A Lysozyme Study

    OpenAIRE

    Girod, Marion; Enjalbert, Quentin; Brunet, Claire; Antoine, Rodolphe; Lemoine, Jérôme; Lukac, Iva; Radman, Miroslav; Krisko, Anita; Dugourd, Philippe

    2014-01-01

    Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistan...

  19. Expression of the breast cancer resistance protein in breast cancer

    NARCIS (Netherlands)

    Faneyte, Ian F.; Kristel, Petra M. P.; Maliepaard, Marc; Scheffer, George L.; Scheper, Rik J.; Schellens, Jan H. M.; van de Vijver, Marc J.

    2002-01-01

    PURPOSE: The breast cancer resistance protein (BCRP) is involved in in vitro multidrug resistance and was first identified in the breast cancer cell line MCF7/AdrVp. The aim of this study was to investigate the role of BCRP in resistance of breast cancer to anthracycline treatment. EXPERIMENTAL

  20. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  1. Whey protein supplementation during resistance training augments lean body mass.

    Science.gov (United States)

    Volek, Jeff S; Volk, Brittanie M; Gómez, Ana L; Kunces, Laura J; Kupchak, Brian R; Freidenreich, Daniel J; Aristizabal, Juan C; Saenz, Catherine; Dunn-Lewis, Courtenay; Ballard, Kevin D; Quann, Erin E; Kawiecki, Diana L; Flanagan, Shawn D; Comstock, Brett A; Fragala, Maren S; Earp, Jacob E; Fernandez, Maria L; Bruno, Richard S; Ptolemy, Adam S; Kellogg, Mark D; Maresh, Carl M; Kraemer, William J

    2013-01-01

    Compared to soy, whey protein is higher in leucine, absorbed quicker and results in a more pronounced increase in muscle protein synthesis. To determine whether supplementation with whey promotes greater increases in muscle mass compared to soy or carbohydrate, we randomized non-resistance-trained men and women into groups who consumed daily isocaloric supplements containing carbohydrate (carb; n = 22), whey protein (whey; n = 19), or soy protein (soy; n = 22). All subjects completed a supervised, whole-body periodized resistance training program consisting of 96 workouts (~9 months). Body composition was determined at baseline and after 3, 6, and 9 months. Plasma amino acid responses to resistance exercise followed by supplement ingestion were determined at baseline and 9 months. Daily protein intake (including the supplement) for carb, whey, and soy was 1.1, 1.4, and 1.4 g·kg body mass⁻¹, respectively. Lean body mass gains were significantly (p mass decreased slightly but there were no differences between groups. Fasting concentrations of leucine were significantly elevated (20%) and postexercise plasma leucine increased more than 2-fold in whey. Fasting leucine concentrations were positively correlated with lean body mass responses. Despite consuming similar calories and protein during resistance training, daily supplementation with whey was more effective than soy protein or isocaloric carbohydrate control treatment conditions in promoting gains in lean body mass. These results highlight the importance of protein quality as an important determinant of lean body mass responses to resistance training.

  2. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.

    Science.gov (United States)

    Reidy, Paul T; Fry, Christopher S; Igbinigie, Sherry; Deer, Rachel R; Jennings, Kristofer; Cope, Mark B; Mukherjea, Ratna; Volpi, Elena; Rasmussen, Blake B

    2017-06-01

    It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through the activation of satellite cells and myonuclear accretion. This study aimed to determine the efficacy of protein supplementation (and the type of protein) during traditional resistance training on myofiber cross-sectional area, satellite cell content, and myonuclear addition. Healthy young men participated in supervised whole-body progressive resistance training 3 d·wk for 12 wk. Participants were randomized to one of three groups ingesting a daily 22-g macronutrient dose of soy-dairy protein blend (PB, n = 22), whey protein isolate (WP, n = 15), or an isocaloric maltodextrin placebo (MDP, n = 17). Lean mass, vastus lateralis myofiber-type-specific cross-sectional area, satellite cell content, and myonuclear addition were assessed before and after resistance training. PB and the pooled protein treatments (PB + WP = PRO) exhibited a greater whole-body lean mass %change compared with MDP (P = 0.057 for PB) and (P = 0.050 for PRO), respectively. All treatments demonstrated similar leg muscle hypertrophy and vastus lateralis myofiber-type-specific cross-sectional area (P supplementation during resistance training has a modest effect on whole-body lean mass as compared with exercise training without protein supplementation, and there was no effect on any outcome between protein supplement types (blend vs whey). However, protein supplementation did not enhance resistance exercise-induced increases in myofiber hypertrophy, satellite cell content, or myonuclear addition in young healthy men. We propose that as long as protein intake is adequate during muscle overload, the adaptations in muscle growth and function will not be influenced by protein supplementation.

  3. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  4. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories.

    Science.gov (United States)

    Bosse, John D; Dixon, Brian M

    2012-09-08

    An appreciable volume of human clinical data supports increased dietary protein for greater gains from resistance training, but not all findings are in agreement. We recently proposed "protein spread theory" and "protein change theory" in an effort to explain discrepancies in the response to increased dietary protein in weight management interventions. The present review aimed to extend "protein spread theory" and "protein change theory" to studies examining the effects of protein on resistance training induced muscle and strength gains. Protein spread theory proposed that there must have been a sufficient spread or % difference in g/kg/day protein intake between groups during a protein intervention to see muscle and strength differences. Protein change theory postulated that for the higher protein group, there must be a sufficient change from baseline g/kg/day protein intake to during study g/kg/day protein intake to see muscle and strength benefits. Seventeen studies met inclusion criteria. In studies where a higher protein intervention was deemed successful there was, on average, a 66.1% g/kg/day between group intake spread versus a 10.2% g/kg/day spread in studies where a higher protein diet was no more effective than control. The average change in habitual protein intake in studies showing higher protein to be more effective than control was +59.5% compared to +6.5% when additional protein was no more effective than control. The magnitudes of difference between the mean spreads and changes of the present review are similar to our previous review on these theories in a weight management context. Providing sufficient deviation from habitual intake appears to be an important factor in determining the success of additional protein in enhancing muscle and strength gains from resistance training. An increase in dietary protein favorably effects muscle and strength during resistance training.

  5. Balancing selection favors guarding resistance proteins

    NARCIS (Netherlands)

    Hoorn, Van der R.A.L.; Wit, De P.J.G.M.; Joosten, M.H.A.J.

    2002-01-01

    The co-evolutionary arms race model for plant–pathogen interactions implies that resistance (R) genes are relatively young and monomorphic. However, recent reports show R gene longevity and co-existence of multiple R genes in natural populations. This indicates that R genes are maintained by

  6. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C

  7. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  8. Protein expression on Cr resistant microorganism using electrophoresis method

    Directory of Open Access Journals (Sweden)

    SAJIDAN

    2009-01-01

    Full Text Available Fatmawati U, Suranto, Sajidan. 2009. Protein expression on Cr resistant microorganism using electrophoresis method. Nusantara Bioscience 1: 31-37. Hexavalent chromium (Cr(VI is known as toxic heavy metals, so the need is reduced to Cr(III is much less toxicity. Pseudomonas aeruginosa, Pseudomonas putida, Klebsiella pneumoniae, Pantoea sp. and Saccharomyces cerevisiae are resistant Cr(VI microorganism and have ability to reduce Cr(VI. The aim of this research is to know ability of microorganism to reduce Cr(VI and to know protein band pattern between Cr(VI resistant microorganism and non resistant microorganism which inoculated on LB broth. SDS-PAGE was used to indentify protein expression. While, Cr(VI concentration was identified by 1.5 diphenylcarbazide method. The quantitative data was analyzed by two factorial ANOVA that continued with DMRT at 1% level test. The qualitative data i.e. protein expression analyzed by relative mobility (Rf. The results showed that the ability of microorganisms to reduce Cr(VI at initial concentration of 0.5 ppm, 1 ppm, 5 ppm and 10 ppm may vary, the average percentage of the ability of each microorganism in reducing Cr(VI is P. putida (65% > S. cerevisiae (64.45% >. P. aeruginosa (60.73% > Pantoea sp. (50.22% > K. pneumoniae (47.82% > without microorganisms (34.25%. The adding microorganisms have significantly influenced toward reduction of Cr(VI. The SDS-PAGE shows that protein expression between resistant and not resistant microorganisms are no different, but resistant microorganisms have more protein (protein band is thicker.

  9. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  10. Multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP and lung resistance protein (LRP gene expression in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Elvis Terci Valera

    Full Text Available CONTEXT: Despite the advances in the cure rate for acute lymphoblastic leukemia, approximately 25% of affected children suffer relapses. Expression of genes for the multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP, and lung resistance protein (LRP may confer the phenotype of resistance to the treatment of neoplasias. OBJECTIVE: To analyze the expression of the MDR-1, MRP and LRP genes in children with a diagnosis of acute lymphoblastic leukemia via the semiquantitative reverse transcription polymerase chain reaction (RT-PCR, and to determine the correlation between expression and event-free survival and clinical and laboratory variables. DESIGN: A retrospective clinical study. SETTING: Laboratory of Pediatric Oncology, Department of Pediatrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil. METHODS: Bone marrow aspirates from 30 children with a diagnosis of acute lymphoblastic leukemia were assessed for the expression of messenger RNA for the MDR-1, MRP and LRP genes by semi-quantitative RT-PCR. RESULTS: In the three groups studied, only the increased expression of LRP was related to worsened event-free survival (p = 0.005. The presence of the common acute lymphoblastic leukemia antigen (CALLA was correlated with increased LRP expression (p = 0.009 and increased risk of relapse or death (p = 0.05. The relative risk of relapse or death was six times higher among children with high LRP expression upon diagnosis (p = 0.05, as confirmed by multivariate analysis of the three genes studied (p = 0.035. DISCUSSION: Cell resistance to drugs is a determinant of the response to chemotherapy and its detection via RT-PCR may be of clinical importance. CONCLUSIONS: Evaluation of the expression of genes for resistance to antineoplastic drugs in childhood acute lymphoblastic leukemia upon diagnosis, and particularly the expression of the LRP gene, may be of clinical relevance, and should be the

  11. Synergistic effects of resistance training and protein intake: practical aspects.

    Science.gov (United States)

    Guimarães-Ferreira, Lucas; Cholewa, Jason Michael; Naimo, Marshall Alan; Zhi, X I A; Magagnin, Daiane; de Sá, Rafaele Bis Dal Ponte; Streck, Emilio Luiz; Teixeira, Tamiris da Silva; Zanchi, Nelo Eidy

    2014-10-01

    Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structural basis of protein oxidation resistance: a lysozyme study.

    Science.gov (United States)

    Girod, Marion; Enjalbert, Quentin; Brunet, Claire; Antoine, Rodolphe; Lemoine, Jérôme; Lukac, Iva; Radman, Miroslav; Krisko, Anita; Dugourd, Philippe

    2014-01-01

    Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD) simulations, we find the protein parts with increased root-mean-square deviation (RMSD) to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  13. Resistive random access memory utilizing ferritin protein with Pt nanoparticles

    International Nuclear Information System (INIS)

    Uenuma, Mutsunori; Kawano, Kentaro; Zheng Bin; Okamoto, Naofumi; Horita, Masahiro; Yoshii, Shigeo; Yamashita, Ichiro; Uraoka, Yukiharu

    2011-01-01

    This study reports controlled single conductive paths found in resistive random access memory (ReRAM) formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogeneous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent of the Pt NP density, which indicates that a single metal NP in a memory cell will achieve low power and stable operation.

  14. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  15. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  17. Resistance of platelet proteins to effects of ionizing radiation

    International Nuclear Information System (INIS)

    Prodouz, K.N.; Habraken, J.W.; Moroff, G.

    1990-01-01

    Gamma irradiation of blood components prevents lymphocyte-induced graft-versus-host disease after transfusion in immunocompromised individuals. In this report we demonstrate the resistance of blood platelet proteins to gamma radiation-induced protein cleavage and aggregate formation when platelet concentrates were treated with a dose of 5000 rad. Results of one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total platelet protein and cytoskeletal protein preparations indicate that platelet proteins are neither cleaved nor cross-linked under these conditions of irradiation. These results support those of a previous study that documented the lack of any adverse effect of 5000 rad gamma radiation on in vitro platelet properties

  18. Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma

    NARCIS (Netherlands)

    Arts, H. J.; Katsaros, D.; de Vries, E. G.; Massobrio, M.; Genta, F.; Danese, S.; Arisio, R.; Scheper, R. J.; Kool, M.; Scheffer, G. L.; Willemse, P. H.; van der Zee, A. G.; Suurmeijer, A. J.

    1999-01-01

    Intrinsic and/or acquired resistance to chemotherapy is the major obstacle to overcome in the treatment of patients with ovarian carcinoma. The aim of the present study was to investigate the prognostic value of drug resistance-associated proteins P-glycoprotein (P-gp), multidrug

  19. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  20. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  1. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  2. Nuclear export of proteins and drug resistance in cancer.

    Science.gov (United States)

    Turner, Joel G; Dawson, Jana; Sullivan, Daniel M

    2012-04-15

    The intracellular location of a protein is crucial to its normal functioning in a cell. Cancer cells utilize the normal processes of nuclear-cytoplasmic transport through the nuclear pore complex of a cell to effectively evade anti-neoplastic mechanisms. CRM1-mediated export is increased in various cancers. Proteins that are exported in cancer include tumor-suppressive proteins such as retinoblastoma, APC, p53, BRAC1, FOXO proteins, INI1/hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, p21(CIP), p27(KIP1), N-WASP/FAK, estradiol receptor and Tob, drug targets topoisomerase I and IIα and BCR-ABL, and the molecular chaperone protein Hsp90. Here, we review in detail the current processes and known structures involved in the export of a protein through the nuclear pore complex. We also discuss the export receptor molecule CRM1 and its binding to the leucine-rich nuclear export signal of the cargo protein and the formation of a nuclear export trimer with RanGTP. The therapeutic potential of various CRM1 inhibitors will be addressed, including leptomycin B, ratjadone, KOS-2464, and specific small molecule inhibitors of CRM1, N-azolylacrylate analogs, FOXO export inhibitors, valtrate, acetoxychavicol acetate, CBS9106, and SINE inhibitors. We will also discuss examples of how drug resistance may be reversed by targeting the exported proteins topoisomerase IIα, BCR-ABL, and galectin-3. As effective and less toxic CRM1 export inhibitors become available, they may be used as both single agents and in combination with current chemotherapeutic drugs. We believe that the future development of low-toxicity, small-molecule CRM1 inhibitors may provide a new approach to treating cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  4. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer.

    Science.gov (United States)

    Zhang, Ying; Yang, Shao-Hui; Guo, Xiu-Li

    2017-12-01

    Nowadays, lung cancer, as a health problem in worldwide, has high mortality both in men and women. Despite advances in diagnosis and surgical techniques of lung cancer in recent decades, chemotherapy is still a fundamentally and extensively useful strategy. Vinca alkaloids are a class of important and widely used drugs in the treatment of lung cancer, targeting on the Vinca binding site at the exterior of microtubule plus ends. Either intrinsic or acquired resistance to chemotherapy of Vinca alkaloids has been a major obstacle to the treatment of lung cancer, which arose great interests in studies of understanding and overcoming resistance. In this review, we focused on the application and resistance mechanisms of the Vinca alkaloids such as vinblastine, vincristine, vinorelbine and vinflunine in lung cancer. We reviewed characteristic resistance mechanisms in lung cancer including over-expression of ATP-binding cassette (ABC) transporters P-glycoprotein and structural, functional or expression alterations of β-tubulin (βII, βIII, βIV) which may devote to the development of acquired resistance to the Vinca alkaloids; multidrug-resistance proteins (MRP1, MRP2, MRP3) and RLIP76 protein have also been identified that probably play a significant role in intrinsic resistance. Lung resistance-related protein (LRP) is contributed to lung cancer therapy resistance, but is not deal with the Vinca alkaloids resistance in lung cancer. Understanding the principle of the Vinca alkaloids in clinical application and mechanisms of drug resistance will support individualized lung cancer therapy and improve future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. "Hearing Loss" in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers.

    Science.gov (United States)

    Luan, Yafei; Li, Dan; Wei, Ting; Wang, Mengmeng; Tang, Zengchao; Brash, John L; Chen, Hong

    2017-04-04

    Accurate quantification of nonspecific protein adsorption on biomaterial surfaces is essential for evaluation of their antifouling properties. The quartz crystal microbalance (QCM) is an acoustic sensor widely used for the measurement of protein adsorption. However, although the QCM is highly sensitive, it does have performance limitations when working with surfaces modified with thick viscous layers. In the case of polymer brush surfaces, factors such as the thickness and viscosity of the brush may bring such limitations. In the present work, three types of antifouling molecules were used to explore the applicability of QCM for the evaluation of the protein resistance of hydrophilic polymer brush surfaces. Adsorption was also measured by surface plasmon resonance (SPR) as a reference. It was shown that the detection of adsorbed protein requires that protein be located within a critical distance from the QCM chip surface, determined by the viscosity of polymer brush. For larger proteins like fibrinogen, adsorption is expected to occur mainly "on top" of the polymer brush, and brush thickness determines whether protein is located in the "detectable zone". For smaller proteins like lysozyme, adsorption is expected to occur mainly at the chip surface and within the polymer brush layer and to be detectable by QCM. However, the quantity of adsorbed lysozyme may be underestimated when secondary adsorption also occurred. It is concluded that QCM data suggesting very low protein adsorption on polymer brush surfaces should take account of these considerations and should be treated generally with caution.

  6. Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells

    NARCIS (Netherlands)

    Courtois, A; Payen, L; Vernhet, L; de Vries, EGE; Guillouzo, A; Fardel, O

    1999-01-01

    The multidrug resistance-associated protein (MRP) is a drug efflux membrane pump conferring multidrug resistance on tumor cells. In order to look for compounds that can lead to reversal of such a resistance, the antituberculosis compound rifampicin, belonging to the chemical class of rifamycins, was

  7. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  8. Activated protein C resistance testing for factor V Leiden.

    Science.gov (United States)

    Kadauke, Stephan; Khor, Bernard; Van Cott, Elizabeth M

    2014-12-01

    Activated protein C resistance assays can detect factor V Leiden with high accuracy, depending on the method used. Factor Xa inhibitors such as rivaroxaban and direct thrombin inhibitors including dabigatran, argatroban, and bivalirudin can cause falsely normal results. Lupus anticoagulants can cause incorrect results in most current assays. Assays that include dilution into factor V-deficient plasma are needed to avoid interference from factor deficiencies or elevations, which can arise from a wide variety of conditions such as warfarin, liver dysfunction, or pregnancy. The pros and cons of the currently available assays are discussed. © 2014 Wiley Periodicals, Inc.

  9. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein

    NARCIS (Netherlands)

    de la Fuente van Bentem, S.; Vossen, J.H.; de Vries, K.J.; van Wees, A.C.M.; Tameling, W.I.L.; Dekker, H.L.; de Koster, C.G.; Haring, M.A.; Takken, F.L.W.; Cornelissen, B.J.C.

    2005-01-01

    Recent data suggest that plant disease resistance (R) proteins are present in multi-protein complexes. Tomato R protein I-2 confers resistance against the fungal pathogen Fusarium oxysporum. To identify components of the I-2 complex, we performed yeast two-hybrid screens using the I-2 leucine-rich

  11. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  12. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...

  13. Proteomic Analysis of Intracellular and Membrane Proteins From Voriconazole-Resistant Candida glabrata.

    Science.gov (United States)

    Yoo, Jae Il; Kim, Hwa Su; Choi, Chi Won; Yoo, Jung Sik; Yu, Jae Yon; Lee, Yeong Seon

    2013-12-01

    The proteomic analysis of voriconazole resistant Candida glabrata strain has not yet been investigated. In this study, differentially expressed proteins of intracellular and membrane fraction from voriconazole-susceptible, susceptible dose-dependent (S-DD), resistant C. glabrata strains were compared with each other and several proteins were identified. The proteins of intracellular and membrane were isolated by disrupting cells with glass bead and centrifugation from voriconazole susceptible, S-DD, and resistant C. glabrata strains. The abundance of expressed proteins was compared using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteins showing continuous twofold or more increase or reduction of expression in resistant strains compared to susceptible and S-DD strain were analyzed by liquid chromatography/mass spectrometry-mass spectrometry method. Of 34 intracellular proteins, 15 proteins showed expression increase or reduction (twofold or more). The identified proteins included regulation, energy production, carbohydrate transport, amino acid transport, and various metabolism related proteins. The increase of expression of heat shock protein 70 was found. Among membrane proteins, 12, 31 proteins showed expression increase or decrease in the order of susceptible, S-DD, and resistant strains. This expression included carbohydrate metabolism, amino acid synthesis, and response to stress-related proteins. In membrane fractions, the change of expression of 10 heat shock proteins was observed, and 9 heat shock protein 70 (Hsp70) showed the reduction of expression. The expression of Hsp70 protein in membrane fraction is related to voriconazole resistant C. glabrata strains.

  14. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  15. Extracellular proteins: Novel key components of metal resistance in cyanobacteria?

    Directory of Open Access Journals (Sweden)

    Joaquin eGiner-Lamia

    2016-06-01

    Full Text Available Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias towards the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  16. Modulation of Multidrug Resistance Gene Expression by Coumarin Derivatives in Human Leukemic Cells

    Science.gov (United States)

    Kubrak, Tomasz; Bogucki, Jacek; Galkowski, Dariusz; Kaczmarczyk, Robert; Feldo, Marcin; Cioch, Maria; Kocki, Janusz

    2017-01-01

    The presence of multidrug resistance (MDR) in tumor cells is considered as the major cause of failure of cancer chemotherapy. The mechanism responsible for the phenomenon of multidrug resistance is explained, among others, as overexpression of membrane transporters primarily from the ABC family which actively remove cytostatics from the tumor cell. The effect of 20 coumarin derivatives on the cytotoxicity and expression of MDR1, MRP1, BCRP, and LRP genes (encoding proteins responsible for multidrug resistance) in cancer cells was analyzed in the study. The aim of this research included determination of IC10 and IC50 values of selected coumarin derivatives in the presence and absence of mitoxantrone in leukemia cells and analysis of changes in the expression of genes involved in multidrug resistance: MDR1, MRP, LRP, and BCRP after 24-hour exposure of the investigated cell lines to selected coumarins in the presence and absence of mitoxantrone in IC10 and IC50 concentrations. The designed research was conducted on 5 cell lines derived from the human hematopoietic system: CCRF/CEM, CEM/C1, HL-60, HL-60/MX1, and HL-60/MX2. Cell lines CEM/C1, HL-60/MX1, and HL-60/MX2 exhibit a multidrug resistance phenotype. PMID:29387293

  17. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations

    Science.gov (United States)

    Pielot, Rainer; Smalla, Karl-Heinz; Müller, Anke; Landgraf, Peter; Lehmann, Anne-Christin; Eisenschmidt, Elke; Haus, Utz-Uwe; Weismantel, Robert; Gundelfinger, Eckart D.; Dieterich, Daniela C.

    2012-01-01

    Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design. PMID:22737123

  18. Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance

    Science.gov (United States)

    Natarajan, Karthika; Xie, Yi; Baer, Maria R.; Ross, Douglas D.

    2012-01-01

    Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed “side population cells,” which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the “side population” phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. PMID:22248732

  19. p53 protein aggregation promotes platinum resistance in ovarian cancer.

    Science.gov (United States)

    Yang-Hartwich, Y; Soteras, M G; Lin, Z P; Holmberg, J; Sumi, N; Craveiro, V; Liang, M; Romanoff, E; Bingham, J; Garofalo, F; Alvero, A; Mor, G

    2015-07-01

    High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their

  20. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise

    Science.gov (United States)

    Moore, Daniel R; Tang, Jason E; Burd, Nicholas A; Rerecich, Tracy; Tarnopolsky, Mark A; Phillips, Stuart M

    2009-01-01

    We aimed to determine whether there is a differential stimulation of the contractile myofibrillar and the cellular sarcoplasmic proteins after ingestion of protein and how this is affected by resistance exercise. Fasted (FAST) muscle protein synthesis was measured in seven healthy young men with a primed constant infusion of l-[ring-13C6]phenylalanine. Participants then performed an intense bout of unilateral resistance exercise followed by the consumption of 25 g of whey protein to maximally stimulate protein synthesis. In the rested (FED) leg myofibrillar (MYO) protein synthesis was elevated (P 0.05). In contrast, MYO protein synthesis in the exercised (FED-EX) leg was stimulated above FAST at 1, 3 and 5 h (∼100, 216, and 229%, respectively; P < 0.01) with the increase at 5 h being greater than FED (P < 0.01). Thus, the synthesis of muscle contractile proteins is stimulated by both feeding and resistance exercise early (1 h) but has a greater duration and amplitude after resistance exercise. Sarcoplasmic (SARC) protein synthesis was similarly elevated (P < 0.01) above FAST by ∼104% at 3 h in both FED and FED-EX suggesting SARC protein synthesis is stimulated by feeding but that this response is not augmented by resistance exercise. In conclusion, myofibrillar and sarcoplasmic protein synthesis are similarly, but transiently, stimulated with protein feeding. In contrast, resistance exercise rapidly stimulates and sustains the synthesis of only the myofibrillar protein fraction after protein ingestion. These data highlight the importance of measuring the synthetic response of specific muscle protein fractions when examining the effects of exercise and nutrition. PMID:19124543

  1. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sonali eKapse-Mistry

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1 gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-B. Theragnostics combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  2. Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid.

    Science.gov (United States)

    Meng, JianYu; Zhang, ChangYu; Chen, XingJiang; Cao, Yi; Shang, ShengHua

    2014-10-01

    Myzus persicae, a serious economic agricultural pest, has developed resistance to imidacloprid (IMI), which was widely used to control this aphid worldwide. To gain a better understanding of the mechanisms of IMI resistance in M. persicae, we carried out a comparative proteomic analysis. Total proteins of the IMI-susceptible and resistant strains were extracted and separated by two-dimensional gel electrophoresis. More than 1300 protein spots were reproducibly detected, including 14 that were more abundant and 14 less abundant. Mass spectrometry analysis and database searching helped us to identify 25 differentially abundant proteins. The identified proteins were categorized into several functional groups including signal transduction, RNA processing, protein processing, transport processing, stress response, metabolisms, and cytoskeleton structure, etc. This study is the first analysis of differentially expressed proteins in IMI-susceptible and resistant M. Persicae, and gives new insights into the mechanisms of IMI resistance in M. persicae. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  4. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  5. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  6. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    OpenAIRE

    Stout Jeffrey R; Lockwood Christopher M; Hulmi Juha J

    2010-01-01

    Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO) or essential amino acids (EAA) can increase muscle protein synthesis (MPS) in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different pro...

  7. [Activated protein C resistance and factor V Leiden: clinical interest].

    Science.gov (United States)

    Guermazi, S; Znazen, R

    2011-10-01

    Activated protein C resistance (APCR) is a coagulation abnormality often linked to FV Leiden mutation, a single nucleotide G1691A substitution resulting in arginine 506→glutamine missense factor V mutation. FV Leiden has a frequency of 20 to 30% in groups of patients with venous thrombosis while it is of 4 to 10% in normal subjects. FV Leiden is considered as a weak risk factor of thrombosis except in homozygote. FV Leiden is implicated in deep venous thrombosis occurrence. Duration of oral anticoagulant treatment is six months in patients developing a first venous thrombosis except in patients with combined defects or a clinical context suggesting a high risk of severe relapse. Detection of APCR by coagulation methods is often used in first intention with a high specificity if plasmas tested are diluted in factor V deficient plasma. Genotyping study is essential to establish the heterozygote or homozygote statute and certain teams perform it directly. Nevertheless, APCR not related to FV Leiden could be an independent thrombosis risk factor. APCR and FV Leiden are included in laboratory investigations of thrombophilic markers in patients less than 50 years with venous thrombosis. In arterial thrombosis, FV Leiden implication is weak or absent. FV Leiden increases the risk of thrombosis in other situations as in patients with cancer. An association with recurrent miscarriages and other vasculoplacental complications is also reported in many studies but the data concerning the efficacy of antithrombotic treatment to prevent recurrence are currently insufficient. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  8. Short-chained oligo(ethylene oxide)-functionalized gold nanoparticles: realization of significant protein resistance.

    Science.gov (United States)

    Riley, Kathryn R; Sims, Christopher M; Wood, Imani T; Vanderah, David J; Walker, Marlon L

    2018-01-01

    Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein resistance of planar Au surfaces. We describe the application of these EO oligomers for improved protein resistance of 30 nm spherical gold nanoparticles (AuNPs). Functionalized AuNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. Capillary electrophoresis (CE) was used for separation and quantitation of AuNPs and AuNP-protein mixtures. Specifically, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was employed for the determination of equilibrium and rate constants for binding between citrate-stabilized AuNPs and two model proteins, lysozyme and fibrinogen. Semi-quantitative CE analysis was carried out for mixtures of EO-functionalized AuNPs and proteins, and results demonstrated a 2.5-fold to 10-fold increase in protein binding resistance to lysozyme depending on the AuNP surface functionalization and a 15-fold increase in protein binding resistance to fibrinogen for both EO oligomers examined in this study. Graphical abstract Using capillary electrophoresis, the addition of short-chained oligo(ethylene oxide) ligands to gold nanoparticles was shown to improve protein binding resistance up to 15-fold.

  9. Identification and network of outer membrane proteins regulating streptomysin resistance in Escherichia coli.

    Science.gov (United States)

    Li, Hui; Wang, Bao-Cheng; Xu, Wen-Jiao; Lin, Xiang-Min; Peng, Xuan-Xian

    2008-09-01

    Bacterial Outer membrane (OM) proteins involved in antibiotic resistance have been reported. However, little is known about the OM proteins and their interaction network regulating streptomycin (SM) resistance. In the present study, a subproteomic approach was utilized to characterize OM proteins of Escherichia coli with SM resistance. TolC, OmpT and LamB were found to be up-regulated, and FadL, OmpW and a location-unknown protein Dps were down-regulated in the SM-resistant E. coli strain. These changes at the level of protein expression were validated using Western blotting. The possible roles of the altered proteins involved in the SM resistance were investigated using genetic modified strains with the deletion of these altered genes. It is found that decreased and elevated minimum inhibitory concentrations and survival capabilities of the gene deleted strains and their resistant strains, Delta tolC, Delta ompT, Delta dps, Delta tolC-R, Delta ompT-R, Delta dps-R and Delta fadL-R, were correlated with the changes of TolC, OmpT, Dps and FadL at the protein expression levels detected by 2-DE gels, respectively. The results may suggest that these proteins are the key OM proteins and play important roles in the regulation of SM resistance in E. coli. Furthermore, an interaction network of altered OM proteins involved in the SM resistance was proposed in this report. Of the six altered proteins, TolC may play a central role in the network. These findings may provide novel insights into mechanisms of SM resistance in E. coli.

  10. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  11. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  12. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    Science.gov (United States)

    2017-01-01

    prostate cancer patients have abnormalities in the AKT signaling pathway. These abnormalities are driven by mutations in the PTEN and AKT proteins as...AWARD NUMBER: W81XWH-12-1-0560 TITLE: Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase

  13. Proteomic Analysis of Intracellular and Membrane Proteins From Voriconazole-Resistant Candida glabrata

    OpenAIRE

    Yoo, Jae Il; Kim, Hwa Su; Choi, Chi Won; Yoo, Jung Sik; Yu, Jae Yon; Lee, Yeong Seon

    2013-01-01

    Objectives The proteomic analysis of voriconazole resistant Candida glabrata strain has not yet been investigated. In this study, differentially expressed proteins of intracellular and membrane fraction from voriconazole-susceptible, susceptible dose-dependent (S-DD), resistant C. glabrata strains were compared with each other and several proteins were identified. Methods The proteins of intracellular and membrane were isolated by disrupting cells with glass bead and centrifugation from voric...

  14. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans

    DEFF Research Database (Denmark)

    Esmarck, B.; Andersen, J.L.; Olsen, S.

    2001-01-01

    1. Age-associated loss of skeletal muscle mass and strength can partly be counteracted by resistance training, causing a net synthesis of muscular proteins. Protein synthesis is influenced synergistically by postexercise amino acid supplementation, but the importance of the timing of protein intake...... ± S.E.M.)) completed a 12 week resistance training programme (3 times per week) receiving oral protein in liquid form (10 g protein, 7 g carbohydrate, 3 g fat) immediately after (P0) or 2 h after (P2) each training session. Muscle hypertrophy was evaluated by magnetic resonance imaging (MRI) and from...

  15. Structure, function and subcellular localization of the potato Resistance protein Rx1

    NARCIS (Netherlands)

    Slootweg, E.J.

    2009-01-01

    Resistance proteins are part of the plant’s immune system and mediate a defence response upon recognizing their cognate pathogens. They are thought to be present in the cell as part of a larger protein complex. The modular architecture of R proteins suggests that they form a scaffold for various

  16. Interplay between MRP-inhibition and metabolism of MRP-inhibitors: the case of curcumin

    NARCIS (Netherlands)

    Wortelboer, H.M.; Usta, M.; Velde, van der A.E.; Boersma, M.G.; Spenkelink, A.; Zanden, van J.J.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2003-01-01

    The multidrug resistance proteins MRP1 and MRP2 are efflux transporters with broad substrate specificity, including glutathione, glucuronide, and sulfate conjugates. In the present study, the interaction of the dietary polyphenol curcumin with MRP1 and MRP2 and the interplay between

  17. Interplay between MRP Inhibition and Metabolism of MRP Inhibitors: The Case of Curcumin

    NARCIS (Netherlands)

    Wortelboer, H.M.; Usta, M.; Velde, A.E. van der; Boersma, M.G.; Spenkelink, B.; Zanden, J.J. van; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2003-01-01

    The multidrug resistance proteins MRP1 and MRP2 are efflux transporters with broad substrate specificity, including glutathione, glucuronide, and sulfate conjugates. In the present study, the interaction of the dietary polyphenol curcumin with MRP1 and MRP2 and the interplay between

  18. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar

    Science.gov (United States)

    Lee, K.P; Cory, J.S; Wilson, K; Raubenheimer, D; Simpson, S.J

    2005-01-01

    Mounting effective resistance against pathogens is costly in terms of energy and nutrients. However, it remains unexplored whether hosts can offset such costs by adjusting their dietary intake so as to recoup the specific resources involved. We test this possibility by experimentally challenging caterpillars (Spodoptera littoralis) with a highly virulent entomopathogen (nucleopolyhedrovirus), under dietary regimes varying in the content of protein and digestible carbohydrate. We found that dietary protein influenced both resistance to pathogen attack and constitutive immune function to a greater extent than did dietary carbohydrate, indicating higher protein costs of resistance than energy costs. Moreover, when allowed to self-compose their diet, insects surviving viral challenge increased their relative intake of protein compared with controls and those larvae dying of infection, thus demonstrating compensation for protein costs associated with resistance. These results suggest that the change in the host's nutritional demands to fight infection induces a compensatory shift in feeding behaviour. PMID:16618675

  19. Differentially expressed proteins in fluconazole-susceptible and fluconazole-resistant isolates of Candida glabrata.

    Science.gov (United States)

    Shen, Yinzhong; Zhang, Lijun; Jia, Xiaofang; Zhang, Yongxin; Lu, Hongzhou

    2015-06-01

    The current study aimed to identify the differences presented in the proteome of fluconazole-susceptible isolates of Candida glabrata compared to those with fluconazole-resistant ones. Two-dimensional differential gel electrophoresis was applied to identify proteins that were differentially expressed in fluconazole-susceptible and fluconazole-resistant isolates of C. glabrata. Eight proteins including aspartyl-tRNA synthetase, translation elongation factor 3, 3-phosphoglycerate kinase, ribosomal protein L5, coproporphyrinogen III oxidase, pyruvate kinase, G-beta like protein, and F1F0-ATPase alpha subunit were found to be more abundantly represented, while four proteins including vitamin B12-(cobalamin)-independent isozyme of methionine synthase, microtubule-associated protein, adenylosuccinate synthetase, and aldose reductase were found to be less abundantly represented in fluconazole-resistant strains versus those with fluconazole-susceptible ones. These differentially expressed proteins were primarily associated with energy metabolism, stress response, and macromolecule synthesis. Proteins associated with energy metabolism, stress response, and macromolecule synthesis may play a role in the development of fluconazole resistance in the clinical isolates of C. glabrata. Multiple different mechanisms are involved in the development of fluconazole resistance in C. glabrata. These findings provide a scientific basis for discovering new genes and mechanisms associated with fluconazole resistance in C. glabrata.

  20. Innate resistance to avian influenza: Of MHC's and Mx proteins

    Science.gov (United States)

    Avian influenza (AI) is an economically important virus of poultry that has significant impact on global trade. Recently, increased attention to animal genomics has been applied to enhance innate resistance to infectious diseases in poultry. Two known contributors to innate resistance are the host m...

  1. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study.

    Science.gov (United States)

    West, Daniel W D; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R

    2017-07-11

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [ 15 N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO ( P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO ( P = 0.036) but not in CHO ( P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.

  2. Mechanisms of multidrug resistance in HL60 cells. Analysis of resistance associated membrane proteins and levels of mdr gene expression.

    Science.gov (United States)

    McGrath, T; Latoud, C; Arnold, S T; Safa, A R; Felsted, R L; Center, M S

    1989-10-15

    HL60 cells isolated for resistance to Adriamycin do not contain P-glycoprotein, as determined with immunological probes. These cells, however, are multidrug resistant and defective in the cellular accumulation of drug. In view of these findings, we have examined in greater detail certain properties of the HL60/Adr cells and have compared these properties to an HL60 drug-resistant isolate (HL60/Vinc) which contains high levels of P-glycoprotein. The results of these studies demonstrated that verapamil induces a major increase in cellular drug accumulation in both HL60/Adr and HL60/Vinc isolates. An 125I-labeled photoaffinity analog of verapamil labeled P-glycoprotein contained in membranes of HL60/Vinc cells. In contrast, this agent did not label any protein selectively associated with drug resistance in membranes of the HL60/Adr isolate. The photoactive dihydropyridine calcium channel blocker [3H]azidopine and [125I]NASV, a photoaffinity analog of vinblastine, labelled P-glycoprotein in membranes from HL60/Vinc cells, whereas in experiments with the HL60/Adr isolate there was no detectable labeling of a drug resistance associated membrane protein. Additional studies have been carried out to analyze membrane proteins of HL60/Adr cells labeled with the photoaffinity agent 8-azido-alpha-[32P]ATP (AzATP32). The results demonstrate that this agent labeled a resistance associated membrane protein of 190 kilodaltons (P190). P190 is essentially absent in membranes of drug-sensitive cells. Labeling of P190 with AzATP32 in membranes of resistant cells was blocked completely when incubations were carried out in the presence of excess unlabeled ATP. Additional studies were carried out to analyze mdr gene amplification and expression in sensitive and resistant cells. Experiments carried out with human 5',mdr1 (1.1 kb) and mdr3 (1.0 kb) cDNAs demonstrate that both of these sequences were highly amplified in the HL60/Vinc isolate. Only the mrd1 gene sequence however, was

  3. Contemporary Issues in Protein Requirements and Consumption for Resistance Trained Athletes

    Directory of Open Access Journals (Sweden)

    Wilson Jacob

    2006-06-01

    Full Text Available Abstract In recent years an explosion of research papers concerning protein consumption has been published. The need to consolidate this information has become critical from both practical and future research standpoints. For this reason, the following paper presents an in depth analysis of contemporary issues in protein requirements and consumption for resistance trained athletes. Specifically, the paper covers: 1. protein requirements for resistance trained athletes; 2. the effect of the digestion rate of protein on muscular protein balance; 3. the optimal timing of protein intake relative to exercise; 4. the optimal pattern of protein ingestion, relative to how an individual should consume their protein throughout a 24 hour period, and what sources are utilized during this time frame; 5. protein composition and its interaction with measures of protein balance and strength performance; 6. the combination of protein and carbohydrates on plasma insulin levels and protein balance; 7. the efficacy of protein supplements and whole food protein sources. Our goal is to provide the reader with practical information in optimizing protein intake as well as for provision of sound advice to their clients. Finally, special care was taken to provide future research implications.

  4. Resistance to activated protein C is a risk factor for fibrostenosis in Crohn’s disease

    OpenAIRE

    Novacek, Gottfried; Miehsler, Wolfgang; Palkovits, Julia; Reinisch, Walter; Waldhör, Thomas; Kapiotis, Stylianos; Gangl, Alfred; Vogelsang, Harald

    2006-01-01

    AIM: To evaluate the effect of resistance to activated protein C (aPCR), the most common known inherited thrombophilic disorder, on the risk of intestinal operation of fibrostenosis in patients with Crohn’s disease (CD).

  5. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs.

    Science.gov (United States)

    Lombardo, Laura; Pellitteri, Rosalia; Balazy, Michael; Cardile, Venera

    2008-05-01

    Our work contributes to the understanding of the mechanisms of drug resistance in epilepsis. This study aimed to investigate i) the levels of expression of P-glycoprotein (P-gp), and multidrug resistance-associated proteins (MRP)1 and 2, ii) the activation of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), and iii) the relationship between increased P-gp and MRPs expression and PXR and CAR activation, in immortalized rat brain microvascular endothelial cell lines, GPNT and RBE4, following treatment with the antiepileptic drugs (AEDs), topiramate, phenobarbital, carbamazepine, tiagabine, levetiracetam, and phenytoin, using Western blotting and immunocytochemistry methods. Carbamazepine, phenobarbital and phenytoin induced the highest levels of P-gp and MPRs expression that was associated with increased activation of PXR and CAR receptors as compared to levetiracetam, tiagabine and topiramate. We conclude that P-gp and MRPs are differently overexpressed in GPNT and RBE4 by various AEDs and both PXR and CAR are involved in the drug-resistant epilepsy induced by carbamazepine, phenobarbital and phenytoin.

  6. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  7. High dietary protein intake, reducing or eliciting insulin resistance?

    NARCIS (Netherlands)

    Rietman, A.; Schwarz, J.; Tome, D.; Kok, F.J.; Mensink, M.R.

    2014-01-01

    Dietary proteins have an insulinotropic effect and thus promote insulin secretion, which indeed leads to enhanced glucose clearance from the blood. In the long term, however, a high dietary protein intake is associated with an increased risk of type 2 diabetes. Moreover, branched-chain amino acids

  8. Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Innocent Djegbe

    Full Text Available BACKGROUND: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R allele is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. METHODS AND RESULTS: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R resistance allele or not (wild type. Four salivary proteins were differentially expressed (>2 fold, P<0.05 in susceptible (SLAB and resistant (SR mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase were significantly over-expressed in the salivary gland of ace-1(R resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. CONCLUSION: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further

  9. Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells

    Science.gov (United States)

    Cen, Juan; Zhang, Li; Liu, Fangfang

    2016-01-01

    Reactive oxygen species (ROS) play an important role in multidrug resistance (MDR). This study aimed to investigate the effects of long-term ROS alteration on MDR in MCF-7 cells and to explore its underlying mechanism. Our study showed both long-term treatments of H2O2 and glutathione (GSH) led to MDR with suppressed iROS levels in MCF-7 cells. Moreover, the MDR cells induced by 0.1 μM H2O2 treatment for 20 weeks (MCF-7/ROS cells) had a higher viability and proliferative ability than the control MCF-7 cells. MCF-7/ROS cells also showed higher activity or content of intracellular antioxidants like glutathione peroxidase (GPx), GSH, superoxide dismutase (SOD), and catalase (CAT). Importantly, MCF-7/ROS cells were characterized by overexpression of MDR-related protein 1 (MRP1) and P-glycoprotein (P-gp), as well as their regulators NF-E2-related factor 2 (Nrf2), hypoxia-inducible factor 1 (HIF-1α), and the activation of PI3K/Akt pathway in upstream. Moreover, several typical MDR mediators, including glutathione S-transferase-π (GST-π) and c-Myc and Protein Kinase Cα (PKCα), were also found to be upregulated in MCF-7/ROS cells. Collectively, our results suggest that ROS may be critical in the generation of MDR, which may provide new insights into understanding of mechanisms of MDR. PMID:28058088

  10. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  11. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2007-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  12. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport.

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2007-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  13. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2 (Mrp2-) mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2006-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  14. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  15. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2006-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  16. Rivaroxaban Causes Missed Diagnosis of Protein S Deficiency but Not of Activated Protein C Resistance (Factor V Leiden).

    Science.gov (United States)

    Maryamchik, Elena; Rosenbaum, Matthew W; Van Cott, Elizabeth M

    2018-01-01

    - Rivaroxaban causes a false increase in activated protein C resistance (APCR) ratios and protein S activity. - To investigate whether this increase masks a diagnosis of factor V Leiden (FVL) or protein S deficiency in a "real-world" population of patients undergoing rivaroxaban treatment and hypercoagulation testing. - During a 2.5-year period, we compared 4 groups of patients (n = 60): FVL heterozygous (FVL-HET)/taking rivaroxaban, wild-type/taking rivaroxaban, FVL-HET/no rivaroxaban, and normal APCR/no rivaroxaban. Patients taking rivaroxaban were tested for protein S functional activity and free antigen (n = 32). - The FVL-HET patients taking rivaroxaban had lower APCR ratios than wild-type patients ( P < .001). For FVL-HET patients taking rivaroxaban, mean APCR was 1.75 ± 0.12, versus 1.64 ± 0.3 in FVL-HET patients not taking rivaroxaban ( P = .005). Activated protein C resistance in FVL-HET patients fell more than 3 SDs below the cutoff of 2.2 at which the laboratory reflexes FVL DNA testing. No cases of FVL were missed despite rivaroxaban. In contrast, rivaroxaban falsely elevated functional protein S activity, regardless of the presence or absence of FVL ( P < .001). A total of 4 of 32 patients (12.5%) had low free protein S antigen (range, 58%-67%), whereas their functional protein S activity appeared normal (range 75%-130%). Rivaroxaban would have caused a missed diagnosis of all cases of protein S deficiency during the study if testing relied on the protein S activity assay alone. - Despite rivaroxaban treatment, APCR testing can distinguish FVL-HET from normal patients, rendering indiscriminate FVL DNA testing of all patients on rivaroxaban unnecessary. Free protein S should be tested in patients taking rivaroxaban to exclude hereditary protein S deficiency.

  17. A expressão e a atividade da bomba MRP1/GS-X e de proteínas de choque térmico (HSP70) no miocárdio e gastrocnêmio de ratos treinados : possível mecanismo de citoproteção induzido pelo exercício contra os efeitos do estresse oxidativo

    OpenAIRE

    Maurício da Silva Krause

    2005-01-01

    A relação entre as concentrações intracelulares de glutationa (GSH) e dissulfeto de glutationa (GSSG), dita o estado redox celular que, por sua vez, modula a atividade de muitos genes e proteínas sensíveis às alterações de potencial redox. As proteínas de choque térmico (HSP) são fundamentais na defesa contra o estresse oxidativo e em processos de reparo celular. Já a bomba GS-X codificada pelo gene MRP1 pode regular o estado redox celular exportando dissulfeto de glutationa (GSSG), prevenind...

  18. Characterization of protein changes associated with sugar beet (Beta vulgaris) resistance and susceptibility to Fusarium oxysporum.

    Science.gov (United States)

    Larson, Rebecca L; Hill, Amy L; Nuñez, Alberto

    2007-09-19

    Fusarium oxysporum (F-19) is a serious threat to sugar beet. Resistance exists, but the basis for resistance and disease is unknown. Protein extracts from sugar beet genotypes C1200.XH024 (resistant, R) and Fus7 (susceptible, S) were analyzed by multidimensional liquid chromatography at 2 and 5 days postinoculation (dpi) and compared to mock-inoculated controls. One hundred twenty-one (R) and 73 (S) protein peaks were induced/repressed by F-19, approximately 12 (R) and 8% (S) of the total proteome detected. Temporal protein regulation occurred within and between each genotype, indicating that the timing of expression may be important for resistance. Thirty-one (R) and 48 (S) of the differentially expressed peaks were identified using matrix-assisted laser desorption-ionization with tandem time-of-flight mass spectrometry; others were below detection level. Comparison between the two genotypes uncovered R- and S-specific proteins with potential roles in resistance and disease development, respectively. Use of these proteins to select for new sources of resistance and to develop novel disease control strategies is discussed.

  19. [The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance].

    Science.gov (United States)

    Xie, Long-xiang; Yu, Zhao-xiao; Guo, Si-yao; Li, Ping; Abdalla, Abualgasim Elgaili; Xie, Jian-ping

    2015-08-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strategies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degradation, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic factors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics.

  20. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity

    NARCIS (Netherlands)

    Nielen, van M.; Feskens, E.J.M.; Rietman, A.; Siebelink, E.; Mensink, M.R.

    2014-01-01

    Increasing protein intake and soy consumption appear to be promising approaches to prevent metabolic syndrome (MetS). However, the effect of soy consumption on insulin resistance, glucose homeostasis, and other characteristics of MetS is not frequently studied in humans. We aimed to investigate the

  1. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hekmat, Omid; Munk, Stephanie; Fogh, Louise

    2013-01-01

    spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A and 2B, which......Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass...... may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated...

  2. Correlation between substitutions in penicillin-binding protein 1 and amoxicillin resistance in Helicobacter pylori.

    Science.gov (United States)

    Rimbara, Emiko; Noguchi, Norihisa; Kawai, Takashi; Sasatsu, Masanori

    2007-01-01

    The correlation between the substitutions of penicillin-binding protein 1 (PBP1) and amoxicillin resistance was studied for the determination of the substitutions in PBP1 which confer amoxicillin resistance in Helicobacter pylori. By the comparison of the amino acid sequences of PBP1 in the amoxicillinresistant (n=3), low-susceptible (n=3), and susceptible (n=13) H. pylori isolates, the substitution Asn562-->Tyr, which is adjacent to KTG motif (555-557), was common and specific to amoxicillin-resistant H. pylori. Additionally, all amoxicillin-resistant isolates had multiple substitutions such as Ser414-->Arg in the transpeptidase region of PBP1 of H. pylori. Furthermore all transformants obtained by the natural transformation using the pbp1 genes of amoxicillin-resistant H. pylori isolates had multiple substitutions including Asn562-->Tyr. These results suggest that multiple amino acid substitutions in the transpeptidase region of PBP1 are closely related to amoxicillin resistance in H. pylori.

  3. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver

    NARCIS (Netherlands)

    Vos, T. A.; Hooiveld, G. J.; Koning, H.; Childs, S.; Meijer, D. K.; Moshage, H.; Jansen, P. L.; Müller, M.

    1998-01-01

    Endotoxin-induced cholestasis is mainly caused by an impaired canalicular secretion. Mrp2, the canalicular multispecific organic anion transporter, is strongly down-regulated in this situation, and canalicular bile salt secretion is also reduced. We hypothesized that other adenosine

  4. Up-regulation of the multidrug resistance genes, mrp1 and mdr1b, and down regulation of the organic anion transporter, mrp2, and the bile salt transporter, spgp, in endotoxemic rat liver

    NARCIS (Netherlands)

    Vos, T; Hooiveld, GJE; Konong, H; Childs, S; Meijer, DKF; Moshage, H; Jansen, PLM; Muller, M

    Endotoxin-induced cholestasis is mainly caused by an impaired canalicular secretion. Mrp2, the canalicular multispecific organic anion transporter, is strongly down-regulated in this situation, and canalicular bile salt secretion is also reduced. We hypothesized that other adenosine

  5. Up-regulation of the multidrug resistance genes, mrp1 and mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, spgp, in endotoxemic rat liver

    NARCIS (Netherlands)

    Vos, TA; Hooiveld, GJEJ; Childs, S; Meijer, DKF; Moshage, H; Jansen, PLM; Muller, M

    1998-01-01

    Endotoxin-induced cholestasis is mainly caused by an impaired canalicular secretion. Mrp2, the canalicular multispecific organic anion transporter, is strongly downregulated in this situation, and canalicular bile salt secretion is also reduced. We hypothesized that other adenosine

  6. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    Science.gov (United States)

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  7. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis.

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    Full Text Available The type 2 diabetes has increased rapidly in recent years throughout the world. The insulin signal transduction mechanism gets disrupted sometimes and it's known as insulin-resistance. It is one of the primary causes associated with type-2 diabetes. The signaling mechanisms involved several proteins that include 7 major functional proteins such as INS, INSR, IRS1, IRS2, PIK3CA, Akt2, and GLUT4. Using these 7 principal proteins, multiple sequences alignment has been created. The scores between sequences also have been developed. We have constructed a phylogenetic tree and modified it with node and distance. Besides, we have generated sequence logos and ultimately developed the protein-protein interaction network. The small insulin signal transduction protein arrangement shows complex network between the functional proteins.

  8. Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells.

    Science.gov (United States)

    Wang, Zhen; Wang, Fuxing; Hong, Yechun; Huang, Jirong; Shi, Huazhong; Zhu, Jian-Kang

    2016-12-01

    Chloroplast as the site for photosynthesis is an essential organelle in plants, but little is known about its role in stomatal regulation and drought resistance. In this study, we show that two chloroplastic proteins essential for thylakoid formation negatively regulate drought resistance in Arabidopsis (Arabidopsis thaliana). By screening a mutant pool with T-DNA insertions in nuclear genes encoding chloroplastic proteins, we identified an HCF106 knockdown mutant exhibiting increased resistance to drought stress. The hcf106 mutant displayed elevated levels of reactive oxygen species (ROS) in guard cells, improved stomatal closure, and reduced water loss under drought conditions. The HCF106 protein was found to physically interact with THF1, a previously identified chloroplastic protein crucial for thylakoid formation. The thf1 mutant phenotypically resembled the hcf106 mutant and displayed more ROS accumulation in guard cells, increased stomatal closure, reduced water loss, and drought resistant phenotypes compared to the wild type. The hcf106thf1 double mutant behaved similarly as the thf1 single mutant. These results suggest that HCF106 and THF1 form a complex to modulate chloroplast function and that the complex is important for ROS production in guard cells and stomatal control in response to environmental stresses. Our results also suggest that modulating chloroplastic proteins could be a way for improving drought resistance in crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study

    Directory of Open Access Journals (Sweden)

    Daniel W. D. West

    2017-07-01

    Full Text Available No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey or an energy-matched placebo (CHO immediately post-exercise (0 h, and again the following morning (~10 h of recovery. A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest. Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES = 0.61, PRO vs. CHO during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036 but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO, which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP, maximal strength (MVC, peak and mean power, and countermovement jump performance (CMJ at 0 h (all P < 0.05 vs. Pre. At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56, mean power (ES = 0.49, and CMJ variables (ES: 0.27–0.49 in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76, REP (ES = 0.44, and peak power (ES = 0.55. In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of

  10. Increased Prevalence of Activated Protein C Resistance During ...

    African Journals Online (AJOL)

    centrifuged this time at 3000 gravitational under identical conditions. The resulting platelet poor plasma (PPP) was either tested immediately or stored in aliquots at in a -80oC freezer until testing. Protein C activity was measured using a clot-based assay.

  11. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  12. Possibly similar genetic basis of resistance to Bacillus thuringiensis Cry1Ab protein in 3 resistant colonies of the sugarcane borer collected from Louisiana, USA.

    Science.gov (United States)

    Yang, Fei; Chen, Mao; Gowda, Anilkumar; Kerns, David L; Huang, Fangneng

    2018-04-01

    The sugarcane borer, Diatraea saccharalis (F.), is a major maize borer pest and a target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-southern region of the United States. Evolution of resistance in target pest populations is a great threat to the long-term efficacy of Bt crops. In this study, we compared the genetic basis of resistance to Cry1Ab protein in 3 resistant colonies of sugarcane borer established from field populations in Louisiana, USA. Responses of larvae to the Cry1Ab protein for the parental and 10 other cross colonies were assayed in a diet-incorporated bioassay. All 3 resistant colonies were highly resistant to the Cry1Ab protein with a resistance ratio of >555.6 fold. No maternal effect or sex linkage was evident for the resistance in the 3 colonies; and the resistance was functionally nonrecessive at the Cry1Ab concentrations of ≤ 3.16 μg/g, but it became recessive at ≥10 μg/g. In an interstrain complementation test for allelism, the F 1 progeny from crosses between any 2 of the 3 resistant colonies exhibited the similar resistance levels as their parental colonies, indicating that the 3 colonies most likely shared a locus of Cry1Ab resistance. Results generated from this study should provide useful information in developing effective strategies for managing Bt resistance in the insect. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  13. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    Science.gov (United States)

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  15. Analysis of the protein profiles of the antibiotic- resistant Salmonella ...

    African Journals Online (AJOL)

    Owner

    2005-05-18

    May 18, 2005 ... ice-cold 100% acetone and air-dried. The dried whole cell proteins and other samples (flagillin, CFUS) for 2DE were digested (100oC,. 5 min) in 4 µl of 10% SDS and dissolved in 100 µl of urea sample buffer containing 8 M urea, 4% Triton X-100, 20 mM dithiothreitol,. 2% ampholyte (pH 3.5~10) and traces ...

  16. Poly(C)-binding protein 1 mediates drug resistance in colorectal cancer.

    Science.gov (United States)

    Guo, Jiani; Zhu, Changli; Yang, Kangqun; Li, Jin; Du, Nan; Zong, Mingzhu; Zhou, Jianwei; He, Jingdong

    2017-02-21

    Oxaliplatin (L-OHP) is standard treatment for colorectal cancer. However, resistance to L-OHP often leads to treatment failure or cancer relapse. Understanding of the mechanism underlying L-OHP resistance is important to overcome the resistance and improve colorectal cancer treatment. This study aimed to identify new proteins that mediates L-OHP resistance in colorectal cancer and elucidate their mode of function. HT-29 cells were exposed to gradually increased concentration of L-OHP to select L-OHP resistant HT-29/L-OHP cell line. Proteomic analysis of HT-29 and HT-29/L-OHP cells were performed to identify differentially expressed proteins, including Poly(C)-binding protein 1 (PCBP1). PCBP1 expression level in 20 cases of L-OHP sensitive patients and 20 cases of L-OHP refractory patients was analyzed by immunohistochemistry. Chemoresistance and Akt activation in HT-29 and HT-29/L-OHP cells were analyzed by MTT assay and Western blot analysis. We identified 37 proteins showing differential expression in HT-29/L-OHP and HT-29 cells. In particular, PCBP1 protein level increased 15.6 fold in HT-29/L-OHP cells compared to HT-29 cells. Knockdown of PCBP1 sensitized HT-29/L-OHP and HT-29 cells to L-OHP, while overexpression of PCBP1 increased L-OHP resistance in HT-29 cells. In addition, PCBP1 expression was significantly higher in tumor samples from L-OHP refractory patients than in those from L-OHP responsive patients. Furthermore, we found that knockdown of PCBP1 inhibited the activation of Akt in HT-29/L-OHP and HT-29 cells. In conclusion, our findings suggest that PCBP1 is a molecular marker of L-OHP resistance in colorectal cancer and a promising target for colorectal cancer therapy.

  17. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis

    OpenAIRE

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significan...

  18. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  19. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horáková, Eva; Van Den Burg, J.; Zíková, Alena; Ernst, N. L.; Stuart, K.; Benne, R.; Lukeš, Julius

    2005-01-01

    Roč. 280, č. 4 (2005), s. 2429-2438 ISSN 0021-9258 R&D Projects: GA AV ČR IAA6022903 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma brucei * RNA editing * interference RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  20. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    Science.gov (United States)

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  1. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure.

    Science.gov (United States)

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2014-01-01

    Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase.

  2. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

    Directory of Open Access Journals (Sweden)

    Yang Yifan

    2012-06-01

    Full Text Available Abstract Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g, or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively. We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40. A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003. Rates of MPS for S20 were less than W20 (P = 0.02 and not different from 0 g (P = 0.41 in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P P = 0.04. Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein.

  3. Dietary protein safety and resistance exercise: what do we really know?

    Directory of Open Access Journals (Sweden)

    Lowery Lonnie M

    2009-01-01

    Full Text Available Abstract Resistance trainers continue to receive mixed messages about the safety of purposely seeking ample dietary protein in their quest for stimulating protein synthesis, improving performance, or maintaining health. Despite protein's lay popularity and the routinely high intakes exhibited by strength athletes, liberal and purposeful protein consumption is often maligned by "experts". University textbooks, instructors, and various forms of literature from personal training groups and athletic organizations continue to use dissuasive language surrounding dietary protein. Due to the widely known health benefits of dietary protein and a growing body of evidence on its safety profile, this is unfortunate. In response, researchers have critiqued unfounded educational messages. As a recent summarizing example, the International Society of Sports Nutrition (ISSN Position Stand: Protein and Exercise reviewed general literature on renal and bone health. The concluding remark that "Concerns that protein intake within this range [1.4 – 2.0 g/kg body weight per day] is unhealthy are unfounded in healthy, exercising individuals." was based largely upon data from non-athletes due to "a lack of scientific evidence". Future studies were deemed necessary. This assessment is not unique in the scientific literature. Investigators continue to cite controversy, debate, and the lack of direct evidence that allows it. This review discusses the few existing safety studies done specific to athletes and calls for protein research specific to resistance trainers. Population-specific, long term data will be necessary for effective education in dietetics textbooks and from sports governing bodies.

  4. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  5. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  6. Whey protein precludes lipid and protein oxidation and improves body weight gain in resistance-exercised rats.

    Science.gov (United States)

    Haraguchi, Fabiano Kenji; Silva, Marcelo Eustáquio; Neves, Leandro Xavier; dos Santos, Rinaldo Cardoso; Pedrosa, Maria Lúcia

    2011-08-01

    Resistance exercise such as weight-lifting (WL) increases oxidation products in plasma, but less is known regarding the effect of WL on oxidative damage to tissues. Dietary compounds are known to improve antioxidant defences. Whey protein (WP) is a source of protein in a variety of sport supplements and can enhance physical performance. To evaluate the effect of WL on biomarkers of lipid and protein oxidation, on liver antioxidants and on muscle growth in the absence or presence of WP in rats. Thirty-two male Fisher rats were randomly assigned to sedentary or exercise-trained groups and were fed with control or WP diets. The WL programme consisted of inducing the animals to perform sets of jumps with weights attached to the chest. After 8 weeks, arteriovenous blood samples, abdominal fat, liver and gastrocnemius muscle were collected for analysis. WP precludes WL-mediated increases in muscle protein carbonyl content and maintains low levels of TBARS in exercised and sedentary animals. WL reduced liver CAT activity, whereas WP increased hepatic glutathione content. In addition, WL plus WP generated higher body and muscle weight than exercise without WP. These data suggest that WP improves antioxidant defences, which contribute to the reduction of lipid and protein oxidation as well as body and muscle weight gain in resistance-exercised rats.

  7. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance

    OpenAIRE

    Brenachot, Xavier; Ramadori, Giorgio; Ioris, Rafael M.; Veyrat-Durebex, Christelle; Altirriba, Jordi; Aras, Ebru; Ljubicic, Sanda; Kohno, Daisuke; Fabbiano, Salvatore; Clement, Sophie; Goossens, Nicolas; Trajkovski, Mirko; Harroch, Sheila; Negro, Francesco; Coppari, Roberto

    2017-01-01

    Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-ind...

  8. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  9. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2

    NARCIS (Netherlands)

    van Ooijen, G.; Lukasik, E.; van den Burg, H.A.; Vossen, J.H.; Cornelissen, B.J.C.; Takken, F.L.W.

    2010-01-01

    Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report

  10. Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains.

    Science.gov (United States)

    Alcolea, Pedro J; Tuñón, Gabriel I L; Alonso, Ana; García-Tabares, Francisco; Ciordia, Sergio; Mena, María C; Campos, Roseane N S; Almeida, Roque P; Larraga, Vicente

    2016-11-01

    Leishmania chagasi is the causative agent of zoonotic visceral leishmaniasis in Brazil. Domestic and stray dogs are the main reservoirs. The life cycle of the parasite involves two stages. Promastigotes are extracellular and develop within the sand fly gut. Amastigotes survive inside the harsh environment of the phagolysosome of mammalian host phagocytes, which display the nitric oxide defense mechanism. Surprisingly, we were able to isolate promastigotes that are also resistant to NO. This finding may be explained by the preadaptative hypothesis. An insight into the proteome of NO-sensitive and resistant promastigotes is presented herein. Total protein extracts were prepared from promastigote cultures of an NO-sensitive and a resistant strain at early-logarithmic, mid-logarithmic and stationary phase. A population enriched in metacyclic promastigotes was also isolated by Percoll gradient centrifugation. In vitro infectivity of both strains was compared. Differential protein abundance was analyzed by 2DE-MALDI-TOF/TOF. The most striking results were tested at the mRNA level by qRT-PCR. Three biological replicates were performed in all cases. NO-resistant L. chagasi promastigotes are more infective than NO-sensitive ones. Among the differentially abundant spots, 40 proteins could be successfully identified in the sensitive strain and 38 in resistant promastigotes. The increase of G6PD and the decrease of ARG and GPX transcripts and proteins contribute to NO resistance in L. chagasi promastigotes. These proteins may be studied as potential drug targets and/or vaccine candidates in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance

    Science.gov (United States)

    Tao, Jun; Han, Jiao; Wu, Hanyu; Hu, Xinling; Deng, Jiaoyu; Fleming, Joy; Maxwell, Anthony; Bi, Lijun; Mi, Kaixia

    2013-01-01

    DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase. PMID:23275532

  12. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants.

    Science.gov (United States)

    Pal, Tarun; Jaiswal, Varun; Chauhan, Rajinder S

    2016-11-01

    Plant disease outbreak is increasing rapidly around the globe and is a major cause for crop loss worldwide. Plants, in turn, have developed diverse defense mechanisms to identify and evade different pathogenic microorganisms. Early identification of plant disease resistance genes (R genes) can be exploited for crop improvement programs. The present prediction methods are either based on sequence similarity/domain-based methods or electronically annotated sequences, which might miss existing unrecognized proteins or low similarity proteins. Therefore, there is an urgent need to devise a novel machine learning technique to address this problem. In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Protein Arrays for Multidrug-resistance in Human Leukemia Cell Determination

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2005-05-01

    Full Text Available A novel technique was developed, that was high throughput simultaneousscreening of multiple resistance protein expression based on a protein array system. Themethod combined the advantage of the specificity of enzyme-linked immunosorbentassays with the sensitivity and high throughput of microspot. In this system, the multipleresistance protein arrays were created by spotting the captured antibodies onto the glassslide. The arrays were then incubated with cell samples of leukemia patients. The boundproteins were recognized by biotin-conjugated antibodies and detected by CCD.Experiments demonstrated that three multiple resistance proteins, including Pgp, MRPand BCRP which are members of the ATP-binding-cassette (ABC superfamily ofmembrane transporters could be simultaneously detected using this new approach.Research work shows the result is coincident with flow cytometry (FCM (P>0.01. Itprovided a methodology to develop many high-density protein array systems to detect avariety of proteins. The protein arrays will provide a powerful tool to identify theleukemia cell protein expression and rapidly validate their MDR determination.

  14. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism.

    Science.gov (United States)

    Gidlund, Eva-Karin; von Walden, Ferdinand; Venojärvi, Mika; Risérus, Ulf; Heinonen, Olli J; Norrbom, Jessica; Sundberg, Carl Johan

    2016-12-01

    Humanin (HN) is a mitochondrially encoded and secreted peptide linked to glucose metabolism and tissue protecting mechanisms. Whether skeletal muscle HN gene or protein expression is influenced by exercise remains unknown. In this intervention study we show, for the first time, that HN protein levels increase in human skeletal muscle following 12 weeks of resistance training in persons with prediabetes. Male subjects (n = 55) with impaired glucose regulation (IGR) were recruited and randomly assigned to resistance training, Nordic walking or a control group. The exercise interventions were performed three times per week for 12 weeks with progressively increased intensity during the intervention period. Biopsies from the vastus lateralis muscle and venous blood samples were taken before and after the intervention. Skeletal muscle and serum protein levels of HN were analyzed as well as skeletal muscle gene expression of the mitochondrially encoded gene MT-RNR2, containing the open reading frame for HN To elucidate mitochondrial training adaptation, mtDNA, and nuclear DNA as well as Citrate synthase were measured. Skeletal muscle HN protein levels increased by 35% after 12 weeks of resistance training. No change in humanin protein levels was seen in serum in any of the intervention groups. There was a significant correlation between humanin levels in serum and the improvements in the 2 h glucose loading test in the resistance training group. The increase in HN protein levels in skeletal muscle after regular resistance training in prediabetic males may suggest a role for HN in the regulation of glucose metabolism. Given the preventative effect of exercise on diabetes type 2, the role of HN as a mitochondrially derived peptide and an exercise-responsive mitokine warrants further investigation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease.

    Science.gov (United States)

    Siew, Edward D; Ikizler, Talat Alp

    2010-01-01

    Insulin resistance (IR), the reciprocal of insulin sensitivity is a known complication of advanced chronic kidney disease (CKD) and is associated with a number of metabolic derangements. The complex metabolic abnormalities observed in CKD such as vitamin D deficiency, obesity, metabolic acidosis, inflammation, and accumulation of "uremic toxins" are believed to contribute to the etiology of IR and acquired defects in the insulin-receptor signaling pathway in this patient population. Only a few investigations have explored the validity of commonly used assessment methods in comparison to gold standard hyperinsulinemic hyperglycemic clamp technique in CKD patients. An important consequence of insulin resistance is its role in the pathogenesis of protein energy wasting, a state of metabolic derangement characterized by loss of somatic and visceral protein stores not entirely accounted for by inadequate nutrient intake. In the general population, insulin resistance has been associated with accelerated protein catabolism. Among end-stage renal disease (ESRD) patients, enhanced muscle protein breakdown has been observed in patients with Type II diabetes compared to ESRD patients without diabetes. In the absence of diabetes mellitus (DM) or severe obesity, insulin resistance is detectable in dialysis patients and strongly associated with increased muscle protein breakdown, primarily mediated by the ubiquitin-proteasome pathway. Recent epidemiological data indicate a survival advantage and better nutritional status in insulin-free Type II DM patients treated with insulin sensitizer thiazolidinediones. Given the high prevalence of protein energy wasting in ESRD and its unequivocal association with adverse clinical outcomes, insulin resistance may represent an important modifiable target for intervention in the ESRD population.

  16. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  17. Soybean NDR1-like proteins bind pathogen effectors and regulate resistance signaling.

    Science.gov (United States)

    Selote, Devarshi; Shine, M B; Robin, Guillaume P; Kachroo, Aardra

    2014-04-01

    Nonrace specific disease resistance 1 (NDR1) is a conserved downstream regulator of resistance (R) protein-derived signaling. We identified two NDR1-like sequences (GmNDR1a, b) from soybean, and investigated their roles in R-mediated resistance and pathogen effector detection. Silencing GmNDR1a and b in soybean shows that these genes are required for resistance derived from the Rpg1-b, Rpg3, and Rpg4 loci, against Pseudomonas syringae (Psg) expressing avrB, avrB2 and avrD1, respectively. Immunoprecipitation assays show that the GmNDR1 proteins interact with the AvrB2 and AvrD1 Psg effectors. This correlates with the enhanced virulence of Psg avrB2 and Psg avrD1 in GmNDR1-silenced rpg3 rpg4 plants, even though these strains are not normally more virulent on plants lacking cognate R loci. The GmNDR1 proteins interact with GmRIN4 proteins, but not with AvrB, or its cognate R protein Rpg1-b. However, the GmNDR1 proteins promote AvrB-independent activation of Rpg1-b when coexpressed with a phosphomimic derivative of GmRIN4b. The role of GmNDR1 proteins in Rpg1-b activation, their direct interactions with AvrB2/AvrD1, and a putative role in the virulence activities of Avr effectors, provides the first experimental evidence in support of the proposed role for NDR1 in transducing extracellular pathogen-derived signals. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish

    DEFF Research Database (Denmark)

    Blaise, Mickael; Alsarraf, Husam Mohammad Ali Baker; Wong, Jaslyn

    2012-01-01

    structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices...

  19. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  20. Combined protein-rich diet with resistance exercise intervention to counteract sarcopenia

    NARCIS (Netherlands)

    Herrema, Annemarthe L.; Westerman, Marjan J.; Dongen, Ellen Van J.I.; Kudla, Urszula; Veltkamp, Martijn

    2018-01-01

    Interventions combining protein-rich diets with resistance exercises seem a promising avenue in helping to prevent sarcopenia. However, compliance to health interventions is generally low. The aim of the present study was to provide qualitative insights into the drivers and barriers that older

  1. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism

    Directory of Open Access Journals (Sweden)

    Churchward-Venne Tyler A

    2012-05-01

    Full Text Available Abstract Provision of dietary amino acids increases skeletal muscle protein synthesis (MPS, an effect that is enhanced by prior resistance exercise. As a fundamentally necessary process in the enhancement of muscle mass, strategies to enhance rates of MPS would be beneficial in the development of interventions aimed at increasing skeletal muscle mass particularly when combined with chronic resistance exercise. The purpose of this review article is to provide an update on current findings regarding the nutritional regulation of MPS and highlight nutrition based strategies that may serve to maximize skeletal muscle protein anabolism with resistance exercise. Such factors include timing of protein intake, dietary protein type, the role of leucine as a key anabolic amino acid, and the impact of other macronutrients (i.e. carbohydrate on the regulation of MPS after resistance exercise. We contend that nutritional strategies that serve to maximally stimulate MPS may be useful in the development of nutrition and exercise based interventions aimed at enhancing skeletal muscle mass which may be of interest to elderly populations and to athletes.

  2. Effects of resistance training associated with whey protein supplementation on liver and kidney biomarkers in rats.

    Science.gov (United States)

    Nunes, Ramiro; Silva, Priscila; Alves, Jadson; Stefani, Giuseppe; Petry, Marcelo; Rhoden, Cláudia; Dal Lago, Pedro; Schneider, Claudia Dornelles

    2013-11-01

    The aim of this study was to investigate the impact of whey protein (WP) supplementation and resistance training (RT) on liver and kidney biomarkers. The sedentary + WP group showed higher levels of plasma liver and kidney dysfunction markers compared with the other groups. In addition, WP supplementation associated with RT resulted in physiologic cardiac hypertrophy. WP supplementation without RT affected liver and kidney function.

  3. Association of ERCC1 protein expression to platinum resistance in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    was to investigate if immunohistochemical expression of ERCC1 protein was associated with resistance to standard combination carboplatin and paclitaxel chemotherapy in newly diagnosed ovarian cancer patients. Methods: Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian...

  4. Expression of multidrug resistance-associated proteins predicts prognosis in childhood and adult acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Plasschaert, SLA; de Bont, ESJM; Boezen, M; vander Kolk, DM; Daenen, SMJG; Faber, KN; Kamps, WA; de Vries, EGE; Vellenga, E

    2005-01-01

    PURPOSE: Patients with acute lymphoblastic leukemia (ALL) are treated with a variety of chemotherapeutic drugs, which can be transported by six multidrug resistance-associated proteins (MRP). These MRPs have strongly overlapping functional activities. The aim of this study was to investigate the

  5. Analysis of the protein profiles of the antibiotic-resistant Salmonella ...

    African Journals Online (AJOL)

    The emergent Salmonella typhimurium definitive phage type (DT) 104 is of particular global concern due to its frequent isolation and multiple antibiotic resistances. There is thus a need to know the kind of proteins expressed by S. typhimurium DT104 so as to provide a basis for developing an intervention. This study ...

  6. C-reactive protein, insulin resistance and risk of cardiovascular disease: a population-based study

    DEFF Research Database (Denmark)

    Hansen, T.W.; Olsen, M.H.; Rasmussen, S.

    2008-01-01

    BACKGROUND: C-reactive protein (CRP), a marker of inflammation, and insulin resistance (IR), a metabolic disorder, are closely related. CRP and IR have both been identified as significant risk factors of cardiovascular disease (CVD) after adjustment for conventional CVD risk factors...

  7. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    Science.gov (United States)

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  8. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  9. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    Science.gov (United States)

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  12. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Science.gov (United States)

    Kirjavainen, Vesa; Jarva, Hanna; Biedzka-Sarek, Marta; Blom, Anna M; Skurnik, Mikael; Meri, Seppo

    2008-08-29

    Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  13. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  14. Bioinformatics and structural characterization of a hypothetical protein from Streptococcus mutans: implication of antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Jie Nan

    2009-10-01

    Full Text Available As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.

  15. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway

    Science.gov (United States)

    Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron

    2013-01-01

    The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P protein levels increased similarly by 48% with both CONC and ECC exercise (P hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations. PMID:23753523

  16. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  17. Intracellular polyamine pools, oligopeptide-binding protein A expression, and resistance to aminoglycosides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maria BR Acosta

    2005-11-01

    Full Text Available The role of intracellular free polyamine (putrescine and spermidine pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA levels and/or defective ornithine decarboxylase (ODC activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.

  18. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia

    Directory of Open Access Journals (Sweden)

    Mason Mary E

    2013-01-01

    Full Text Available Abstract Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant and 6 diseased/infested (scale-susceptible trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD

  19. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Directory of Open Access Journals (Sweden)

    Juliana Ide Aoki

    2016-09-01

    Full Text Available Tubercidin (TUB is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis.After transfection of a cosmid genomic library into L. major Friedlin (LmjF parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2 containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP. Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER, a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway.This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine

  20. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites.

    Science.gov (United States)

    Rocamora, Frances; Zhu, Lei; Liong, Kek Yee; Dondorp, Arjen; Miotto, Olivo; Mok, Sachel; Bozdech, Zbynek

    2018-03-01

    Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.

  1. Targeting heat shock proteins in metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Azad, Arun A; Zoubeidi, Amina; Gleave, Martin E; Chi, Kim N

    2015-01-01

    The survival of malignant cells is constantly threatened by a myriad of cellular insults. In the context of such proteotoxic stress, cancer cells activate cytoprotective adaptive pathways. Heat shock proteins (HSPs) are highly conserved molecular chaperones that are expressed at low levels under normal conditions, but upregulated by cellular stress. As molecular chaperones, HSPs control the stability and function of client proteins, preventing aggregation of misfolded proteins, facilitating intracellular protein trafficking, maintaining protein conformation to enable ligand binding, phosphorylating proteins in signalling complexes and degrading severely damaged proteins via the ubiquitin-proteasome pathway. A key client protein of several HSPs is the androgen receptor (AR). HSPs facilitate binding of dihydrotestosterone to the AR, and enhance AR-mediated transcriptional activity. The integral role of HSPs in AR function speaks to their potential utility as therapeutic targets in castration-resistant prostate cancer (CRPC), a disease state characterized by persistent activation of the androgen-AR axis. Inhibition of HSPs has the additional benefit of potentially modulating signalling and transcriptional networks that are associated with HSP client proteins in CRPC cells. As a consequence, HSPs represent highly attractive targets in the development of treatments for CRPC.

  2. Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Directory of Open Access Journals (Sweden)

    Leddy John J

    2009-03-01

    Full Text Available Abstract Background Most individuals at risk for developing cardiovascular disease (CVD can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy versus animal-based (whey protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men. Methods Twenty-eight overweight, male subjects (BMI 25–30 with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9, and soy (n = 9 or whey (n = 10 supplementation and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion. Results All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%, with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups. Conclusion Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.

  3. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  4. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  5. Effects of resistance training and protein supplementation on bone turnover in young adult women

    Directory of Open Access Journals (Sweden)

    Sinning Wayne E

    2005-08-01

    Full Text Available Abstract Background The strength of aging bone depends on the balance between the resorption and formation phases of the remodeling process. The purpose of this study was to examine the interaction of two factors with the potential to exert opposing influences on bone turnover, resistance exercise training and high dietary protein intake. It was hypothesized that resistance training by young, healthy, untrained women with protein intakes near recommended levels (0.8 g·kg-1·d-1 would promote bone formation and/or inhibit bone resorption, and that subsequent supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects. Methods Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP and osteocalcin (OC, and bone resorption with urinary calcium and deoxypyridinoline (DPD. Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24 healthy, untrained, eumenorrheic women (18–29y at baseline, after eight weeks of resistance training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary contraction, and after 12 weeks of resistance training and 10 days of protein/placebo supplementation. Subjects were randomized (double-blind to either a high protein (HP or training control (TC group and, during the final 10 days, consumed either enough purified whey protein to bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate placebo. Results Strength, lean tissue mass, and DPD increased significantly in both groups over time, while percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni correction. No significant changes were observed for serum OC or urinary calcium, and no significant group (TC, HP × time (baseline, week 8, week 12 interactions emerged for any of the biochemical measures. Conclusion (1 Twelve weeks of high-intensity resistance training did not appear to

  6. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    Science.gov (United States)

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P protein vs. carbohydrate group (P whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  7. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  8. Characterization of BRPMBL, the Bleomycin Resistance Protein Associated with the Carbapenemase NDM.

    Science.gov (United States)

    Dortet, Laurent; Girlich, Delphine; Virlouvet, Anne-Laure; Poirel, Laurent; Nordmann, Patrice; Iorga, Bogdan I; Naas, Thierry

    2017-03-01

    The metallo-β-lactamase NDM-1 is among the most worrisome resistance determinants and is spreading worldwide among Gram-negative bacilli. A bleomycin resistance gene, ble MBL , downstream of the bla NDM-1 gene has been associated with resistance almost systematically. Here, we characterized the corresponding protein, BRP MBL , conferring resistance to bleomycin, an antitumoral glycopeptide molecule. We have determined whether the expression of the bla NDM-1 - ble MBL operon is inducible in the presence of carbapenems and/or bleomycin-like molecules using quantitative reverse transcription-PCR (qRT-PCR), determination of imipenem and zeocin MICs, and carbapenemase-specific activity assays. We showed that the bla NDM-1 - ble MBL operon is constitutively expressed. Using electrophoretic mobility shift and DNA protection assays performed with purified glutathione S -transferase (GST)-BRP MBL , we demonstrated that BRP MBL is able to bind and sequester bleomycin-like molecules, thus preventing bleomycin-dependent DNA degradation. In silico modeling confirmed that the mechanism of action required the dimerization of the BRP MBL protein in order to sequester bleomycin and prevent DNA damage. BRP MBL acts specifically on bleomycin-like molecules since cloning and expression of ble MBL in Staphyloccoccus aureus did not confer cross-resistance to any other antimicrobial glycopeptides such as vancomycin and teicoplanin. Copyright © 2017 American Society for Microbiology.

  9. Screening and identification of resistance related proteins from apple leaves inoculated with Marssonina coronaria (EII. & J. J. Davis).

    Science.gov (United States)

    Li, Miaomiao; Xu, Jianhua; Qiu, Zonghao; Zhang, Juan; Ma, Fengwang; Zhang, Junke

    2014-02-07

    Apple, an invaluable fruit crop worldwide, is often prone to infection by pathogenic fungi. Identification of potentially resistance-conferring apple proteins is one of the most important aims for studying apple resistance mechanisms and promoting the development of disease-resistant apple strains. In order to find proteins which promote resistance to Marssonina coronaria, a deadly pathogen which has been related to premature apple maturation, proteomes from apple leaves inoculated with M. coronaria were characterized at 3 and 6 days post-inoculation by two dimensional electrophoresis (2-DE). Overall, 59 differentially accumulated protein spots between inoculation and non-inoculation were successfully identified and aligned as 35 different proteins or protein families which involved in photosynthesis, amino acid metabolism, transport, energy metabolism, carbohydrate metabolism, binding, antioxidant, defense and stress. Quantitative real-time PCR (qRT-PCR) was also used to examine the change of some defense and stress related genes abundance under inoculated conditions. In a conclusion, different proteins in response to Marssonina coronaria were identified by proteomic analysis. Among of these proteins, there are some PR proteins, for example class III endo-chitinase, beta-1,3-glucanase and thaumatine-like protein, and some antioxidant related proteins including aldo/keto reductase AKR, ascorbate peroxidase and phi class glutathione S-transferase protein that were associated with disease resistance. The transcription levels of class III endo-chitinase (L13) and beta-1, 3-glucanase (L17) have a good relation with the abundance of the encoded protein's accumulation, however, the mRNA abundance of thaumatine-like protein (L22) and ascorbate peroxidase (L28) are not correlated with their protein abundance of encoded protein. To elucidate the resistant mechanism, the data in the present study will promote us to investigate further the expression regulation of these

  10. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity.

    Science.gov (United States)

    van Nielen, Monique; Feskens, Edith J M; Rietman, Annemarie; Siebelink, Els; Mensink, Marco

    2014-09-01

    Increasing protein intake and soy consumption appear to be promising approaches to prevent metabolic syndrome (MetS). However, the effect of soy consumption on insulin resistance, glucose homeostasis, and other characteristics of MetS is not frequently studied in humans. We aimed to investigate the effects of a 4-wk, strictly controlled, weight-maintaining, moderately high-protein diet rich in soy on insulin sensitivity and other cardiometabolic risk factors. We performed a randomized crossover trial of 2 4-wk diet periods in 15 postmenopausal women with abdominal obesity to test diets with 22 energy percent (En%) protein, 27 En% fat, and 50 En% carbohydrate. One diet contained protein of mixed origin (mainly meat, dairy, and bread), and the other diet partly replaced meat with soy meat analogues and soy nuts containing 30 g/d soy protein. For our primary outcome, a frequently sampled intravenous glucose tolerance test (FSIGT) was performed at the end of both periods. Plasma total, LDL, and HDL cholesterol, triglycerides, glucose, insulin, and C-reactive protein were assessed, and blood pressure, arterial stiffness, and intrahepatic lipid content were measured at the start and end of both periods. Compared with the mixed-protein diet, the soy-protein diet resulted in greater insulin sensitivity [FSIGT: insulin sensitivity, 34 ± 29 vs. 22 ± 17 (mU/L)(-1) · min(-1), P = 0.048; disposition index, 4974 ± 2543 vs. 2899 ± 1878, P = 0.038; n = 11]. Total cholesterol was 4% lower after the soy-protein diet than after the mixed-protein diet (4.9 ± 0.7 vs. 5.1 ± 0.6 mmol/L, P = 0.001), and LDL cholesterol was 9% lower (2.9 ± 0.7 vs. 3.2 ± 0.6 mmol/L, P = 0.004; n = 15). Thus, partly replacing meat with soy in a moderately high-protein diet has clear advantages regarding insulin sensitivity and total and LDL cholesterol. Therefore, partly replacing meat products with soy products could be important in preventing MetS. This trial was registered at clinicaltrials

  11. Stress proteins and phytohormones: their role in formation of plant resistance

    International Nuclear Information System (INIS)

    Kosakivska, I.V.

    2005-01-01

    Full text: Using the disc-electrophoresis methods, we have studied protein biosynthesis of different plants, including 11 species of Orchidaceae, some other tropical and subtropical plants, 9 different fruit plants, and 4 cultivars of Triticum aestivum L. under stresses factors such as high and low temperature, clinostating, radioactive irradiation and osmotic shock. Specific and unspecific reactions of plants protein system on stresses were found. De novo synthesis of 35 and 45 kD polypeptides were observed in total and mitochondrial proteins fractions after heat-shock and radioactive irradiation. This suggests that mitochondries participate in formation of plant resistance. Intensive synthesis of ABA revealed as the universal reaction of all studied plants on action of different kinds of stresses. Specific changes in balance of phytohormones were found under different stresses. We observed the correlation between endogenous ABA, IAA and cytokinin level and plant resistance. We also found the interaction between the process of biosynthesis of proteins and phytohormone balance, as well as their direct participation in formation of plant resistance. (author)

  12. Triclosan Resistance of Pseudomonas aeruginosa PAO1 Is Due to FabV, a Triclosan-Resistant Enoyl-Acyl Carrier Protein Reductase ▿

    OpenAIRE

    Zhu, Lei; Lin, Jinshui; Ma, Jincheng; Cronan, John E.; Wang, Haihong

    2009-01-01

    Triclosan, a very widely used biocide, specifically inhibits fatty acid synthesis by inhibition of enoyl-acyl carrier protein (ACP) reductase. Escherichia coli FabI is the prototypical triclosan-sensitive enoyl-ACP reductase, and E. coli is extremely sensitive to the biocide. However, other bacteria are resistant to triclosan, because they encode triclosan-resistant enoyl-ACP reductase isozymes. In contrast, the triclosan resistance of Pseudomonas aeruginosa PAO1 has been attributed to active...

  13. Vaginal washing fluid C-reactive protein levels in women with recurrent or treatment resistant vaginitis

    OpenAIRE

    Aytekin Tokmak; İrfan Özer; Selçuk Erkılınç; Ali İrfan Güzel; Mahmut Kuntay Kokanalı; Mustafa Uğur

    2015-01-01

    Objective: The aim of this study is to evaluate the C-reactive protein (CRP) levels in vaginal washing fluid (VWF) in women with a history of recurrent and/or treatment resistant vaginitis. Methods: This prospective case control study was conducted in the gynecology clinic of the current hospital. A total of 64 women (33 with a history of recurrent and/ or treatment resistant vaginitis as study group and 31 healthy women as control group) were enrolled in the study. The recorded parameters we...

  14. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma.

    Science.gov (United States)

    Zecena, Helma; Tveit, Daniel; Wang, Zi; Farhat, Ahmed; Panchal, Parvita; Liu, Jing; Singh, Simar J; Sanghera, Amandeep; Bainiwal, Ajay; Teo, Shuan Y; Meyskens, Frank L; Liu-Smith, Feng; Filipp, Fabian V

    2018-04-04

    Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance

  15. Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone.

    Science.gov (United States)

    Zhou, Gang; Shi, Qing-shan; Ouyang, You-sheng; Chen, Yi-ben

    2014-04-01

    Isothiazolones are used as preservatives in various modern industrial products. Although microorganisms that exhibit resistance towards these biocides have been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from industrial contamination samples. The bacterial cell structure was disrupted by 50 μg ml⁻¹ Kathon treatment. BC-IR and BC-327 did not display resistance in the presence of 1 ml L⁻¹ Tween 80, 1 ml L⁻¹ Triton X-100, 0.1 % sodium dodecyl sulfate or 1 mmol L⁻¹ EDTA-2Na. Additionally, BC-IR and BC-327 exhibited lower relative conductivity from 10 to 180 min. The types as well as the levels of outer-membrane proteins (OMPs) were altered among WT, BC-IR and BC-327. Finally, the two Kathon-resistance strains BC-IR and BC-327 presented higher resistance capacity to H₂O₂. We measured the levels of peroxide-sensor genes and observed that the transcriptional activator oxyR, superoxide dismutase sod1, sod2, catalase cat1 and cat3 were all up-regulated under oxidative conditions for all strains. Taken together, OMPs and peroxide-sensor genes in B. cepacia contributed to isothiazolone resistance; However, the laboratory strain BC-IR exhibited a different resistance mechanism and properties compared to the isolated strain BC-327.

  16. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty.

    Science.gov (United States)

    Collins, J; Longhurst, G; Roschel, H; Gualano, B

    2016-01-01

    Studies assessing the effects co-supplementation with creatine and protein, along with resistance training, in older individuals with frailty are lacking. This is an exploratory trial from the Pro-Elderly study ("Protein Intake and Resistance Training in Aging") aimed at gathering knowledge on the feasibility, safety, and efficacy of co-supplementation with creatine and protein supplementation, combined with resistance training, in older individuals with frailty. A 14-week, double-blind, randomized, parallel-group, placebo controlled exploratory trial. The subjects were randomly assigned to whey protein and creatine co-supplementation (WHEY+CR) or whey protein supplementation (WHEY) group. All subjects undertook a supervised exercise training program and were assessed at baseline and after 14 weeks. Muscle function, body composition, blood parameters, and self-reported adverse events were assessed. No interaction effects (between-group differences) were observed for any dependent variables (p > 0.05 for all). However, there were main time-effects in handgrip (WHEY+CR = 26.65 ± 31.29; WHEY = 13.84 ± 14.93 Kg; p = 0.0005), timed-up-and-go (WHEY+CR = -11.20 ± 9.37; WHEY = -17.76 ± 21.74 sec; p = 0.006), and timed-stands test (WHEY+CR = 47.50 ± 35.54; WHEY = 46.87 ± 24.23 reps; p = 0.0001), suggesting that WHEY+CR and WHEY were similarly effective in improving muscle function. All of the subjects showed improvements in at least two of the three functional tests, regardless of their treatments. Body composition and blood parameters were not changed (p > 0.05). No severe adverse effects were observed. Co-supplementation with creatine and whey protein was well-tolerable and free of adverse events in older subjects with frailty undertaking resistance training. Creatine supplementation did not augment the adaptive effects of resistance training along with whey protein on body composition or muscle function in this population. Clinicaltrials.gov: NCT01890382.

  17. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance.

    Science.gov (United States)

    Bauer, B E; Wolfger, H; Kuchler, K

    1999-12-06

    Saccharomyces cerevisiae was the first eukaryotic organism whose complete genome sequence has been determined, uncovering the existence of numerous genes encoding proteins of the ATP-binding cassette (ABC) family. Fungal ABC proteins are implicated in a variety of cellular functions, ranging from clinical drug resistance development, pheromone secretion, mitochondrial function, peroxisome biogenesis, translation elongation, stress response to cellular detoxification. Moreover, some yeast ABC proteins are orthologues of human disease genes, which makes yeast an excellent model system to study the molecular mechanisms of ABC protein-mediated disease. This review provides a comprehensive discussion and update on the function and transcriptional regulation of all known ABC genes from yeasts, including those discovered in fungal pathogens.

  18. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass.

    Science.gov (United States)

    Phillips, Stuart M

    2016-01-01

    Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS > MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signalling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodelling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.

  19. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.

    Science.gov (United States)

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  20. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  1. Effect of protein source and resistance training on body composition and sex hormones

    Directory of Open Access Journals (Sweden)

    Krieger Diane R

    2007-07-01

    Full Text Available Abstract Background Evidence suggests an inverse relationship between soy protein intake and serum concentrations of male sex hormones. Anecdotal evidence indicates that these alterations in serum sex hormones may attenuate changes in lean body mass following resistance training. However, little empirical data exists regarding the effects of soy and milk-based proteins on circulating androgens and exercise induced body composition changes. Methods For 12 weeks 20 subjects were supplemented with 50 g per day of one of four different protein sources (Soy concentrate; Soy isolate; Soy isolate and whey blend, and Whey blend only in combination with a resistance-training program. Body composition, testosterone, estradiol and sex hormone binding globulin (SHBG were measured at baseline and week 12. Results Protein supplementation resulted in a significant increase in lean body mass independent of protein source (0.5 ± 1.1 and 0.9 ± 1.4 kg, p = 0.006, p = 0.007. No significant differences were observed between groups for total and free testosterone, SHBG, percentage body fat, BMI or body weight. The Testosterone/Estradiol ratio increased across all groups (+13.4, p = 0.005 and estradiol decreased (p = 0.002. Within group analysis showed significant increases in the Testosterone/Estradiol ratio in soy isolate + whey blend group (+16.3, p = 0.030. Estradiol was significantly lower in the whey blend group (-9.1 ± 8.7 pg/ml, p = 0.033. Conclusion This investigation shows that 12 week supplementation with soy protein does not decrease serum testosterone or inhibit lean body mass changes in subjects engaged in a resistance exercise program.

  2. Protein supplementation during resistance-type exercise training in the elderly.

    Science.gov (United States)

    Leenders, Marika; Verdijk, Lex B; Van der Hoeven, Letty; Van Kranenburg, Janneau; Nilwik, Rachel; Wodzig, Will K W H; Senden, Joan M G; Keizer, Hans A; Van Loon, Luc J C

    2013-03-01

    Resistance training has been well established as an effective treatment strategy to increase skeletal muscle mass and strength in the elderly. We assessed whether dietary protein supplementation can further augment the adaptive response to prolonged resistance-type exercise training in healthy elderly men and women. Healthy elderly men (n = 31, 70 ± 1 yr) and women (n = 29, 70 ± 1 yr) were randomly assigned to a progressive, 24-wk resistance-type exercise training program with or without additional protein supplementation (15 g·d-1). Muscle hypertrophy was assessed on a whole-body Dual-energy X-ray absorptiometry (DXA), limb (computed tomography), and muscle fiber (biopsy) level. Strength was assessed regularly by 1-repetition maximum (RM) strength testing. Functional capacity was assessed with a sit-to-stand and handgrip test. One-RM strength increased by 45% ± 6% versus 40% ± 3% (women) and 41% ± 4% versus 44% ± 3% (men) in the placebo versus protein group, respectively (P muscle mass (women, 4% ± 1% vs 3% ± 1%; men, 3% ± 1% vs 3% ± 1%) and quadriceps cross-sectional area (women, 9% ± 1% vs 9% ± 1%; men, 9% ± 1% vs 10% ± 1%) increased similarly in the placebo versus protein groups (P muscle fiber size increased over time in both placebo and protein groups (25% ± 13% vs 30% ± 9% and 23% ± 12% vs 22% ± 10% in the women and men, respectively). Sit-to-stand improved by 18% ± 2% and 19% ± 2% in women and men, respectively (P training increases skeletal muscle mass and strength, augments functional capacity, improves glycemia and lipidemia, and reduces blood pressure in healthy elderly men and women. Additional protein supplementation (15 g·d-1) does not further increase muscle mass, strength, and/or functional capacity.

  3. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  4. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis

    NARCIS (Netherlands)

    Cermak, N.M.; Res, P.T.; Groot, de C.P.G.M.; Saris, W.H.M.; Loon, van L.J.C.

    2012-01-01

    Background: Protein ingestion after a single bout of resistance-type exercise stimulates net muscle protein accretion during acute postexercise recovery. Consequently, it is generally accepted that protein supplementation is required to maximize the adaptive response of the skeletal muscle to

  5. The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A.

    Directory of Open Access Journals (Sweden)

    Shiping Zhang

    2007-06-01

    Full Text Available Surfactant protein A (SP-A is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+ mice, but survived in the SP-A(-/- mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization.

  6. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda.

    Science.gov (United States)

    Bernardi, Oderlei; Bernardi, Daniel; Horikoshi, Renato J; Okuma, Daniela M; Miraldo, Leonardo L; Fatoretto, Julio; Medeiros, Fernanda Cl; Burd, Tony; Omoto, Celso

    2016-09-01

    Spodoptera frugiperda is one the main target pests of maize events expressing Vip3Aa20 protein from Bacillus thuringiensis (Bt) in Brazil. In this study, we selected a resistant strain of S. frugiperda on Bt maize expressing Vip3Aa20 protein and characterized the inheritance and fitness costs of the resistance. The resistance ratio of the Vip3Aa20-resistant strain of S. frugiperda was >3200-fold. Neonates of the Vip3Aa20-resistant strain were able to survive and emerge as fertile adults on Vip3Aa20 maize, while larvae from susceptible and heterozygous strains did not survive. The inheritance of Vip3Aa20 resistance was autosomal recessive and monogenic. Life history studies to investigate fitness cost revealed an 11% reduction in the survival rate until adult stage and a ∼50% lower reproductive rate of the Vip3Aa20-resistant strain compared with susceptible and heterozygous strains. This is the first characterization of S. frugiperda resistance to Vip3Aa protein. Our results provide useful information for resistance management programs designed to prevent or delay resistance evolution to Vip3Aa proteins in S. frugiperda. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Petersen, S.G.

    2011-01-01

    Sarcopenia is a well-known phenomenon in elderly individuals and resistance exercise together with sufficient amino acid (AA) availability has proved to be a counteractive implement. However, the source of AA and supplement timing require further investigation. The objective was to compare muscle...... protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake...... and caseinate feeding immediately after heavy resistance exercise in elderly individuals, and MPS is similar with caseinate ingestion before and after exercise....

  8. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania

    DEFF Research Database (Denmark)

    Kavishe, Reginald A; Paulo, Petro; Kaaya, Robert D

    2014-01-01

    ) is the recommended first-line drug in treatment of uncomplicated malaria. This study surveyed the distribution of the Plasmodium falciparum multidrug resistance protein-1 single nucleotide polymorphisms (SNPs) associated with increased parasite tolerance to ALu, in Tanzania. METHODS: A total of 687 Plasmodium...... in all regions, ranging from 17% - 26%. CONCLUSION: This is the first country-wide survey on Pfmdr1 mutations associated with ACT resistance. Distribution of individual Pfmdr1 mutations at codons 86, 184 and 1246 varies throughout Tanzanian regions. There is a general homogeneity in distribution......BACKGROUND: Resistance to anti-malarials is a major public health problem worldwide. After deployment of artemisinin-based combination therapy (ACT) there have been reports of reduced sensitivity to ACT by malarial parasites in South-East Asia. In Tanzania, artemether-lumefantrine (ALu...

  9. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number...... of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...... background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations...

  10. Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration.

    Science.gov (United States)

    Rufin, Marc A; Barry, Mikayla E; Adair, Paige A; Hawkins, Melissa L; Raymond, Jeffery E; Grunlan, Melissa A

    2016-09-01

    In contrast to modification with conventional PEO-silanes (i.e. no siloxane tether), silicones with dramatically enhanced protein resistance have been previously achieved via bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-PEOn-OCH3 when n=8 and 16 but not when n=3. In this work, their efficacy was evaluated in terms of optimal PEO-segment length and minimum concentration required in silicone. For each PEO-silane amphiphile (n=3, 8, and 16), five concentrations (5, 10, 25, 50, and 100μmol per 1g silicone) were evaluated. Efficacy was quantified in terms of the modified silicones' abilities to undergo rapid, water-driven surface restructuring to form hydrophilic surfaces as well as resistance to fibrinogen adsorption. Only n=8 and 16 were effective, with a lower minimum concentration in silicone required for n=8 (10μmol per 1g silicone) versus n=16 (25μmol per 1g silicone). Silicone is commonly used for implantable medical devices, but its hydrophobic surface promotes protein adsorption which leads to thrombosis and infection. Typical methods to incorporate poly(ethylene oxide) (PEO) into silicones have not been effective due to the poor migration of PEO to the surface-biological interface. In this work, PEO-silane amphiphiles - comprised of a siloxane tether (m=13) and variable PEO segment lengths (n=3, 8, 16) - were blended into silicone to improve its protein resistance. The efficacy of the amphiphiles was determined to be dependent on PEO length. With the intermediate PEO length (n=8), water-driven surface restructuring and resulting protein resistance was achieved with a concentration of only 1.7wt%. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling.

    Science.gov (United States)

    van Westen, Gerard J P; Bender, Andreas; Overington, John P

    2014-10-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of 'orthogonally resistant' agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed 'proteochemometric modelling' (PCM), from the field of chemoinformatics, could aid in the quantification and prediction of resistance that acts via point mutations in the target proteins of an agent. The technique combines information from both the chemical and biological domain to generate bioactivity models across large numbers of ligands as well as protein targets. PCM has previously been validated in prospective, experimental work in the medicinal chemistry area, and it draws on the growing amount of bioactivity information available in the public domain. Here, two potential applications of proteochemometric modelling to agrochemical data are described, based on previously published examples from the medicinal chemistry literature.

  12. IQGAP1 Protein Binds Human Epidermal Growth Factor Receptor 2 (HER2) and Modulates Trastuzumab Resistance*

    Science.gov (United States)

    White, Colin D.; Li, Zhigang; Dillon, Deborah A.; Sacks, David B.

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20–25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma. PMID:21724847

  13. High-resolution structure of the antibiotic resistance protein NimA from Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Leiros, Hanna-Kirsti S.; Tedesco, Consiglia; McSweeney, Seán M.

    2008-01-01

    In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. Many anaerobic human pathogenic bacteria are treated using 5-nitroimidazole-based (5-Ni) antibiotics, a class of inactive prodrugs that contain a nitro group. The nitro group must be activated in an anaerobic one-electron reduction and is therefore dependent on the redox system in the target cells. Antibiotic resistance towards 5-Ni drugs is found to be related to the nim genes (nimA, nimB, nimC, nimD, nimE and nimF), which are proposed to encode a reductase that is responsible for converting the nitro group of the antibiotic into a nonbactericidal amine. A mechanism for the Nim enzyme has been proposed in which two-electron reduction of the nitro group leads to the generation of nontoxic derivatives and confers resistance against these antibiotics. The cofactor was found to be important in the mechanism and was found to be covalently linked to the reactive His71. In this paper, the 1.2 Å atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. A planar cofactor is clearly visible and well defined in the electron-density map adjacent to His71, the identification of the cofactor and its properties are discussed

  14. SynProt: A Comprehensive Database for Proteins of the Detergent-Resistant Synaptic Junctions Fraction

    Directory of Open Access Journals (Sweden)

    Rainer ePielot

    2012-06-01

    Full Text Available Chemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse and some human proteins, which mainly have been manually extracted from twelve proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed. We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.

  15. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    Science.gov (United States)

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform.

  16. Serum levels of uncoupling proteins in patients with differential insulin resistance

    Science.gov (United States)

    Pan, Heng-Chih; Lee, Chin-Chan; Chou, Kuei-Mei; Lu, Shang-Chieh; Sun, Chiao-Yin

    2017-01-01

    Abstract The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1–3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1–3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin. PMID:28984759

  17. Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Marylise Duperthuy

    Full Text Available Outer membrane vesicles (OMVs that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs. To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1. We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP.

  18. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Vind, Birgitte

    2010-01-01

    association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control......OBJECTIVE: Our previous studies suggest that the SNARE protein synaptosomal-associated protein of 23 kDa (SNAP23) is involved in the link between increased lipid levels and insulin resistance in cardiomyocytes. The objective was to determine whether SNAP23 may also be involved in the known...... subjects for expression (mRNA and protein) and intracellular localization (subcellular fractionation and immunohistochemistry) of SNAP23, and for expression of proteins known to interact with SNARE proteins. Insulin resistance was determined by a euglycemic hyperinsulinemic clamp. Potential mechanisms...

  19. Association between Twist and multidrug resistance gene-associated proteins in Taxol®-resistant MCF-7 cells and a 293 cell model of Twist overexpression.

    Science.gov (United States)

    Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao

    2018-01-01

    Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.

  20. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  2. Secondary metabolites inhibiting ABC transporters and reversing resistance of cancer cells and fungi to cytotoxic and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Michael eWink

    2012-04-01

    Full Text Available Fungal, bacterial and cancer cells can develop resistance against antifungal, antibacterial or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: 1. Activation of ABC transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, 2. Activation of cytochrome p450 oxidases which can oxidise lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulphate or amino acids, and 3. Activation of glutathione transferase, which can conjugate xenobiotics. This review summarises the evidence that secondary metabolites of plants, such as alkaloids, phenolics and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria and fungi. Among the active natural products several lipophilic terpenoids ( monoterpenes, diterpenes, triterpenes (including saponins, steroids (including cardiac glycosides and tetraterpenes but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids function probably as competitive inhibitors of P-gp, MRP1 and BCRP in cancer cells, or efflux pumps in bacteria (NorA and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse MDR, at least partially, of adapted and resistant cells. If these secondary metabolites are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

  3. A Novel Inducible Protein Production System and Neomycin Resistance as Selection Marker for Methanosarcina mazei

    Directory of Open Access Journals (Sweden)

    Sebastian Mondorf

    2012-01-01

    Full Text Available Methanosarcina mazei is one of the model organisms for the methanogenic order Methanosarcinales whose metabolism has been studied in detail. However, the genetic toolbox is still limited. This study was aimed at widening the scope of utilizable methods in this group of organisms. (i Proteins specific to methanogens are oftentimes difficult to produce in E. coli. However, a protein production system is not available for methanogens. Here we present an inducible system to produce Strep-tagged proteins in Ms. mazei. The promoter p1687, which directs the transcription of methyl transferases that demethylate methylamines, was cloned into plasmid pWM321 and its activity was determined by monitoring β-glucuronidase production. The promoter was inactive during growth on methanol but was rapidly activated when trimethylamine was added to the medium. The gene encoding the β-glucuronidase from E. coli was fused to a Strep-tag and was cloned downstream of the p1687 promoter. The protein was overproduced in Ms. mazei and was purified in an active form by affinity chromatography. (ii Puromycin is currently the only antibiotic used as a selectable marker in Ms. mazei and its relatives. We established neomycin resistance as a second selectable marker by designing a plasmid that confers neomycin resistance in Ms. mazei.

  4. Biological protein-resistance layer construction of recombinant hirudin on polymethyl methacrylate IOL surface.

    Science.gov (United States)

    Zheng, Zhiwen; Jiao, Yan; Ren, Li; Wang, Yingjun

    2015-03-01

    In this article, the surface of intraocular len material PMMA was first aminated for activation on which some polar groups generated such as C-N, COO(-), -OH, NH3(+), etc. Then the anticoagulant drugs recombinant hirudin (rH) was grafted with amido bonds to look forward to resist the adsorption of nonspecific protein or cells in tear, even the cataract. The detailed analysis and discussion about the grafting quantity, molography, wettability, electric charges, chemical structure, and the dynamic adsorption of protein Fn on the material surface were carried on by the technology of ultraviolet photometric, contact angle, solid Zeta potential, X-ray photoelectron spectroscopy, and quartz crystal microbalance. The surface with a certain amount of rH modification existed more hydrophilic due to the amphiphilic structure than before, on which the protein adsorption was the most unstable. The results indicated that the rH modification improved the resistance of PMMA to nonspecific adsorption of protein Fn to achieve the expectative effect. © 2014 Wiley Periodicals, Inc.

  5. Natural Resistance Associated Macrophage Protein Is Involved in Immune Response of Blunt Snout Bream, Megalobrama amblycephala.

    Science.gov (United States)

    Jiang, Yu-Hong; Mao, Ying; Lv, Yi-Na; Tang, Lei-Lei; Zhou, Yi; Zhong, Huan; Xiao, Jun; Yan, Jin-Peng

    2018-03-29

    The natural resistance-associated macrophage protein gene ( Nramp ), has been identified as one of the significant candidate genes responsible for modulating vertebrate natural resistance to intracellular pathogens. Here, we identified and characterized a new Nramp family member, named as maNramp , in the blunt snout bream. The full-length cDNA of maNramp consists of a 153 bp 5'UTR, a 1635 bp open reading frame encoding a protein with 544 amino acids, and a 1359 bp 3'UTR. The deduced protein (maNRAMP) possesses the typical structural features of NRAMP protein family, including 12 transmembrane domains, three N-linked glycosylation sites, and a conserved transport motif. Phylogenetic analysis revealed that maNRAMP shares the significant sequence consistency with other teleosts, and shows the higher sequence similarity to mammalian Nramp2 than Nramp1 . It was found that maNramp expressed ubiquitously in all normal tissues tested, with the highest abundance in the spleen, followed by the head kidney and intestine, and less abundance in the muscle, gill, and kidney. After lipopolysaccharide (LPS) stimulation, the mRNA level of maNramp was rapidly up-regulated, which reached a peak level at 6 h. Altogether, these results indicated that maNramp might be related to fish innate immunity and similar to mammalian Nramp1 in function.

  6. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  7. Autophagy is induced by resistance exercise in young men but unfolded protein response is induced regardless of age.

    Science.gov (United States)

    Hentilä, Jaakko; Ahtiainen, Juha P; Paulsen, Gøran; Raastad, Truls; Häkkinen, Keijo; Mero, Antti A; Hulmi, Juha J

    2018-04-02

    Autophagy and unfolded protein response (UPR) appear to be important for skeletal muscle homeostasis and may be altered by exercise. Our aim was to investigate the effects of resistance exercise and training on indicators of UPR and autophagy in healthy untrained young men (n = 12, 27 ± 4 years) and older men (n = 8, 61 ± 6 years) as well as in resistance-trained individuals (n = 15, 25 ± 5 years). Indicators of autophagy and UPR were investigated from the muscle biopsies after a single resistance exercise bout and after 21 weeks of resistance training. Lipidated LC3II as an indicator of autophagosome content increased at 48 hours post resistance exercise (P resistance-training period (P resistance exercise in untrained young and older men (P resistance-training period regardless of age. UPR was unchanged within the first few hours after the resistance exercise bout regardless of the training status. Changes in autophagy and UPR ER indicators did not correlate with a resistance-training-induced increase in muscle strength and size. Autophagosome content is increased by resistance training in young previously untrained men, but this response may be blunted by aging. However, unfolded protein response is induced by an unaccustomed resistance exercise bout in a delayed manner regardless of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry

    DEFF Research Database (Denmark)

    Kingshott, P.; McArthur, S.; Thissen, H.

    2002-01-01

    The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG...... temperature to maximise the graft density of the PEG chains. XPS showed that the grafted density of PEG chains was slightly higher on the allylamine surface. XPS detected no adsorption of either protein on either PEG coating. ToF-SIMS analysis, on the other hand, found, in the positive ion spectra, minute...... but statistically significant signals assignable to amino acid fragment ions from both proteins adsorbed to the lower density PEG coating and from LYS but not FN on the higher density PEG coating. Negative ion spectra contained relatively more intense protein fragment ion signals for the lower density PEG coating...

  9. Interplay between unfolded protein response and autophagy promotes tumor drug resistance.

    Science.gov (United States)

    Yan, Ming-Ming; Ni, Jiang-Dong; Song, Deye; Ding, Muliang; Huang, Jun

    2015-10-01

    The endoplasmic reticulum (ER) is involved in the quality control of secreted protein via promoting the correct folding of nascent protein and mediating the degradation of unfolded or misfolded protein, namely ER-associated degradation. When the unfolded or misfolded proteins are abundant, the unfolded protein response (UPR) is elicited, an adaptive signaling cascade from the ER to the nucleus, which restores the homeostatic functions of the ER. Autophagy is a conserved catabolic process where cellular long-lived proteins and damaged organelles are engulfed and degraded for recycling to maintain homeostasis. The UPR and autophagy occur simultaneously and are involved in pathological processes, including tumorigenesis, chemoresistance of malignancies and neurodegeneration. Accumulative data has indicated that the UPR may induce autophagy and that autophagy is able to alleviate the UPR. However, the detailed mechanism of interplay between autophagy and UPR remains to be fully understood. The present review aimed to depict the core pathways of the two processes and to elucidate how autophagy and UPR are regulated. Moreover, the review also discusses the molecular mechanism of crosstalk between the UPR and autophagy and their roles in malignant survival and drug resistance.

  10. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men.

    Science.gov (United States)

    Verdijk, Lex B; Jonkers, Richard A M; Gleeson, Benjamin G; Beelen, Milou; Meijer, Kenneth; Savelberg, Hans H C M; Wodzig, Will K W H; Dendale, Paul; van Loon, Luc J C

    2009-02-01

    Considerable discrepancy exists in the literature on the proposed benefits of protein supplementation on the adaptive response of skeletal muscle to resistance-type exercise training in the elderly. The objective was to assess the benefits of timed protein supplementation on the increase in muscle mass and strength during prolonged resistance-type exercise training in healthy elderly men who habitually consume adequate amounts of dietary protein. Healthy elderly men (n = 26) aged 72 +/- 2 y were randomly assigned to a progressive, 12-wk resistance-type exercise training program with (protein group) or without (placebo group) protein provided before and immediately after each exercise session (3 sessions/wk, 20 g protein/session). One-repetition maximum (1RM) tests were performed regularly to ensure a progressive workload during the intervention. Muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), limb (computed tomography), and muscle fiber (biopsy) level. The 1RM strength increased approximately 25-35% in both groups (P hypertrophy was greater in type II (placebo: 28 +/- 6%; protein: 29 +/- 4%) than in type I (placebo: 5 +/- 4%; protein: 13 +/- 6%) fibers, but the difference between groups was not significant. Timed protein supplementation immediately before and after exercise does not further augment the increase in skeletal muscle mass and strength after prolonged resistance-type exercise training in healthy elderly men who habitually consume adequate amounts of dietary protein. This trial was registered at clinicaltrials.gov as NCT00744094.

  11. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens.

    Science.gov (United States)

    Wang, Weijie; Lv, Yuan; Fang, Fujin; Hong, Shanchao; Guo, Qin; Hu, Shengli; Zou, Feifei; Shi, Linna; Lei, Zhentao; Ma, Kai; Zhou, Dan; Zhang, Donghui; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-02-10

    Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of pyrethroid resistance in important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. To date, the mechanisms of pyrethroid resistance are still unclear. Recent advances in proteomic techniques can facilitate to identify pyrethroid resistance-associated proteins at a large-scale for improving our understanding of resistance mechanisms, and more importantly, for seeking some genetic markers used for monitoring and predicting the development of resistance. We performed a quantitative proteomic analysis between a deltamethrin-susceptible strain and a deltamethrin-resistant strain of laboratory population of Culex pipiens pallens using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) analysis was used to find the relative processes that these differentially expressed proteins were involved in. One differentially expressed protein was chosen to confirm by Western blot in the laboratory and field populations of Cx. pipiens pallens. We identified 30 differentially expressed proteins assigned into 10 different categories, including oxidoreductase activity, transporter activity, catalytic activity, structural constituent of cuticle and hypothetical proteins. GO analysis revealed that 25 proteins were sub-categorized into 35 hierarchically-structured GO classifications. Western blot results showed that CYP6AA9 as one of the up-regulated proteins was confirmed to be overexpressed in the deltamethrin-resistant strains compared with the deltamethrin-susceptible strains both in the laboratory and field populations. This is the first study to use modern proteomic tools for identifying pyrethroid resistance-related proteins in Cx. pipiens. The present study brought to light many proteins that were not

  12. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1

    NARCIS (Netherlands)

    van Gorkom, BAP; Timmer-Bosscha, H; de Jong, S; Kleibeuker, JH; de Vries, EGE

    2002-01-01

    Anthranoid laxatives, belonging to the anthraquinones as do anthracyclines, possibly Increase colorectal cancer risk. Anthracyclines Interfere with topoisomerase II, Intercalate DNA and are substrates for P-glycoprotein and multidrug resistance-associated protein I. P-glycoprotein and multidrug

  13. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis.

    Science.gov (United States)

    Hasan, Md Anayet; Khan, Md Arif; Sharmin, Tahmina; Hasan Mazumder, Md Habibul; Chowdhury, Afrin Sultana

    2016-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is a Gram-positive, facultative aerobic bacterium which is evolved from the extensive exposure of Vancomycin to Methicillin resistant S. aureus (MRSA) that had become the most common cause of hospital and community-acquired infections. Due to the emergence of different antibiotic resistance strains, there is an exigency to develop novel drug targets to address the provocation of multidrug-resistant bacteria. In this study, in-silico genome subtraction methodology was used to design potential and pathogen specific drug targets against VRSA. Our study divulged 1987 proteins from the proteome of 34,549 proteins, which have no homologues in human genome after sequential analysis through CD-HIT and BLASTp. The high stringency analysis of the remaining proteins against database of essential genes (DEG) resulted in 169 proteins which are essential for S. aureus. Metabolic pathway analysis of human host and pathogen by KAAS at the KEGG server sorted out 19 proteins involved in unique metabolic pathways. 26 human non-homologous membrane-bound essential proteins including 4 which were also involved in unique metabolic pathway were deduced through PSORTb, CELLO v.2.5, ngLOC. Functional classification of uncharacterized proteins through SVMprot derived 7 human non-homologous membrane-bound hypothetical essential proteins. Study of potential drug target against Drug Bank revealed pbpA-penicillin-binding protein 1 and hypothetical protein MQW_01796 as the best drug target candidate. 2D structure was predicted by PRED-TMBB, 3D structure and functional analysis was also performed. Protein-protein interaction network of potential drug target proteins was analyzed by using STRING. The identified drug targets are expected to have great potential for designing novel drugs against VRSA infections and further screening of the compounds against these new targets may result in the discovery of novel therapeutic compounds that can be

  14. Performance and stress resistance of Nile tilapias fed different crude protein levels

    Directory of Open Access Journals (Sweden)

    Ronald Kennedy Luz

    2012-02-01

    Full Text Available The objective of this study was to evaluate the effect of different levels of diet crude protein on the performance and stress resistance rate (Re of Oreochromis niloticus larvae and fingerlings. In the first experiment, 5, 15 and 25 day-old animals were submitted to 1, 5, 7, 10, 15, 20, 30 and 40 minutes of air exposure on a sieve. In the second experiment, tilapia larvae were fed with 32, 40 and 55% crude protein (CP diets. Animals after 15 and 30 days of feeding (21 and 36 days of life, respectively were submitted to the air exposure test for 7 and 10 minutes. Re was estimated based on survival 24 hours after the tests. In the first experiment, it was observed that 5-day-old animals were more resistant than animals with 10 and 20 days of feeding (15 and 25 days of life, respectively, when Re starts to decrease for longer than 7 minutes. In the second experiment, the different diets affected survival, performance and Re, and, in general, the worst results observed were the ones for the animals which received the 55% CP diet. The air exposure tests were efficient to evaluate the effect of diet on the resistance rate of Nile tilapia.

  15. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Science.gov (United States)

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  16. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  17. Undetectable bacterial resistance to phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Science.gov (United States)

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we tested for the emergence of resistant Staphylococcus aureus to any of three phage lytic proteins constructs. The investigated cell wall lytic enzymes w...

  18. Comparison of protein profiles of beech bark disease-resistant or beech bark disease-susceptible American beech

    Science.gov (United States)

    Mary E. Mason; Marek Krasowski; Judy Loo; Jennifer. Koch

    2011-01-01

    Proteomic analysis of beech bark proteins from trees resistant and susceptible to beech bark disease (BBD) was conducted. Sixteen trees from eight geographically isolated stands, 10 resistant (healthy) and 6 susceptible (diseased/infested) trees, were studied. The genetic complexity of the sample unit, the sampling across a wide geographic area, and the complexity of...

  19. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  20. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  1. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    Science.gov (United States)

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  2. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella

    2014-01-01

    if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95 ± 0.1 · 10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177 ± 101 Ω·cm(2...

  3. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, L.L.; Tufekovic, G.; Zebis, M.K.

    2005-01-01

    ) concentric and eccentric contractions of the knee extensor muscle was measured in an isokinetic dynamometer. After 14 weeks of resistance training, the protein group showed hypertrophy of type I (18% +/- 5%; P muscle fibers, whereas no change above baseline occurred...... in the carbohydrate group. Squat jump height increased only in the protein group, whereas countermovement jump height and peak torque during slow isokinetic muscle contraction increased similarly in both groups. In conclusion, a minor advantage of protein supplementation over carbohydrate supplementation during......Acute muscle protein metabolism is modulated not only by resistance exercise but also by amino acids. However, less is known about the long-term hypertrophic effect of protein supplementation in combination with resistance training. The present study was designed to compare the effect of 14 weeks...

  4. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. Copyright © 2016 Biophysical Society. All rights reserved.

  5. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training.

    Science.gov (United States)

    Hayes, Alan; Cribb, Paul J

    2008-01-01

    Sarcopenia (skeletal muscle wasting with aging) is thought to underlie a number of serious age-related health issues. While it may be seen as inevitable, decreasing this gradual loss of muscle is vital for healthy aging. Thus, it is imperative to investigate exercise and nutrition-based strategies designed to build a reservoir of muscle mass as early as possible. Elderly individuals are still able to respond to both resistance training and the anabolic signals provided by protein ingestion, provided specific amino acids, such as leucine, are present. Whey proteins are a rich source of these essential amino acids and rapidly elevate plasma amino acids, thus providing the foundations for preservation of muscle mass. Several studies involving supplementation with whey protein have been shown to be effective in augmenting the effects of resistance exercise, particularly when supplementation occurs in the hours surrounding the exercise training. While further work is required, particularly in elderly people, simple dietary and exercise strategies that may improve the maintenance of skeletal muscle mass will likely result in a decrease in the overall burden of a number of diseases and improve the quality of life as we age.

  6. Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices

    KAUST Repository

    Wang, Hong

    2015-05-01

    The employ of natural biomaterials as the basic building blocks of electronic devices is of growing interest for biocompatible and green electronics. Here, resistive switching (RS) devices based on naturally silk protein with configurable functionality are demonstrated. The RS type of the devices can be effectively and exactly controlled by controlling the compliance current in the set process. Memory RS can be triggered by a higher compliance current, while threshold RS can be triggered by a lower compliance current. Furthermore, two types of memory devices, working in random access and WORM modes, can be achieved with the RS effect. The results suggest that silk protein possesses the potential for sustainable electronics and data storage. In addition, this finding would provide important guidelines for the performance optimization of biomaterials based memory devices and the study of the underlying mechanism behind the RS effect arising from biomaterials. Resistive switching (RS) devices with configurable functionality based on protein are successfully achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coagulation inhibitors and activated protein C resistance in recurrent pregnancy losses in Indian women

    Directory of Open Access Journals (Sweden)

    P Lalita Jyotsna

    2011-01-01

    Full Text Available Background: Thrombophilias, both acquired and inherited, have been investigated in the etiopathogenesis of unexplained recurrent pregnancy loss. Aim: To study coagulation inhibitors and activated protein C resistance (APCR in recurrent pregnancy losses (RPL occurring in second and third trimesters. Materials and Methods: A total of 30 pregnant women (group A with two or more recurrent unexplained fetal loses were evaluated for APCR, protein C deficiency, protein S deficiency, antithrombin deficiency, and antiphospholipid antibodies (APLA. Thirty age-matched controls were taken (group B comprising of pregnant women with at least one live issue. Statistical Analysis: Comparisons between two group frequencies and group means were made using Chi square test and Student′s t test, respectively. Results: Protein C and protein S levels were reduced in group A compared with group B and the difference was statistically significant (P=0.005 and P=0.032, respectively. The mean value of antithrombin was slightly reduced in group A compared with group B. APCR was observed in 16.6% cases and 3.3% controls. However, the difference was not statistically significant. APLA was observed in 20% cases and none of the controls. Of these, lupus anticoagulant was positive in 16.6% cases and anticardiolipin antibodies in 10% cases. Combined defects were seen in seven patients. Conclusion: There is a significant risk of RPL in pregnant women with thrombophilias. Therefore, screening for thrombophilias may be justified in pregnant women with unexplained recurrent fetal wastage, especially in second and third trimester.

  8. ISOELECTRIC FOCUSING OF MEMBRANE PROTEINS OF PROBIOTIC B. COAGULANS AND ITS BACTERIOPHAGE RESISTANT MUTANTS

    Directory of Open Access Journals (Sweden)

    Kavita Rajesh Pandey

    2016-09-01

    Full Text Available Bacteriophages are the most notorious type of infection in the probiotic and dairy fermentations. Two phage resistant mutants viz. B. co PIII and B. co MIII (B. coagulans mutants PIII and MIII obtained in previous studies (Dubey and Vakil, 2010, were further characterized for their protein profile in comparison with the parental probiotic strain –B. coagulans. The cell lysates were subjected to ultra-centrifugation and the purified membrane fractions were resolved using 2D gel electrophoresis. The Isoelectric focussing showed 187, 202 and 154 protein spots for the parental strain, mutant B. co PIII and mutant B. co MIII, respectively. Ten and 18 protein spots were missing as compared to parent for mutants B.co PIII and B.co MIII whereas there were 21 and 14 new spots noticed for these two mutants. Eight membrane proteins present only in the phage sensitive parental culture could be tentatively identified by comparison with the complete proteome of B. coagulans by use of UniprotKB and then CELLO database It is quite likely that some of these identified membrane proteins may be also functioning as receptors for phage adsorption followed by entry of nucleic acid into the phage sensitive host cell.

  9. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Science.gov (United States)

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.

  10. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Song, Min; Tang, Min; Ding, Yinghuan; Wu, Zecai; Xiang, Chengyu; Yang, Kui; Zhang, Zhang; Li, Baolin; Deng, Zhenghua; Liu, Jinbo

    2017-12-16

    Pseudomonas aeruginosan has emerged as an important pathogen elated to serious infections and nosocomial outbreaks worldwide. This study was conducted to understand the prevalence of aminoglycoside (AMG)-resistant P. aeruginosa in our hospital and to provide a scientific basis for control measures against nosocomial infections. Eighty-two strains of P. aeruginosa were isolated from clinical departments and divided into AMG-resistant strains and AMG-sensitive strains based on susceptibility test results. AMG-resistant strains were typed by drug resistance gene typing (DRGT) and protein typing. Five kinds of aminoglycoside-modifying enzyme (AME) genes were detected in the AMG-resistant group. AMG-resistant P. aeruginosa strains were classified into three types and six subtypes by DRGT. Four protein peaks, namely, 9900.02, 7600.04, 9101.25 and 10,372.87 Da, were significantly and differentially expressed between the two groups. AMG-resistant P. aeruginosa strains were also categorised into three types and six subtypes at the distance level of 10 by protein typing. AMG-resistant P. aeruginosa was cloned spread in our hospital; the timely implementation of nosocomial infection prevention and control strategies were needed in preventing outbreaks and epidemic of AMG-resistant P. aeruginosa. SELDI-TOF MS technology can be used for bacterial typing, which provides a new method of clinical epidemiological survey and nosocomial infection control.

  11. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, K J; Reitelseder, S; Petersen, S G

    2011-01-01

    protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake......Sarcopenia is a well-known phenomenon in elderly individuals and resistance exercise together with sufficient amino acid (AA) availability has proved to be a counteractive implement. However, the source of AA and supplement timing require further investigation. The objective was to compare muscle...... before exercise (CasPre), caseinate intake immediately after exercise (CasPost), whey intake immediately after exercise (Whey), or intake of a non-caloric control drink (Control). Muscle myofibrillar and collagen fractional synthesis rates (FSR) were measured by a primed continuous infusion of L-[1...

  12. Leucine supplementation improves acquired growth hormone resistance in rats with protein-energy malnutrition.

    Science.gov (United States)

    Gao, Xuejin; Tian, Feng; Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition. Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC

  13. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance.

    Directory of Open Access Journals (Sweden)

    Serenella Salinari

    Full Text Available Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR and insulin-sensitive subjects on insulin signaling in human myoblasts.db/db proteins induced massive IR either in vivo or in vitro, while Swiss proteins did not. In L6 cells, only db/db proteins produced a noticeable increase in basal (473Ser-Akt phosphorylation, lack of GSK3β inhibition and a reduced basal (389Thr-p70-S6K1 phosphorylation. Human IR serum markedly increased basal (473Ser-Akt phosphorylation in a dose-dependent manner. Human CM IR proteins increased by about twofold both basal and insulin-stimulated (473Ser-Akt. Basal (9Ser-GSK3β phosphorylation was increased by IR subjects serum with a smaller potentiating effect of insulin.These findings show that jejunal proteins either from db/db mice or from insulin resistant subjects impair muscle insulin signaling, thus inducing insulin resistance.

  14. C-reactive protein, insulin resistance and risk of cardiovascular disease: a population-based study

    DEFF Research Database (Denmark)

    Hansen, T.W.; Olsen, M.H.; Rasmussen, S.

    2008-01-01

    BACKGROUND: C-reactive protein (CRP), a marker of inflammation, and insulin resistance (IR), a metabolic disorder, are closely related. CRP and IR have both been identified as significant risk factors of cardiovascular disease (CVD) after adjustment for conventional CVD risk factors...... ischaemic heart disease and nonfatal stroke, amounted to 222 cases. In Cox proportional-hazard models, adjusted for age, sex, smoking habit, total cholesterol, waist circumference, levels of triglycerides and high-density lipoprotein-cholesterol, systolic and diastolic blood pressures, physical activity...

  15. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K

    2017-01-01

    INTRODUCTION: The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. METHODS: Untrained healthy men (age: +65...... and 12g whey protein at 7 hours post-exercise; N=10) or placebo (4g maltodextrin/hour; N=10). Quadriceps muscle biopsies were taken at 0, 3, 7 and 10 hours post-exercise from both the resting and exercised leg. Myofibrillar-FSR and activity of select targets from the mTORC1-signalling cascade were...

  16. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins.

    Science.gov (United States)

    Zapun, André; Morlot, Cécile; Taha, Muhamed-Kheir

    2016-09-28

    Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  17. Data for chitin binding activity of Moringa seed resistant protein (MSRP

    Directory of Open Access Journals (Sweden)

    Anudeep Sandanamudi

    2016-12-01

    Full Text Available Chitin binding activity of moringa seed resistant protein (MSRP isolated from defatted moringa seed flour was investigated in the present study “Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects” (S. Anudeep, V.K. Prasanna, S.M. Adya, C. Radha, 2016 [1]. The assay reaction mixture contained 0.4 mg/ml of MSRP and different amounts (20–100 mg of chitin. MSRP exhibited binding activity over wide range of chitin concentration. Maximum binding activity was observed at 80 mg of chitin. The property of MSRP to bind chitin can be exploited for its purification.

  18. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans

    Directory of Open Access Journals (Sweden)

    Sarah R. Jackman

    2017-06-01

    Full Text Available The ingestion of intact protein or essential amino acids (EAA stimulates mechanistic target of rapamycin complex-1 (mTORC1 signaling and muscle protein synthesis (MPS following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients following resistance exercise in humans. Ten young (20.1 ± 1.3 years, resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%, isoleucine (300 ± 88%, and valine (144 ± 59% concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017 and PRAS40 (P = 0.037 was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012 in BCAA (0.110 ± 0.009%/h than PLA (0.090 ± 0.006%/h. Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1 than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028 after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.

  19. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  20. Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Hu, Wensi S; Lin, Jing-Fang; Lin, Ying-Hsiu; Chang, Hsin-Yu

    2009-08-01

    Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Deltastm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Deltastm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Deltastm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Deltastm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.

  1. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway.

    Science.gov (United States)

    Lian, Wei; Zhang, Li; Yang, Long; Chen, Wensheng

    2017-07-01

    Multidrug resistance (MDR) remains a major clinical obstacle in the treatment of gastric cancer (GC) since it causes tumor recurrence and metastasis. The transcription factor activator protein-2α (AP-2α) has been implicated in drug-resistance in breast cancer; however, its effects on MDR of gastric cancer are far from understood. In this study, we aimed to explore the effects of AP-2α on the MDR in gastric cancer cells selected by vincristine (VCR). Decreased AP-2α levels were markedly detected by RT-PCR and Western blot in gastric cancer cell lines (BGC-823, SGC-7901, AGS, MKN-45) compared with that in the gastric epithelial cell line (GES-1). Furthermore, we found that the expression of AP-2α in SGC7901/VCR or SGC7901/adriamycin (ADR) cells was lower than in SGC7901 cells. Thus, a vector overexpressing AP-2α was constructed and used to perform AP-2α gain-of-function studies in SGC7901/VCR cells. The decreased IC50 values of the anti-cancer drugs in sensitive and resistant cells after transfect with pcDNA3.1/AP-2α were determined in SGC7901/VCR cells by MTT assay. Moreover, flow cytometry analysis indicated that overexpressed AP-2α induced cell cycle arrest in the G0/G1 phase and promoted cell apoptosis of VCR-selected SGC7901/VCR cells. RT-PCR and Western blot demonstrated that overexpressed AP-2α can significantly induce the down-regulation of Notch1, Hes-1, P-gp and MRP1 in SGC7901/VCR cells. Similar effects can be observed when Numb (Notch inhibitor) was introduced. In addition, the intracellular ADR accumulation was markedly detected in AP-2α overexpressed or Numb cells. In conclusion, our results indicate that AP-2α can reverse the MDR of gastric cancer cells, which may be realized by inhibiting the Notch signaling pathway.

  2. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms

    NARCIS (Netherlands)

    Bossers, A.; Belt, P.B.G.M.; Raymond, G.J.; Caughey, B.; Vries, de R.; Smits, M.

    1997-01-01

    Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system.

  3. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma.

    Science.gov (United States)

    Ladd, Jon; Zhang, Zheng; Chen, Shengfu; Hower, Jason C; Jiang, Shaoyi

    2008-05-01

    This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.

  4. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens.

    Science.gov (United States)

    van Eijk, Erika; Wittekoek, Bert; Kuijper, Ed J; Smits, Wiep Klaas

    2017-05-01

    With the impending crisis of antimicrobial resistance, there is an urgent need to develop novel antimicrobials to combat difficult infections and MDR pathogenic microorganisms. DNA replication is essential for cell viability and is therefore an attractive target for antimicrobials. Although several antimicrobials targeting DNA replication proteins have been developed to date, gyrase/topoisomerase inhibitors are the only class widely used in the clinic. Given the numerous essential proteins in the bacterial replisome that may serve as a potential target for inhibitors and the relative paucity of suitable compounds, it is evident that antimicrobials targeting the replisome are underdeveloped so far. In this review, we report on the diversity of antimicrobial compounds targeting DNA replication and highlight some of the challenges in developing new drugs that target this process. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  5. The effects of soy and whey protein supplementation on acute hormonal reponses to resistance exercise in men.

    Science.gov (United States)

    Kraemer, William J; Solomon-Hill, Glenn; Volk, Brittanie M; Kupchak, Brian R; Looney, David P; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Maresh, Carl M; Volek, Jeff S

    2013-01-01

    For many resistance-trained men concerns exist regarding the production of estrogen with the consumption of soy protein when training for muscle strength and size. Thus, the purpose of this investigation was to examine the effects of soy and whey protein supplementation on sex hormones following an acute bout of heavy resistance exercise in resistance trained men. Ten resistance-trained men (age 21.7 ± 2.8 [SD] years; height 175.0 ± 5.4 cm; weight 84.2 ± 9.1 kg) volunteered to participate in an investigation. Utilizing a within subject randomized crossover balanced placebo design, all subjects completed 3 experimental treatment conditions supplementing with whey protein isolate (WPI), soy protein isolate (SPI), and maltodextrin placebo control for 14 days with participants ingesting 20 g of their assigned supplement each morning at approximately the same time each day. Following supplementation, subjects performed an acute heavy resistance exercise test consisting of 6 sets of 10 repetitions in the squat exercise at 80% of the subject's one repetition maximum. This investigation observed lower testosterone responses following supplementation with soy protein in addition to a positive blunted cortisol response with the use of whey protein at some recovery time points. Although sex hormone binding globulin (SHBG) was proposed as a possible mechanism for understanding changes in androgen content, SHBG did not differ between experimental treatments. Importantly, there were no significant differences between groups in changes in estradiol concentrations. Our main findings demonstrate that 14 days of supplementation with soy protein does appear to partially blunt serum testosterone. In addition, whey influences the response of cortisol following an acute bout of resistance exercise by blunting its increase during recovery. Protein supplementation alters the physiological responses to a commonly used exercise modality with some differences due to the type of protein

  6. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2016-02-01

    Full Text Available Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11. In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli.

  7. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    Science.gov (United States)

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  8. Effects of Postexercise Protein Intake on Muscle Mass and Strength During Resistance Training: Is There an Optimal Ratio Between Fast and Slow Proteins?

    Science.gov (United States)

    Fabre, Marina; Hausswirth, Christophe; Tiollier, Eve; Molle, Odeline; Louis, Julien; Durguerian, Alexandre; Neveux, Nathalie; Bigard, Xavier

    2017-10-01

    While effects of the two classes of proteins found in milk (i.e., soluble proteins, including whey, and casein) on muscle protein synthesis have been well investigated after a single bout of resistance exercise (RE), the combined effects of these two proteins on the muscle responses to resistance training (RT) have not yet been investigated. Therefore, the aim of this study was to examine the effects of protein supplementation varying by the ratio between milk soluble proteins (fast-digested protein) and casein (slow-digested protein) on the muscle to a 9-week RT program. In a double-blind protocol, 31 resistance-trained men, were assigned to 3 groups receiving a drink containing 20g of protein comprising either 100% of fast protein (FP(100), n = 10), 50% of fast and 50% of slow proteins (FP(50), n = 11) or 20% of fast protein and 80% of casein (FP(20), n = 10) at the end of training bouts. Body composition (DXA), and maximal strength in dynamic and isometric were analyzed before and after RT. Moreover, blood plasma aminoacidemia kinetic after RE was measured. The results showed a higher leucine bioavailability after ingestion of FP(100) and FP(50) drinks, when compared with FP(20) (p< .05). However, the RT-induced changes in lean body mass (p < .01), dynamic (p < .01), and isometric muscle strength (p < .05) increased similarly in all experimental groups. To conclude, compared with the FP(20) group, the higher rise in plasma amino acids following the ingestion of FP(100) and FP(50) did not lead to higher muscle long-term adaptations.

  9. Heterotrimeric G-proteins facilitate resistance to plant pathogenic viruses in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Brenya, Eric; Trusov, Yuri; Dietzgen, Ralf Georg; Botella, José Ramón

    2016-08-02

    Heterotrimeric G-proteins, consisting of Gα, Gβ and Gγ subunits, are important signal transducers in eukaryotes. In plants, G-protein-mediated signaling contributes to defense against a range of fungal and bacterial pathogens. Here we studied response of G-protein-deficient mutants to ssRNA viruses representing 2 different families: Cucumber mosaic virus (CMV) (Bromoviridae) and Turnip mosaic virus (TuMV) (Potyviridae). We found that development of spreading necrosis on infected plants was suppressed in the Gβ-deficient mutant (agb1-2) compared to wild type and Gα-deficient mutant (gpa1-4). In accordance, ion leakage caused by viral infection was also significantly reduced in agb1-2 compared to wild type and gpa1-4. Nevertheless, both viruses replicated better in agb1-2 plants, while gpa1-4 was similar to wild type. Analysis of pathogenesis-related genes showed that Gβ negatively regulated salicylic acid, jasmonic acid and abscisic acid marker genes during CMV and TuMV infections. Interestingly, analysis of salicylic acid deficient transgenic plants indicated that salicylic acid did not affect resistance against these viruses and did not influence the Gβ-mediated defense response. We conclude that heterotrimeric G-proteins play a positive role in defense against viral pathogens probably by promoting cell death.

  10. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men.

    Science.gov (United States)

    Vangsoe, Mathias T; Joergensen, Malte S; Heckmann, Lars-Henrik L; Hansen, Mette

    2018-03-10

    During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM) improved significantly in both groups (Mean (95% confidence interval (CI))), control group (Con): (2.5 kg (1.5, 3.5) p supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

  11. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP.

    Science.gov (United States)

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-01-01

    Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases could provide a complementary means to combat resistance to antifungal proteins.

  12. Correlation between uptake of 99TcM-MIBI and multidrug resistant proteins of breast cancer

    International Nuclear Information System (INIS)

    Zhang Xuemei; Wu Hua

    2004-01-01

    Objectives: To assess the correlation between 99 Tc m -MIBI uptake and the expression level of multidrug resistant proteins of breast cancer. Methods: Thirty patients with infiltrating ductal carcinoma were enrolled in this study. 99Tcm-MIBI scintigraphy were performed at 15 min and 90 min after injecting the tracer. The uptake of 99Tcm-MIBI were evaluated as tumor over background ratio with region of interest technique. Such indexes as early uptake ratio (EUR), delay uptake ratio (DUR) and retention index (RI) were calculated respectively. P-gp (P-glycoprotein) and MRP (multidrug resistant-associated protein) expression in surgically resected tumors were investigated by immunohistochemistry. Immunohistochemistry HPIAS-1000 image analysis system was used to determined the level of P-gp and MRP expression. The difference of P-gp and MRP level in the group with RI ≥ 0 and the group with RI 99 Tc m -MIBI on delayed scans in breast cancer. The uptake of 99 Tc m -MIBI may be not related to the levels of MRP expression. Thus 99 Tc m -MIBI scintigraphy may predict the MDR development which associated with P-gp expression in breast carcinoma. (authors)

  13. Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

    Directory of Open Access Journals (Sweden)

    Isabella Massimi

    2015-01-01

    Full Text Available Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα. In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293 to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.

  14. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males

    Directory of Open Access Journals (Sweden)

    Mike Spillane, Darryn S. Willoughby

    2016-03-01

    Full Text Available This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS, myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11] or a carbohydrate [HC (n = 10] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05. Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p 0.05. Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05. In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation.

  15. Effects of Milk Proteins Supplementation in Older Adults Undergoing Resistance Training: A Meta-Analysis of Randomized Control Trials.

    Science.gov (United States)

    Hidayat, K; Chen, G-C; Wang, Y; Zhang, Z; Dai, X; Szeto, I M Y; Qin, L-Q

    2018-01-01

    Older adults experience age-related physiological changes that affect body weight and body composition. In general, nutrition and exercise have been identified as potent stimulators of protein synthesis in skeletal muscle. Milk proteins are excellent sources of all the essential amino acids and may represent an ideal protein source to promote muscle anabolism in older adults undergoing resistance training. However, several randomized control trials (RCTs) have yielded mixed results on the effects of milk proteins supplementation in combination with resistance training on body weight and composition. PubMed, Web of Science and Cochrane databases were searched for literature that evaluated the effects of milk proteins supplementation on body weight and composition among older adults (age ≥ 60 years) undergoing resistance training up to September 2016. A random-effects model was used to calculate the pooled estimates and 95% confidence intervals (CIs) of effect sizes. The final analysis included 10 RCTs involving 574 participants (mean age range from 60 to 80.8 years). Overall, the combination of milk proteins supplementation and resistance training did not have significant effect on fat mass (0.30, 95% CI -0.25, 0.86 kg) or body weight (1.02, 95% CI: -0.01, 2.04 kg). However, a positive effect of milk proteins supplementation paired with resistance training on fat-free mass was observed (0.74, 95% CI 0.30, 1.17 kg). Greater fat-free mass gains were observed in studies that included more than 55 participants (0.73, 95% CI 0.30, 1.16 kg), and in studies that enrolled participants with aging-related medical conditions (1.60, 95% CI 0.92, 2.28 kg). There was no statistical evidence of publication bias among the studies. Our findings provide evidence that supplementation of milk protein, in combination with resistance training, is effective to elicit fat-free mass gain in older adults.

  16. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Li, Ting; Cao, Chuanwang; Yang, Ting; Zhang, Lee; He, Lin; Xi, Zhiyong; Bian, Guowu; Liu, Nannan

    2015-12-10

    Rhodopsin-like G protein-coupled receptors (GPCRs) are known to be involved in the GPCR signal transduction system and regulate many essential physiological processes in organisms. This study, for the first time, revealed that knockdown of the rhodopsin-like GPCR gene in resistant mosquitoes resulted in a reduction of mosquitoes' resistance to permethrin, simultaneously reducing the expression of two cAMP-dependent protein kinase A genes (PKAs) and four resistance related cytochrome P450 genes. The function of rhodopsin-like GPCR was further confirmed using transgenic lines of Drosophila melanogaster, in which the tolerance to permethrin and the expression of Drosophila resistance P450 genes were both increased. The roles of GPCR signaling pathway second messenger cyclic adenosine monophosphate (cAMP) and downstream effectors PKAs in resistance were investigated using cAMP production inhibitor Bupivacaine HCl and the RNAi technique. Inhibition of cAMP production led to significant decreases in both the expression of four resistance P450 genes and two PKA genes and mosquito resistance to permethrin. Knockdown of the PKA genes had shown the similar effects on permethrin resistance and P450 gene expression. Taken together, our studies revealed, for the first time, the role of the GPCR/cAMP/PKA-mediated regulatory pathway governing P450 gene expression and P450-mediated resistance in Culex mosquitoes.

  17. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus

    Science.gov (United States)

    Li, Ting; Cao, Chuanwang; Yang, Ting; Zhang, Lee; He, Lin; Xi, Zhiyong; Bian, Guowu; Liu, Nannan

    2015-01-01

    Rhodopsin-like G protein-coupled receptors (GPCRs) are known to be involved in the GPCR signal transduction system and regulate many essential physiological processes in organisms. This study, for the first time, revealed that knockdown of the rhodopsin-like GPCR gene in resistant mosquitoes resulted in a reduction of mosquitoes’ resistance to permethrin, simultaneously reducing the expression of two cAMP-dependent protein kinase A genes (PKAs) and four resistance related cytochrome P450 genes. The function of rhodopsin-like GPCR was further confirmed using transgenic lines of Drosophila melanogaster, in which the tolerance to permethrin and the expression of Drosophila resistance P450 genes were both increased. The roles of GPCR signaling pathway second messenger cyclic adenosine monophosphate (cAMP) and downstream effectors PKAs in resistance were investigated using cAMP production inhibitor Bupivacaine HCl and the RNAi technique. Inhibition of cAMP production led to significant decreases in both the expression of four resistance P450 genes and two PKA genes and mosquito resistance to permethrin. Knockdown of the PKA genes had shown the similar effects on permethrin resistance and P450 gene expression. Taken together, our studies revealed, for the first time, the role of the GPCR/cAMP/PKA-mediated regulatory pathway governing P450 gene expression and P450-mediated resistance in Culex mosquitoes. PMID:26656663

  18. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Science.gov (United States)

    Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Bruno-Blanch, Luis E.

    2013-01-01

    ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively. PMID:23984415

  19. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis.

    Science.gov (United States)

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca(2+)-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis.

  20. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  1. Association between insulin resistance and c-reactive protein among Peruvian adults

    Directory of Open Access Journals (Sweden)

    Gelaye Bizu

    2010-05-01

    Full Text Available Abstract Objective Insulin resistance (IR, a reduced physiological response of peripheral tissues to the action of insulin, is one of the major causes of type 2 diabetes. We sought to evaluate the relationship between serum C-reactive protein (CRP, a marker of systemic inflammation, and prevalence of IR among Peruvian adults. Methods This population based study of 1,525 individuals (569 men and 956 women; mean age 39 years old was conducted among residents in Lima and Callao, Peru. Fasting plasma glucose, insulin, and CRP concentrations were measured using standard approaches. Insulin resistance was assessed using the homeostasis model (HOMA-IR. Categories of CRP were defined by the following tertiles: 2.53 mg/l. Logistic regression procedures were employed to estimate odds ratios (OR and 95% confidence intervals (CI. Results Elevated CRP were significantly associated with increased mean fasting insulin and mean HOMA-IR concentrations (p 2.53 mg/l (upper tertile had a 2.18-fold increased risk of IR (OR = 2.18 95% CI 1.51-3.16 as compared with those in the lowest tertile ( Conclusion Our observations among Peruvians suggest that chronic systemic inflammation, as evidenced by elevated CRP, may be of etiologic importance in insulin resistance and diabetes.

  2. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    Science.gov (United States)

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males.

    Science.gov (United States)

    Spillane, Mike; Willoughby, Darryn S

    2016-03-01

    This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS), myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11)] or a carbohydrate [HC (n = 10)] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p 0.05). Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05). In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation. Key pointsIn response to 56 days of heavy resistance training and HC or HPC supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups.The supplementation of HPC had no preferential effect on augmenting serum IGF-1 GH, or HGF.The supplementation of HPC had no preferential effect on augmenting increases in total muscle protein content or the myogenic markers, total DNA and muscle cMet content.In response to 56 days of a daily supplemental dose of 94 g of protein and 196 g of carbohydrate, the HPC group was no more effective than 312 g of carbohydrate in the HC group in increasing muscle strength and mass due to its ability to elevate serum anabolic hormones and growth factors and markers of myogenic activation of satellite cells.

  4. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  5. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  6. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  7. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  8. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Jane Claire Munday

    2015-03-01

    Full Text Available Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (Berenil®, cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (MPXR is the result of loss of a separate High Affinity Pentamidine Transporter (HAPT1. A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the selectivity region of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this

  9. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  10. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    Science.gov (United States)

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein.

    Science.gov (United States)

    Bleiziffer, Isabelle; Eikmeier, Julian; Pohlentz, Gottfried; McAulay, Kathryn; Xia, Guoqing; Hussain, Muzaffar; Peschel, Andreas; Foster, Simon; Peters, Georg; Heilmann, Christine

    2017-01-01

    Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl

  12. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    International Nuclear Information System (INIS)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  13. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway.

    Science.gov (United States)

    Vissing, Kristian; Rahbek, Stine K; Lamon, Severine; Farup, Jean; Stefanetti, Renae J; Wallace, Marita A; Vendelbo, Mikkel H; Russell, Aaron

    2013-08-01

    The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

  14. Over-Expression of Cysteine Leucine Rich Protein Is Related to SAG Resistance in Clinical Isolates of Leishmania donovani.

    Science.gov (United States)

    Das, Sanchita; Shah, Priyanka; Tandon, Rati; Yadav, Narendra Kumar; Sahasrabuddhe, Amogh A; Sundar, Shyam; Siddiqi, Mohammad Imran; Dube, Anuradha

    2015-08-01

    Resistance emergence against antileishmanial drugs, particularly Sodium Antimony Gluconate (SAG) has severely hampered the therapeutic strategy against visceral leishmaniasis, the mechanism of resistance being indistinguishable. Cysteine leucine rich protein (CLrP), was recognized as one of the overexpressed proteins in resistant isolates, as observed in differential proteomics between sensitive and resistant isolates of L. donovani. The present study deals with the characterization of CLrP and for its possible connection with SAG resistance. In pursuance of deciphering the role of CLrP in SAG resistance, gene was cloned, over-expressed in E. coli system and thereafter antibody was raised. The expression profile of CLrP and was found to be over-expressed in SAG resistant clinical isolates of L. donovani as compared to SAG sensitive ones when investigated by real-time PCR and western blotting. CLrP has been characterized through bioinformatics, immunoblotting and immunolocalization analysis, which reveals its post-translational modification along with its dual existence in the nucleus as well as in the membrane of the parasite. Further investigation using a ChIP assay confirmed its DNA binding potential. Over-expression of CLrP in sensitive isolate of L. donovani significantly decreased its responsiveness to SAG (SbV and SbIII) and a shift towards the resistant mode was observed. Further, a significant increase in its infectivity in murine macrophages has been observed. The study reports the differential expression of CLrP in SAG sensitive and resistant isolates of L. donovani. Functional intricacy of CLrP increases with dual localization, glycosylation and DNA binding potential of the protein. Further over-expressing CLrP in sensitive isolate of L. donovani shows significantly decreased sensitivity towards SAG and increased infectivity as well, thus assisting the parasite in securing a safe niche. Results indicates the possible contribution of CLrP to antimonial

  15. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance.

    Science.gov (United States)

    Dogimont, Catherine; Chovelon, Veronique; Pauquet, Jerome; Boualem, Adnane; Bendahmane, Abdelhafid

    2014-12-01

    Aphis gossypii is a polyphagous sucking aphid and a vector for many viruses. In Cucumis melo, a dominant locus, Vat, confers a high level of resistance to Aphis gossypii infestation and to viruses transmitted by this vector. To investigate the mechanism underlying this double resistance, we first genetically dissected the Vat locus. We delimited the double resistance to a single gene that encodes for a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein type. To validate the genetic data, transgenic lines expressing the Vat gene were generated and assessed for the double resistance. In this analysis, Vat-transgenic plants were resistant to A. gossypii infestation as well as A. gossypii-mediated virus transmission. When the plants were infected mechanically, virus infection occurred on both transgenic and non-transgenic control plants. These results confirmed that the cloned CC-NBS-LRR gene mediates both resistance to aphid infestation and virus infection using A. gossypii as a vector. This resistance also invokes a separate recognition and response phases in which the recognition phase involves the interaction of an elicitor molecule from the aphid and Vat from the plant. The response phase is not specific and blocks both aphid infestation and virus infection. Sequence analysis of Vat alleles suggests a major role of an unusual conserved LRR repeat in the recognition of A. gossypii. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Genomic distribution of the small multidrug resistance protein EmrE over 29 Escherichia coli strains reveals two forms of the protein

    NARCIS (Netherlands)

    Kolbusz, Magdalena A.; Slotboom, Dirk J.; Lolkema, Juke S.

    Analysis of the genomes of 29 Escherichia coli strains revealed two different versions of the EmrE protein, a member of the small multidrug resistance family. The versions are different in length and contain 110 residues (EMRE110) and 165 residues (EMRE165). The N-terminal extension found in the

  17. Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein AVR4

    NARCIS (Netherlands)

    Hoorn, Van der R.A.L.; Roth, R.; Wit, De P.J.G.M.

    2001-01-01

    The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9, respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9,

  18. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  19. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jilu Shen

    Full Text Available We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM and imipenem (IMP for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE. Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA isolates tested, namely IMPRMEMR (66.7%, IMPRMEMS (32.6%, and IMPRMEMS (0.7%. DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  20. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Shen, Jilu; Pan, Yaping; Fang, Yaping

    2015-01-01

    We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  1. Plasmid-Mediated Resistance to Thrombin-Induced Platelet Microbicidal Protein in Staphylococci: Role of the qacA Locus

    OpenAIRE

    Kupferwasser, Leon Iri; Skurray, Ronald A.; Brown, Melissa H.; Firth, Neville; Yeaman, Michael R.; Bayer, Arnold S.

    1999-01-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded st...

  2. Contribution of Specific Amino Acid Changes in Penicillin Binding Protein 1 to Amoxicillin Resistance in Clinical Helicobacter pylori isolates ▿

    OpenAIRE

    Qureshi, Nadia N.; Morikis, Dimitrios; Schiller, Neal L.

    2010-01-01

    Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp...

  3. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise.

    Science.gov (United States)

    Hector, Amy J; McGlory, Chris; Damas, Felipe; Mazara, Nicole; Baker, Steven K; Phillips, Stuart M

    2018-01-01

    Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit. Adult men (body mass index, 28.6 ± 0.6 kg/m 2 ; age 22 ± 1 yr) underwent 10 d of 40%-reduced energy intake while performing unilateral resistance exercise and consuming lower protein (1.2 g/kg/d, n = 12) or higher protein (2.4 g/kg/d, n = 12). Pre- and postintervention testing included dual-energy X-ray absorptiometry, primed constant infusion of ring -[ 13 C 6 ]phenylalanine, and 15 [N]phenylalanine to measure acute postabsorptive MPS and MPB; D 2 O to measure integrated MPS; and gene and protein expression. There was a decrease in acute MPS after ER (higher protein, 0.059 ± 0.006 to 0.051 ± 0.009%/h; lower protein, 0.061 ± 0.005 to 0.045 ± 0.006%/h; P resistance exercise (higher protein, 0.067 ± 0.01%/h; lower protein, 0.061 ± 0.006%/h), and integrated MPS followed a similar pattern. There was no change in MPB (energy balance, 0.080 ± 0.01%/hr; ER rested legs, 0.078 ± 0.008%/hr; ER exercised legs, 0.079 ± 0.006%/hr). We conclude that a reduction in MPS is the main mechanism that underpins LBM loss early in ER in adult men.-Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., Phillips, S. M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. © FASEB.

  4. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  5. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  6. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression.

    Science.gov (United States)

    Hulmi, Juha J; Kovanen, Vuokko; Selänne, Harri; Kraemer, William J; Häkkinen, Keijo; Mero, Antti A

    2009-07-01

    The effects of timed ingestion of high-quality protein before and after resistance exercise are not well known. In this study, young men were randomized to protein (n = 11), placebo (n = 10) and control (n = 10) groups. Muscle cross-sectional area by MRI and muscle forces were analyzed before and after 21 weeks of either heavy resistance training (RT) or control period. Muscle biopsies were taken before, and 1 and 48 h after 5 x 10 repetition leg press exercise (RE) as well as 21 weeks after RT. Protein (15 g of whey both before and after exercise) or non-energetic placebo were provided to subjects in the context of both single RE bout (acute responses) as well as each RE workout twice a week throughout the 21-week-RT. Protein intake increased (P protein supplementation. Moreover, protein intake seemed to prevent 1 h post-RE decrease in myostatin and myogenin mRNA expression but did not affect activin receptor IIb, p21, FLRG, MAFbx or MyoD expression. In conclusion, protein intake close to resistance exercise workout may alter mRNA expression in a manner advantageous for muscle hypertrophy.

  7. An improved algorithm for activated protein C resistance and factor V Leiden screening.

    Science.gov (United States)

    Herskovits, Adrianna Z; Morgan, Elizabeth A; Lemire, Susan J; Lindeman, Neal I; Dorfman, David M

    2013-09-01

    To evaluate the performance of a Russell viper venom-based activated protein C resistance (APCR) screening test relative to DNA analysis for the factor V Leiden mutation. We evaluated the concordance between Pefakit APCR screening results and DNA analysis for 435 patients homozygous (n = 11), heterozygous (n = 310), or wild-type (n =114) for the G1691A allele. Using receiver operating characteristic analysis, we found that a cutoff of 1.89 for the APCR ratio yields a sensitivity and specificity of 99.1%. In patients with discrepant genotype-phenotype correlation, their APCR may provide a more clinically relevant result. We compared several strategies for employing reflex testing and found that performing initial APCR screening followed by confirmatory molecular analysis on a subset of cases in the borderline regions between the diagnostic groups can reduce unnecessary testing by approximately 80% without compromising diagnostic accuracy.

  8. Influence of 3 Months Resistance Training on C-Reactive Protein Serum Levels and Muscle Hypertrophy in Elderly Men

    Directory of Open Access Journals (Sweden)

    Abbas Saremi

    2012-10-01

    Full Text Available Objectives: Sarcopenia is the decline of muscle mass and strength with age. Evidence suggests that inflammation play important roles in age-related muscle atrophy. The purpose of this study was to investigate the effects of 3 months resistance training on skeletal muscle mass and C-reactive protein levels in elderly men. Methods & Materials: In this quasi – experimental study with pretest–posttest design, twenty-five middle-age men (age: 64.10±3.40 yr, body mass index: 28.29±2.38 kg/m 2 were randomly assigned to resistance training (n=13 and control (n=12 groups. Resistance training program was performed 50-60 min/d, 3d/wk, for 3 months. Serum C-reactive protein levels and body composition (DEXA were measured before and after the intervention. Results: After resistance training, leg press (lower body strength index, bench press (upper body strength index, and skeletal muscle mass were significantly increased (P0.05. Concurrently, C-reactive protein levels were significantly decreased in training group (P<0.05. Conclusion: Three months resistance training caused an improvement in muscle mass and strength in elderly men, and this improvement were accompanied by decreases in C-reactive protein serum levels.

  9. Muscle strength and hypertrophy occur independently of protein supplementation during short-term resistance training in untrained men.

    Science.gov (United States)

    Boone, Carleigh H; Stout, Jeffrey R; Beyer, Kyle S; Fukuda, David H; Hoffman, Jay R

    2015-08-01

    Short-term resistance training has consistently demonstrated gains in muscular strength, but not hypertrophy. Post-resistance training protein ingestion is posited to augment the acute anabolic stimulus, thus potentially accelerating changes in muscle size and strength. The purpose of this investigation was to examine the effects of 4 weeks of resistance training with protein supplementation on strength and muscle morphology changes in untrained men. Participants (mean ± SD; N = 18; age, 22.0 ± 2.5 years; body mass index, 25.1 ± 5.4 kg · m(-2)) were randomly assigned to a resistance training + protein group (n = 9; whey (17 g) + colostrum (3 g) + leucine (2 g)) or a resistance training + placebo group (n = 9). One-repetition maximum (1RM) strength in the leg press (LP) and leg extension (LE) exercises, maximal isometric knee extensor strength (MVIC), and muscle morphology (thickness (MT), cross-sectional area (CSA), pennation angle) of the dominant rectus femoris (RF) and vastus lateralis (VL) was assessed before and after training. Participants performed LP and LE exercises (3 × 8-10; at 80% 1RM) 3 days/week for 4 weeks. Data were analyzed using 2-way ANOVA with repeated measures. Four weeks of resistance training resulted in significant increases in LP (p supplementation.

  10. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP.

    Science.gov (United States)

    Williams, Simon J; Sornaraj, Pradeep; deCourcy-Ireland, Emma; Menz, R Ian; Kobe, Bostjan; Ellis, Jeffrey G; Dodds, Peter N; Anderson, Peter A

    2011-08-01

    Resistance (R) proteins are key regulators of the plant innate immune system and are capable of pathogen detection and activation of the hypersensitive cell death immune response. To understand the molecular mechanism of R protein activation, we undertook a phenotypic and biochemical study of the flax nucleotide binding (NB)-ARC leucine-rich repeat protein, M. Using Agrobacterium-mediated transient expression in flax cotyledons, site-directed mutations of key residues within the P-loop, kinase 2, and MHD motifs within the NB-ARC domain of M were shown to affect R protein function. When purified using a yeast expression system and assayed for ATP and ADP, these mutated proteins exhibited marked differences in the quantity and identity of the bound nucleotide. ADP was bound to recombinant wild-type M protein, while the nonfunctional P-loop mutant did not have any nucleotides bound. In contrast, ATP was bound to an autoactive M protein mutated in the highly conserved MHD motif. These data provide direct evidence supporting a model of R protein function in which the "off" R protein binds ADP and activation of R protein defense signaling involves the exchange of ADP for ATP.

  11. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein

    OpenAIRE

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-01-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackieviru...

  12. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants.

    Science.gov (United States)

    Stirnweis, Daniel; Milani, Samira D; Brunner, Susanne; Herren, Gerhard; Buchmann, Gabriele; Peditto, David; Jordan, Tina; Keller, Beat

    2014-09-01

    The development of high-yielding varieties with broad-spectrum durable disease resistance is the ultimate goal of crop breeding. In plants, immune receptors of the nucleotide-binding-leucine-rich repeat (NB-LRR) class mediate race-specific resistance against pathogen attack. When employed in agriculture this type of resistance is often rapidly overcome by newly adapted pathogen races. The stacking of different resistance genes or alleles in F1 hybrids or in pyramided lines is a promising strategy for achieving more durable resistance. Here, we identify a molecular mechanism which can negatively interfere with the allele-pyramiding approach. We show that pairwise combinations of different alleles of the powdery mildew resistance gene Pm3 in F1 hybrids and stacked transgenic wheat lines can result in suppression of Pm3-based resistance. This effect is independent of the genetic background and solely dependent on the Pm3 alleles. Suppression occurs at the post-translational level, as levels of RNA and protein in the suppressed alleles are unaffected. Using a transient expression system in Nicotiana benthamiana, the LRR domain was identified as the domain conferring suppression. The results of this study suggest that the expression of closely related NB-LRR resistance genes or alleles in the same genotype can lead to dominant-negative interactions. These findings provide a molecular explanation for the frequently observed ineffectiveness of resistance genes introduced from the secondary gene pool into polyploid crop species and mark an important step in overcoming this limitation. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene.

    Science.gov (United States)

    Tougou, Makoto; Yamagishi, Noriko; Furutani, Noriyuki; Shizukawa, Yoshiaki; Takahata, Yoshihito; Hidaka, Soh

    2007-11-01

    We transformed a construct containing the sense coat protein (CP) gene of Soybean dwarf virus (SbDV) into soybean somatic embryos via microprojectile bombardment to acquire SbDV-resistant soybean plants. Six independent T(0) plants were obtained. One of these transgenic lines was subjected to further extensive analysis. Three different insertion patterns of Southern blot hybridization analysis in T(1) plants suggested that these insertions introduced in T(0) plants were segregated from each other or co-inherited in T(1) progenies. These insertions were classified into two types, which overexpressed SbDV-CP mRNA and accumulated SbDV-CP-specific short interfering RNA (siRNA), or repressed accumulation of SbDV-CP mRNA and siRNA by RNA analysis prior to SbDV inoculation. After inoculation of SbDV by the aphids, most T(2) plants of this transgenic line remained symptomless, contained little SbDV-specific RNA by RNA dot-blot hybridization analysis and exhibited SbDV-CP-specific siRNA. We discuss here the possible mechanisms of the achieved resistance, including the RNA silencing.

  14. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  15. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs).

    Science.gov (United States)

    Rathore, Rama; McCallum, Jennifer E; Varghese, Elizabeth; Florea, Ana-Maria; Büsselberg, Dietrich

    2017-07-01

    Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.

  16. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  17. Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria.

    Science.gov (United States)

    Blaskovich, Mark A T; Hansford, Karl A; Gong, Yujing; Butler, Mark S; Muldoon, Craig; Huang, Johnny X; Ramu, Soumya; Silva, Alberto B; Cheng, Mu; Kavanagh, Angela M; Ziora, Zyta; Premraj, Rajaratnam; Lindahl, Fredrik; Bradford, Tanya A; Lee, June C; Karoli, Tomislav; Pelingon, Ruby; Edwards, David J; Amado, Maite; Elliott, Alysha G; Phetsang, Wanida; Daud, Noor Huda; Deecke, Johan E; Sidjabat, Hanna E; Ramaologa, Sefetogi; Zuegg, Johannes; Betley, Jason R; Beevers, Andrew P G; Smith, Richard A G; Roberts, Jason A; Paterson, David L; Cooper, Matthew A

    2018-01-02

    The public health threat posed by a looming 'post-antibiotic' era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature's control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the 'vancapticins', possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to 'revitalise' antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors.

  18. Deficiency of a glycogen synthase-associated protein, Epm2aip1, causes decreased glycogen synthesis and hepatic insulin resistance.

    Science.gov (United States)

    Turnbull, Julie; Tiberia, Erica; Pereira, Sandra; Zhao, Xiaochu; Pencea, Nela; Wheeler, Anne L; Yu, Wen Qin; Ivovic, Alexander; Naranian, Taline; Israelian, Nyrie; Draginov, Arman; Piliguian, Mark; Frankland, Paul W; Wang, Peixiang; Ackerley, Cameron A; Giacca, Adria; Minassian, Berge A

    2013-11-29

    Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.

  19. Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Evgenia Salta

    2014-11-01

    Full Text Available The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrPC, into an aberrant and partially proteinase K resistant isoform, PrPSc. Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK, as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.

  20. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training

    Directory of Open Access Journals (Sweden)

    Tanner Stokes

    2018-02-01

    Full Text Available Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS and muscle protein breakdown (MPB, both of which are sensitive to external loading and aminoacidemia. Hyperaminoacidemia results in a robust but transient increase in rates of MPS and a mild suppression of MPB. Resistance exercise potentiates the aminoacidemia-induced rise in MPS that, when repeated over time, results in gradual radial growth of skeletal muscle (i.e., hypertrophy. Factors that affect MPS include both quantity and composition of the amino acid source. Specifically, MPS is stimulated in a dose-responsive manner and the primary amino acid agonist of this process is leucine. MPB also appears to be regulated in part by protein intake, which can exert a suppressive effect on MPB. At high protein doses the suppression of MPB may interfere with skeletal muscle adaptation following resistance exercise. In this review, we examine recent advancements in our understanding of how protein ingestion impacts skeletal muscle growth following resistance exercise in young adults during energy balance and energy restriction. We also provide practical recommendations for exercisers who wish to maximize the hypertrophic response of skeletal muscle during resistance exercise training.

  1. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of cf receptor-like proteins involved in pathogen resistance of tomato

    NARCIS (Netherlands)

    Liebrand, T.W.H.; Smit, P.; Abd-El-Haliem, A.; Jonge, de R.; Cordewener, J.H.G.; America, A.H.P.; Sklenar, J.; Jones, A.M.; Robatzek, S.; Thomma, B.P.H.J.; Tameling, W.I.; Joosten, M.H.A.J.

    2012-01-01

    Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive

  2. Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis.

    Science.gov (United States)

    Finger, Débora; Goltz, Fernanda Reistenbach; Umpierre, Daniel; Meyer, Elisabeth; Rosa, Luis Henrique Telles; Schneider, Cláudia Dornelles

    2015-02-01

    Older individuals present reductions in muscle mass and physical function, as well as a blunted muscle protein synthesis response to amino acid administration and physical activity. Although resistance training is an effective intervention to slow down muscle impairments in the elderly, there is no consensus whether a combination with protein supplementation could offer additional benefits to an older population. We aimed to systematically summarize and quantify whether protein supplementation could optimize the effects of resistance training on muscle mass and strength in an aged population. A structured literature search was conducted on MEDLINE (PubMed), Cochrane, EMBASE and LILACS databases. The search had no period or language restrictions. Inclusion criteria comprised study design (randomized controlled trials-RCTs), sample mean age (60 years and over) and intervention (a resistance training program for a period of 6 weeks or longer combined with protein or amino acids supplementation). Two independent reviewers performed the study selection and data extraction. Continuous data on fat-free mass, muscle mass and muscle strength were pooled using a random-effects model. Of the 540 articles reviewed, 29 eligible articles underwent full-text evaluation. Nine RCTs (462 subjects) met the inclusion criteria and were included in the study. The mean age of the participants ranged from 61 to 79 years old. Protein supplementation protocols varied widely throughout the studies. Three studies used quantities related to the body mass of the participants and the other six trials provided supplements in daily amounts, independently of subjects' body masses. Overall, protein supplementation in combination with resistance training was associated with gains in fat-free mass, resulting in a standardized mean difference (SMD) of 0.23 [95% confidence interval (CI), 0.05-0.42]. However, protein supplementation was not associated with changes in muscle mass (0.14, 95% CI -0.05 to 0

  3. Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance

    OpenAIRE

    Neda Motaghi; Sohrab Najafipour

    2016-01-01

    Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in Shiraz. Material & Methods: 66 Pseudomonas Aeruginosa were isolated from wound specimens of 250 b...

  4. The synthesis and protein resistance of amphiphilic PDMS-b-(PDMS-g-cysteine) copolymers

    Science.gov (United States)

    Lei, Yufeng; Lin, Yaling; Zhang, Anqiang

    2017-10-01

    Zwitterionic polymers have been used to cope with nonspecific protein adsorption and bio-fouling problems for a wide range of materials, including biomedical devices, marine coatings and membrane separation. However, direct surface modification with highly water-soluble zwitterionic polymers is rather difficult due to their poor attachment to hydrophobic solid surfaces. In this work, we utilize the hydrophobic interaction to anchor zwitterionic polysiloxanes grafted with cysteine onto surfaces by adding an hydrophobic block of polydimethylsiloxanes, referred as PDMS-b-(PDMS-g-Cys)s. The synthesis involves only three steps of reactions, and the structures of each product were characterized using GPC, FT-IR and 1H NMR. The adsorption and protein resistance of PDMS-b-(PDMS-g-Cys)s on a gold surface are investigated with QCM-D. The results show that the hydrophobic interaction moieties of the additional PDMS blocks help the hydrophilic cysteine-grafted blocks stably attach and then function on the sensor. These findings suggest that the addition of hydrophobic moieties provides an effective approach to construct anti-fouling interfaces with zwitterionic polymers in aqueous solution.

  5. Clinical significance of acquired activated protein C resistance in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Muñoz-Rodríguez, F J; Reverter, J C; Font, J; Tàssies, D; Espinosa, G; Cervera, R; Carmona, F; Balsch, J; Ingelmo, M; Ordinas, A

    2002-01-01

    Antiphospholipid antibodies (aPL) may induce acquired activated protein C resistance (acquired APCR). The role of acquired APCR in patients with systemic lupus erythematosus (SLE) is not well known. To evaluate the prevalence of acquired APCR and its association with clinical manifestations we studied 103 consecutive SLE patients and 103 matched controls. APCR in the undiluted test and after dilution in factor V deficient plasma, factor V Leiden, protein C and S, lupus anticoagulant, and anti-cardiolipin, anti-beta2-glycoprotein I and anti-prothrombin antibodies were determined. Factor V Leiden was found in 4% in both patients and controls. The prevalence of acquired APCR was 22% for the undiluted assay and 17% in the diluted test. In SLE patients, acquired APCR was associated with aPL (39 vs 13% in undiluted assay, P = 0.007; and 33 vs 7% in the diluted test, P = 0.001). Arterial thromboses were found in 24% of patients with acquired APCR and in 6% of patients without (P = 0.04). However, no relationship was found with venous thrombosis. Acquired APCR was also associated with pregnancy losses: miscarriages in 70% of women with acquired APCR vs 32% in those without (P=0.03). Thus, in SLE patients acquired APCR seems to be associated with increased prevalence of arterial thrombosis and pregnancy losses.

  6. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  7. Molecular modification of Protein A to improve the elution pH and alkali resistance in affinity chromatography.

    Science.gov (United States)

    Xia, Hai-Feng; Liang, Zhen-Dong; Wang, Sha-Li; Wu, Pu-Qiang; Jin, Xiong-Hua

    2014-04-01

    Protein A of Staphylococcus aureus has been widely used as an affinity ligand for the purification of immunoglobulin. However, the low elution pH and the sensitivity to alkaline condition restricted the large-scale application of antibody purification. To overcome these disadvantages, the B domain was selected and mutated to Z domain and the recombinant Protein A was reconstructed by linking five Z domains. First, a section of six glycines was inserted into the second loop of Z domain, Z (6G). This increased the elution pH to 4.0-5.0. Then, the site-specific mutagenesis was conducted by replacing the 23rd asparagines to threonine and 30th phenylalanine to alanine, Z (N23T, F30A). These mutations made the recombinant Protein A shown a higher alkaline resistance than the nature Protein A. The work confirmed the modification of Protein A and exhibited the characteristics of recombinant Staphylococcal Protein A for antibody purification.

  8. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins

    International Nuclear Information System (INIS)

    Ballatori, Nazzareno; Hammond, Christine L.; Cunningham, Jennifer B.; Krance, Suzanne M.; Marchan, Rosemarie

    2005-01-01

    The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions

  9. Profiling of gender-specific rat plasma proteins associated with susceptibility or resistance to diet-induced obesity.

    Science.gov (United States)

    Choi, Jung-Won; Liu, Hao; Choi, Duk Kwon; Oh, Tae Seok; Mukherjee, Rajib; Yun, Jong Won

    2012-02-02

    Obesity-prone (OP) and obesity-resistant (OR) rats with different responses to development of obesity in spite of the same genetic background are useful animal models for searching for markers during the development of obesity. Here, we investigated whether plasma proteins of OP and OR rats may behave in a different way in males and females. We performed a comparative proteomic analysis using 2-DE combined with MALDI-TOF/MS on proteins from OP and OR male and female rats to discover gender-specific rat plasma proteins associated with susceptibility or resistance to diet-induced obesity. A total of 29 proteins showing differential expression between the groups were identified by MALDI-TOF/MS and database searches. These proteins were classified into 4 groups according to their regulation patterns in response to diet and gender. 22 proteins showed significant differences between OP and OR rats in males and/or females (Group I, II, and III) and 7 proteins exhibited only a high fat diet (HFD)-responsive difference in male or female rats (Group IV). In conclusion, the proteins negatively (ITIH3, FGG, TUBB5, and ZAG) or positively (Hp, ITIH4, and RBP) correlated with obesity found in this study could be used for selection of new targets for gender specific-medical treatment of obesity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Post-streptococcal auto-antibodies inhibit protein disulfide isomerase and are associated with insulin resistance.

    Directory of Open Access Journals (Sweden)

    Adi Aran

    2010-09-01

    Full Text Available Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33% and without (67% markers of recent streptococcal infections [anti-Streptolysin O (ASLO or anti-DNAse B (ADB]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI, an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61 and PDI (P328-338. The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001. Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001, and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039 and insulin resistance (Homeostatic Model Assessment (HOMA 4.1 vs. 3.1, n = 1215, p = 0.004, in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances.

  11. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2017-08-16

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  12. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins.

    Science.gov (United States)

    Casey, Lachlan W; Lavrencic, Peter; Bentham, Adam R; Cesari, Stella; Ericsson, Daniel J; Croll, Tristan; Turk, Dušan; Anderson, Peter A; Mark, Alan E; Dodds, Peter N; Mobli, Mehdi; Kobe, Bostjan; Williams, Simon J

    2016-10-17

    Plants use intracellular immunity receptors, known as nucleotide-binding oligomerization domain-like receptors (NLRs), to recognize specific pathogen effector proteins and induce immune responses. These proteins provide resistance to many of the world's most destructive plant pathogens, yet we have a limited understanding of the molecular mechanisms that lead to defense signaling. We examined the wheat NLR protein, Sr33, which is responsible for strain-specific resistance to the wheat stem rust pathogen, Puccinia graminis f. sp. tritici We present the solution structure of a coiled-coil (CC) fragment from Sr33, which adopts a four-helix bundle conformation. Unexpectedly, this structure differs from the published dimeric crystal structure of the equivalent region from the orthologous barley powdery mildew resistance protein, MLA10, but is similar to the structure of the distantly related potato NLR protein, Rx. We demonstrate that these regions are, in fact, largely monomeric and adopt similar folds in solution in all three proteins, suggesting that the CC domains from plant NLRs adopt a conserved fold. However, larger C-terminal fragments of Sr33 and MLA10 can self-associate both in vitro and in planta, and this self-association correlates with their cell death signaling activity. The minimal region of the CC domain required for both cell death signaling and self-association extends to amino acid 142, thus including 22 residues absent from previous biochemical and structural protein studies. These data suggest that self-association of the minimal CC domain is necessary for signaling but is likely to involve a different structural basis than previously suggested by the MLA10 crystallographic dimer.

  13. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Science.gov (United States)

    Stoks, Robby; De Block, Marjan

    2011-02-24

    Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  14. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium.

    Science.gov (United States)

    Desbonnet, Charlene; Tait-Kamradt, Amelia; Garcia-Solache, Monica; Dunman, Paul; Coleman, Jeffrey; Arthur, Michel; Rice, Louis B

    2016-04-05

    The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as "cephalosporins") is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP). Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system. β-Lactam antibiotics remain our most effective therapies against susceptible Gram-positive bacteria. The intrinsic resistance of Enterococcus faecium to β-lactams, particularly to cephalosporins, therefore represents a major limitation of therapy. Although the primary mechanism of resistance to β-lactams in E. faecium is the presence of low-affinity monofunctional transpeptidase (class B) penicillin-binding protein Pbp5, the interaction of Pbp5 with other proteins is fundamental to maintain a

  15. Study on expressions of heat shock 27-associated protein 1 and echinoderm microtubule-associated protein-like 5 in drug-resistant epilepsy

    Directory of Open Access Journals (Sweden)

    CHEN Yun

    2012-10-01

    Full Text Available Objective To observe the expressions of heat shock 27-associated protein 1 (HSPBAP1 and echinoderm microtubule-associated protein-like 5 (EML5 in cerebrospinal fluid of drug-resistant epilepsy, and to explore the value in early diagnosis of epilepsy. Methods According to the inclusion and exclusion criteria, 79 patients admitted in Department of Neurology, Hubei Xinhua Hospital and the First and Second Affiliated Hospital of Chongqing Medical University were divided into drug-resistant epilepsy group (n = 39 and non-epileptic control group (n = 40. Cerebrospinal fluid (every sample 4 ml were collected by lumbar puncture specimens, and HSPBAP1 and EML5 were detected by sandwich enzyme-linked immunosorbent assays. SPSS 13.0 software was used for statistical analysis, and P ≤ 0.05 indicated significant differences. Results The expressions of HSPBAP1 and EML5 were 0.17 ± 0.03 and 0.13 ± 0.02 in drug-resistant epilepsy group, while were 0.10 ± 0.03 and 0.08 ± 0.02 in non-epileptic control group. There was significant difference between 2 groups (t = 3.239, P = 0.002; t = 3.294, P = 0.002, respectively. Conclusion The expressions of HSPBAP1 and EML5 were increased in drug-resistant epilepsy patients. This provides a new way for early diagnosis of drug-resistant epilepsy.

  16. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  17. The ABC family of multidrug transporters in microorganisms

    NARCIS (Netherlands)

    van Veen, H.W; Konings, W.N

    1998-01-01

    Multidrug transporters are membrane proteins that are able to expel a broad range of toxic molecules from the cell. In humans, the overexpression of the multidrug resistance P-glycoprotein (Pgp) and the multidrug resistance-associated protein MRP1 (MRP) is a principal cause of resistance of cancers

  18. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains.

    Science.gov (United States)

    Brueggeman, R; Druka, A; Nirmala, J; Cavileer, T; Drader, T; Rostoks, N; Mirlohi, A; Bennypaul, H; Gill, U; Kudrna, D; Whitelaw, C; Kilian, A; Han, F; Sun, Y; Gill, K; Steffenson, B; Kleinhofs, A

    2008-09-30

    We isolated the barley stem rust resistance genes Rpg5 and rpg4 by map-based cloning. These genes are colocalized on a 70-kb genomic region that was delimited by recombination. The Rpg5 gene consists of an unusual structure encoding three typical plant disease resistance protein domains: nucleotide-binding site, leucine-rich repeat, and serine threonine protein kinase. The predicted RPG5 protein has two putative transmembrane sites possibly involved in membrane binding. The gene is expressed at low but detectable levels. Posttranscriptional gene silencing using VIGS resulted in a compatible reaction with a normally incompatible stem rust pathogen. Allele sequencing also validated the candidate Rpg5 gene. Allele and recombinant sequencing suggested that the probable rpg4 gene encoded an actin depolymerizing factor-like protein. Involvement of actin depolymerizing factor genes in nonhost resistance has been documented, but discovery of their role in gene-for-gene interaction would be novel and needs to be further substantiated.

  19. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Kappelle, Paul J. W. H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2011-01-01

    Phospholipid transfer protein (PLTP) is an emerging cardio-metabolic risk factor which is intricately involved in lipoprotein metabolism. Elevated plasma PLTP activity levels are reported in obesity and diabetes mellitus, but the relative contributions of obesity and insulin resistance to plasma

  20. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); H.B. Beverloo (Berna); A.R.M. von Bergh (Anne); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2005-01-01

    textabstractDrug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7,

  1. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  2. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Science.gov (United States)

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  3. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    Background: Phospholipid transfer protein (PLTP) is an emerging cardio-metabolic risk factor which is intricately involved in lipoprotein metabolism. Elevated plasma PLTP activity levels are reported in obesity and diabetes mellitus, but the relative contributions of obesity and insulin resistance

  4. Low-dose oral contraceptives and acquired resistance to activated protein C: a randomised cross-over study

    NARCIS (Netherlands)

    Rosing, J.; Middeldorp, S.; Curvers, J.; Christella, M.; Thomassen, L. G.; Nicolaes, G. A.; Meijers, J. C.; Bouma, B. N.; Büller, H. R.; Prins, M. H.; Tans, G.

    1999-01-01

    BACKGROUND: We have reported previously that, compared with use of second-generation oral contraceptives, the use of third-generation oral contraceptives is associated with increased resistance to the anticoagulant action of activated protein C (APC). Owing to the cross-sectional design of that

  5. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce

  6. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein

    NARCIS (Netherlands)

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-01-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were

  7. Influence of coat protein transgene copy number on resistance in transgenic line 63-1 against Papaya ringspot virus isolates

    NARCIS (Netherlands)

    Souza, M.T.; Níckel, O.; Gonsalves, D.

    2005-01-01

    Line 63-1 is a 'Sunset'-derived transgenic papaya expressing the coat protein (CP) gene from a mild mutant of a Hawaiian isolate of Papaya ringspot virus (PRSV). Previous work showed that line 63-1 R, plants exhibited a range of resistance to severe PRSV isolates from Hawaii (HA), Jamaica (JA),

  8. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  9. Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus.

    Science.gov (United States)

    Kupferwasser, L I; Skurray, R A; Brown, M H; Firth, N; Yeaman, M R; Bayer, A S

    1999-10-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing the qacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in the qacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance gene qacA also mediates in vitro resistance to cationic tPMP-1.

  10. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata.

    Science.gov (United States)

    Pérez-de-Luque, Alejandro; González-Verdejo, Clara I; Lozano, M Dolores; Dita, Miguel A; Cubero, José I; González-Melendi, Pablo; Risueño, María C; Rubiales, Diego

    2006-01-01

    Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.

  11. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  12. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins

    Science.gov (United States)

    Cesari, Stella; Moore, John; Chen, Chunhong; Webb, Daryl; Periyannan, Sambasivam; Mago, Rohit; Bernoux, Maud; Lagudah, Evans S.; Dodds, Peter N.

    2016-01-01

    Plants possess intracellular immune receptors designated “nucleotide-binding domain and leucine-rich repeat” (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana. Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta. In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N. benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively. PMID:27555587

  13. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins.

    Science.gov (United States)

    Cesari, Stella; Moore, John; Chen, Chunhong; Webb, Daryl; Periyannan, Sambasivam; Mago, Rohit; Bernoux, Maud; Lagudah, Evans S; Dodds, Peter N

    2016-09-06

    Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.

  14. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  15. THE LRP GENE ENCODING A MAJOR VAULT PROTEIN ASSOCIATED WITH DRUG-RESISTANCE MAPS PROXIMAL TO MRP ON CHROMOSOME-16 - EVIDENCE THAT CHROMOSOME BREAKAGE PLAYS A KEY ROLE IN MRP OR LRP GENE AMPLIFICATION

    NARCIS (Netherlands)

    SLOVAK, ML; HO, JP; COLE, SPC; DEELEY, RG; GREENBERGER, L; DEVRIES, EGE; BROXTERMAN, HJ; SCHEFFER, GL; SCHEPER, RJ

    1995-01-01

    A cDNA encoding the novel drug resistance gene, LRP (originally termed lung resistance-related protein), was isolated from HT1080/DR4, a 220-fold doxorubicin-resistant human fibrosarcoma cell line which displays a multidrug resistance phenotype and overexpresses the multidrug resistance protein

  16. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.

    Science.gov (United States)

    Emilsson, Gustav; Schoch, Rafael L; Feuz, Laurent; Höök, Fredrik; Lim, Roderick Y H; Dahlin, Andreas B

    2015-04-15

    We present a new grafting-to method for resistant "non-fouling" poly(ethylene glycol) brushes, which is based on grafting of polymers with reactive end groups in 0.9 M Na2SO4 at room temperature. The grafting process, the resulting brushes, and the resistance toward biomolecular adsorption are investigated by surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy. We determine both grafting density and thickness independently and use narrow molecular weight distributions which result in well-defined brushes. High density (e.g., 0.4 coils per nm(2) for 10 kDa) and thick (40 nm for 20 kDa) brushes are readily achieved that suppress adsorption from complete serum (10× dilution, exposure for 50 min) by up to 99% on gold (down to 4 ng/cm(2) protein coverage). The brushes outperform oligo(ethylene glycol) monolayers prepared on the same surfaces and analyzed in the same manner. The brush heights are in agreement with calculations based on a simple model similar to the de Gennes "strongly stretched" brush, where the height is proportional to molecular weight. This result has so far generally been considered to be possible only for brushes prepared by grafting-from. Our results are consistent with the theory that the brushes act as kinetic barriers rather than efficient prevention of adsorption at equilibrium. We suggest that the free energy barrier for passing the brush depends on both monomer concentration and thickness. The extraordinary simplicity of the method and good inert properties of the brushes should make our results widely applicable in biointerface science.

  17. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Nancy Munkonda

    Full Text Available BACKGROUND: Complement 3 (C3, a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg, a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3(-/- mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: C3(-/- mice on normal low fat diet (ND or high fat diet (HFD were chronically administered recombinant ASP (rASP for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3(-/- mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3(-/- HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF. In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced. CONCLUSION: The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.

  18. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells.

    Science.gov (United States)

    Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K

    2007-01-01

    Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.

  19. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  20. Sorafenib modulates the gene expression of multi-drug resistance mediating ATP-binding cassette proteins in experimental hepatocellular carcinoma.

    Science.gov (United States)

    Hoffmann, Katrin; Franz, Clemens; Xiao, Zhi; Mohr, Elvira; Serba, Susanne; Büchler, Markus W; Schemmer, Peter

    2010-11-01

    High ATP-binding cassette (ABC) protein expression leads to intrinsic drug resistance of hepatocellular carcinoma (HCC). The aim of this study was to investigate the potential chemosensitizing effects of sorafenib on the multi-drug resistance (MDR) phenotype. The ABC-protein gene expression and the cellular survival were determined by RT-PCR analysis and MTT assay in HUH7 cells. Sorafenib inhibits MDR. The ABC-protein mRNA expression decreased by up to 51% (p ≤ 0.01). Addition of sorafenib to conventional chemotherapy restored the chemosensitivity. Combination of gemcitabine plus sorafenib decreased the ABC-protein mRNA levels by up to 77%, compared to gemcitabine monotherapy (p ≤ 0.001). Doxorubicin plus sorafenib decreased the ABC-protein mRNA levels up to 74% compared to doxorubicin monotherapy (p ≤ 0.001). This study provides evidence that the MDR phenotype of HCC cells can be modulated by the multi-kinase inhibitor sorafenib and consequentially may lead towards personalized therapies in patients with highly resistant tumors.

  1. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer.

    Science.gov (United States)

    Dai, Yan; Jin, Shiguang; Li, Xueping; Wang, Daxin

    2017-01-03

    Many studies involving patients with cisplatin-resistant ovarian cancer have shown that AKT activation leads to inhibition of apoptosis. The aim of this study was to examine the potential involvement of the Bcl-2 family proteins in AKT-regulated cell survival in response to cisplatin treatment. Cisplatin-sensitive (PEO1) and cisplatin-resistant (PEO4) cells were taken from ascites of patients with ovarian cancer before cisplatin treatment and after development of chemoresistance. It was found that cisplatin treatment activated the AKT signaling pathway and promoted cell proliferation in cisplatin-resistant EOC cells. When AKT was transfected into nucleus of cisplatin-resistant ovarian cancer cells, DNA-PK was phosphorylated at S473. The activated AKT (pAKT-S473) in these cells inhibited the death signal induced by cisplatin thereby inhibiting cisplatin-mediated apoptosis. Results from this study showed that the combination of cisplatin, DNA-PK inhibitor NU7441, and AKT inhibitor TCN can overcome drug resistance, increase apoptosis, and re-sensitize PEO4 cells to cisplatin treatment. A decrease in apoptotic activity was seen in PEO4 cells when Bad was downregulated by siRNA, which indicated that Bad promotes apoptosis in PEO4 cells. Use of the Bcl-2 inhibitor ABT-737 showed that ABT-737 binds to Bcl-2 but not Mcl-1 and releases Bax/Bak which leads to cell apoptosis. The combination of ABT-737 and cisplatin leads to a significant increase in the death of PEO1 and PEO4 cells. All together, these results indicate that Bcl-2 family proteins are regulators of drug resistance. The combination of cisplatin and Bcl-2 family protein inhibitor could be a strategy for the treatment of cisplatin-resistant ovarian cancer.

  2. Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity.

    Science.gov (United States)

    De Angelis, Elisabetta; Pilolli, Rosa; Bavaro, Simona L; Monaci, Linda

    2017-04-19

    Soy is an important component of the human diet thanks to its nutritional value and high protein content; however, it also represents a risk for allergenic consumers due to its potential to trigger adverse reactions in sensitized individuals. The putative correlation between immunoreactivity and resistance to the human gastrointestinal (GI) digestion has drawn attention to investigating soybean proteins digestibility. In this work, we provided further insights into this field by performing in vitro simulated GI digestion experiments directly on ground soybean seeds, to provide more realistic results obtained from the digestion of the whole food matrix. Soybean digestion products were analyzed by SDS-PAGE followed by untargeted HPLC-MS/MS analysis and the final data were software treated to enable protein/peptide identification. The latter allowed monitoring the proteolytic degradation of the main soybean proteins during the gastric and duodenal phases. In particular, β-conglycinin and trypsin inhibitors showed the highest resistance to the combined activity of GI enzymes, showing a partial degradation at the end of the duodenal phase as ascertained by the strong electrophoretic bands displayed at 50 kDa and 20 kDa, respectively. Glycinin subunits also presented, even if to a lower extent, resistance to the complete proteolytic degradation, as demonstrated by polypeptide fragments with molecular weight lower than 20 kDa displayed in the gel at the end of duodenal digestion. In addition, by bioinformatics analysis it was demonstrated that the GI resistant fragments of the allergenic proteins, β-conglycinin and glycinin, retained in their primary structure linear epitopes potentially able to trigger an immunoreaction when exposed to the intestinal mucosa. Moreover, such resistant peptides also presented a structural homology with epitope sequences recognized in other legume species, presenting a potential risk of adverse cross-reaction for a larger category of

  3. An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Yingbo Liang

    2018-03-01

    Full Text Available PevD1 is a fungal protein secreted by Verticillium dahliae. Our previous researches showed that this protein could induce hypersensitive responses-like necrosis and systemic acquired resistance (SAR in cotton and tobacco. To understand immune activation mechanisms whereby PevD1 elicits defense response, the yeast two-hybrid (Y2H assay was performed to explore interacting protein of PevD1 in Arabidopsis thaliana, and a partner AtNRP (At5g42050 was identified. Here, AtNRP homolog in Nicotiana benthamiana was identified and designated as Nbnrp1. The Nbnrp1 could interact with PevD1 via Y2H and bimolecular fluorescence complementation (BiFC analyses. Moreover, truncated protein binding assays demonstrated that the C-terminal 132 amino acid (development and cell death, DCD domain of Nbnrp1 is required for PevD1-Nbnrp1 interaction. To further investigate the roles of Nbnrp1 in PevD1-induced defense response, Nbnrp1-overexpressing and Nbnrp1-silence transgenic plants were generated. The overexpression of Nbnrp1 conferred enhancement of PevD1-induced necrosis activity and disease resistance against tobacco mosaic virus (TMV, bacterial pathogen Pseudomonas syringae pv. tabaci and fungal pathogen V. dahliae. By contrast, Nbnrp1-silence lines displayed attenuated defense response compared with the wild-type. It is the first report that an asparagine-rich protein Nbnrp1 positively regulated V. dahliae secretory protein PevD1-induced cell death response and disease resistance in N. benthamiana.

  4. Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men123

    Science.gov (United States)

    Haub, Mark D; Wells, Amanda M; Tarnopolsky, Mark A; Campbell, Wayne W

    2008-01-01

    Background Aging is associated with reductions in muscle mass and strength, but nutrition and exercise interventions can delay this progression and enhance the quality of life. Objective We examined whether the predominant source of protein consumed by older men influenced measures of muscle size and strength, body composition, resting energy expenditure, and skeletal muscle creatine concentrations in response to 12 wk of resistive training. Design After consuming a lactoovovegetarian (LOV) diet for 2 wk, 21 men aged 65 ± 5 y were randomly assigned to either consume a beef-containing (BC) diet (n = 10) or to continue the LOV diet (n = 11) throughout resistive training. The BC diet included 0.6 g protein · kg−1 · d−1 from beef and the LOV diet included 0.6 g protein · kg−1 · d−1 from textured vegetable protein (soy) sources. The remaining protein in the diets came from self-selected LOV sources. Results The mean total protein intake for both groups ranged from 1.03 to 1.17 g · kg−1 · d−1 during the intervention. Men in both groups had improvements (14–38%) in maximal dynamic strength of all the muscle groups trained with no significant difference between groups. With resistive training, cross-sectional muscle area of the vastus lateralis increased in both groups (4.2 ± 3.0% and 6.0 ± 2.6% for the LOV and BC groups, respectively) with no significant difference between groups. Body composition, resting energy expenditure, and concentrations of muscle creatine, phosphocreatine, and total creatine did not differ significantly between groups or change over time. Conclusions These data suggest that increases in muscle strength and size were not influenced by the predominant source of protein consumed by older men with adequate total protein intake. PMID:12197993

  5. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Directory of Open Access Journals (Sweden)

    Robby Stoks

    2011-02-01

    Full Text Available Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored.Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance.WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  6. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    . In conclusion, protein supplementation may accelerate SC proliferation as part of regeneration or remodeling processes after maximal eccentric exercise. Paper II. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of exercise contraction mode. The aim of paper II was to investigate...... the effect of contraction mode specific resistance training and protein supplementation on whole muscle and tendon hypertrophy. Quadriceps muscle and patellar tendon cross-sectional area (CSA) was quantified using magnetic resonance imaging pre and post 12 weeks of eccentric (Ecc) or concentric (Conc...... compared to Placebo. Exercise contraction mode did not influence muscle or tendon hypertrophy. In conclusion, hydrolysed whey protein may augment both muscle and tendon hypertrophy independently of exercise contraction mode during training. Paper III. Influence of exercise contraction mode and protein...

  7. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori.

    Science.gov (United States)

    Gerrits, Monique M; Godoy, Anita P O; Kuipers, Ernst J; Ribeiro, Marcelo L; Stoof, Jeroen; Mendonça, Sergio; van Vliet, Arnoud H M; Pedrazzoli, José; Kusters, Johannes G

    2006-06-01

    Amoxicillin-based therapies are highly effective for the treatment of Helicobacter pylori infections, but the efficacy may decrease as the incidence of amoxicillin resistance is increasing. So far, the molecular mechanism underlying stable amoxicillin resistance has only been identified for a few naturally occurring amoxicillin-resistant (Amx) H. pylori isolates, and is mediated by mutations in penicillin-binding protein 1A (PBP1A). In this study the molecular mechanism underlying amoxicillin resistance of seven additional Amx H. pylori isolates has been established. H. pylori strain 26695 (minimal inhibitory concentration (MIC) 0.125 mg/l) was naturally transformed with total DNA and pbp1A polymerase chain reaction (PCR) products from the seven Amx H. pylori isolates, and the MIC of amoxicillin and pbp1A gene sequence of the obtained Amx transformants were determined. Replacement of the wild-type pbp1A gene of H. pylori reference strain 26695 by the pbp1A gene of the Amx H. pylori isolates resulted in an increased MIC (0.5-1.0 mg/l). Sequence analysis of the smallest PBP1A fragments able to transfer the resistance indicated that several amino acid substitutions in or adjacent to the second (SKN402-404) and third (KTG555-557) conserved penicillin-binding protein motifs (PBP-motifs) mediate amoxicillin resistance in H. pylori. This was confirmed by site-directed mutagenesis using oligonucleotides that contained defined mutations in or adjacent to these PBP-motifs. In naturally occurring Amx H. pylori isolates, amoxicillin resistance is mediated by various mutational changes located in or adjacent to the second and third PBP-motifs of the PBP1A. Although we cannot exclude the role of the other genes in amoxicillin resistance, it is likely that multiple mutational changes in the PBP1A gene are the predominant cause of amoxicillin resistance in H. pylori. The findings of this study currently preclude the rapid detection of amoxicillin resistance in H. pylori by

  8. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics

    DEFF Research Database (Denmark)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-01-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics....... The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects...... of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were...

  9. Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men.

    Science.gov (United States)

    Murphy, Caoileann H; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Kassis, Amira; Karagounis, Leonidas G; Burke, Louise M; Hawley, John A; Phillips, Stuart M

    2015-05-01

    Strategies to enhance weight loss with a high fat-to-lean ratio in overweight/obese older adults are important since lean loss could exacerbate sarcopenia. We examined how dietary protein distribution affected muscle protein synthesis during energy balance (EB), energy restriction (ER), and energy restriction plus resistance training (ER + RT). A 4-wk ER diet was provided to overweight/obese older men (66 ± 4 yr, 31 ± 5 kg/m(2)) who were randomized to either a balanced (BAL: 25% daily protein/meal × 4) or skewed (SKEW: 7:17:72:4% daily protein/meal; n = 10/group) pattern. Myofibrillar and sarcoplasmic protein fractional synthetic rates (FSR) were measured during a 13-h primed continuous infusion of l-[ring-(13)C6]phenylalanine with BAL and SKEW pattern of protein intake in EB, after 2 wk ER, and after 2 wk ER + RT. Fed-state myofibrillar FSR was lower in ER than EB in both groups (P < 0.001), but was greater in BAL than SKEW (P = 0.014). In ER + RT, fed-state myofibrillar FSR increased above ER in both groups and in BAL was not different from EB (P = 0.903). In SKEW myofibrillar FSR remained lower than EB (P = 0.002) and lower than BAL (P = 0.006). Fed-state sarcoplasmic protein FSR was reduced similarly in ER and ER + RT compared with EB (P < 0.01) in both groups. During ER in overweight/obese older men a BAL consumption of protein stimulated the synthesis of muscle contractile proteins more effectively than traditional, SKEW distribution. Combining RT with a BAL protein distribution "rescued" the lower rates of myofibrillar protein synthesis during moderate ER. Copyright © 2015 the American Physiological Society.

  10. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes.

    Science.gov (United States)

    Meyers, Blake C; Morgante, Michele; Michelmore, Richard W

    2002-10-01

    The Toll/interleukin-1 receptor (TIR) domain is found in one of the two large families of homologues of plant disease resistance proteins (R proteins) in Arabidopsis and other dicotyledonous plants. In addition to these TIR-NBS-LRR (TNL) R proteins, we identified two families of TIR-containing proteins encoded in the Arabidopsis Col-0 genome. The TIR-X (TX) family of proteins lacks both the nucleotide-binding site (NBS) and the leucine rich repeats (LRRs) that are characteristic of the R proteins, while the TIR-NBS (TN) proteins contain much of the NBS, but lack the LRR. In Col-0, the TX family is encoded by 27 genes and three pseudogenes; the TN family is encoded by 20 genes and one pseudogene. Using massively parallel signature sequencing (MPSS), expression was detected at low levels for approximately 85% of the TN-encoding genes. Expression was detected for only approximately 40% of the TX-encoding genes, again at low levels. Physical map data and phylogenetic analysis indicated that multiple genomic duplication events have increased the numbers of TX and TN genes in Arabidopsis. Genes encoding TX, TN and TNL proteins were demonstrated in conifers; TX and TN genes are present in very low numbers in grass genomes. The expression, prevalence, and diversity of TX and TN genes suggests that these genes encode functional proteins rather than resulting from degradation or deletions of TNL genes. These TX and TN proteins could be plant analogues of small TIR-adapter proteins that function in mammalian innate immune responses such as MyD88 and Mal.

  11. Whey and casein labelled with L-[1-13C]-leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2011-01-01

    to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass......), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments...

  12. A randomized trial of protein supplementation compared with extra fast food on the effects of resistance training to increase metabolism.

    Science.gov (United States)

    Hambre, David; Vergara, Marta; Lood, Yvonne; Bachrach-Lindström, Margareta; Lindström, Torbjörn; Nystrom, Fredrik H

    2012-10-01

    To prospectively evaluate the effects of resistance training combined with increased energy intake or protein-supplementation on lean body-mass, resting metabolic-rate (RMR) and cardiovascular risk factors. Twenty-four healthy males (aged 19-32 years) performed resistance exercise for 12 weeks aiming for at least 1 hour training-sessions 3 times a week. The participants were randomized to consume extra protein (33 g whey protein/day) or a meal of fast-food/day (1350 kcal, 41 g protein). Body-composition was measured with Dual-Energy X-ray Absorptiometry (DEXA) and RMR by indirect calorimetry. Fasting blood samples were drawn before and after the 3-month training period and after 12 months. The body weight increased from 75.1 ± 6.9 kg to 78.7 ± 7.2 kg (p Fasting serum-insulin levels increased in the fast-food group compared with the extra-protein group (p = 0.03). ApoB increased from 0.691 ± 0.14 g/L to 0.768 ± 0.17 g/L, p = 0.004, in the fast-food group only. Long-term follow up after 12 months showed that RMR, body weight, total fat and lean body-masses did not differ from baseline (n = 19). Resistance training for 12 weeks increased RMR and lean body-mass similarly when based on either an increased energy-intake or protein supplement. However, the increase in RMR was higher than expected from the increase in lean body-mass. Thus resistance training could potentially decrease the risk of obesity by induction of increased RMR.

  13. Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollicular epidermis.

    Science.gov (United States)

    Ma, Dongrui; Chua, Alvin Wen Choong; Yang, Ennan; Teo, Peiyun; Ting, Yixin; Song, Colin; Lane, Ellen Birgitte; Lee, Seng Teik

    2015-03-24

    There is a practical need for the identification of robust cell-surface markers that can be used to enrich for living keratinocyte progenitor cells. Breast cancer resistance protein (ABCG2), a member of the ATP binding cassette (ABC) transporter family, is known to be a marker for stem/progenitor cells in many tissues and organs. We investigated the expression of ABCG2 protein in normal human epidermis to evaluate its potential as a cell surface marker for identifying and enriching for clonogenic epidermal keratinocytes outside the pilosebaceous tract. Immunofluorescence and immunoblotting studies of human skin showed that ABCG2 is expressed in a subset of basal layer cells in the epidermis. Flow cytometry analysis showed approximately 2-3% of keratinocytes in non-hair-bearing epidermis expressing ABCG2; this population also expresses p63, β1 and α6 integrins and keratin 14, but not CD34, CD71, C-kit or involucrin. The ABCG2-positive keratinocytes showed significantly higher colony forming efficiency when co-cultured with mouse 3T3 feeder cells, and more extensive long-term proliferation capacity in vitro, than did ABCG2-negative keratinocytes. Upon clonal analysis, most of the freshly isolated ABCG2-positive keratinocytes formed holoclones and were capable of generating a stratified differentiating epidermis in organotypic culture models. These data indicate that in skin, expression of the ABCG2 transporter is a characteristic of interfollicular keratinocyte progentior cells and suggest that ABCG2 may be useful for enriching keratinocyte stem cells in human interfollicular epidermis.

  14. Substitutions in Penicillin-Binding Protein 1 in Amoxicillin-Resistant Helicobacter pylori Strains Isolated from Korean Patients

    Science.gov (United States)

    Kim, Beom Jin

    2013-01-01

    Background/Aims A worldwide increase in amoxicillin resistance in Helicobacter pylori is having an adverse effect on eradication therapy. In this study, we investigated the mechanism of the amoxicillin resistance of H. pylori in terms of amino acid substitutions in penicillin-binding protein 1 (PBP1). Methods In total, 150 H. pylori strains were isolated from 144 patients with chronic gastritis, peptic ulcers, or stomach cancer. The minimum inhibitory concentrations (MICs) of the strains were determined with a serial 2-fold agar dilution method. The resistance breakpoint for amoxicillin was defined as >0.5 µg/mL. Results Nine of 150 H. pylori strains showed amoxicillin resistance (6%). The MIC values of the resistant strains ranged from 1 to 4 µg/mL. A PBP1 sequence analysis of the resistant strains revealed multiple amino acid substitutions: Val16→Ile, Val45→Ile, Ser414→Arg, Asn562→Tyr, Thr593→Ala, Gly595→Ser, and Ala599→Thr. The natural transformation of these mutated genes into amoxicillin-sensitive strains was performed in two separate pbp1 gene segments. A moderate increase in the amoxicillin MIC was observed in the segment that contained the penicillin-binding motif of the C-terminal portion, the transpeptidase domain. Conclusions pbp1 mutation affects the amoxicillin resistance of H. pylori through the transfer of the penicillin-binding motif. PMID:24312705

  15. Substitutions in penicillin-binding protein 1 in amoxicillin-resistant Helicobacter pylori strains isolated from Korean patients.

    Science.gov (United States)

    Kim, Beom Jin; Kim, Jae G

    2013-11-01

    A worldwide increase in amoxicillin resistance in Helicobacter pylori is having an adverse effect on eradication therapy. In this study, we investigated the mechanism of the amoxicillin resistance of H. pylori in terms of amino acid substitutions in penicillin-binding protein 1 (PBP1). In total, 150 H. pylori strains were isolated from 144 patients with chronic gastritis, peptic ulcers, or stomach cancer. The minimum inhibitory concentrations (MICs) of the strains were determined with a serial 2-fold agar dilution method. The resistance breakpoint for amoxicillin was defined as >0.5 µg/mL. Nine of 150 H. pylori strains showed amoxicillin resistance (6%). The MIC values of the resistant strains ranged from 1 to 4 µg/mL. A PBP1 sequence analysis of the resistant strains revealed multiple amino acid substitutions: Val16→Ile, Val45→Ile, Ser414→Arg, Asn562→Tyr, Thr593→Ala, Gly595→Ser, and Ala599→Thr. The natural transformation of these mutated genes into amoxicillin-sensitive strains was performed in two separate pbp1 gene segments. A moderate increase in the amoxicillin MIC was observed in the segment that contained the penicillin-binding motif of the C-terminal portion, the transpeptidase domain. pbp1 mutation affects the amoxicillin resistance of H. pylori through the transfer of the penicillin-binding motif.

  16. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori.

    Science.gov (United States)

    Rimbara, Emiko; Noguchi, Norihisa; Kawai, Takashi; Sasatsu, Masanori

    2008-05-01

    To elucidate the relationship between the mutations of penicillin-binding protein (PBP)1, PBP2 and PBP3 and amoxicillin resistance in Helicobacter pylori. The mutations detected only in clinical amoxicillin-resistant strains were determined by comparison of the deduced amino acid sequences of PBP1(HP0597), PBP2(HP1556) and PBP3(HP1565) encoded by the pbp1, ftsI and pbp2 genes, respectively, in 13 clinical H. pylori strains and three ATCC strains. The contribution of the mutations in PBPs was analysed by the natural transformation of the amoxicillin-susceptible strain ATCC 700392 with various combinations of the pbp1, ftsI and pbp2 genes from the amoxicillin-resistant strain TH743 (MIC of amoxicillin: 8 mg/L). We initially identified six, four and two mutations of PBP1, PBP2 and PBP3, respectively, which were detected only in amoxicillin-resistant strains. By the natural transformation of an amoxicillin-susceptible strain ATCC 700392, we found that mutations in PBP1 and PBP3 conferred higher resistance to amoxicillin than mutations in PBP1 and PBP2, or mutations only in PBP1. Furthermore, mutations in PBP1, PBP2 and PBP3 conferred a 256-fold higher amoxicillin resistance when compared with ATCC 700392. Multiple mutations in PBP2 and PBP3, in addition to mutations in PBP1, confer higher amoxicillin resistance in H. pylori.

  17. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance.

    Science.gov (United States)

    Su, Yu-Ching; Mukherjee, Oindrilla; Singh, Birendra; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Hood, Derek; Riesbeck, Kristian

    2016-01-15

    Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    Science.gov (United States)

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Prediction of Drug Transfer into Milk Considering Breast Cancer Resistance Protein (BCRP)-Mediated Transport.

    Science.gov (United States)

    Ito, Naoki; Ito, Kousei; Ikebuchi, Yuki; Toyoda, Yu; Takada, Tappei; Hisaka, Akihiro; Oka, Akira; Suzuki, Hiroshi

    2015-08-01

    Drug transfer into milk is of concern due to the unnecessary exposure of infants to drugs. Proposed prediction methods for such transfer assume only passive drug diffusion across the mammary epithelium. This study reorganized data from the literature to assess the contribution of carrier-mediated transport to drug transfer into milk, and to improve the predictability thereof. Milk-to-plasma drug concentration ratios (M/Ps) in humans were exhaustively collected from the literature and converted into observed unbound concentration ratios (M/Punbound,obs). The ratios were also predicted based on passive diffusion across the mammary epithelium (M/Punbound,pred). An in vitro transport assay was performed for selected drugs in breast cancer resistance protein (BCRP)-expressing cell monolayers. M/Punbound,obs and M/Punbound,pred values were compared for 166 drugs. M/Punbound,obs values were 1.5 times or more higher than M/Punbound,pred values for as many as 13 out of 16 known BCRP substrates, reconfirming BCRP as the predominant transporter contributing to secretory transfer of drugs into milk. Predictability of M/P values for selected BCRP substrates and non-substrates was improved by considering in vitro-evaluated BCRP-mediated transport relative to passive diffusion alone. The current analysis improved the predictability of drug transfer into milk, particularly for BCRP substrates, based on an exhaustive data overhaul followed by focused in vitro transport experimentation.

  20. Purification and characterization of elicitor protein from Phytophthora colocasiae and basic resistance in Colocasia esculenta.

    Science.gov (United States)

    Mishra, Ajay Kumar; Sharma, Kamal; Misra, Raj Shekhar

    2009-01-01

    An elicitor was identified in the fungus Phytophthora colocasiae. The molecular weight of the purified elicitor was estimated by means of gel filtration chromatography and SDS-PAGE and was estimated as 15kDa. Protease treatment severely reduced its activity, allowing the conclusion that the elicitor is proteinaceous. Infiltration of a few nanograms of this proteinaceous elicitor into taro leaves caused the formation of lesions that closely resemble hypersensitive response lesions. The elicitation of the cells was effective in the induction of the activity of lipoxygenase. Cellular damage, restricted to the infiltrated zone, occurred only several hours later, after the infiltration of the elicitor protein. After few days, systemic acquired resistance was also induced. Thus, taro plant cells that perceived the glycoprotein generated a cascade of signals acting at local, short, and long distances, and causing the coordinate expression of specific defence. The obtained results give important information regarding the plant-pathogen interactions, mainly as subsidy for taro improvement against Phytophthora leaf blight. 2008 Elsevier GmbH.

  1. Vascular graft thrombosis secondary to activated protein C resistance: a case report and literature review.

    Science.gov (United States)

    Pejkic, Sinisa; Savic, Nebojsa; Paripovic, Miroslav; Sladojevic, Milos; Doric, Predrag; Ilic, Nikola

    2014-02-01

    Hypercoagulability is a well-documented and prominent risk factor for venous thromboembolism. The role of thrombophilia in arterial thrombotic events is less well defined. A 52-year-old male patient with multiple atherogenic risk factors was admitted for non-healing pedal ulcer and absent distal pulses. Based on the clinical presentation, Doppler ultrasound and angiography findings, the patient underwent elective in situ bypass arterial reconstruction. The saphenous vein graft was of satisfactory quality and the procedure went routinely. Acute graft thrombosis on postoperative day 0 was recognized immediately and prompted an emergent surgical revision. No technical errors or anatomical/mechanical causes for failed reconstruction were found and the graft was successfully thrombectomized using a Fogarty balloon-catheter. Graft rethrombosis, however, ensued after several hours. Considering the absence of threatening limb ischemia and the idiopathic recurrent thrombosis, raising suspicion of prothrombotic state, conservative treatment was pursued. Postoperative thrombophilia testing proved positive for activated protein C resistance, mandating introduction of chronic oral anticoagulation. Six months later, the operated extremity is viable. Inexplicable vascular graft thrombosis, particularly if early and recurrent, should raise suspicion of underlying thrombophilia. If confirmed by laboratory testing, long-term secondary antithrombotic prophylaxis may be required.

  2. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    Science.gov (United States)

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  3. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Mihara, Mariko; Li, Chunnan; Nakahara Yuuji; Hino, Satoshi; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki

    2003-01-01

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  4. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1).

    Science.gov (United States)

    Wegner, Marthe-Susanna; Gruber, Lisa; Mattjus, Peter; Geisslinger, Gerd; Grösch, Sabine

    2018-02-06

    The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.

  5. Identification and modeling of a novel chloramphenicol resistance protein detected by functional metagenomics in a wetland of Lerma, Mexico.

    Science.gov (United States)

    López-Pérez, Marcos; Mirete, Salvador; Jardón-Valadez, Eduardo; González-Pastor, José E

    2013-06-01

    The exploration of novel antibiotic resistance determinants in a particular environment may be limited because of the presence of uncultured microorganisms. In this work, a culture-independent approach based on functional metagenomics was applied to search for chloramphenicol resistance genes in agro-industrial wastewater in Lerma de Villada, Mexico. To this end, a metagenomic library was generated in Escherichia coli DH10B containing DNA isolated from environmental samples of the residual arsenic-enriched (10 mg/ml) effluent. One resistant clone was detected in this library and further analyzed. An open reading frame similar to a multidrug resistance protein from Aeromonas salmonicida and responsible for chloramphenicol resistance was identified, sequenced, and found to encode a member of the major facilitator superfamily (MFS). Our results also showed that the expression of this gene restored streptomycin sensitivity in E. coli DH10B cells. To gain further insight into the phenotype of this MFS family member, we developed a model of the membrane protein multiporter that, in addition, may serve as a template for developing new antibiotics.

  6. Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown and insulin resistance- a qualitative review

    Directory of Open Access Journals (Sweden)

    Supreeth S Rudrappa

    2016-08-01

    Full Text Available The ever increasing burden of an ageing population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as simple atrophy and insulin resistance are ‘non-pathological’ events resulting from sedentary behaviour and periods of enforced immobilization e.g. due to fractures or elective orthopaedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear – especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilisation lowers fasted state muscle protein synthesis (MPS and induces fed-state ‘anabolic resistance’. While a lack of dynamic measurements of muscle protein breakdown (MPB precludes defining a definitive role for MPB in disuse atrophy, some proteolytic marker studies (e.g. MPB genes suggest a potential early elevation. Immobilisation also induces muscle insulin resistance (IR. Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g. Type II diabetes, suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.

  7. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco

    International Nuclear Information System (INIS)

    Yalpani, N.; Enyedi, A.J.; León, J.; Raskin, I.

    1994-01-01

    In tobacco (Nicotiana tabacum L. cv. Xanthinc), salicylic acid (SA) levels increase in leaves inoculated by necrotizing pathogens and in healthy leaves located above the inoculated site. Systemic SA increase may trigger disease resistance and synthesis of pathogenesis-related proteins (PR proteins). Here we report that ultraviolet (UV)-C light or ozone induced biochemical responses similar to those induced by necrotizing pathogens. Exposure of leaves to UV-C light or ozone resulted in a transient ninefold increase in SA compared to controls. In addition, in UV-light-irradiated plants, SA increased nearly fourfold to 0.77 μg·g −1 fresh weight in leaves that were shielded from UV light. Increased SA levels were accompanied by accumulation of an SA conjugate and by an increase in the activity of benzoic acid 2-hydroxylase which catalyzes SA biosynthesis. In irradiated and in unirradiated leaves of plants treated with UV light, as well as in plants fumigated with ozone, PR proteins 1a and 1b accumulated. This was paralleled by the appearance of induced resistance to a subsequent challenge with tobacco mosaic virus. The results suggest that UV light, ozone fumigation and tobacco mosaic virus can activate a common signal-transduction pathway that leads to SA and PR-protein accumulation and increased disease resistance. (author)

  8. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.

  9. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    Directory of Open Access Journals (Sweden)

    Catarina Moreirinha

    2018-03-01

    Full Text Available The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.

  10. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of P-glycoprotein and Multidrug resistance associated proteins.

    Directory of Open Access Journals (Sweden)

    Nora eSandow

    2015-02-01

    Full Text Available Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp and multidrug resistance associated proteins (MRPs expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs (carbamazepine, sodium valproate, phenytoin and two unspecific inhibitors of Pgp and MRPs (verapamil and probenecid on seizure-like events induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices were studied. Although in slice preparations the blood brain barrier is not functional, we found that seizure-like events predominantly persisted in the presence of anticonvulsant drugs (90% and also in the presence of verapamil and probenecid (86%. Following subsequent co-administration of antiepileptic drugs and drug transport inhibitors, seizure-like events continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30% or as suppression (7%, particularly by perfusion with carbamazepine in probenecid containing solutions (43%, 9%. Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7 % of patients. Patients whose tissue was completely or partially sensitive (65 % presented with higher seizure frequencies than those with resistant tissue (35 %. However, corresponding subgroups of patients don’t differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.

  11. BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis.

    Science.gov (United States)

    Teh, Ooi-kock; Hatsugai, Noriyuki; Tamura, Kentaro; Fuji, Kentaro; Tabata, Ryo; Yamaguchi, Katsushi; Shingenobu, Shuji; Yamada, Masashi; Hasebe, Mitsuyasu; Sawa, Shinichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2015-03-01

    Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector-triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed protein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative protein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchC1. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  12. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.