WorldWideScience

Sample records for resistance homeostasis model

  1. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population

    OpenAIRE

    Yamada, Chizumi; Mitsuhashi, Toshitake; Hiratsuka, Noboru; Inabe, Fumiyo; Araida, Nami; Takahashi, Eiko

    2011-01-01

    Abstract The aim of the present study was to establish a reference interval for homeostasis model assessment of insulin resistance (HOMA‐IR) in a Japanese population based on the C28‐A3 document from the Clinical and Laboratory Standards Institute (CLSI). We selected healthy subjects aged 20–79 years, with fasting plasma glucose 

  2. Association of Adipokine Resistin With Homeostasis Model Assessment of Insulin Resistance in Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Sokhanguei

    2015-03-01

    Full Text Available Background Resistin is a recently discovered signal molecule that has been linked to obesity, type II diabetes mellitus (T2DM and metabolic syndrome. Objectives This study aimed to assess whether serum resistin is associated with insulin resistance and glucose concentration in males with T2DM. Patients and Methods Thirty two adult non-trained males with type II diabetes, 34-48 years old and 88-110 kg of body weight, participated in this study by accessible sampling. Fasting blood samples were collected from all participants in order to measure serum resistin, insulin and glucose concentration. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated using fasting insulin and glucose. Relations between variables were determined by Pearson correlations. Results We found that serum resistin had a positive significant correlation with insulin resistance (P = 0.000, r = 0.64. No significant correlation was found between serum resistin and fasting glucose concentration in the studied patients (P = 0.21, r = 0.23. Conclusions Based on these data, we can argue that circulating glucose concentration is not directly affected by serum resistin in T2DM. It seems that resistin affects glucose indirectly, through insulin resistance.

  3. Biological variation of homeostasis model assessment-derived insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Jayagopal, Vijay; Kilpatrick, Eric S; Jennings, Paul E; Hepburn, David A; Atkin, Stephen L

    2002-11-01

    Individuals with type 2 diabetes are particularly vulnerable to cardiovascular disease. Insulin resistance is a major determinant of this increased risk and is a potential therapeutic target. This study was undertaken to establish the natural biological variation of insulin resistance in individuals with type 2 diabetes. The biological variation of insulin resistance was assessed by measuring insulin resistance at 4-day intervals on 10 consecutive occasions in 12 postmenopausal women with diet-controlled type 2 diabetes and in 11 weight- and age-matched postmenopausal women without type 2 diabetes. Insulin resistance was derived using the homeostasis model assessment for insulin resistance (HOMA-IR) method. The distribution of HOMA-IR was log Gaussian in the type 2 diabetic study group and Gaussian in the control group. The HOMA-IR in the type 2 diabetic group was significantly greater than that of the control group (mean +/- SD: 4.33 +/- 2.3 vs. 2.11 +/- 0.79 units, P = 0.001). After accounting for analytical variation, the mean intraindividual variation was also substantially greater in the type 2 diabetic group than in the control group (mean 1.05 vs. 0.15, P = 0.001). Consequently, at any level of HOMA-IR, a subsequent sample must increase by >90% or decrease by >47% to be considered significantly different from the first. HOMA-IR is significantly greater and more variable for individuals with type 2 diabetes. Therefore, this inherent variability needs to be accounted for in studies evaluating therapeutic reduction of HOMA-IR in this group.

  4. Optimal cut-off value for homeostasis model assessment (HOMA) index of insulin-resistance in a population of patients admitted electively in a Portuguese cardiology ward.

    Science.gov (United States)

    Timóteo, Ana Teresa; Miranda, Fernando; Carmo, Miguel Mota; Ferreira, Rui Cruz

    2014-01-01

    Insulin resistance is the pathophysiological key to explain metabolic syndrome. Although clearly useful, the Homeostasis Model Assessment index (an insulin resistance measurement) has not been systematically applied in clinical practice. One of the main reasons is the discrepancy in cut-off values reported in different populations. We sought to evaluate in a Portuguese population the ideal cut-off for Homeostasis Model Assessment index and assess its relationship with metabolic syndrome. We selected a cohort of individuals admitted electively in a Cardiology ward with a BMI validation cohort of 300 individuals (no exclusion criteria applied). From 7 000 individuals, and after the exclusion criteria, there were left 1 784 individuals. The 90th percentile for Homeostasis Model Assessment index was 2.33. In the validation cohort, applying that cut-off, we have 49.3% of individuals with insulin resistance. However, only 69.9% of the metabolic syndrome patients had insulin resistance according to that cut-off. By ROC curve analysis, the ideal cut-off for metabolic syndrome is 2.41. Homeostasis Model Assessment index correlated with BMI (r = 0.371, p < 0.001) and is an independent predictor of the presence of metabolic syndrome (OR 19.4, 95% CI 6.6 - 57.2, p < 0.001). Our study showed that in a Portuguese population of patients admitted electively in a Cardiology ward, 2.33 is the Homeostasis Model Assessment index cut-off for insulin resistance and 2.41 for metabolic syndrome. Homeostasis Model Assessment index is directly correlated with BMI and is an independent predictor of metabolic syndrome.

  5. Assessing the test–retest repeatability of insulin resistance measures: Homeostasis model assessment 2 and oral glucose insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Catherine A.P. Crofts

    2017-10-01

    Full Text Available Background: Insulin resistance is commonly assessed using the homeostasis model assessment (HOMA variants. HOMA is potentially insensitive to change because of its high coefficient of variation. The repeatability coefficient is an alternative means of assessing test repeatability. To be confident of clinical change, rather than biological variation, a subsequent test needs to differ from the former by more than the repeatability coefficient using the equation. Test 1 = Test 2 ± repeatability coefficient. The repeatability coefficients for measures of insulin resistance are unknown. Aim: To compare the repeatability coefficient of HOMA2 variants (Beta-cell function [%B], insulin sensitivity [%S], insulin resistance [IR] to a dynamic measure of insulin resistance, and the oral glucose insulin sensitivity (OGIS test. Setting: The raw data from a previously used data set were reanalysed. Methods: Glycaemic and insulinaemic tests were performed on 32 men and women both with (n = 10 and without type 2 diabetes (n = 22. From these data, eight fasting tests and three 50-g oral glucose tolerance tests were used to calculate HOMA2 and OGIS. The methods of Bland and Altman assessed repeatability. Results: Repeatability coefficients for all participants for the HOMA2 %B, %S and IR variants were 72.91, 189.75 and 0.9, which equates to 89%, 135% and 89% of their respective grand means. By contrast, OGIS had a repeatability coefficient of 87.13, which equates to 21% of the grand mean. Conclusion: Because of the high repeatability coefficient relative to the grand mean, use of HOMA2 measures for assessing insulin resistance in small population studies should be reconsidered.

  6. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers

    Science.gov (United States)

    2013-01-01

    Objective The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among Chinese children and adolescents. Moreover, to determine the cut-off values for homeostasis model assessment of insulin resistance (HOMA-IR) at MS risk. Methods 3203 Chinese children aged 6 to 18 years were recruited. Anthropometric and biochemical parameters were measured. Metabolic syndrome (MS) was identified by a modified Adult Treatment Panel III (ATP III) definition. HOMA-IR index was calculated and the normal reference ranges were defined from the healthy participants. Receiver operating characteristic (ROC) analysis was used to find the optimal cutoff of HOMA-IR for diagnosis of MS. Results With the increase of insulin resistance (quintile of HOMA-IR value), the ORs of suffering MS or its related components were significantly increased. Participants in the highest quintile of HOMA-IR were about 60 times more likely to be classified with metabolic syndrome than those in the lowest quintile group. Similarly, the mean values of insulin and HOMA-IR increased with the number of MS components. The present HOMA-IR cutoff point corresponding to the 95th percentile of our healthy reference children was 3.0 for whole participants, 2.6 for children in prepubertal stage and 3.2 in pubertal period, respectively. The optimal point for diagnosis of MS was 2.3 in total participants, 1.7 in prepubertal children and 2.6 in pubertal adolescents, respectively, by ROC curve, which yielded high sensitivity and moderate specificity for a screening test. According to HOMA-IR > 3.0, the prevalence of insulin resistance in obese or MS children were 44.3% and 61.6% respectively. Conclusions Our data indicates insulin resistance is common among Chinese obese children and adolescents, and is strongly related to MS risk, therefore requiring consideration early in life. As a reliable measure of insulin resistance and

  7. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers.

    Science.gov (United States)

    Yin, Jinhua; Li, Ming; Xu, Lu; Wang, Ying; Cheng, Hong; Zhao, Xiaoyuan; Mi, Jie

    2013-11-15

    The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among Chinese children and adolescents. Moreover, to determine the cut-off values for homeostasis model assessment of insulin resistance (HOMA-IR) at MS risk. 3203 Chinese children aged 6 to 18 years were recruited. Anthropometric and biochemical parameters were measured. Metabolic syndrome (MS) was identified by a modified Adult Treatment Panel III (ATP III) definition. HOMA-IR index was calculated and the normal reference ranges were defined from the healthy participants. Receiver operating characteristic (ROC) analysis was used to find the optimal cutoff of HOMA-IR for diagnosis of MS. With the increase of insulin resistance (quintile of HOMA-IR value), the ORs of suffering MS or its related components were significantly increased. Participants in the highest quintile of HOMA-IR were about 60 times more likely to be classified with metabolic syndrome than those in the lowest quintile group. Similarly, the mean values of insulin and HOMA-IR increased with the number of MS components. The present HOMA-IR cutoff point corresponding to the 95th percentile of our healthy reference children was 3.0 for whole participants, 2.6 for children in prepubertal stage and 3.2 in pubertal period, respectively. The optimal point for diagnosis of MS was 2.3 in total participants, 1.7 in prepubertal children and 2.6 in pubertal adolescents, respectively, by ROC curve, which yielded high sensitivity and moderate specificity for a screening test. According to HOMA-IR > 3.0, the prevalence of insulin resistance in obese or MS children were 44.3% and 61.6% respectively. Our data indicates insulin resistance is common among Chinese obese children and adolescents, and is strongly related to MS risk, therefore requiring consideration early in life. As a reliable measure of insulin resistance and assessment of MS risk, the optimal HOMA-IR cut

  8. Limiar do índice homeostasis model assessment (HOMA) para resistência à insulina numa população de doentes admitidos electivamente numa enfermaria portuguesa de cardiologia

    OpenAIRE

    Timóteo, Ana Teresa; Miranda, Fernando; Carmo, Miguel Mota; Ferreira, Rui Cruz

    2014-01-01

    Introduction: Insulin resistance is the pathophysiological key to explain metabolic syndrome. Although clearly useful, the Homeostasis Model Assessment index (an insulin resistance measurement) hasn't been systematically applied in clinical practice. One of the main reasons is the discrepancy in cut-off values reported in different populations. We sought to evaluate in a Portuguese population the ideal cut-off for Homeostasis Model Assessment index and assess its relationship with metabolic s...

  9. Homeostasis model assessment of insulin resistance in a general adult population in Korea: additive association of sarcopenia and obesity with insulin resistance.

    Science.gov (United States)

    Kwon, Soon Sung; Lee, Sang-Guk; Lee, Yong-Ho; Lim, Jong-Beack; Kim, Jeong-Ho

    2017-01-01

    Insulin resistance (IR) is a major factor associated with type 2 diabetes. Using homeostasis model assessment of insulin resistance (HOMA-IR), we aimed to elucidate the factors associated with IR risk, especially the cumulative effect of obesity and sarcopenia on IR. A total of 8,707 adults from the fourth and fifth Korean National Health and Examination Surveys were studied. Laboratory, anthropometric and lifestyle factors were analysed to reveal their association with HOMA-IR and IR risk. Subjects were divided into four groups according to the presence of obesity and sarcopenia to identify their effect on IR risk. We found that high triglycerides and alanine aminotransferase, low high-density lipoprotein cholesterol, obesity and sarcopenia were independent risk factors for IR in both sexes. Obese men with sarcopenia had a significantly higher risk of IR than men who were obese or sarcopenic (but not both). The additive effect of sarcopenia with obesity on IR risk was not observed in women. Cut-offs of HOMA-IR for determining IR were calculated as 75 percentile value of young healthy subpopulation, 2·19 in men and 2·18 in women. These cut-offs could distinguish individuals with impaired fasting glucose from normal ones, with a sensitivity of 65·4% (men) and 73·3% (women), and a specificity of 68·8% (men) and 69·4% (women). These data showed that obese men with sarcopenia exhibited a significantly higher IR risk than obese, nonsarcopenic men. In women, body composition did not affect IR if they were already obese. © 2016 John Wiley & Sons Ltd.

  10. Increased maternal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) associated with older age at diagnosis of Type 1 diabetes in offspring.

    Science.gov (United States)

    Leech, N J; O'Sullivan, J; Avery, P; Howey, C; Burling, K; Iyer, S; Pascoe, L; Walker, M; Cheetham, T

    2010-12-01

    Obesity and insulin resistance have been linked to rising incidence and earlier onset of Type 1 diabetes. Inherited differences in insulin action might also influence the evolution of Type 1 diabetes.Our aim was to determine whether parental BMI and insulin resistance influences age of onset of Type 1 diabetes in their offspring. BMI standard deviation score and age at diagnosis of Type 1 diabetes was examined in 227 children, and in 206 of these was compared with local matched control subjects. Non-diabetic parents of a subgroup of 80 children with Type 1 diabetes were recruited. Parental BMI was compared with local adult control subjects. The relationship between parental BMI, waist-hip ratio, homeostasis model assessment of insulin resistance (HOMA-IR), leptin and adiponectin levels and age at diagnosis of Type 1 diabetes in offspring was examined. We found no relationship between age at diagnosis of Type 1 diabetes in children and BMI standard deviation score (P = 0.5). Children with Type 1 diabetes and their parents were heavier than matched control subjects (mean BMI standard deviation score sd in children = 0.66 1.06 vs. 0.32 1.16 in control subjects, P = 0.002; mean parental BMI sd 27.7 0.4 vs. 25.5 0.4 kg ⁄m2 in control subjects; P HOMA-IR accounted for 20% of variation in age at diagnosis (P < 0.001) with increasing maternal insulin resistance associated with later age at diagnosis of Type 1 diabetes. Childrenwith Type 1 diabetes and their parents have an increased BMI at diagnosis.Maternal insulin resistance is associated with later onset of Type 1 diabetes in children.

  11. The relationship between chronic kidney function and homeostasis model assessment of insulin resistance and beta cell function in Korean adults with or without type 2 diabetes mellitus.

    Science.gov (United States)

    Kim, Gwang Seok; Kim, Sung Gil; Kim, Han Soo; Hwang, Eun Young; Lee, Jun Ho; Yoon, Hyun

    2017-12-28

    The present study was conducted to assess the relationship between chronic kidney disease (CKD) and the homeostasis model assessment of insulin resistance (HOMA-IR) and beta cell function (HOMA-B) in Korean adults with or without type 2 diabetes mellitus (T2DM). This study included 5,188 adults aged 20 or older using the 2015 Korea National Health and Nutrition Examination Survey (KNHANES) data, which represents national data in Korea. A covariance test adjusted for covariates was performed for HOMA-IR and HOMA-B in relation to CKD. The present study has several key findings. First, in T2DM, HOMA-IR (p = 0.035) was higher in the CKD group than in the non-CKD group after adjusting for the related variables but HOMA-B (p = 0.141) was not significant. Second, in non-T2DM, HOMA-IR (p = 0.163) and HOMA-B (p = 0.658) were not associated with CKD after adjusting for the related variables (except age). However, when further adjusted for age, HOMA-IR (p = 0.020) and HOMA-B (p = 0.006) were higher in the CKD group than in the non-CKD group. In conclusion, insulin resistance was positively associated CKD with in Korean adults with or without T2DM. Beta cell function was positively associated CKD with in Korean adults without T2DM but not in Korean adults with T2DM.

  12. The Homeostasis Model Assessment-adiponectin (HOMA-AD) is the most sensitive predictor of insulin resistance in obese children.

    Science.gov (United States)

    Makni, Emna; Moalla, Wassim; Lac, Gérard; Aouichaoui, Chirine; Cannon, Daniel; Elloumi, Mohamed; Tabka, Zouhair

    2012-02-01

    The aim of this study was to examine the efficacy of three indices i.e. adiponectin/leptin ratio, HOMA-IR and HOMA-AD in assessing insulin resistance among obese children. One hundred and twenty-two obese children (57 girls, 65 boys): mean age 13.7±1.3 years, BMI 30.1±4.5kg/m(2), eight tanner stage I, 48 tanner stage II-III, 66 tanner stage IV-V, participated in this study. They were classified into four groups according to sex and the presence of metabolic syndrome characteristics: with metabolic syndrome (MS; 21 girls and 36 boys) and controls without metabolic syndrome (CON, 36 girls and 29 boys). The correlations between these three indices of insulin resistance and the MS criteria were analyzed using linear and multiple regressions and receiver operating characteristics (ROC) curves analysis. The majority of anthropometric and biological parameters as well as adiponectin/leptin ratio, HOMA-IR and HOMA-AD were significantly different between MS and CON in both sexes. Both HOMA-AD and HOMA-IR were significantly correlated with the majority of metabolic syndrome components than was the adiponectin/leptin ratio in MS of both sexes. In boys and girls with and without MS, multiple regression analyses highlighted that both HOMA-AD and adiponectin/leptin ratio (r=-0.99 and r=-0.54 for MS girls and boys respectively, 0.05HOMA-AD and HOMA-IR (r=0.66 and r=0.31 for MS girls and boys respectively, 0.05HOMA-IR. Additionally, the area under the ROC curves for predicting insulin resistance were 0.69 (CI 95%, 0.60-0.77), 0.68 (CI 95%, 0.59-0.76) and 0.71 (CI 95%, 0.62-0.79) for adiponectin/leptin ratio, HOMA-IR and HOMA-AD, respectively. The current study strengthens the validity of the HOMA-AD as an adequate tool for determining insulin resistance among obese children with MS. Copyright © 2012. Published by Elsevier Masson SAS.

  13. Clinical and Biochemical Profiles according to Homeostasis Model Assessment-insulin Resistance (HOMA-IR) in Korean Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Lee, Da Eun; Park, Soo Yeon; Park, So Yun; Lee, Sa Ra; Chung, Hye Won; Jeong, Kyungah

    2014-12-01

    The aim of this study was to investigate the clinical and biochemical profiles according to homeostasis model assessment of insulin resistance (HOMA-IR) in Korean polycystic ovary syndrome (PCOS) patients. In 458 PCOS patients diagnosed by the Rotterdam European Society for Human Reproduction and Embryology (ESHRE) criteria, measurements of somatometry, blood test of hormones, glucose metabolic and lipid profiles, and transvaginal or transrectal ultrasonogram were carried out. HOMA-IR was then calculated and compared with the clinical and biochemical profiles related to PCOS. The patients were divided into 4 groups by quartiles of HOMA-IR. The mean level of HOMA-IR was 2.18 ± 1.73. Among the four groups separated according to HOMA-IR, body weight, body mass index (BMI), waist-to-hip ratio (WHR), triglyceride (TG), total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, lipid accumulation product (LAP) index, high-sensitivity C-reactive protein (hs-CRP), Apoprotein B, free testosterone, and sex hormone binding globulin (SHBG) were found to be significantly different. TG, LAP index, glucose metabolic profiles, and hs-CRP were positively correlated with HOMA-IR after adjustment for BMI. Our results suggest that the clinical and biochemical profiles which are applicable as cardiovascular risk factors are highly correlated with HOMA-IR in Korean women with PCOS.

  14. Evaluation of fasting plasma insulin concentration as an estimate of insulin action in nondiabetic individuals: comparison with the homeostasis model assessment of insulin resistance (HOMA-IR).

    Science.gov (United States)

    Abbasi, Fahim; Okeke, QueenDenise; Reaven, Gerald M

    2014-04-01

    Insulin-mediated glucose disposal varies severalfold in apparently healthy individuals, and approximately one-third of the most insulin resistant of these individuals is at increased risk to develop various adverse clinical syndromes. Since direct measurements of insulin sensitivity are not practical in a clinical setting, several surrogate estimates of insulin action have been proposed, including fasting plasma insulin (FPI) concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) calculated by a formula employing fasting plasma glucose (FPG) and FPI concentrations. The objective of this study was to compare FPI as an estimate of insulin-mediated glucose disposal with values generated by HOMA-IR in 758 apparently healthy nondiabetic individuals. Measurements were made of FPG, FPI, triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) concentrations, and insulin-mediated glucose uptake was quantified by determining steady-state plasma glucose (SSPG) concentration during the insulin suppression test. FPI and HOMA-IR were highly correlated (r = 0.98, P HOMA-IR (r = 0.64). Furthermore, the relationship between FPI and TG (r = 0.35) and HDL-C (r = -0.40) was comparable to that between HOMA-IR and TG (r = 0.39) and HDL-C (r = -0.41). In conclusion, FPI and HOMA-IR are highly correlated in nondiabetic individuals, with each estimate accounting for ~40% of the variability (variance) in a direct measure of insulin-mediated glucose disposal. Calculation of HOMA-IR does not provide a better surrogate estimate of insulin action, or of its associated dyslipidemia, than measurement of FPI.

  15. Association between Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Components of Metabolic Syndrome in Young Chinese Men.

    Science.gov (United States)

    Ying, X; Song, Zh; Zhao, Ch; Jiang, Y

    2011-01-01

    To investigate the prevalence of metabolic syndrome (MetS) in young Chinese population and assess the association between HOMA-IR and different components of MetS in young Chinese men. Overall 5576 young Chinese subjects (age range [19-44 yr], 3636 men) were enrolled in, who visited our Health Care Center for a related health checkup from March to December 2008. The international diabetes federation (IDF) definition for MetS was used. The SPSS statistical package, version 11.5 was used for the statistical analysis. The prevalence of MetS was 21.81% in young men and 5.62% in young women. According to suffering from different numbers of MetS components, the male subjects were divided into four groups. Numbers of MetS components were more and HOMA-IR values were significantly higher. In this male population, the quartile of HOMA-IR was higher, values of triglyceride (TG), fasting plasma glucose (FBG), systolic blood pressure(SBP), diastolic blood pressure(DBP) and waist circumference (WC) were all significantly higher, as well as high density lipoprotein cholesterol (HDL-C) value was significantly lower (P= 0.000). In Spearman's correlation analysis, HOMA-IR was positively correlated with TG, FBG, SBP, DBP and WC, and negatively correlated with HDL-C (r= 0.460, 0.464, 0.362, 0.346, 0.586, -0.357, respectively, all P value= 0.000). The prevalence of MetS in these young Chinese men was obviously high. Insulin resistance played an important role in occurrence and development of MetS. Waist circumference was the best correlation with HOMA-IR among all components of MetS.

  16. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men.

    Directory of Open Access Journals (Sweden)

    Imtiaz A Samjoo

    Full Text Available Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS and intramyocellular lipid (IMCL accumulation have been implicated in the etiology of insulin resistance (IR in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes, IMCL/mitochondrial morphology in both subsarcolemmal (SS and intermyofibrillar (IMF regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density, increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = -0.34; P = 0.051 and IMF mitochondrial density (r = -0.29; P = 0.096, IMF IMCL/mitochondrial juxtaposition (r = -0.30; P = 0.086, and COXII (r = -0.32; P = 0.095 and COXIV protein abundance (r = -0.35; P = 0.052; while positively associated with SS IMCL size (r = 0.28; P = 0.119 and SS IMCL density (r = 0.25; P = 0.152. Our findings suggest that once physical activity and cardiorespiratory fitness have been

  17. Markers of Skeletal Muscle Mitochondrial Function and Lipid Accumulation Are Moderately Associated with the Homeostasis Model Assessment Index of Insulin Resistance in Obese Men

    Science.gov (United States)

    Samjoo, Imtiaz A.; Safdar, Adeel; Hamadeh, Mazen J.; Glover, Alexander W.; Mocellin, Nicholas J.; Santana, Jose; Little, Jonathan P.; Steinberg, Gregory R.; Raha, Sandeep; Tarnopolsky, Mark A.

    2013-01-01

    Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS) and intramyocellular lipid (IMCL) accumulation have been implicated in the etiology of insulin resistance (IR) in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes), IMCL/mitochondrial morphology in both subsarcolemmal (SS) and intermyofibrillar (IMF) regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide) in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR) prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density), increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = −0.34; P = 0.051) and IMF mitochondrial density (r = −0.29; P = 0.096), IMF IMCL/mitochondrial juxtaposition (r = −0.30; P = 0.086), and COXII (r = −0.32; P = 0.095) and COXIV protein abundance (r = −0.35; P = 0.052); while positively associated with SS IMCL size (r = 0.28; P = 0.119) and SS IMCL density (r = 0.25; P = 0.152). Our findings suggest that once physical activity and cardiorespiratory fitness have

  18. Homeostasis

    Directory of Open Access Journals (Sweden)

    Anna Negroni

    2015-01-01

    Full Text Available Intestinal epithelial cells (IECs form a physiochemical barrier that separates the intestinal lumen from the host’s internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.

  19. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria.

    Science.gov (United States)

    Staehlin, Benjamin M; Gibbons, John G; Rokas, Antonis; O'Halloran, Thomas V; Slot, Jason C

    2016-02-17

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. [Homeostasis model assessment (HOMA) values in Chilean elderly subjects].

    Science.gov (United States)

    Garmendia, María Luisa; Lera, Lydia; Sánchez, Hugo; Uauy, Ricardo; Albala, Cecilia

    2009-11-01

    The homeostasis assessment model for insulin resistance (HOMA-IR) estimates insulin resistance using basal insulin and glucose values and has a good concordance with values obtained with the euglycemic clamp. However it has a high variability that depends on environmental, genetic and physiologic factors. Therefore it is imperative to establish normal HOMA values in different populations. To report HOMA-IR values in Chilean elderly subjects and to determine the best cutoff point to diagnose insulin resistance. Cross sectional study of 1003 subjects older than 60 years of whom 803 (71% women) did not have diabetes. In 154 subjects, an oral glucose tolerance test was also performed. Insulin resistance (IR) was defined as the HOMA value corresponding to percentile 75 of subjects without over or underweight. The behavior of HOMA-IR in metabolic syndrome was studied and receiver operating curves (ROC) were calculated, using glucose intolerance defined as a blood glucose over 140 mg/dl and hyperinsulinemia, defined as a serum insulin over 60 microU/ml, two hours after the glucose load. Median HOMA-IR values were 1.7. Percentile 75 in subjects without obesity or underweight was 2.57. The area under the ROC curve, when comparing HOMA-IR with glucose intolerance and hyperinsulinemia, was 0.8 (95% confidence values 0.72-0.87), with HOMA-IR values ranging from 2.04 to 2.33. HOMA-IR is a useful method to determine insulin resistance in epidemiological studies. The HOMA-IR cutoff point for insulin resistance defined in thi spopulation was 2.6.

  1. Punto de corte de homeostasis model assessment (HOMA-IR para determinar insulinorresistencia en individuos adultos del municipio Maracaibo-Estado Zulia, Venezuela (Homeostasis Model Assessment (HOMA-IR cut-off point for insulin resistance in adults from Maracaibo municipality-Zulia State, Venezuela

    Directory of Open Access Journals (Sweden)

    Roberto Añez

    2015-04-01

    Full Text Available Insulin Resistance (IR is an important finding in several diseases including diabetes and metabolic syndrome, and its diagnosis seems pertinent during the evaluation of insulin sensitivity, though mathematical models like HOMA (Homeostasis Model Assessment. The purpose of the present study was to determine an appropriate cutpoint for HOMA-IR in adult individuals from the Maracaibo municipality, Zulia state, Venezuela. Two-thousand and twenty-six individuals from both sexes and beyond 18 years of age were selected from the Maracaibo city Metabolic Syndrome Prevalence Study, a descriptive cross-sectional study with multietapic sampling. HOMA-IR was calculated using the formula [Fasting Insulin (µU/L x Fasting Glycemia (mmol/L/22,5]. To estimate the cutpoint, 602 healthy individuals were selected and a percentile distribution was calculates, alongside ROC Curve in order to identify the best cutoff point according to sensitivity and specificity. Overall, the average HOMA-IR was 3,71±3,01, with 3,65±2,96 for women and 3,76±3,06 for men (p=0,397. Using the reference population, the resulting arithmetic value was 2,64±1,67. When distributing per percentile, p75 was 3,02. When selecting a cutpoint using ROC Curve, the chosen cutoff point was 3.03 with an Area Under the Curve of 0.814 (75,2% sensitivity and 75,6% specificity. The obtained results are good enough to propose a cutpoint of 3,00 for HOMA-IR, which can be use in the clinical evaluation of IR in adults from our population

  2. Definition of insulin resistance using the homeostasis model assessment (HOMA-IR) in IVF patients diagnosed with polycystic ovary syndrome (PCOS) according to the Rotterdam criteria.

    Science.gov (United States)

    Alebić, Miro Šimun; Bulum, Tomislav; Stojanović, Nataša; Duvnjak, Lea

    2014-11-01

    Polycystic ovary syndrome (PCOS) women are more insulin resistant than general population. Prevalence data on insulin resistance (IR) in PCOS vary depending on population characteristics and methodology used. The objectives of this study were to investigate whether IR in PCOS is exclusively associated with body mass and to assess the prevalence of IR in lean and overweight/obese PCOS. Study included 250 consecutive women who attended a Department of Human Reproduction diagnosed as having PCOS according to the Rotterdam criteria. Control group comprised 500 healthy women referred for male factor infertility evaluation during the same period as the PCOS women. PCOS women (n = 250) were more insulin resistant than controls (n = 500) even after adjustment for age and body mass index (BMI) (P = 0.03). Using logistic regression analysis, BMI ≥ 25 kg/m(2) (OR 6.0; 95 % CI 3.3-11.0), PCOS (OR 2.2; 95 % CI 1.4-3.5) and waist circumference ≥ 80 cm (OR 2.0; 95 % CI 1.1-3.8) were identified as independent determinants of IR (P HOMA-IR cutoff value of 3.15 specific for Croatian women in our clinical setting, the assessed prevalence of IR in lean and overweight/obese PCOS women was 9.3 and 57 %, respectively.

  3. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese.

    Science.gov (United States)

    Lee, C H; Shih, A Z L; Woo, Y C; Fong, C H Y; Leung, O Y; Janus, E; Cheung, B M Y; Lam, K S L

    The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25-74 years, at baseline CRISPS-1 (1995-1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010-2012) after 15 years of follow-up. At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713-0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777-0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance.

  4. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future.

    Science.gov (United States)

    Tang, Qi; Li, Xueqin; Song, Peipei; Xu, Lingzhong

    2015-12-01

    Diabetes mellitus (DM) appears to be increasing rapidly, threatening to reduce life expectancy for humans around the globe. The International Diabetes Federation (IDF) has estimated that there will be 642 million people living with the disease by 2040 and half as many again who will be not diagnosed. This means that pre-DM screening is a critical issue. Insulin resistance (IR) has emerged as a major pathophysiological factor in the development and progression of DM since it is evident in susceptible individuals at the early stages of DM, and particularly type 2 DM (T2DM). Therefore, assessment of IR via the homeostasis model assessment of IR (HOMA-IR) is a key index for the primary prevention of DM and is thus found in guidelines for screening of high-risk groups. However, the cut-off values of HOMA-IR differ for different races, ages, genders, diseases, complications, etc. due to the complexity of IR. This hampers the determination of specific cut-off values of HOMA-IR in different places and in different situations. China has not published an official index to gauge IR for primary prevention of T2DM in the diabetic and non-diabetic population except for children and adolescents ages 6-12 years. Hence, this article summarizes developments in research on IR, HOMA-IR, and pre-DM screening in order to provide a reference for optimal cut-off values of HOMA-IR for the diagnosis of DM in the Chinese population.

  5. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  6. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese

    Science.gov (United States)

    Lee, C. H.; Shih, A. Z. L.; Woo, Y. C.; Fong, C. H. Y.; Leung, O. Y.; Janus, E.; Cheung, B. M. Y.; Lam, K. S. L.

    2016-01-01

    Background The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. Material & Methods In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25–74 years, at baseline CRISPS-1 (1995–1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010–2012) after 15 years of follow-up. Results At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713–0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777–0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. Conclusions HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance. PMID:27658115

  7. Homeostasis Model Assessment-Adiponectin: the role of different types of physical exercise in obese adolescents.

    Science.gov (United States)

    da Silveira Campos, Raquel M; Landi Masquio, Deborah C; Campos Corgosinho, Flávia; de Lima Sanches, Priscila; de Piano, Aline; Carnier, June; Leão da Silva, Patrícia; Grotti Clemente, Ana P; de Castro Ferreira Vicente, Sofia E; Oyama, Lila M; da Penha Oller do Nascimento, Claudia M; Tock, Lian; Tufik, Sergio; de Mello, Marco T; Dâmaso, Ana R

    2017-06-01

    Homeostasis Model Assessment-Adiponectin (HOMA-AD) is suggesting a new biomarker of insulin resistance in obese population. In this way, the purpose of this study was to investigate the effects of different kinds of exercise in the sensitive index predictor of insulin resistance. A total of 148 obese adolescents were enrolled in the program. They aged 15-19 y, with Body Mass Index (BMI) ≥P95th and were submitted to 1 year of interdisciplinary weight loss therapy, randomized in two groups, aerobic training (AT) (N.=51) and aerobic plus resistance training (N.=97). Blood samples were collected to analyze adiponectin, glucose and insulin concentrations. The insulin resistance was measured by HOMA-AD and Homeostasis Model Assessment Insulin Resistance Index (HOMA-IR). Both kinds of exercise training promoted a decrease in body mass, body mass index, fat mass, visceral and subcutaneous fat. However, only aerobic plus resistance training was effective to reduce HOMA-AD, insulin and glucose concentration; and increase insulin sensibility and adiponectin concentration. The aerobic plus resistance training was more effective than AT alone to improve the HOMA-AD, suggesting clinical application on obesity, diabetes, atherosclerosis and metabolic syndrome control in the pediatric population.

  8. Stochastic Modeling of Bacteria Cell Size Control and Homeostasis

    Science.gov (United States)

    Chen, Yanyan; Buceta, Javier

    Besides recent breakthroughs, there is a gap of knowledge about the mechanisms underlying cell size control and homeostasis. In this context, recent studies support the incremental rule in rod-shaped bacteria: cells add a constant length to their size before dividing which is independent of their size at birth. This growing pattern, when coupled with the mid-cell division mechanism, leads to size convergence and homeostasis. However, some aberrantly long mutant strains of E. coli, e.g. ΔFtsW, do not typically divide at the middle. Whether cell size control and homeostasis apply to those mutant backgrounds, or the role played by biomechanical cues, remain open questions. Here we present a combination of theoretical, experimental, and computational approaches to address these questions. First, we introduce a Markov chain model that describes either wild-type (wt) strains or growth-defective strains. Second, we propose a polymer-like model to account for the mechanical inputs. Finally, we test experimentally some of our predictions by using wt and conditional mutant (ΔFtsW) strains. Altogether, our preliminary studies suggest a way to unify the principles of cell size control and homeostasis of wt and growth-defective cell strains.

  9. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  10. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study.

    Science.gov (United States)

    Morimoto, Akiko; Tatsumi, Yukako; Soyano, Fumie; Miyamatsu, Naomi; Sonoda, Nao; Godai, Kayo; Ohno, Yuko; Noda, Mitsuhiko; Deura, Kijyo

    2014-01-01

    Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR) on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS). This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS) and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase). Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3%) were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals) for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47), non-IIS with a moderate increase (mean change in HOMA-IR: 0.28), non-IIS with a large increase (mean change in HOMA-IR: 0.83), IIS with a decrease (mean change in HOMA-IR: -0.36), IIS with no change/small increase (mean change in HOMA-IR: 0.08), IIS with a moderate increase (mean change in HOMA-IR: 0.27), and IIS with a large increase (mean change in HOMA-IR: 0.73) groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08) group were 0.23 (0.04, 1.11), 1.22 (0.26, 5.72), 2.01 (0.70, 6.46), 1.37 (0.32, 4.28), 3.60 (0.83, 15.57), 5.24 (1.34, 20.52), and 7.01 (1.75, 24.18), respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

  11. Increase in homeostasis model assessment of insulin resistance (HOMA-IR had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study.

    Directory of Open Access Journals (Sweden)

    Akiko Morimoto

    Full Text Available Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS. This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase. Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3% were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47, non-IIS with a moderate increase (mean change in HOMA-IR: 0.28, non-IIS with a large increase (mean change in HOMA-IR: 0.83, IIS with a decrease (mean change in HOMA-IR: -0.36, IIS with no change/small increase (mean change in HOMA-IR: 0.08, IIS with a moderate increase (mean change in HOMA-IR: 0.27, and IIS with a large increase (mean change in HOMA-IR: 0.73 groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08 group were 0.23 (0.04, 1.11, 1.22 (0.26, 5.72, 2.01 (0.70, 6.46, 1.37 (0.32, 4.28, 3.60 (0.83, 15.57, 5.24 (1.34, 20.52, and 7.01 (1.75, 24.18, respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

  12. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    Science.gov (United States)

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  13. Mechanisms of metal resistance and homeostasis in haloarchaea.

    Science.gov (United States)

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.

  14. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    Directory of Open Access Journals (Sweden)

    Pallavee Srivastava

    2013-01-01

    Full Text Available Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.

  15. A model of calcium homeostasis in the rat.

    Science.gov (United States)

    Granjon, David; Bonny, Olivier; Edwards, Aurélie

    2016-11-01

    We developed a model of calcium homeostasis in the rat to better understand the impact of dysfunctions such as primary hyperparathyroidism and vitamin D deficiency on calcium balance. The model accounts for the regulation of calcium intestinal uptake, bone resorption, and renal reabsorption by parathyroid hormone (PTH), vitamin D 3 , and Ca 2+ itself. It is the first such model to incorporate recent findings regarding the role of the calcium-sensing receptor (CaSR) in the kidney, the presence of a rapidly exchangeable pool in bone, and the delayed response of vitamin D 3 synthesis. Accounting for two (fast and slow) calcium storage compartments in bone allows the model to properly predict the effects of bisphophonates on the plasma levels of Ca 2+ ([Ca 2+ ] p ), PTH, and vitamin D 3 Our model also suggests that Ca 2+ exchange rates between plasma and the fast pool vary with both sex and age, allowing [Ca 2+ ] p to remain constant in spite of sex- and age-based hormonal and other differences. Our results suggest that the inconstant hypercalciuria that is observed in primary hyperparathyroidism can be attributed in part to counterbalancing effects of PTH and CaSR in the kidney. Our model also correctly predicts that calcimimetic agents such as cinacalcet bring down [Ca 2+ ] p to within its normal range in primary hyperparathyroidism. In addition, the model provides a simulation of CYP24A1 inactivation that leads to a situation reminiscent of infantile hypercalcemia. In summary, our model of calcium handling can be used to decipher the complex regulation of calcium homeostasis. Copyright © 2016 the American Physiological Society.

  16. Mathematical model of glucose-insulin homeostasis in healthy rats.

    Science.gov (United States)

    Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo

    2013-10-01

    According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  18. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Péret, Benjamin; Porco, Silvana; Sairanen, Ilkka; Ljung, Karin; Bennett, Malcolm; King, John

    2015-02-07

    Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice.

    Science.gov (United States)

    Aswad, Hala; Forterre, Alexis; Wiklander, Oscar P B; Vial, Guillaume; Danty-Berger, Emmanuelle; Jalabert, Audrey; Lamazière, Antonin; Meugnier, Emmanuelle; Pesenti, Sandra; Ott, Catherine; Chikh, Karim; El-Andaloussi, Samir; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer; Rome, Sophie

    2014-10-01

    Exosomes released from cells can transfer both functional proteins and RNAs between cells. In this study we tested the hypothesis that muscle cells might transmit specific signals during lipid-induced insulin resistance through the exosomal route. Exosomes were collected from quadriceps muscles of C57Bl/6 mice fed for 16 weeks with either a standard chow diet (SD) or an SD enriched with 20% palm oil (HP) and from C2C12 cells exposed to 0.5 mmol/l palmitate (EXO-Post Palm), oleate (EXO-Post Oleate) or BSA (EXO-Post BSA). HP-fed mice were obese and insulin resistant and had altered insulin-induced Akt phosphorylation in skeletal muscle (SkM). They also had reduced expression of Myod1 and Myog and increased levels of Ccnd1 mRNA, indicating that palm oil had a deep impact on SkM homeostasis in addition to insulin resistance. HP-fed mouse SkM secreted more exosomes than SD-fed mouse SkM. This was reproduced in-vitro using C2C12 cells pre-treated with palmitate, the most abundant saturated fatty acid of palm oil. Exosomes from HP-fed mice, EXO-Post Palm and EXO-Post Oleate induced myoblast proliferation and modified the expressions of genes involved in the cell cycle and muscle differentiation but did not alter insulin-induced Akt phosphorylation. Lipidomic analyses showed that exosomes from palmitate-treated cells were enriched in palmitate, indicating that exosomes likely transfer the deleterious effect of palm oil between muscle cells by transferring lipids. Muscle exosomes were incorporated into various tissues in vivo, including the pancreas and liver, suggesting that SkM could transfer specific signals through the exosomal route to key metabolic tissues. Exosomes act as 'paracrine-like' signals and modify muscle homeostasis during high-fat diets.

  20. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  1. Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR) for the diagnosis of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007).

    Science.gov (United States)

    Esteghamati, Alireza; Ashraf, Haleh; Khalilzadeh, Omid; Zandieh, Ali; Nakhjavani, Manouchehr; Rashidi, Armin; Haghazali, Mehrdad; Asgari, Fereshteh

    2010-04-07

    We have recently determined the optimal cut-off of the homeostatic model assessment of insulin resistance for the diagnosis of insulin resistance (IR) and metabolic syndrome (MetS) in non-diabetic residents of Tehran, the capital of Iran. The aim of the present study is to establish the optimal cut-off at the national level in the Iranian population with and without diabetes. Data of the third National Surveillance of Risk Factors of Non-Communicable Diseases, available for 3,071 adult Iranian individuals aging 25-64 years were analyzed. MetS was defined according to the Adult Treatment Panel III (ATPIII) and International Diabetes Federation (IDF) criteria. HOMA-IR cut-offs from the 50th to the 95th percentile were calculated and sensitivity, specificity, and positive likelihood ratio for MetS diagnosis were determined. The receiver operating characteristic (ROC) curves of HOMA-IR for MetS diagnosis were depicted, and the optimal cut-offs were determined by two different methods: Youden index, and the shortest distance from the top left corner of the curve. The area under the curve (AUC) (95%CI) was 0.650 (0.631-0.670) for IDF-defined MetS and 0.683 (0.664-0.703) with the ATPIII definition. The optimal HOMA-IR cut-off for the diagnosis of IDF- and ATPIII-defined MetS in non-diabetic individuals was 1.775 (sensitivity: 57.3%, specificity: 65.3%, with ATPIII; sensitivity: 55.9%, specificity: 64.7%, with IDF). The optimal cut-offs in diabetic individuals were 3.875 (sensitivity: 49.7%, specificity: 69.6%) and 4.325 (sensitivity: 45.4%, specificity: 69.0%) for ATPIII- and IDF-defined MetS, respectively. We determined the optimal HOMA-IR cut-off points for the diagnosis of MetS in the Iranian population with and without diabetes.

  2. Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR for the diagnosis of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007

    Directory of Open Access Journals (Sweden)

    Rashidi Armin

    2010-04-01

    Full Text Available Abstract Aim We have recently determined the optimal cut-off of the homeostatic model assessment of insulin resistance for the diagnosis of insulin resistance (IR and metabolic syndrome (MetS in non-diabetic residents of Tehran, the capital of Iran. The aim of the present study is to establish the optimal cut-off at the national level in the Iranian population with and without diabetes. Methods Data of the third National Surveillance of Risk Factors of Non-Communicable Diseases, available for 3,071 adult Iranian individuals aging 25-64 years were analyzed. MetS was defined according to the Adult Treatment Panel III (ATPIII and International Diabetes Federation (IDF criteria. HOMA-IR cut-offs from the 50th to the 95th percentile were calculated and sensitivity, specificity, and positive likelihood ratio for MetS diagnosis were determined. The receiver operating characteristic (ROC curves of HOMA-IR for MetS diagnosis were depicted, and the optimal cut-offs were determined by two different methods: Youden index, and the shortest distance from the top left corner of the curve. Results The area under the curve (AUC (95%CI was 0.650 (0.631-0.670 for IDF-defined MetS and 0.683 (0.664-0.703 with the ATPIII definition. The optimal HOMA-IR cut-off for the diagnosis of IDF- and ATPIII-defined MetS in non-diabetic individuals was 1.775 (sensitivity: 57.3%, specificity: 65.3%, with ATPIII; sensitivity: 55.9%, specificity: 64.7%, with IDF. The optimal cut-offs in diabetic individuals were 3.875 (sensitivity: 49.7%, specificity: 69.6% and 4.325 (sensitivity: 45.4%, specificity: 69.0% for ATPIII- and IDF-defined MetS, respectively. Conclusion We determined the optimal HOMA-IR cut-off points for the diagnosis of MetS in the Iranian population with and without diabetes.

  3. Comparable Effects of Brief Resistance Exercise and Isotime Sprint Interval Exercise on Glucose Homeostasis in Men

    Directory of Open Access Journals (Sweden)

    Tomas K. Tong

    2017-01-01

    Full Text Available This study compared the effects of a single bout of resistance exercise (RES on glycemic homeostasis to isotime sprint interval exercise (SIE using a within-subjects design. Nineteen nondiabetic males (age: 23.3±0.7 yrs; height: 173.1±1.2 cm; weight: 79.1±4.8 kg; % fat: 22.5±2.5% were studied. RES involved nine exercises of 10 repetitions at 75% 1-RM using a 2 : 2 s tempo and was interspersed with a one-minute recovery; SIE involved four 30 s’ all-out cycling effort interspersed with four minutes of active recovery. Plasma glucose and insulin in response to a 75 g oral glucose tolerance test were assessed 12 h after exercise. In comparison to a no exercise control trial (CON, the area under curve (AUC of plasma glucose was reduced with both RES and SIE (P0.05. Such findings suggest that the RES may represent a potential alternative to the SIE in the development of time-efficient lifestyle intervention strategies for improving diabetes risk factors in healthy populations.

  4. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance.

    Science.gov (United States)

    Liu, Ying; Takahashi, Yoshinori; Desai, Neelam; Zhang, Jun; Serfass, Jacob M; Shi, Yu-Guang; Lynch, Christopher J; Wang, Hong-Gang

    2016-02-09

    Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications.

  5. Involvement of the Pleiotropic Drug Resistance Response, Protein Kinase C Signaling, and Altered Zinc Homeostasis in Resistance of Saccharomyces cerevisiae to Diclofenac ▿

    Science.gov (United States)

    van Leeuwen, Jolanda S.; Vermeulen, Nico P. E.; Vos, J. Chris

    2011-01-01

    Diclofenac is a widely used analgesic drug that can cause serious adverse drug reactions. We used Saccharomyces cerevisiae as a model eukaryote with which to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Although most yeast cells died during the initial diclofenac treatment, some survived and started growing again. Microarray analysis of the adapted cells identified three major processes involved in diclofenac detoxification and tolerance. In particular, pleiotropic drug resistance (PDR) genes and genes under the control of Rlm1p, a transcription factor in the protein kinase C (PKC) pathway, were upregulated in diclofenac-adapted cells. We tested if these processes or pathways were directly involved in diclofenac toxicity or resistance. Of the pleiotropic drug resistance gene products, the multidrug transporter Pdr5p was crucially important for diclofenac tolerance. Furthermore, deletion of components of the cell wall stress-responsive PKC pathway increased diclofenac toxicity, whereas incubation of cells with the cell wall stressor calcofluor white before the addition of diclofenac decreased its toxicity. Also, diclofenac induced flocculation, which might trigger the cell wall alterations. Genes involved in ribosome biogenesis and rRNA processing were downregulated, as were zinc-responsive genes. Paradoxically, deletion of the zinc-responsive transcription factor Zap1p or addition of the zinc chelator 1,10-phenanthroline significantly increased diclofenac toxicity, establishing a regulatory role for zinc in diclofenac resistance. In conclusion, we have identified three new pathways involved in diclofenac tolerance in yeast, namely, Pdr5p as the main contributor to the PDR response, cell wall signaling via the PKC pathway, and zinc homeostasis, regulated by Zap1p. PMID:21724882

  6. Mathematical model for the homeostasis of alpha-macroglobulins in the rat.

    Science.gov (United States)

    Aguirre, M C; Armendariz, M; Lupo, M; Rigalli, A

    2011-11-01

    Alpha-macroglobulins (AM) are proteins that inactivate proteinases. Sodium monofluorophosphate (MFP) binds to AM and transiently changes AM plasma levels. As a consequence MFP is useful to modify AM homeostasis. A mathematical model to study the homeostasis of AM is proposed in this paper. The model describes changes in plasma concentration of AM, MFP concentration in the gastrointestinal tract, MFP plasma concentration, plasma concentration of AMMFP and includes rate constants of the processes involved in AM homeostasis. Estimation of the rate constants values was achieved using experimental and mathematical resources. The homeostasis of AM after an oral dose of 80 μmol of MFP was analyzed with a simulation tool. Experimental conditions that modify the homeostasis of AM had been simulated and validated using specific drugs that change some parameter of the system. The mathematical model describes accurately the behavior of the biological model. The results allow concluding that the simplifications made did not underestimate the main processes involved in the homeostasis and, also that the assumptions made were correct. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Angiopoietin like protein 3 (Angptl3, fatty acid binding protein 4 (FABP4 and homeostasis model assessment of insulin resistance (HOMA-IR among Indonesian obese non diabetic males

    Directory of Open Access Journals (Sweden)

    Yani Lina

    2010-08-01

    Full Text Available Aim To reveal the correlation between Angptl3, FABP4 and HOMA-IR among Indonesian obese non diabetic males.Methods This is a cross sectional study with 133 obese non diabetic males volunteers (characterized by waist circumference > 90 cm; fasting blood glucose < 126 mg/dL; and no diabetic specific symptoms age between 30-60 years which was done in Jakarta, Indonesia. We measured biochemical markers such as Angptl3, FABP4, FFA, fasting insulin and fasting glucose. We also measured weight, height, waist circumference (WC, systolic blood pressure (SBP and diastolic blood pressure (DBP. Correlation between each marker was measured using Pearson and Spearman’s analysis.Results Pearson and Spearman’s correlation analysis showed significant positive correlation between Angptl3 and FABP4 (r = 0.319; P = 0.000, Angptl3 and FFA (r = 0.171; r = 0.049, FABP4 and HOMA-IR (r = 0.202; P = 0.019, FFA and FABP4 (r = 0.506; P = 0.000, WC and HOMA-IR (r = 0.323; P = 0.000, WC and FABP4 (r = 0.387; P = 0.000, Body Mass Index (BMI and HOMA-IR (r = 0.270; P = 0.002, BMI and FABP4 (r = 0.362; P = 0.000.Conclusion This study showed positive significant correlations between Angptl3-FABP4, Angptl3-FFA, FFA-FABP4 and FABP4-HOMA-IR. We suggest that Angptl3 can activate lipolysis in adipose tissue (through its correlation with FABP4, and Angptl3 concentration is related to insulin resistance risk among Indonesian obese non diabetic males. (Med J Indones 2010;19:185-90Key words: Angptl3, FABP4, HOMA-IR, insulin resistance, lipolysis, obesity

  8. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  9. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2010-11-15

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  10. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    Science.gov (United States)

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  11. A Multi-Scale Model of Hepcidin Promoter Regulation Reveals Factors Controlling Systemic Iron Homeostasis

    Science.gov (United States)

    Muckenthaler, Martina U.; Legewie, Stefan

    2014-01-01

    Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. PMID:24391488

  12. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  13. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates th...

  14. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    Science.gov (United States)

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  15. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis.

    Science.gov (United States)

    Proctor, Carole J; Lorimer, Ian A J

    2011-01-01

    Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103) and Hsp90 (IPR001404) chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983) and p38 (Q16539) pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen species-mediated stress that are consistent with currently available experimental data. The model can be used to assess specific

  16. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis.

    Directory of Open Access Journals (Sweden)

    Carole J Proctor

    Full Text Available Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103 and Hsp90 (IPR001404 chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983 and p38 (Q16539 pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen species-mediated stress that are consistent with currently available experimental data. The model can be used to

  17. Insufficient renal 1-alpha hydroxylase and bone homeostasis in aged rats with insulin resistance or type 2 diabetes mellitus.

    Science.gov (United States)

    Chang-Quan, Huang; Bi-Rong, Dong; Ping, He; Zhen-Chan, Lu

    2008-01-01

    This study aimed to explore the relationship between insufficient renal 1-alpha hydroxylase (IRH) and bone homeostasis in type 2 diabetes mellitus (T2DM) or insulin resistance (IR) and to investigate whether IR plays a major role in the pathogenesis of both IRH and bone loss in T2DM. The experimental animal models of T2DM, IR, IR treated with vitamin D (VD), IR treated with 1-alpha hydroxyvitamin D (1alpha(OH) D, the product of renal 1-alpha hydroxylase), T2DM treated with VD, and T2DM treated with 1alpha(OH) D were established on 18-month-old male Wistar rats. For rats in each animal model and normal control rats, IR was detected by euglycemic insulin clamp technique (EICT) and glucose infusion rate (GIR, an index of IR) was calculated. Levels of serum 25-hydroxyvitamin D (25(OH)D) and serum active vitamin D (1,25(OH)(2)D) were determined by radioimmunoassay (RIA), and 1,25(OH)(2)D/25(OH)D ratio (1,25-25-R, an index of renal 1-alpha hydroxylase activity in vivo) was calculated; and bone mineral density (BMD) in femoral bone and lumbar vertebrae was measured by dual-energy X-ray absorption (DEXA). No significant difference was observed among the levels of 25(OH)D in all the rats. In IR rats, 1,25(OH)(2)D level, 1,25-25-R, and BMD level were significantly higher than those in T2DM rats and were lower than those in normal control rats. In the aged rats with T2DM or IR, administration of VD had no effect on 25(OH)D level, 1,25(OH)(2)D level, 1,25-25-R, and BMD level. Administration of 1alpha(OH) D had also no effect on 25(OH)D level but increased 1,25(OH)(2)D level, 1,25-25-R, and BMD level. For the aged rats with T2DM or IR, GIR positively correlated with both levels of 1,25(OH)(2)D and BMD, and 1,25-25-R positively and significantly correlated with levels of BMD. In T2DM or IR, IRH is a precipitating factor for bone loss. IR seems to play a major role in the pathogenesis of both IRH and bone loss in T2DM.

  18. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong

    2017-11-03

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  19. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ian Smyth

    2008-09-01

    Full Text Available Harlequin Ichthyosis (HI is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.

  20. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men

    Directory of Open Access Journals (Sweden)

    Slivkoff-Clark Karin M

    2012-02-01

    Full Text Available Abstract Background Visceral obesity and insulin resistance are associated with a postprandial accumulation of atherogenic chylomicron remnants that is difficult to modulate with lipid-lowering therapies. Dietary fish oil and exercise are cardioprotective interventions that can significantly modify the metabolism of TAG-rich lipoproteins. In this study, we investigated whether chronic exercise and fish oil act in combination to affect chylomicron metabolism in obese men with moderate insulin resistance. Methods The single blind study tested the effect of fish oil, exercise and the combined treatments on fasting and postprandial chylomicron metabolism. Twenty nine men with metabolic syndrome were randomly assigned to take fish oil or placebo for four weeks, before undertaking an additional 12 week walking program. At baseline and at the end of each treatment, subjects were tested for concentrations of fasting apo B48, plasma lipids and insulin. Postprandial apo B48 and TAG kinetics were also determined following ingestion of a fat enriched meal. Results Combining fish oil and exercise resulted in a significant reduction in the fasting apo B48 concentration, concomitant with attenuation of fasting TAG concentrations and the postprandial TAGIAUC response (p Conclusion Fish oil was shown to independently improve plasma TAG homeostasis but did not resolve hyper-chylomicronaemia. Instead, combining fish oil with chronic exercise reduced the plasma concentration of pro-atherogenic chylomicron remnants; in addition it reduced the fasting and postprandial TAG response in viscerally obese insulin resistant subjects.

  1. The Mycobacterial Transcriptional Regulator whiB7 Gene Links Redox Homeostasis and Intrinsic Antibiotic Resistance*

    Science.gov (United States)

    Burian, Ján; Ramón-García, Santiago; Sweet, Gaye; Gómez-Velasco, Anaximandro; Av-Gay, Yossef; Thompson, Charles J.

    2012-01-01

    Intrinsic drug resistance in Mycobacterium tuberculosis limits therapeutic options for treating tuberculosis. The mycobacterial transcriptional regulator whiB7 contributes to intrinsic resistance by activating its own expression and many drug resistance genes in response to antibiotics. To investigate whiB7 activation, we constructed a GFP reporter to monitor its expression, and we used it to investigate the whiB7 promoter and to screen our custom library of almost 600 bioactive compounds, including the majority of clinical antibiotics. Results showed whiB7 was transcribed from a promoter that was conserved across mycobacteria and other actinomycetes, including an AT-rich sequence that was likely targeted by WhiB7. Expression was induced by compounds having diverse structures and targets, independent of the ability of whiB7 to mediate resistance, and was dependent on media composition. Pretreatment with whiB7 activators resulted in clinically relevant increases in intrinsic drug resistance. Antibiotic-induced transcription was synergistically increased by the reductant dithiothreitol, an effect mirrored by a whiB7-dependent shift to a highly reduced cytoplasm reflected by the ratio of reduced/oxidized mycothiol. These data provided evidence that intrinsic resistance resulting from whiB7 activation is linked to fundamental changes in cell metabolism. PMID:22069311

  2. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  3. Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice.

    Science.gov (United States)

    Liu, Lijie; Wang, Fanfan; Lu, Haiying; Cao, Shuangfeng; Du, Ziwei; Wang, Yongfang; Feng, Xian; Gao, Ye; Zha, Mingming; Guo, Min; Sun, Zilin; Wang, Jian

    2016-09-01

    Epidemiological studies have indicated that noise exposure is associated with an increased risk of type 2 diabetes mellitus (T2DM). However, the nature of the connection between noise exposure and T2DM remains to be explored. We explored whether and how noise exposure affects glucose homeostasis in mice as the initial step toward T2DM development. Male ICR mice were randomly assigned to one of four groups: the control group and three noise groups (N20D, N10D, and N1D), in which the animals were exposed to white noise at 95 decibel sound pressure level (dB SPL) for 4 hr per day for 20 successive days, 10 successive days, or 1 day, respectively. Glucose tolerance and insulin sensitivity were evaluated 1 day, 1 week, and 1 month after the final noise exposure (1DPN, 1WPN, and 1MPN). Standard immunoblots, immunohistochemical methods, and enzyme-linked immunosorbent assays (ELISA) were performed to assess insulin signaling in skeletal muscle, the morphology of β cells, and plasma corticosterone levels. Noise exposure for 1 day caused transient glucose intolerance and insulin resistance, whereas noise exposure for 10 and 20 days had no effect on glucose tolerance but did cause prolonged insulin resistance and an increased insulin response to glucose challenge. Akt phosphorylation and GLUT4 translocation in response to exogenous insulin were decreased in the skeletal muscle of noise-exposed animals. Noise exposure at 95 dB SPL caused insulin resistance in male ICR mice, which was prolonged with longer noise exposure and was likely related to the observed blunted insulin signaling in skeletal muscle. Liu L, Wang F, Lu H, Cao S, Du Z, Wang Y, Feng X, Gao Y, Zha M, Guo M, Sun Z, Wang J. 2016. Effects of noise exposure on systemic and tissue-level markers of glucose homeostasis and insulin resistance in male mice. Environ Health Perspect 124:1390-1398; http://dx.doi.org/10.1289/EHP162.

  4. Quorum sensing in CD4+ T cell homeostasis: a hypothesis and a model.

    Directory of Open Access Journals (Sweden)

    Afonso R.M. Almeida

    2012-05-01

    Full Text Available Homeostasis of lymphocyte numbers is believed to be due to competition between cellular populations for a common niche of restricted size, defined by the combination of interactions and trophic factors required for cell survival. Here we propose a new mechanism: homeostasis of lymphocyte numbers could also be achieved by the ability of lymphocytes to perceive the density of their own populations. Such a mechanism would be reminiscent of the primordial quorum sensing systems used by bacteria, in which some bacteria sense the accumulation of bacterial metabolites secreted by other elements of the population, allowing them to count the number of cells present and adapt their growth accordingly. We propose that homeostasis of CD4+ T cell numbers may occur via a quorum-sensing-like mechanism, where IL-2 is produced by activated CD4+ T cells and sensed by a population of CD4+ Treg cells that expresses the high-affinity IL-2Rα-chain and can regulate the number of activated IL-2-producing CD4+ T cells and the total CD4+T cell population. In other words, CD4+ T cell populations can restrain their growth by monitoring the number of activated cells, thus preventing uncontrolled lymphocyte proliferation during immune responses. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled T cell activation and autoimmunity. Finally, we present a mathematical model that describes the role of IL-2 and quorum-sensing mechanisms in CD4+ T cell homeostasis during an immune response.

  5. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  6. Comparison of the Usefulness of the Updated Homeostasis Model Assessment (HOMA2) with the Original HOMA1 in the Prediction of Type 2 Diabetes Mellitus in Koreans

    OpenAIRE

    Song, Young Seok; Hwang, You-Cheol; Ahn, Hong-Yup; Park, Cheol-Young

    2016-01-01

    Background The original homeostasis model assessment (HOMA1) and the updated HOMA model (HOMA2) have been used to evaluate insulin resistance (IR) and ?-cell function, but little is known about the usefulness of HOMA2 for the prediction of diabetes in Koreans. The aim of this study was to demonstrate the usefulness of HOMA2 as a predictor of type 2 diabetes mellitus in Koreans without diabetes. Methods The study population consisted of 104,694 Koreans enrolled at a health checkup program and ...

  7. Comparison of the Usefulness of the Updated Homeostasis Model Assessment (HOMA2) with the Original HOMA1 in the Prediction of Type 2 Diabetes Mellitus in Koreans

    OpenAIRE

    Young Seok Song; You-Cheol Hwang; Hong-Yup Ahn; Cheol-Young Park

    2016-01-01

    BackgroundThe original homeostasis model assessment (HOMA1) and the updated HOMA model (HOMA2) have been used to evaluate insulin resistance (IR) and β-cell function, but little is known about the usefulness of HOMA2 for the prediction of diabetes in Koreans. The aim of this study was to demonstrate the usefulness of HOMA2 as a predictor of type 2 diabetes mellitus in Koreans without diabetes.MethodsThe study population consisted of 104,694 Koreans enrolled at a health checkup program and fol...

  8. Two-compartment model as a teaching tool for cholesterol homeostasis.

    Science.gov (United States)

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian

    2015-12-01

    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins and lipids. Maintaining cholesterol homeostasis is a highly regulated process with multiple factors acting at both molecular and tissue levels. Furthermore, to regulate the circulatory transport of cholesterol in lipoproteins, the amount of cholesterol present depends on and is controlled by cholesterol dietary intake, de novo synthesis, usage, and excretion; abnormal and/or unbalanced cholesterol levels have been shown to lead to severe outcomes, e.g., cardiovascular diseases. To investigate cholesterol transport in the circulatory system, we have previously developed a two-compartment mathematical model. Here, we show how this model can be used as a teaching tool for cholesterol homeostasis. Using the model and a hands-on approach, students can familiarize themselves with the basic components and mechanisms behind balanced cholesterol circulatory transport as well as investigate the consequences of and countermeasures to abnormal cholesterol levels. Among others, various treatments of high blood cholesterol levels can be simulated, e.g., with commonly prescribed de novo cholesterol synthesis inhibitors. Copyright © 2015 The American Physiological Society.

  9. Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction.

    Science.gov (United States)

    Li, Yuping; Pan, Ke; Chen, Lin; Ning, Jiao-Lin; Li, Xiaojun; Yang, Ting; Terrando, Niccolò; Gu, Jianteng; Tao, Guocai

    2016-10-12

    Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially amongst elderly patients. Neuroinflammation and iron homeostasis are key hallmarks of several neurological disorders. In this study, we investigated the role of deferoxamine (DFO), a clinically used iron chelator, in a mouse model of surgery-induced cognitive dysfunction and assessed its neuroprotective effects on neuroinflammation, oxidative stress, and memory function. A model of laparotomy under general anesthesia and analgesia was used to study POCD. Twelve to 14 months C57BL/6J male mice were treated with DFO, and changes in iron signaling, microglia activity, oxidative stress, inflammatory cytokines, and neurotrophic factors were assessed in the hippocampus on postoperative days 3, 7, and 14. Memory function was evaluated using fear conditioning and Morris water maze tests. BV2 microglia cells were used to test the anti-inflammatory and neuroprotective effects of DFO. Peripheral surgical trauma triggered changes in hippocampal iron homeostasis including ferric iron deposition, increase in hepcidin and divalent metal transporter-1, reduction in ferroportin and ferritin, and oxidative stress. Microglia activation, inflammatory cytokines, brain-derived neurotropic factor impairments, and cognitive dysfunction were found up to day 14 after surgery. Treatment with DFO significantly reduced neuroinflammation and improved cognitive decline by modulating p38 MAPK signaling, reactive oxygen species, and pro-inflammatory cytokines release. Iron imbalance represents a novel mechanism underlying surgery-induced neuroinflammation and cognitive decline. DFO treatment regulates neuroinflammation and microglia activity after surgery.

  10. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  11. An innovation resistance factor model

    Directory of Open Access Journals (Sweden)

    Siti Salwa Mohd Ishak

    2016-09-01

    Full Text Available The process and implementation strategy of information technology in construction is generally considered through the limiting prism of theoretical contexts generated from innovation diffusion and acceptance. This research argues that more attention should be given to understanding the positive effects of resistance. The study develops a theoretical framing for the Integrated Resistance Factor Model (IRFM. The framing uses a combination of diffusion of innovation theory, technology acceptance model and social network perspective. The model is tested to identify the most significant resistance factors using Partial Least Square (PLS technique. All constructs proposed in the model are found to be significant, valid and consistent with the theoretical framework. IRFM is shown to be an effective and appropriate model of user resistance factors. The most critical factors to influence technology resistance in the online project information management system (OPIMS context are: support from leaders and peers, complexity of the technology, compatibility with key work practices; and pre-trial of the technology before it is actually deployed. The study provides a new model for further research in technology innovation specific to the construction industry.

  12. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  13. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  14. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  15. Dendritic Homeostasis Disruption in a Novel Frontotemporal Dementia Mouse Model Expressing Cytoplasmic Fused in Sarcoma

    Directory of Open Access Journals (Sweden)

    Gen Shiihashi

    2017-10-01

    Full Text Available Cytoplasmic aggregation of fused in sarcoma (FUS is detected in brain regions affected by amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD, which compose the disease spectrum, FUS proteinopathy. To understand the pathomechanism of ALS-FTD-associated FUS, we examined the behavior and cellular properties of an ALS mouse model overexpressing FUS with nuclear localization signal deletion. Mutant FUS transgenic mice showed hyperactivity, social interactional deficits, and impaired fear memory retrieval, all of which are compatible with FTD phenotypes. Histological analyses showed decreased dendritic spine and synaptic density in the frontal cortex before neuronal loss. Examination of cultured cells confirmed that mutant but not wild-type FUS was associated with decreased dendritic growth, mRNA levels, and protein synthesis in dendrites. These data suggest that cytoplasmic FUS aggregates impair dendritic mRNA trafficking and translation, in turn leading to dendritic homeostasis disruption and the development of FTD phenotypes.

  16. Protein homeostasis in models of aging and age-related conformational disease.

    Science.gov (United States)

    Kikis, Elise A; Gidalevitz, Tali; Morimoto, Richard I

    2010-01-01

    The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.

  17. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model.

    Science.gov (United States)

    Beaver, Laura M; Nkrumah-Elie, Yasmeen M; Truong, Lisa; Barton, Carrie L; Knecht, Andrea L; Gonnerman, Greg D; Wong, Carmen P; Tanguay, Robert L; Ho, Emily

    2017-05-01

    The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring's mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. Published by Elsevier Inc.

  18. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    Science.gov (United States)

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  19. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

    Directory of Open Access Journals (Sweden)

    Yan-Ling Yang

    Full Text Available BACKGROUND: Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS: Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE. The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS: In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION: Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.

  20. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy

    Directory of Open Access Journals (Sweden)

    Bodvaël Fraysse

    2016-11-01

    Full Text Available Autosomal dominant centronuclear myopathy (CNM is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2, a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content.

  1. Effect of Ozone on Intestinal Epithelial Homeostasis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Igor Sukhotnik

    2015-01-01

    Full Text Available Background: The positive effects of ozone therapy have been described in many gastrointestinal disorders. The mechanisms of this positive effect of ozone therapy are poorly understood. The purpose of the present study was to investigate whether the use of ozone may potentiate the gut intestinal mucosal homeostasis in a rat model. Methods: Adult rats weighing 250–280 g were randomly assigned to one of three experimental groups of 8 rats each: 1 Control rats were given 2 mL of water by gavage and intraperitoneally (IP for 5 days; 2 O3-PO rats were treated with 2 mL of ozone/oxygen mixture by gavage and 2 mL of water IP for 5 days; 3 O3-IP rats were treated with 2 mL of water by gavage and 2 mL of ozone/oxygen mixture IP for 5 days. Rats were sacrificed on day 6. Bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, and cell proliferation and apoptosis were evaluated following sacrifice. Results: The group of O3-IP rats demonstrated a greater jejunal and ileal villus height and crypt depth, a greater enterocyte proliferation index in jejunum, and lower enterocyte apoptosis in ileum compared to control animals. Oral administration of the ozone/oxygen mixture resulted in a less significant effect on cell turnover. Conclusions: Treatment with an ozone/oxygen mixture stimulates intestinal cell turnover in a rat model. Intraperitoneal administration of ozone resulted in a more significant intestinal trophic effect than oral administration.

  2. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy

    Directory of Open Access Journals (Sweden)

    Otto Manninen

    2015-12-01

    Full Text Available Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1 is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/− model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.

  3. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    NARCIS (Netherlands)

    Prawitt, Janne; Abdelkarim, Mouaadh; Stroeve, Johanna H. M.; Popescu, Iuliana; Duez, Helene; Velagapudi, Vidya R.; Dumont, Julie; Bouchaert, Emmanuel; van Dijk, Theo H.; Lucas, Anthony; Dorchies, Emilie; Daoudi, Mehdi; Lestavel, Sophie; Gonzalez, Frank J.; Oresic, Matej; Cariou, Bertrand; Kuipers, Folkert; Caron, Sandrine; Staels, Bart

    OBJECTIVE-Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role

  4. Glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: Beneficial effects of supplementation with microalgae Chlorella vulgaris: A double-blind placebo-controlled randomized clinical trial.

    Science.gov (United States)

    Ebrahimi-Mameghani, Mehrangiz; Sadeghi, Zahra; Abbasalizad Farhangi, Mahdieh; Vaghef-Mehrabany, Elnaz; Aliashrafi, Soodabeh

    2017-08-01

    Chlorella vulgaris (C. vulgaris) is reported to improve dyslipidemia and hypertension; however, its effect on inflammatory biomarkers and insulin resistance has not been noticed thus far. Non-alcoholic fatty liver disease (NAFLD) as a hepatic symptom of metabolic syndrome is strongly associated with insulin resistance and inflammation. In the current interventional trial, we aimed to study the effects of C. vulgaris supplementation on glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with NAFLD. Seventy NAFLD patients confirmed by ultra-sonographic findings were randomly assigned into intervention group (four 300 mg tablets of C. vulgaris) or placebo group (four 300 mg tablets of placebos) for 8 weeks. Anthropometric measurements, liver enzymes, fasting serum glucose (FSG), insulin, high sensitive C-reactive protein (hs-CRP) and tumor necrosis factor-alpha (TNF-α) were assessed and homeostatic model assessment (HOMA) score for insulin resistance was estimated before and after the intervention. Anthropometric measurements decreased significantly in both group (p liver enzymes, FSG and hs-CRP also significantly decreased and serum insulin concentration and HOMA score increased significantly only in C. vulgaris-treated group (P liver function in patients with NAFLD. 201202233320N7. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice.

    Science.gov (United States)

    Pal, Martin; Wunderlich, Claudia M; Spohn, Gabriele; Brönneke, Hella S; Schmidt-Supprian, Marc; Wunderlich, F Thomas

    2013-01-01

    Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNK(C)). To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNK(C) mice were crossed to Mck-Cre mice yielding JNK(SM-C) mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNK(SM-C) mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance.

  6. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes.

    Science.gov (United States)

    Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P; Stanhope, Kimber L; Graham, James L; Havel, Peter J; Gomez-Pinilla, Fernando

    2014-09-01

    The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, pT2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  8. Sleep homeostasis.

    Science.gov (United States)

    Porkka-Heiskanen, Tarja

    2013-10-01

    Research on sleep homeostasis aims to answer the question: how does the brain measure the duration and intensity of previous wakefulness in order to increase the duration and intensity of subsequent sleep? The search of regulatory factors has identified a number of potential molecules that increase their concentration in waking and decrease it during sleep. These factors regulate many physiological functions, including energy metabolism, neural plasticity and immune functions and one molecule may participate in the regulation of all these functions. The method to study regulation of sleep homeostasis is experimental prolongation of waking, which is used also to address the question of physiological purpose of sleep: prolonging wakefulness provokes symptoms that tell us what goes wrong during lack of sleep. The interpretation of the role of each identified factor in the regulation of sleep/sleep homeostasis reflects the theoretical background concept of the research. Presently three main concepts are being actively studied: the energy (depletion) hypothesis, the neural plasticity hypothesis and the (immune) defense hypothesis.

  9. Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Thorsteinsdottir, Unnur Arna; Lambert, Ian Henry

    2014-01-01

    Cisplatin resistance is a major challenge in the treatment of cancer and develops through reduced drug accumulation and an increased ability to avoid drug-induced cell damage, cell shrinkage, and hence initiation of apoptosis. Uptake and release of the semiessential amino acid taurine contribute...... to cell volume homeostasis, and taurine has been reported to have antiapoptotic effects. Here we find that volume-sensitive taurine release in cisplatin-sensitive [wild-type (WT)] human ovarian cancer A2780 cells is reduced in the presence of the phospholipase A2 inhibitor bromenol lactone, the 5......-induced cell death in RES A2780 cells correlates with an increased accumulation of taurine, due to an increased taurine uptake and a concomitant impairment of the volume-sensitive taurine release pathway, as well an inability to reduce cell volume after osmotic cell swelling. Downregulation of volume...

  10. Common genetic determinants of glucose homeostasis in healthy children

    DEFF Research Database (Denmark)

    Kelliny, Clara; Ekelund, Ulf; Andersen, Lars Bo

    2009-01-01

    ) were genotyped in 2,025 healthy European children aged 9-11 and 14-16 years. Associations with fasting glucose, insulin, homeostasis model assessment (HOMA)-insulin resistance (IR) and HOMA-B were investigated along with those observed for type 2 diabetes variants available in this study (CDKN2A/B, IGF...

  11. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis. Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  12. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    Directory of Open Access Journals (Sweden)

    Maria Emilia Isolani

    Full Text Available Matrix metalloproteinases (MMPs are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2 are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi. Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues

  13. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    Science.gov (United States)

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  14. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    Science.gov (United States)

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  15. Abnormal Ca2+ homeostasis, atrial arrhythmogenesis and sinus node dysfunction in murine hearts modelling RyR2 modification

    Directory of Open Access Journals (Sweden)

    Yanmin eZhang

    2013-06-01

    Full Text Available RyR2 mutations are implicated in catecholaminergic polymorphic ventricular tachycardia thought to result from altered myocyte Ca2+ homeostasis reflecting inappropriate ‘leakiness’ of RyR2-Ca2+ release channels arising from increases in their basal activity, alterations in their phosphorylation, or defective interactions with other molecules or ions. The latter include calstabin, calsequestrin-2, Mg2+, and extraluminal or intraluminal Ca2+. Recent clinical studies additionally associate RyR2 abnormalities with atrial arrhythmias including atrial tachycardia, fibrillation and standstill, and sinus node dysfunction. Some RyR2 mutations associated with CPVT in mouse models also show such arrhythmias that similarly correlate with altered Ca2+ homeostasis. Some examples show evidence for increased Ca2+/calmodulin-dependent protein kinase II phosphorylation of RyR2. A homozygotic RyR2-P2328S variant demonstrates potential arrhythmic substrate resulting from reduced conduction velocity in addition to delayed afterdepolarizations and ectopic action potential firing. Finally, one model with an increased RyR2 activity in the sino-atrial node shows decreased automaticity in the presence of Ca2+-dependent decreases in ICa,L and diastolic sarcoplasmic reticular Ca2+ depletion.

  16. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men

    OpenAIRE

    Slivkoff-Clark, Karin M; James, Anthony P; Mamo, John CL

    2012-01-01

    Abstract Background Visceral obesity and insulin resistance are associated with a postprandial accumulation of atherogenic chylomicron remnants that is difficult to modulate with lipid-lowering therapies. Dietary fish oil and exercise are cardioprotective interventions that can significantly modify the metabolism of TAG-rich lipoproteins. In this study, we investigated whether chronic exercise and fish oil act in combination to affect chylomicron metabolism in obese men with moderate insulin ...

  17. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown...... to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene......, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular...

  18. Implication of a novel Gla-containing protein, Gas6 in the pathogenesis of insulin resistance, impaired glucose homeostasis, and inflammation: A review.

    Science.gov (United States)

    Dihingia, Anjum; Kalita, Jatin; Manna, Prasenjit

    2017-06-01

    Growth arrest specific 6 (Gas6), a vitamin K-dependent protein plays a significant role in the regulation of cellular homeostasis via binding with TAM-receptor tyrosine kinases. Several studies reported the role of Gas6 in cancer, glomerular injury, obesity, and inflammation, however, very little is known about its role in insulin resistance (IR) and impaired glucose metabolism. Majority of the studies reported an inverse correlation of Gas6 protein levels or gene polymorphism with plasma glucose, HbA1c, IR, and inflammatory cytokines among type 2 diabetes (T2D) and obese subjects. However, few studies reported a positive correlation of Gas6 protein levels or gene polymorphism with IR and inflammation among obese subjects. This review for the first time provides an overview of the association of Gas6 protein levels or gene polymorphism with IR, glucose intolerance, and inflammation among T2D and obese subjects. This review also depicts the probable mechanism underlying the association of Gas6 with glucose intolerance and inflammation. The outcome of this review will increase the understanding about the role of Gas6 in the pathogenesis of IR, glucose intolerance and inflammation and that should in turn lead to the design of clinical interventions to improve glucose metabolism and the lives of the T2D patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dose and Latency Effects of Leucine Supplementation in Modulating Glucose Homeostasis: Opposite Effects in Healthy and Glucocorticoid-Induced Insulin-Resistance States

    Directory of Open Access Journals (Sweden)

    Nelo Eidy Zanchi

    2012-11-01

    Full Text Available Dexamethasone (DEXA is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e.g., reduced insulin levels only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.

  20. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  1. Tumour resistance to cisplatin: a modelling approach

    International Nuclear Information System (INIS)

    Marcu, L; Bezak, E; Olver, I; Doorn, T van

    2005-01-01

    Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure

  2. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    The number of people suffering from diabetes is hastily increasing and the condition is associated with altered brain glucose homeostasis. Brain glycogen is located in astrocytes and being a carbohydrate reservoir it contributes to glucose homeostasis. Furthermore, glycogen has been indicated...

  3. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  4. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.

    Science.gov (United States)

    Sandefur, Conner I; Boucher, Richard C; Elston, Timothy C

    2017-08-29

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.

  5. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    2005-01-01

    The minimal model was proposed in the late 1970s by Bergman et al. as a powerful model consisting of three differential equations describing the glucose and insulin kinetics of a single individual. Considering the glucose and insulin simultaneously, the minimal model is a highly ill-posed estimat...

  6. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  7. Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance

    Directory of Open Access Journals (Sweden)

    Palou Mariona

    2010-08-01

    Full Text Available Abstract Aim We aimed to characterize the lasting effect of moderate caloric restriction during early pregnancy on offspring energy homeostasis, by focusing on the effects on food intake and body weight as well as on the insulin and leptin systems. Methods Male and female offspring of 20% caloric restricted dams (from 1 to 12 days of pregnancy (CR and from control dams were studied. These animals were fed after weaning with a normal-fat (NF diet until the age of 4 months, and then moved to a high-fat (HF diet. Blood parameters were measured under fed and 14-h fasting conditions at different ages (2, 4 and 5 months. Food preferences were also assessed in adult animals. Results Accumulated caloric intake from weaning to the age of 5 months was higher in CR animals compared with their controls, and this resulted in higher body weight in adulthood in males, but not in females. Both male and female CR animals already showed higher insulin levels at the age of 2 months, under fed conditions, and higher HOMA-IR from the age of 4 months, compared with their controls. CR male animals, but not females, displayed higher preference for fat-rich food than their controls in adulthood and higher circulating leptin levels when they were under HF diet. Conclusion It is suggested that hyperinsulinemia may play a role in the etiology of hyperphagia in the offspring of caloric restricted animals during gestation, with different outcomes on body weight depending on the gender, which could be associated with different programming effects on later leptin resistance.

  8. Sieving through gut models of colonization resistance.

    Science.gov (United States)

    Mullineaux-Sanders, Caroline; Suez, Jotham; Elinav, Eran; Frankel, Gad

    2018-02-01

    The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.

  9. Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion.

    Directory of Open Access Journals (Sweden)

    Jami Pekkanen

    Full Text Available Car following (CF models used in traffic engineering are often criticized for not incorporating "human factors" well known to affect driving. Some recent work has addressed this by augmenting the CF models with the Task-Capability Interface (TCI model, by dynamically changing driving parameters as function of driver capability. We examined assumptions of these models experimentally using a self-paced visual occlusion paradigm in a simulated car following task. The results show strong, approximately one-to-one, correspondence between occlusion duration and increase in time headway. The correspondence was found between subjects and within subjects, on aggregate and individual sample level. The long time scale aggregate results support TCI-CF models that assume a linear increase in time headway in response to increased distraction. The short time scale individual sample level results suggest that drivers also adapt their visual sampling in response to transient changes in time headway, a mechanism which isn't incorporated in the current models.

  10. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.

    Science.gov (United States)

    Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian

    2018-02-01

    Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

  11. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain.

    Science.gov (United States)

    Xie, Wenrui; Chen, Sisi; Strong, Judith A; Li, Ai-Ling; Lewkowich, Ian P; Zhang, Jun-Ming

    2016-08-17

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory

  12. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    Science.gov (United States)

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  13. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    Energy Technology Data Exchange (ETDEWEB)

    Neubeck, Claere von [German Cancer Consortium DKTK partner site Dresden, OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Geniza, Matthew J. [Molecular and Cellular Biology Program, Oregon State University, Corvallis OR 97331 (United States); Kauer, Paula M.; Robinson, R. Joe; Chrisler, William B. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States); Sowa, Marianne B., E-mail: marianne.sowa@pnnl.gov [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States)

    2015-05-15

    Highlights: • Low doses of high LET radiation influence skin homeostasis. • Effects on proliferation and differentiation profiles are LET dependent. • Skin barrier function is not compromised following low dose exposure. - Abstract: Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  14. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    International Nuclear Information System (INIS)

    Neubeck, Claere von; Geniza, Matthew J.; Kauer, Paula M.; Robinson, R. Joe; Chrisler, William B.; Sowa, Marianne B.

    2015-01-01

    Highlights: • Low doses of high LET radiation influence skin homeostasis. • Effects on proliferation and differentiation profiles are LET dependent. • Skin barrier function is not compromised following low dose exposure. - Abstract: Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts

  15. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  16. Models of energy homeostasis in response to maintenance of reduced body weight

    Science.gov (United States)

    Rosenbaum, Michael; Leibel, Rudolph L.

    2016-01-01

    Objective To test 3 proposed models for adaptive thermogenesis in compartments of energy expenditure following different degrees of weight loss. Specifically, 1.) There is no adaptive thermogenesis (constant relationship of energy expenditure (EE) to metabolic mass). 2.) There is a fixed degree of adaptive thermogenesis once fat stores are below a “threshold”. 3.) The degree of adaptive thermogenesis is proportional to weight loss. Methods The relationship between weight loss and EE was examined in seventeen weight stable in-patient subjects with obesity studied at usual weight and again following a 10% and a 20% weight loss. Results Following initial weight loss (10%), resting (REE) and non-resting (NREE) EE were significantly below those predicted on the basis of the amount and composition of weight lost. Further reductions below predicted values of NREE but not REE occurred following an additional 10% weight loss. Changes in body weight, composition, and/or energy stores were significantly correlated with changes in EE. Conclusion All models are applicable to the decline in EE following weight loss. The disproportionate decline in REE is consistent with a threshold model (no change with further weight loss) while the disproportionate decline in NREE is largely reflective of the degree of weight loss. PMID:27460711

  17. (+-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Glucose transporter 4 (GLUT4 is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM. Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+-Rutamarin (Rut functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα, Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.

  18. The Association of Unintentional Changes in Weight, Body Composition, and Homeostasis Model Assessment Index with Glycemic Progression in Non-Diabetic Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Eun-Jung Rhee

    2011-04-01

    Full Text Available BackgroundWe performed a retrospective longitudinal study on the effects of changes in weight, body composition, and homeostasis model assessment (HOMA indices on glycemic progression in subjects without diabetes during a four-year follow-up period in a community cohort without intentional intervention.MethodsFrom 28,440 non-diabetic subjects who participated in a medical check-up program in 2004, data on anthropometric and metabolic parameters were obtained after four years in 2008. Body composition analyses were performed with a bioelectrical impedance analyzer. Skeletal muscle index (SMI, % was calculated with lean mass/weight×100. Subjects were divided into three groups according to weight change status in four years: weight loss (≤-5.0%, stable weight (-5.0 to 5.0%, weight gain (≥5.0%. Progressors were defined as the subjects who progressed to impaired fasting glucose or diabetes.ResultsProgressors showed worse baseline metabolic profiles compared with non-progressors. In logistic regression analyses, the increase in changes of HOMA-insulin resistance (HOMA-IR in four years presented higher odds ratios for glycemic progression compared with other changes during that period. Among the components of body composition, a change in waist-hip ratio was the strongest predictor, and SMI change in four years was a significant negative predictor for glycemic progression. Changes in HOMA β-cell function in four years was a negative predictor for glycemic progression.ConclusionIncreased interval changes in HOMA-IR, weight gain and waist-hip ratio was associated with glycemic progression during a four-year period without intentional intervention in non-diabetic Korean subjects.

  19. Transgenic medaka fish as models to analyze bone homeostasis under micro-gravity conditions in vivo

    Science.gov (United States)

    Winkler, C.; Wagner, T.; Renn, J.; Goerlich, R.; Schartl, M.

    Long-term space flight and microgravity results in bone loss that can be explained by reduced activity of bone-forming osteoblast cells and/or an increase in activity of bone resorbing osteoclast cells. Osteoprotegerin (OPG), a secreted protein of 401 amino acids, has been shown to regulate the balance between osteoblast and osteoclast formation and thereby warrants constant bone mass under normal gravitational conditions. Consistent with this, earlier reports using transgenic mice have shown that increased activation of OPG leads to exc essive bone formation (osteopetrosis), while inactivation of OPG leads to bone loss (osteoporosis). Importantly, it has recently been reported that expression of murine OPG is regulated by vector averaged gravity (Kanematsu et al., 2002, Bone 30, p553). The small bony fish medaka (Oryzias latipes ) has attracted increasing attention as genetic model system to study developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two related genes, opr-1 and opr -2, from medaka. Our phylogenetic analysis revealed that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian OPG gene. Both opr genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast cells. We have characterized their promoter regions and identified consensus binding sites for transcription factors of the bone-morphogenetic-protein (BMP) p thway and for core-binding-factor-1Aa (cbfa1). Cbfa1 has been shown to be the key regulator of OPG expression during several steps of osteoblast differentiation in mammals. This opens the possibility that the mechanisms controlling bone formation in teleost fish and higher vertebrates are regulated by related mechanisms. We are currently generating transgenic medakafish expressing a GFP reporter gene under control of the

  20. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  1. Tim-3/galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Tang, Zhao-Hui; Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan; Li, Zhiping

    2013-02-15

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti-IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl(2)MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3(+) NKT cells are in an activated state, and Gal-9 directly induces Tim-3(+) NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3-expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9-signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD.

  2. Tim-3/Galectin-9 Regulate the Homeostasis of Hepatic NKT Cells in a Murine Model of Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan

    2013-01-01

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti–IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl2MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3+ NKT cells are in an activated state, and Gal-9 directly induces Tim-3+ NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3–expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9–signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD. PMID:23296703

  3. Sodium homeostasis is preserved in a global 11β-hydroxysteroid dehydrogenase type 1 knockout mouse model

    DEFF Research Database (Denmark)

    Christensen, Thorbjørn H; Bailey, Matthew A; Kenyon, Christopher J

    2015-01-01

    activation and renal sodium transporter expression. We found no significant effects on renal sodium or water excretion. Any effect of renal 11βHSD1 on sodium homeostasis is subtle. Glucocorticoids act in the kidney to regulate glomerular haemodynamics and tubular sodium transport; the net effect favours...

  4. Serum uric acid levels are associated with homeostasis model assessment in obese nondiabetic patients: HOMA and uric acid.

    Science.gov (United States)

    Elizalde-Barrera, Cesar I; Estrada-García, Teresa; Lozano-Nuevo, Jose J; Garro-Almendaro, Ana K; López-Saucedo, Catalina; Rubio-Guerra, Alberto F

    2017-10-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid. The aim of this study was to evaluate whether there is a correlation between serum uric acid levels with homeostatic model assessment (HOMA) 1 in nondiabetic patients. We evaluated 88 nondiabetic patients, in whom uric acid levels were measured, in all of them HOMA of β-cell function (HOMA 1B) and HOMA of insulin resistance (HOMA 1IR) scores were performed. Uric acid and the HOMA 1 values were correlated using the Pearson coefficient. We did not find any correlation between uric acid levels with both HOMA 1B ( r = 0.102, p = 0.343), nor with HOMA 1IR ( r = 0.158, p = 0.117). When patients were analyzed by sex, we found a significant correlation with HOMA 1IR (0.278, p = 0.01), but not with HOMA 1B (0.138, p = 0.257) in women. We found a correlation with HOMA 1B in men ( r = 0.37, p = 0.044), but not with HOMA 1IR: 0.203, p = 0.283. The analysis performed based on body mass index did not show correlation in the patients with normal weight, (HOMA 1B r = 0.08, p = 0.5, HOMA 1IR = 0.034, p = 0.793), nor in the patients who were overweight (HOMA 1B: r = 0.05, p = 0.76, HOMA 1IR r = 0.145, p = 0.43). However, a significant correlation between uricemia with both HOMA 1B (0.559, p HOMA 1IR (0.326, p < 0.05), was observed in obese patients. Our results suggest that serum uric acid levels seem to be associated with insulin resistance in women, and in obese patients, but not in nonobese men. Uric acid also modifies β-cell function in men and in obese patients.

  5. Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory

    International Nuclear Information System (INIS)

    Huang Da; Wu Jun-Jie; Tang Yu-Hua

    2013-01-01

    With the progress of the semiconductor industry, the resistive random-access memory (RAM) has drawn increasing attention. The discovery of the memristor has brought much attention to this study. Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms. We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models. Finally, simulations are presented. We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms, which are applied to explain their resistive switchings

  6. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C-W.; Biggar, K.K.; Storey, K.B. [Carleton University, Department of Biology, Institute of Biochemistry, Ottawa, ON (Canada)

    2013-01-28

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

  7. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    International Nuclear Information System (INIS)

    Wu, C-W.; Biggar, K.K.; Storey, K.B.

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans

  8. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    Science.gov (United States)

    Wu, C-W.; Biggar, K.K.; Storey, K.B.

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans. PMID:23314346

  9. Diseases of Pulmonary Surfactant Homeostasis

    Science.gov (United States)

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  10. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model......, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization...... including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia...

  11. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  12. Evaluation of the Genetic and Nutritional Control of Obesity and Type 2 Diabetes in a Novel Mouse Model on Chromosome 7: An Insight into Insulin Signaling and Glucose Homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.; Dhar, M.

    2003-01-01

    Obesity is the main cause of type 2 diabetes, accounting for 90-95% of all diabetes cases in the US. Human obesity is a complex trait and can be studied using appropriate mouse models. A novel polygenic mouse model for studying the genetic and environmental contributions to and the physiological ramifications of obesity and related phenotypes is found in specific lines of mice bred and maintained at Oak Ridge National Laboratory. Heterozygous mice with a maternally inherited copy of two radiation-induced deletions in the p region of mouse chromosome 7, p23DFioD and p30PUb, have significantly greater body fat and show hyperinsulinemia compared to the wild-type. A single gene, Atp10c, maps to this critical region and codes for a putative aminophospholipid translocase. Biochemical and molecular studies were initiated to gain insight into obesity and glucose homeostasis in these animals and to study the biological role of Atp10c in creating these phenotypes. Glucose and insulin tolerance tests were standardized for the heterozygous p23DFioD and control mice on a custom-made diet containing 20% protein, 70% carbohydrate, and 10% fat (kcal). Atp10c expression profiles were also generated using Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). Heterozygous p23DFioD animals showed insulin resistance after receiving a dose of either 0.375 or 0.75 U/kg Illetin R insulin. RT-PCR data also shows differences in Atp10c expression in the mutants versus control mice. Using these standardized biochemical assays, future studies will further the understanding of genetic and nutritional controls of glucose homeostasis and obesity in animal models and subsequently in human populations.

  13. Studies of acid-base homeostasis during simulated weightlessness: Application of the water immersion model to man

    Science.gov (United States)

    Epstein, M.

    1975-01-01

    The effects of water immersion on acid-base homeostasis were investigated under carefully controlled conditions. Studies of renal acidification were carried out on seven healthy male subjects, each consuming a diet containing 150 meq sodium and 100 meq potassium. Control and immersion studies were carried out on each subject on the fourth and sixth days, respectively, of dietary equilibration, by which time all subjects had achieved sodium balance. The experimental protocols on study days were similar (except for the amount of water administered).

  14. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  15. Effect of non-surgical periodontal therapy on insulin resistance in patients with type II diabetes mellitus and chronic periodontitis, as assessed by C-peptide and the Homeostasis Assessment Index.

    Science.gov (United States)

    Mammen, Jerry; Vadakkekuttical, Rosamma Joseph; George, Joseraj Manaloor; Kaziyarakath, Jaishid Ahadal; Radhakrishnan, Chandni

    2017-08-01

    A bidirectional relationship exists between diabetes and periodontitis. In the present clinical trial, we evaluated the effects of non-surgical periodontal therapy (NSPT) on insulin resistance in patients with type II diabetes mellitus (DM) and chronic periodontitis. Forty chronic periodontitis patients with type II DM were selected and equally allocated to case and control groups. All patients were assessed for periodontal parameters and systemic parameters. The case group received NSPT, and both groups were re-evaluated after 3 months. All periodontal parameters were found to be significantly improved in the case group compared to the control group 3 months after NSPT. The mean differences in systemic parameters, such as fasting serum C-peptide, Homeostasis Assessment (HOMA) Index-insulin resistance, and HOMA-insulin sensitivity, from baseline to 3 months for the case group were 0.544 ± 0.73, 0.54 ± 0.63, and -25.44 ± 36.81, respectively; for the control group, they were significant at -1.66 ± 1.89, -1.48 ± 1.86, and 31.42 ± 38.82 respectively (P periodontal inflammation could affect glycemic control and insulin resistance. Effective periodontal therapy reduced insulin resistance and improved periodontal health status and insulin sensitivity in patients with type II DM and chronic periodontitis. © 2016 John Wiley & Sons Australia, Ltd.

  16. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity.

    Science.gov (United States)

    Liu, Shuantao; Liu, Shuwei; Wang, Mei; Wei, Tiandi; Meng, Chen; Wang, Meng; Xia, Guangmin

    2014-01-01

    Plant growth inhibition is a common response to salinity. Under saline conditions, Shanrong No. 3 (SR3), a bread wheat (Triticum aestivum) introgression line, performs better than its parent wheat variety Jinan 177 (JN177) with respect to both seedling growth and abiotic stress tolerance. Furthermore, the endogenous reactive oxygen species (ROS) was also elevated in SR3 relative to JN177. The SR3 allele of sro1, a gene encoding a poly(ADP ribose) polymerase (PARP) domain protein, was identified to be crucial for both aspects of its superior performance. Unlike RADICAL-INDUCED CELL DEATH1 and other Arabidopsis thaliana SIMILAR TO RCD-ONE (SRO) proteins, sro1 has PARP activity. Both the overexpression of Ta-sro1 in wheat and its heterologous expression in Arabidopsis promote the accumulation of ROS, mainly by enhancing the activity of NADPH oxidase and the expression of NAD(P)H dehydrogenase, in conjunction with the suppression of alternative oxidase expression. Moreover, it promotes the activity of ascorbate-GSH cycle enzymes and GSH peroxidase cycle enzymes, which regulate ROS content and cellular redox homeostasis. sro1 is also found to be involved in the maintenance of genomic integrity. We show here that the wheat SRO has PARP activity; such activity could be manipulated to improve the growth of seedlings exposed to salinity stress by modulating redox homeostasis and maintaining genomic stability.

  17. A Wheat SIMILAR TO RCD-ONE Gene Enhances Seedling Growth and Abiotic Stress Resistance by Modulating Redox Homeostasis and Maintaining Genomic Integrity[C][W

    Science.gov (United States)

    Liu, Shuantao; Liu, Shuwei; Wang, Mei; Wei, Tiandi; Meng, Chen; Wang, Meng; Xia, Guangmin

    2014-01-01

    Plant growth inhibition is a common response to salinity. Under saline conditions, Shanrong No. 3 (SR3), a bread wheat (Triticum aestivum) introgression line, performs better than its parent wheat variety Jinan 177 (JN177) with respect to both seedling growth and abiotic stress tolerance. Furthermore, the endogenous reactive oxygen species (ROS) was also elevated in SR3 relative to JN177. The SR3 allele of sro1, a gene encoding a poly(ADP ribose) polymerase (PARP) domain protein, was identified to be crucial for both aspects of its superior performance. Unlike RADICAL-INDUCED CELL DEATH1 and other Arabidopsis thaliana SIMILAR TO RCD-ONE (SRO) proteins, sro1 has PARP activity. Both the overexpression of Ta-sro1 in wheat and its heterologous expression in Arabidopsis promote the accumulation of ROS, mainly by enhancing the activity of NADPH oxidase and the expression of NAD(P)H dehydrogenase, in conjunction with the suppression of alternative oxidase expression. Moreover, it promotes the activity of ascorbate-GSH cycle enzymes and GSH peroxidase cycle enzymes, which regulate ROS content and cellular redox homeostasis. sro1 is also found to be involved in the maintenance of genomic integrity. We show here that the wheat SRO has PARP activity; such activity could be manipulated to improve the growth of seedlings exposed to salinity stress by modulating redox homeostasis and maintaining genomic stability. PMID:24443520

  18. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  19. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats

    OpenAIRE

    Antunes, Luciana C.; Elkfury, Jessica L.; Jornada, Manoela N.; Foletto, Kelly C.; Bertoluci, Marcello C.

    2016-01-01

    ABSTRACT Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was ...

  20. Disruption of redox homeostasis in liver function and activation of apoptosis on consumption of aspartame in folate deficient rat model

    Directory of Open Access Journals (Sweden)

    Ashok Iyaswamy

    2017-06-01

    Full Text Available This study assesses the effect of long-term intake of aspartame on liver function and apoptosis signaling pathway in the Wistar albino rats. Several reports have suggested that methanol is one of the major metabolites of Aspartame. Non-primate animals are usually resistant to methanol-induced metabolic acidosis due to high levels of hepatic folate content; hence a folate deficiency model was induced by treating animals with methotrexate (MTX prior to aspartame exposure. The aspartame treated MTX animals exhibited a marked significant increase in hepatic alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP and lactic acid dehydrogenase (LDH activity compared to controls. Aspartame treated MTX animals additionally exhibited down-regulation of genes namely B-cell lymphoma 2 (Bcl2 expression and up-regulation of Bcl-2-associated X protein (Bax, Fas-associated protein with death domain (FADD and Caspase 3, 9 genes and apoptotic protein expression, indicating the augmentation of hepatic apoptosis. Nuclear condensation, micro vacuole formation in the cytoplasm and necrosis were observed in the liver of the aspartame treated animals on histopathology evaluation. Additionally, Immunohistochemical analysis revealed a significant increase in positive cells expressing Fas, FADD, Bax and Caspase 9 protein, indicating an increase in apoptotic protein expression in the liver. Thus, Aspartame may act as a chemical stressor which alters the functional status of liver, leading to hepatotoxicity.

  1. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency.

    Science.gov (United States)

    Mokadem, Mohamad; Zechner, Juliet F; Margolskee, Robert F; Drucker, Daniel J; Aguirre, Vincent

    2014-04-01

    Glucagon-like peptide-1 (GLP-1) secretion is greatly enhanced after Roux-en-Y gastric bypass (RYGB). While intact GLP-1exerts its metabolic effects via the classical GLP-1 receptor (GLP-1R), proteolytic processing of circulating GLP-1 yields metabolites such as GLP-1(9-36)amide/GLP-1(28-36)amide, that exert similar effects independent of the classical GLP-1R. We investigated the hypothesis that GLP-1, acting via these metabolites or through its known receptor, is required for the beneficial effects of RYGB using two models of functional GLP-1 deficiency - α-gustducin-deficient (α-Gust (-/-)) mice, which exhibit attenuated nutrient-stimulated GLP-1 secretion, and GLP-1R-deficient mice. We show that the effect of RYGB to enhance glucose-stimulated GLP-1 secretion was greatly attenuated in α-Gust (-/-) mice. In both genetic models, RYGB reduced body weight and improved glucose homeostasis to levels observed in lean control mice. Therefore, GLP-1, acting through its classical GLP-1R or its bioactive metabolites, does not seem to be involved in the effects of RYGB on body weight and glucose homeostasis.

  2. Model of pulmonary fluid traffic homeostasis based on respiratory cycle pressure, bidirectional bronchiolo-pulmonar shunting and water evaporation.

    Science.gov (United States)

    Kurbel, Sven; Kurbel, Beatrica; Gulam, Danijela; Spajić, Borislav

    2010-06-01

    The main puzzle of the pulmonary circulation is how the alveolar spaces remain dry over a wide range of pulmonary vascular pressures and blood flows. Although normal hydrostatic pressure in pulmonary capillaries is probably always below 10 mmHg, well bellow plasma colloid pressure of 25 mmHg, most textbooks state that some fluid filtration through capillary walls does occur, while the increased lymph drainage prevents alveolar fluid accumulation. The lack of a measurable pressure drop along pulmonary capillaries makes the classic description of Starling forces unsuitable to the low pressure, low resistance pulmonary circulation. Here presented model of pulmonary fluid traffic describes lungs as a matrix of small vascular units, each consisting of alveoli whose capillaries are anastomotically linked to the bronchiolar capillaries perfused by a single bronchiolar arteriole. It proposes that filtration and absorption in pulmonary and in bronchiolar capillaries happen as alternating periods of low and of increased perfusion pressures. The model is based on three levels of filtration control: short filtration phases due to respiratory cycle of the whole lung are modulated by bidirectional bronchiolo-pulmonar shunting independently in each small vascular unit, while fluid evaporation from alveolar groups further tunes local filtration. These mechanisms are used to describe a self-sustaining regulator that allows optimal fluid traffic in different settings. The proposed concept is used to describe development of pulmonary edema in several clinical entities (exercise in wet or dry climate, left heart failure, people who rapidly move to high altitudes, acute cyanide and carbon monoxide poisoning, large pulmonary embolisms). .

  3. Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice.

    Science.gov (United States)

    Sharma, Rohit; Kapila, Rajeev; Dass, Gulshan; Kapila, Suman

    2014-01-01

    Imbalance in Th1/Th2 immune pathways and cellular antioxidant systems with progressive aging are among the leading causes of increased risk of morbidity and mortality in elderly. Although probiotics have been considered to boost immune system, there is a lack of comprehensive analysis of probiotic effects on aging physiology. The present study aimed at determining anti-immunosenescence potential of milk fermented with probiotic Lactobacillus rhamnosus (LR) in 16 months old mice by concurrent analysis of immunosenescence markers associated with Th1/Th2 profile of splenocytes, inflamm-aging in plasma, neutrophil functions and antibody response in intestine along with analysis of antioxidant enzymes in liver and red blood cells (RBCs) after feeding trials of 1 and 2 months, respectively. An enteropathogenic Escherichia coli (ATCC 14948)-based infection model in aging mice was also designed to validate protective attributes of LR. Splenocytes registered increased IFN-γ and decreased IL-4 and IL-10 production in LR-fed animals. Neutrophil respiratory burst enzymes and phagocytosis increased significantly while no aggravation in plasma levels of MCP-1 and TNF-α was observed. Further, owing to increased Th1 response, antibodies registered a decrease in IgG1/IgG2a ratio and IgE levels in LR groups. No significant variations were observed in secretory IgA and IgA + cells in the intestine. Antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in LR-fed groups recorded increased activities which were more pronounced in the liver than in RBCs. LR supplementation significantly reduced E. coli translocation to organs (intestine, liver, spleen, peritoneal fluid) by enhancing E. coli-specific antibodies (IgA and IgG1) and inflammatory proteins. In conclusion, LR supplementation alleviated immunosenescence-associated Th1/Th2 imbalance, improved antioxidant capacity, and enhanced resistance of aged mice to E. coli infection thereby signifying its potential

  4. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats

    DEFF Research Database (Denmark)

    Feigh, M; Henriksen, K; Andreassen, K V

    2011-01-01

    To investigate the effects of acute and chronic administration of a novel oral formulation of salmon calcitonin (sCT) on glycaemic control, glucose homeostasis and body weight regulation in diet-induced obese (DIO) rats-an animal model of obesity-related insulin resistance and type 2 diabetes....

  5. Estimation of insulin secretion, glucose uptake by tissues, and liver handling of glucose using a mathematical model of glucose-insulin homeostasis in lean and obese mice.

    Science.gov (United States)

    Brenner, Michael; Abadi, Sakineh Esmaeili Mohsen; Balouchzadeh, Ramin; Lee, H Felix; Ko, Hoo Sang; Johns, Michael; Malik, Nehal; Lee, Joshua J; Kwon, Guim

    2017-06-01

    Destruction of the insulin-producing β-cells is the key determinant of diabetes mellitus regardless of their types. Due to their anatomical location within the islets of Langerhans scattered throughout the pancreas, it is difficult to monitor β-cell function and mass clinically. To this end, we propose to use a mathematical model of glucose-insulin homeostasis to estimate insulin secretion, glucose uptake by tissues, and hepatic handling of glucose. We applied the mathematical model by Lombarte et al. (2013) to compare various rate constants representing glucose-insulin homeostasis between lean (11% fat)- and high fat diet (HFD; 45% fat)-fed mice. Mice fed HFD (n = 12) for 3 months showed significantly higher body weights (49.97 ± 0.52 g vs. 29.86 ± 0.46 g), fasting blood glucose levels (213.08 ± 10.35 mg/dl vs. 121.91 ± 2.26 mg/dl), and glucose intolerance compared to mice fed lean diet (n = 12). Mice were injected with 1 g/kg glucose intraperitoneally and blood glucose levels were measured at various intervals for 120 min. We performed simulation using Arena™ software based on the mathematical model and estimated the rate constants (9 parameters) for various terms in the differential equations using OptQuest™. The simulated data fit accurately to the observed data for both lean and obese mice, validating the use of the mathematical model in mice at different stages of diabetes progression. Among 9 parameters, 5 parameters including basal insulin, k 2 (rate constant for insulin-dependent glucose uptake to tissues), k 3 (rate constant for insulin-independent glucose uptake to tissues), k 4 (rate constant for liver glucose transfer), and I pi (rate constant for insulin concentration where liver switches from glucose release to uptake) were significantly different between lean- and HFD-fed mice. Basal blood insulin levels, k 3 , and I pi were significantly elevated but k 2 and k 4 were reduced in mice fed a HFD compared to those fed a lean diet. Non

  6. of Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2015-01-01

    Full Text Available Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs. ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement or physiological stages (i.e., puberty, pregnancy, and menopause, lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.

  7. Predictor model for seasonal variations in skid resistance, volume 1

    Science.gov (United States)

    Henry, J. J.; Saito, K.; Blackburn, R.

    1984-04-01

    Two models, utilizing data collected in 1979 and 1980, were developed to predict variations in skid resistance due to rainfall conditions, temperature effects, and time of the year. A generalized predictor model was developed from purely statistical considerations and a mechanistic model was developed from hypothesized mechanisms. This model may be utilized to estimate the skid resistance at any time in the season from a measurement made during the same season, or to adjust skid-resistance measurement made at any time during the season to the end-of-season level. The mechanistic model requires, in addition to the above inputs, two pavement properties describing the polishing characteristics of the aggregate and an estimate of the percent normalized gradient of the skid resistance. The application of these models is summarized.

  8. Validation of insulin resistance indexes in a stable renal transplant population

    NARCIS (Netherlands)

    Oterdoom, LH; De Vries, APJ; Van Son, WJ; Van Der Heide, JJH; Ploeg, RJ; Gansevoort, RT; De Jong, PE; Gans, ROB; Bakker, SJL

    2005-01-01

    OBJECTIVE - The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. RESEARCH DESIGN AND METHODS - Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin

  9. Validation of insulin resistance indexes in a stable renal transplant population

    NARCIS (Netherlands)

    Oterdoom, Leendert H.; de Vries, Aiko P. J.; van Son, Willem J.; Homan van der Heide, Jaap J.; Ploeg, Rutger J.; Gansevoort, Ron T.; de Jong, Paul E.; Gans, Rijk O. B.; Bakker, Stephan J. L.

    2005-01-01

    The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin sensitivity check index (QUICKI), and

  10. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  11. Filamentary model in resistive switching materials

    Science.gov (United States)

    Jasmin, Alladin C.

    2017-12-01

    The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.

  12. Testing and Modeling of Machine Properties in Resistance Welding

    DEFF Research Database (Denmark)

    Wu, Pei

    The objective of this work has been to test and model the machine properties including the mechanical properties and the electrical properties in resistance welding. The results are used to simulate the welding process more accurately. The state of the art in testing and modeling machine properties...... in resistance welding has been described based on a comprehensive literature study. The present thesis has been subdivided into two parts: Part I: Mechanical properties of resistance welding machines. Part II: Electrical properties of resistance welding machines. In part I, the electrode force in the squeeze...... it is lower than the spring force. The work in part I is focused on the dynamic mechanical properties of resistance welding machines. A universal method has been developed to characterize the dynamic mechanical behaviour of C-frame machines. The method is based on a mathematical model, in which three...

  13. A risk reduction model for late-onset preeclampsia: a theory for using low-intensity exercises to enhance cardiac homeostasis in nursing research and practice.

    Science.gov (United States)

    Yeo, SeonAe

    2011-01-01

    Viewing late-onset preeclampsia as an autonomic dysregulation is a new approach. It is one that will provide nurses and other clinicians with theory-based prenatal care choices that focus on enhancing homeostasis rather than prediction. The dominant prediction model manages the disease based on one biomedical pathway even though the disease is believed to be heterogeneous. Unlike early-onset preeclampsia, which involves severe placental pathophysiology and thus should be left for medical research, late-onset preeclampsia--intact placenta with maternal cardiovascular dysregulation--may be prevented with a lifestyle intervention, in particular, low-intensity exercise. This article discusses a nursing approach to promote health and reduce risks even when the etiology of the disease remains unknown.

  14. Structure of the Scientific Community Modelling the Evolution of Resistance

    OpenAIRE

    2007-01-01

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expec...

  15. Myths, models and mitigation of resistance to pesticides.

    Science.gov (United States)

    Hoy, M A

    1998-10-29

    Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. 'Resistance management' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a 'solution' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to

  16. A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization

    Science.gov (United States)

    Spicknall, Ian H.; Foxman, Betsy; Marrs, Carl F.; Eisenberg, Joseph N. S.

    2013-01-01

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection. PMID:23660797

  17. A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization.

    Science.gov (United States)

    Spicknall, Ian H; Foxman, Betsy; Marrs, Carl F; Eisenberg, Joseph N S

    2013-08-15

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection.

  18. Copper homeostasis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Shi, Xiaoshan; Darwin, K Heran

    2015-06-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host.

  19. Glucose Homeostasis Variables in Pregnancy versus Maternal and Infant Body Composition

    Directory of Open Access Journals (Sweden)

    Pontus Henriksson

    2015-07-01

    Full Text Available Intrauterine factors influence infant size and body composition but the mechanisms involved are to a large extent unknown. We studied relationships between the body composition of pregnant women and variables related to their glucose homeostasis, i.e., glucose, HOMA-IR (homeostasis model assessment-insulin resistance, hemoglobin A1c and IGFBP-1 (insulin-like growth factor binding protein-1, and related these variables to the body composition of their infants. Body composition of 209 women in gestational week 32 and of their healthy, singleton and full-term one-week-old infants was measured using air displacement plethysmography. Glucose homeostasis variables were assessed in gestational week 32. HOMA-IR was positively related to fat mass index and fat mass (r2 = 0.32, p < 0.001 of the women. Maternal glucose and HOMA-IR values were positively (p ≤ 0.006 associated, while IGFBP-1was negatively (p = 0.001 associated, with infant fat mass. HOMA-IR was positively associated with fat mass of daughters (p < 0.001, but not of sons (p = 0.65 (Sex-interaction: p = 0.042. In conclusion, glucose homeostasis variables of pregnant women are related to their own body composition and to that of their infants. The results suggest that a previously identified relationship between fat mass of mothers and daughters is mediated by maternal insulin resistance.

  20. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance.

    Science.gov (United States)

    Boëlle, Pierre-Yves; Thomas, Guy

    2016-12-01

    The rise of bacterial resistance to antibiotics is a major Public Health concern. It is the result of two interacting processes: the selection of resistant bacterial strains under exposure to antibiotics and the dissemination of bacterial strains throughout the population by contact between colonized and uncolonized individuals. To investigate the resulting time evolution of bacterial resistance, Temime et al. (Emerg Infect Dis 9:411-417, 2003) developed a stochastic SIS model, which was structured by the level of resistance of bacterial strains. Here we study the asymptotic properties of this model when the population size is large. To this end, we cast the model within the framework of measure valued processes, using point measures to represent the pattern of bacterial resistance in the compartments of colonized individuals. We first show that the suitably normalized model tends in probability to the solution of a deterministic differential system. Then we prove that the process of fluctuations around this limit tends in law to a Gaussian process in a space of distributions. These results, which generalize those of Kurtz (CBMS-NSF regional conference series in applied mathematics, vol 36. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1981, chap. 8) on SIR models, support the validity of the deterministic approximation and quantify the rate of convergence.

  1. Índice HOMA (homeostasis model assessment na prática clínica: uma revisão HOMA (homeostasis model assessment index in clinical practice: a review

    Directory of Open Access Journals (Sweden)

    Ernesto Pereira de Oliveira

    2005-08-01

    Full Text Available INTRODUÇÃO: Progressivamente, desde a década de 1980, a resistência à insulina vem sendo associada ao risco de doenças cardiovasculares e diabetes mellitus tipo 2. Um dos métodos mais empregados para sua estimativa é o índice HOMA que, embora bem estabelecido para estudos epidemiológicos, ainda carece de resultados consensuais para aplicação mais consistente na prática clínica, campo em que ampliaria a possibilidade de antecipação de medidas preventivas. MÉTODO: Conduzimos uma revisão sistemática nesse campo, considerando o período 2000-2004. RESULTADOS: No período, a sigla HOMA aparece em 670 artigos, dos quais 49 foram selecionados pela ênfase na utilização na prática clínica. A maioria traz o índice como medida de desfecho em ensaios terapêuticos e são poucos aqueles com desenho mais apropriado à avaliação de testes de diagnóstico. DISCUSSÃO: O índice HOMA apresenta uma variabilidade que reduz a sensibilidade e a especificidade do método, assim como o poder discriminatório entre resultados, o que limita seu uso na prática clínica, mas não impede sua aplicação em estudos epidemiológicos de base populacional. CONCLUSÃO: Os resultados apontam para a necessidade de uma padronização das condições de realização do teste, a definição de um valor de corte mais amplamente aplicável e critérios para interpretação e utilização dos resultados.INTRODUCTION: Since the 1980’s, insulin resistance (IR has been associated to the risk of cardiovascular disease and type 2 diabetes mellitus. HOMA index is one of the methods used for IR measurement, mainly in epidemiological studies. However, the current state of application of this index in clinical practice, where it should be helpful in the anticipation of preventive intervention, still needs to achieve consensual results. METHOD: A systematic review of the literature, from 2000 to 2004, relating to HOMA index in clinical practice. RESULTS: Among 670

  2. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yuan-Horng [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Charles, Chou C.-K. [Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan (China); Wang, Jyh-Seng [Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Li, Ya-Ru; Lo, Kai [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2014-12-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic

  3. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  4. An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML. Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. Results The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity

  5. Violation of homeostasis of the main types of exchange and immune resistance status in children with subclinical hypovitaminosis in conditions of exposure to chemical environmental factors

    Directory of Open Access Journals (Sweden)

    A.M. Yambulatov

    2016-03-01

    Full Text Available The study of the chemical substances’ content of anthropogenic origin in children with subclinical polyhypovitaminosis was conducted. It was found that a deficiency of vitamins A, C, E, B6 and B12 increases the risk of developing of elevated concentrations of organic substances of technogenic origin in blood in 1.4–6.9 times. In children with subclinical polyhypovitaminosis and high blood phenol, formaldehyde, aromatic hydrocarbons, and organ chlorine compounds increases the tension of erythropoiesis, decreases the activity of proliferating processes of lympfomonocytic germ cell factors of nonspecific resistance. Even subclinical forms of polyhypovitaminosis on the background of high content of organic compounds in the blood of children are accompanied by a slowdown of protein and carbohydrate metabolism, depletion of antioxidant defense system of reserves and shortage of energy metabolism. Developing disorders of fat metabolism in children with subclinical polyhypovitaminosis occur against a background of strained reactions of hormonal regulation that, in case of the progressive course may pose a threat to the early development of cardiovascular disease in older age groups.

  6. A New Product Development Partnership Model for Antibiotic Resistance.

    Science.gov (United States)

    Billington, John K

    2016-05-01

    Antibiotics have prevented countless deaths from common infections and have made possible many modern medical procedures. Over the past few decades, antibiotic-resistant bacteria have become a global threat, spreading between healthcare facilities and throughout communities worldwide at an alarming pace. Antibiotic overuse and misuse in humans, animals, and the environment accelerate resistance by selecting for bacteria with antibiotic-resistant traits, which then become predominant and infect others. Meanwhile, few antibiotics remain active against the most resistant bacteria. There is an urgent need for new antibiotics and other antibacterial products to replace second-line and last resort therapies when they no longer work. This Article proposes a new U.S.-based, non-governmental, not-for-profit product development partnership (PDP) model specifically designed for antibacterial development. This new model should both supplement and complement existing government-led efforts and should be built with mechanisms in place to balance the values of innovation, access, and conservation.

  7. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson

    2008-01-01

    The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  8. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  9. Severe Insulin Resistance Improves Immediately After Sleeve Gastrectomy

    OpenAIRE

    Sharma, Rahul; Hassan, Chandra; Chaiban, Joumana T.

    2016-01-01

    Introduction. Obese individuals exhibit insulin resistance often leading to adverse health outcomes. When compared with intensive medical therapy, bariatric surgery has shown better outcomes mainly in terms of insulin resistance and glycemic control. Using the Homeostasis Model Assessment of insulin resistance (HOMA-IR), we report herein a case illustrating a drastic improvement in severe insulin resistance after sleeve gastrectomy in the immediate postoperative period. Case Report. A patient...

  10. Modeling of EUV photoresists with a resist point spread function

    International Nuclear Information System (INIS)

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01

    Extreme ultraviolet (EUV) lithography is under development for possible deployment at the 32-nm technology node. One active area of research in this field is the development of photoresists that can meet the stringent requirements (high resolution, high sensitivity, low LER, etc.) of lithography in this regime. In order to facilitate research in this and other areas related to EUV lithography, a printing station based upon the 0.3-NA Micro Exposure Tool (MET) optic was established at the Advanced Light Source, a synchrotron facility at Lawrence Berkeley National Laboratory. A resist modeling technique using a resist point spread function has been shown to have good agreement with experiments for certain EUV resists such as Shipley EUV-2D [2]. The resist point spread function is a two-dimensional function that, when convolved with the simulated aerial image for a given mask pattern and applied to a threshold function, gives a representation of the photoresist pattern remaining after development. The simplicity of this modeling approach makes it attractive for rapid modeling of photoresists for process development applications. In this work, the resist point spread functions for three current high-resolution EUV photoresists [Rohm and Haas EUV-2D, Rohm and Haas MET-1K (XP 3454C), and KRS] are extracted experimentally. This model is then used in combination with aerial image simulations (including effects of projection optic aberrations) to predict the resist pattern for a variety of test patterns. A comparison is made between these predictions and experimental results to evaluate the effectiveness of this modeling technique for newer high-resolution EUV resists

  11. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  12. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    Energy Technology Data Exchange (ETDEWEB)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.; Robinson, Joseph E.; Chrisler, William B.; Sowa, Marianne B.

    2015-05-01

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  13. Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells.

    Science.gov (United States)

    Blatt, Michael R; Wang, Yizhou; Leonhardt, Nathalie; Hills, Adrian

    2014-05-15

    It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward 'reverse engineering' of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual 'mindset' of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the 'communication' evident between the plasma membrane and tonoplast of the guard cell. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Preference, resistance to change, and the cumulative decision model.

    Science.gov (United States)

    Grace, Randolph C

    2018-01-01

    According to behavioral momentum theory (Nevin & Grace, 2000a), preference in concurrent chains and resistance to change in multiple schedules are independent measures of a common construct representing reinforcement history. Here I review the original studies on preference and resistance to change in which reinforcement variables were manipulated parametrically, conducted by Nevin, Grace and colleagues between 1997 and 2002, as well as more recent research. The cumulative decision model proposed by Grace and colleagues for concurrent chains is shown to provide a good account of both preference and resistance to change, and is able to predict the increased sensitivity to reinforcer rate and magnitude observed with constant-duration components. Residuals from fits of the cumulative decision model to preference and resistance to change data were positively correlated, supporting the prediction of behavioral momentum theory. Although some questions remain, the learning process assumed by the cumulative decision model, in which outcomes are compared against a criterion that represents the average outcome value in the current context, may provide a plausible model for the acquisition of differential resistance to change. © 2018 Society for the Experimental Analysis of Behavior.

  15. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Lewis, Russell E; Verweij, Paul E

    2017-08-15

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    an important role for the evolution of resistance. When growing under stressed conditions, such as in the presence of antibiotics, mutators are considered to have an advantages in comparison to non-mutators. This has been supported by a mathematical model for competing growth between a mutator and a non......This thesis applies mathematical modelling and statistical methods to investigate the dynamics and mechanisms of bacterial evolution. More specifically it is concerned with the evolution of antibiotic resistance in bacteria populations, which is an increasing problem for the treatment of infections...... in humans and animals. To prevent the evolution and spread of resistance, there is a need for further understanding of its dynamics. A grey-box modelling approach based on stochastic differential equations is the main and innovative method applied to study bacterial systems in this thesis. Through...

  17. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  18. In Silico Modeling of Liver Metabolism in a Human Disease Reveals a Key Enzyme for Histidine and Histamine Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Pagliarini

    2016-06-01

    Full Text Available Primary hyperoxaluria type I (PH1 is an autosomal-recessive inborn error of liver metabolism caused by alanine:glyoxylate aminotransferase (AGT deficiency. In silico modeling of liver metabolism in PH1 recapitulated accumulation of known biomarkers as well as alteration of histidine and histamine levels, which we confirmed in vitro, in vivo, and in PH1 patients. AGT-deficient mice showed decreased vascular permeability, a readout of in vivo histamine activity. Histamine reduction is most likely caused by increased catabolism of the histamine precursor histidine, triggered by rerouting of alanine flux from AGT to the glutamic-pyruvate transaminase (GPT, also known as the alanine-transaminase ALT. Alanine administration reduces histamine levels in wild-type mice, while overexpression of GPT in PH1 mice increases plasma histidine, normalizes histamine levels, restores vascular permeability, and decreases urinary oxalate levels. Our work demonstrates that genome-scale metabolic models are clinically relevant and can link genotype to phenotype in metabolic disorders.

  19. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... in this work, dealing with the coupled mechanical-electrical-thermal contact problems. The penalty method is used to impose the contact conditions in the electrical and thermal contact, as well as frictionless contact and sticking contact in the mechanical model. A node-segment contact element is the basis...

  20. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  1. Merging Transport Data for Choroid Plexus with Blood-Brain Barrier to Model CNS Homeostasis and Disease More Effectively.

    Science.gov (United States)

    Johanson, Conrad; Johanson, Nancy

    2016-01-01

    Robust modeling of CNS transport integrates molecular fluxes at the microvascular blood-brain barrier and epithelial choroid plexus blood-cerebrospinal fluid (CSF) barrier. Normal activity of solute transporters, channels and aquaporins, in the cerebral endothelium and choroidal epithelium, sets the microenvironment composition for neurons and glia. Conversely, perturbed transport/permeability at the barrier interfaces causes interstitial fluid dyshomeostasis (e.g. edema) arising in neural disorders. Critically-important transependymal solute/water distribution between brain and CSF needs more attention. This treatise encourages procuring transport data simultaneously for blood-brain barrier, blood-CSF barrier and CSF. In situ perfusion and multicompartmental analyses (tracers, microdialysis) provide dynamic assessments of molecular transfer among various CNS regions. Diffusion, active transport and convection are distorted by disease- and age-associated alterations in barrier permeability and CSF turnover (sink action). Clinical complications result from suboptimal conveyance of micronutrients (folate), catabolites (β-amyloid) and therapeutic agents (antibiotics) within the CNS. Neurorestorative therapies for stroke, traumatic brain injury, multiple sclerosis and brain tumors are facilitated by insight on molecular and cellular trafficking through the choroid plexus-CSF nexus. Knowledge is needed about fluxes of growth factors, neurotrophins, hormones and leukocytes from ventricular CSF into the hippocampus, subventricular zone and hypothalamus. CSF and brain removal of potentially toxic catabolites and neuropeptides merits further investigation to manage the degeneration of Alzheimer's disease and normal pressure hydrocephalus. Novel therapies will rely on delineating peptide and drug distributions across the blood-brain barrier and choroid plexus-CSF, and how they modulate the intervening neural-glial networks and neurogenic sites. Multicompartmental transport

  2. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  3. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    DEFF Research Database (Denmark)

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.

    2014-01-01

    and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...... in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively....

  4. Homer1 knockdown protects dopamine neurons through regulating calcium homeostasis in an in vitro model of Parkinson's disease.

    Science.gov (United States)

    Chen, Tao; Yang, Yue-fan; Luo, Peng; Liu, Wei; Dai, Shu-hui; Zheng, Xin-rui; Fei, Zhou; Jiang, Xiao-fan

    2013-12-01

    Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP(+) induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP(+) injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca(2+) concentration ([Ca(2+)]cyt) and Ca(2+) in endoplasmic reticulum (ER) ([Ca(2+)]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca(2+) release up to 120min after MPP(+) injury. Furthermore, decrease of [Ca(2+)]cyt induced by Homer1 knockdown in MPP(+) treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP(+) insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER. © 2013.

  5. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  6. Survey of chemically amplified resist models and simulator algorithms

    Science.gov (United States)

    Croffie, Ebo H.; Yuan, Lei; Cheng, Mosong; Neureuther, Andrew R.

    2001-08-01

    Modeling has become indespensable tool for chemically amplified resist (CAR) evaluations. It has been used extensively to study acid diffusion and its effects on resist image formation. Several commercial and academic simulators have been developed for CAR process simulation. For commercial simulators such as PROLITH (Finle Technologies) and Solid-C (Sigma-C), the user is allowed to choose between an empirical model or a concentration dependant diffusion model. The empirical model is faster but not very accurate for 2-dimension resist simulations. In this case there is a trade off between the speed of the simulator and the accuracy of the results. An academic simulator such as STORM (U.C. Berkeley) gives the user a choice of different algorithms including Fast Imaging 2nd order finite difference algorithm and Moving Boundary finite element algorithm. A user interested in simulating the volume shrinkage and polymer stress effects during post exposure bake will need the Moving Boundary algorithm whereas a user interested in the latent image formation without polymer deformations will find the Fast Imaging algorithm more appropriate. The Fast Imaging algorithm is generally faster and requires less computer memory. This choice of algorithm presents a trade off between speed and level of detail in resist profile prediction. This paper surveys the different models and simulator algorithms available in the literature. Contributions in the field of CAR modeling including contributions to characterization of CAR exposure and post exposure bake (PEB) processes for different resist systems. Several numerical algorithms and their performances will also be discussed in this paper.

  7. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  8. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus

    NARCIS (Netherlands)

    Lewis, R.E.; Verweij, P.E.

    2017-01-01

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment

  9. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Homeostasis in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  11. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  12. Lutein attenuates oxidative stress markers and ameliorates glucose homeostasis through polyol pathway in heart and kidney of STZ-induced hyperglycemic rat model.

    Science.gov (United States)

    Sharavana, Gurunathan; Joseph, G S; Baskaran, Vallikannan

    2017-12-01

    Lutein's role on chronic hyperglycemia-induced oxidative stress and associated glucose homeostasis in heart and kidney is limited. Purpose of the study is to investigate the effect of lutein on cardiac and renal polyol pathway enzymes and oxidative stress markers under hyperglycemia-induced oxidative stress condition using streptozotocin (STZ)-injected rat model. STZ-induced hyperglycemic (fasting blood glucose ≥11 mM) male Wistar rats were divided into two groups (n = 11/group). Group 1 received micellar lutein (39 nmol/day/rat) and group 2 (negative control) received micelle without lutein for 8 weeks. A separate group (no STZ injected) served as a positive control (n = 11/group). Oral glucose tolerance test (OGTT), biweekly urine glucose and activities of aldose reductase (AR) and sorbitol dehydrogenase (SDH) enzymes were assessed. Activities of antioxidant enzymes and antioxidant level were also evaluated. Lutein-administered hyperglycemic rats showed better glucose tolerance as evidenced with OGTT and biweekly urine glucose when compared to negative control. Activities of AR and SDH were decreased in heart and kidney of lutein-fed hyperglycemic rats. Also, they had significantly (p heart and kidney, respectively. Altered antioxidant enzyme activities such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase were also affected in serum, heart and kidney of lutein-fed diabetic group. Lutein prevented cardiac and renal injury in STZ-induced hyperglycemic rats due to potential amelioration of altered activities in polyol pathway and oxidative stress markers.

  13. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    Science.gov (United States)

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    Science.gov (United States)

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  15. Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation

    Science.gov (United States)

    Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.

    2003-04-01

    Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.

  16. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  17. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  18. Copper homeostasis networks in the bacteriumPseudomonas aeruginosa.

    Science.gov (United States)

    Quintana, Julia; Novoa-Aponte, Lorena; Argüello, José M

    2017-09-22

    Bacterial copper (Cu + ) homeostasis enables both precise metallation of diverse cuproproteins and control of variable metal levels. To this end, protein networks mobilize Cu + to cellular targets with remarkable specificity. However, the understanding of these processes is rather fragmented. Here, we use genome-wide transcriptomic analysis by RNA-Seq to characterize the response of Pseudomonas aeruginosa to external 0.5 mm CuSO 4 , a condition that did not generate pleiotropic effects. Pre-steady-state (5-min) and steady-state (2-h) Cu + fluxes resulted in distinct transcriptome landscapes. Cells quickly responded to Cu 2+ stress by slowing down metabolism. This was restored once steady state was reached. Specific Cu + homeostasis genes were strongly regulated in both conditions. Our system-wide analysis revealed induction of three Cu + efflux systems (a P 1B -ATPase, a porin, and a resistance-nodulation-division (RND) system) and of a putative Cu + -binding periplasmic chaperone and the unusual presence of two cytoplasmic CopZ proteins. Both CopZ chaperones could bind Cu + with high affinity. Importantly, novel transmembrane transporters probably mediating Cu + influx were among those largely repressed upon Cu + stress. Compartmental Cu + levels appear independently controlled; the cytoplasmic Cu + sensor CueR controls cytoplasmic chaperones and plasma membrane transporters, whereas CopR/S responds to periplasmic Cu + Analysis of Δ copR and Δ cueR mutant strains revealed a CopR regulon composed of genes involved in periplasmic Cu + homeostasis and its putative DNA recognition sequence. In conclusion, our study establishes a system-wide model of a network of sensors/regulators, soluble chaperones, and influx/efflux transporters that control the Cu + levels in P. aeruginosa compartments. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling.

    Directory of Open Access Journals (Sweden)

    Matthieu Jacobs

    2016-03-01

    Full Text Available Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS were performed for models with one susceptible bacterial population without (M1 or with a resting stage (M2, a one population model with adaptive resistance (M5, models with pre-existing susceptible and resistant populations without (M3 or with (M4 inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6. For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h. Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10% and had good imprecision (<30%. However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and

  20. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  1. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes

    OpenAIRE

    Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P.; Stanhope, Kimber L.; Graham, James L.; Havel, Peter J.; Gomez-Pinilla, Fernando

    2014-01-01

    The rising prevalence of type-2 diabetes (T2DM) is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor (InR) signaling in the ...

  2. Resistance analysis of unsymmetrical trimaran model with outboard sidehulls configuration

    Science.gov (United States)

    Yanuar; Gunawan; Talahatu, M. A.; Indrawati, Ragil T.; Jamaluddin, A.

    2013-09-01

    The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years. Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved, compared to the mono-hull and catamaran hull forms. The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration ( S/ L) 0.1-0.3 and R/ L=0.1-0.2. Unsymmetrical trimaran ship model with main dimensions: L=2000mm, B=200 mm and T=45 mm. Experimental methods (towing tank) were performed in the study using speed variations at Froude number 0.1-0.6. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was measured precisely by using a load cell transducer. The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number. The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/ L=0.1.

  3. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  4. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.

  5. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis.

    Science.gov (United States)

    He, Baokun; Nohara, Kazunari; Ajami, Nadim J; Michalek, Ryan D; Tian, Xiangjun; Wong, Matthew; Losee-Olson, Susan H; Petrosino, Joseph F; Yoo, Seung-Hee; Shimomura, Kazuhiro; Chen, Zheng

    2015-06-04

    Dietary fibers are increasingly appreciated as beneficial nutritional components. However, a requisite role of gut microbiota in fiber function and the overall impact of fibers on metabolomic flux remain unclear. We herein showed enhancing effects of a soluble resistant maltodextrin (RM) on glucose homeostasis in mouse metabolic disease models. Remarkably, fecal microbiota transplantation (FMT) caused pronounced and time-dependent improvement in glucose tolerance in RM recipient mice, indicating a causal relationship between microbial remodeling and metabolic efficacy. Microbial 16S sequencing revealed transmissible taxonomic changes correlated with improved metabolism, notably enrichment of probiotics and reduction of Alistipes and Bacteroides known to associate with high fat/protein diets. Metabolomic profiling further illustrated broad changes, including enrichment of phenylpropionates and decreases in key intermediates of glucose utilization, cholesterol biosynthesis and amino acid fermentation. These studies elucidate beneficial roles of RM-dependent microbial remodeling in metabolic homeostasis, and showcase prevalent health-promoting potentials of dietary fibers.

  6. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  7. Detailed models for timing and efficiency in resistive plate chambers

    CERN Document Server

    AUTHOR|(CDS)2067623; Lippmann, Christian

    2003-01-01

    We discuss detailed models for detector physics processes in Resistive Plate Chambers, in particular including the effect of attachment on the avalanche statistics. In addition, we present analytic formulas for average charges and intrinsic RPC time resolution. Using a Monte Carlo simulation including all the steps from primary ionization to the front-end electronics we discuss the dependence of efficiency and time resolution on parameters like primary ionization, avalanche statistics and threshold.

  8. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    Science.gov (United States)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  9. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  11. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  12. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Akaike information criterion to select well-fit resist models

    Science.gov (United States)

    Burbine, Andrew; Fryer, David; Sturtevant, John

    2015-03-01

    In the field of model design and selection, there is always a risk that a model is over-fit to the data used to train the model. A model is well suited when it describes the physical system and not the stochastic behavior of the particular data collected. K-fold cross validation is a method to check this potential over-fitting to the data by calibrating with k-number of folds in the data, typically between 4 and 10. Model training is a computationally expensive operation, however, and given a wide choice of candidate models, calibrating each one repeatedly becomes prohibitively time consuming. Akaike information criterion (AIC) is an information-theoretic approach to model selection based on the maximized log-likelihood for a given model that only needs a single calibration per model. It is used in this study to demonstrate model ranking and selection among compact resist modelforms that have various numbers and types of terms to describe photoresist behavior. It is shown that there is a good correspondence of AIC to K-fold cross validation in selecting the best modelform, and it is further shown that over-fitting is, in most cases, not indicated. In modelforms with more than 40 fitting parameters, the size of the calibration data set benefits from additional parameters, statistically validating the model complexity.

  14. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  15. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  16. Accuracy of cuticular resistance parameterizations in ammonia dry deposition models

    Science.gov (United States)

    Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem

    2016-04-01

    Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to

  17. Sexual dimorphism in the glucose homeostasis phenotype of the Aromatase Knockout (ArKO) mice.

    Science.gov (United States)

    Van Sinderen, Michelle; Steinberg, Gregory; Jorgensen, Sebastian B; Honeyman, Jane; Chow, Jenny D Y; Simpson, Evan R; Jones, Margaret E E; Boon, Wah Chin

    2017-06-01

    We investigated the effects of estrogens on glucose homeostasis using the Aromatase Knockout (ArKO) mouse, which is unable to convert androgens into estrogens. The ArKO mouse is a model of total estrogen ablation which develops symptoms of metabolic syndrome. To determine the development and progression of whole body state of insulin resistance of ArKO mice, comprehensive whole body tolerance tests were performed on WT, ArKO and estrogen administrated mice at 3 and 12 months of age. The absence of estrogens in the male ArKO mice leads to hepatic insulin resistance, glucose and pyruvate intolerance from 3 to 12 months with consistent improvement upon estrogen treatment. Estrogen absence in the female ArKO mice leads to glucose intolerance without pyruvate intolerance or insulin resistance. The replacement of estrogens in the female WT and ArKO mice exhibited both insulin sensitizing and resistance effects depending on age and dosage. In conclusion, this study presents information on the sexually dimorphic roles of estrogens on glucose homeostasis regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  19. Empirical validation of landscape resistance models: insights from the Greater Sage-Grouse (Centrocercus urophasianus)

    Science.gov (United States)

    Andrew J. Shirk; Michael A. Schroeder; Leslie A. Robb; Samuel A. Cushman

    2015-01-01

    The ability of landscapes to impede species’ movement or gene flow may be quantified by resistance models. Few studies have assessed the performance of resistance models parameterized by expert opinion. In addition, resistance models differ in terms of spatial and thematic resolution as well as their focus on the ecology of a particular species or more generally on the...

  20. The host model Galleria mellonella is resistant to taylorellae infection.

    Science.gov (United States)

    Hébert, L; Rincé, I; Sanna, C; Laugier, C; Rincé, A; Petry, S

    2014-10-01

    The genus Taylorella is composed of two species: (i) Taylorella equigenitalis, the causative agent of CEM, a venereally transmitted infection of Equidae and (ii) Taylorella asinigenitalis, a closely related species considered to be nonpathogenic, although experimental infection of mares with this bacterium resulted in clinical signs of vaginitis, cervicitis or endometritis. Currently, there is a need for an alternative host model to further study the taylorellae species. In this context, we explored Galleria mellonella larvae as potential alternative model hosts for taylorellae. Our results showed that infection of G. mellonella larvae with a high concentration of taylorellae did not induce overt G. mellonella mortality and that taylorellae were not able to proliferate within G. mellonella. In conclusion, G. mellonella larvae are resistant to taylorellae infection and therefore do not constitute a relevant alternative system for studying the virulence of taylorellae species. Significance and impact of the study: To date, the pathogenicity and host colonization capacity of Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM) and T. asinigenitalis, the second species within the Taylorella genus, remain largely unknown. In this study, we evaluated the relevance of Galleria mellonella as an infection model for taylorellae; we showed that G. mellonella are resistant to taylorellae infection and therefore do not constitute a suitable host model for taylorellae. © 2014 The Society for Applied Microbiology.

  1. Why Homeodynamics, Not Homeostasis?

    Directory of Open Access Journals (Sweden)

    David Lloyd

    2001-01-01

    Full Text Available Ideas of homeostasis derive from the concept of the organism as an open system. These ideas can be traced back to Heraclitus. Hopkins, Bernard, Hill, Cannon, Weiner and von Bertalanffy developed further the mechanistic basis of turnover of biological components, and Schoenheimer and Rittenberg were pioneers of experimental approaches to the problems of measuring pool sizes and dynamic fluxes. From the second half of the twentieth century, a biophysical theory mainly founded on self-organisation and Dynamic Systems Theory allowed us to approach the quantitative and qualitative analysis of the organised complexity that characterises living systems. This combination of theoretical framework and more refined experimental techniques revealed that feedback control of steady states is a mode of operation that, although providing stability, is only one of many modes and may be the exception rather than the rule. The concept of homeodynamics that we introduce here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation. Indeed, biological systems are homeody- namic because of their ability to dynamically self-organise at bifurcation points of their behaviour where they lose stability. Consequently, they exhibit diverse behaviour; in addition to monotonic stationary states, living systems display complex behaviour with all its emergent characteristics, i.e., bistable switches, thresholds, waves, gradients, mutual entrainment, and periodic as well as chaotic behaviour, as evidenced in cellular phenomena such as dynamic (supramolecular organisation and flux coordination. These processes may proceed on different spatial scales, as well as across time scales, from the very rapid processes within and between molecules in membranes to the slow time scales of evolutionary change. It is dynamic organisation under homeodynamic conditions that make

  2. Why homeodynamics, not homeostasis?

    Science.gov (United States)

    Lloyd, D; Aon, M A; Cortassa, S

    2001-04-04

    Ideas of homeostasis derive from the concept of the organism as an open system. These ideas can be traced back to Heraclitus. Hopkins, Bernard, Hill, Cannon, Weiner and von Bertalanffy developed further the mechanistic basis of turnover of biological components, and Schoenheimer and Rittenberg were pioneers of experimental approaches to the problems of measuring pool sizes and dynamic fluxes. From the second half of the twentieth century, a biophysical theory mainly founded on self-organisation and Dynamic Systems Theory allowed us to approach the quantitative and qualitative analysis of the organised complexity that characterises living systems. This combination of theoretical framework and more refined experimental techniques revealed that feedback control of steady states is a mode of operation that, although providing stability, is only one of many modes and may be the exception rather than the rule. The concept of homeodynamics that we introduce here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation. Indeed, biological systems are homeodynamic because of their ability to dynamically self-organise at bifurcation points of their behaviour where they lose stability. Consequently, they exhibit diverse behaviour; in addition to monotonic stationary states, living systems display complex behaviour with all its emergent characteristics, i.e., bistable switches, thresholds, waves, gradients, mutual entrainment, and periodic as well as chaotic behaviour, as evidenced in cellular phenomena such as dynamic (supra)molecular organisation and flux coordination. These processes may proceed on different spatial scales, as well as across time scales, from the very rapid processes within and between molecules in membranes to the slow time scales of evolutionary change. It is dynamic organisation under homeodynamic conditions that make possible the organised

  3. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  4. Myths, models and mitigation of resistance to pesticides.

    OpenAIRE

    Hoy, M A

    1998-01-01

    Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natu...

  5. A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Sunna; Daily, James W

    2011-02-01

    Ketogenic diets (KTD) are reported to have beneficial effects on the regulation of energy and glucose homeostasis, but remain controversial. We investigated the effects of KTD and ketones on insulin resistance and secretion in non-obese type 2 diabetic rats and their mechanism. KTD (82% energy as fat), intraperitoneal injection of β-hydroxybutyrate (IHB; 150 mg/kg bw/12 h) with a control diet (COD; 20% energy as fat) or saline injection with COD was given to 90% pancreatectomized (Px) diabetic rats for five weeks. KTD increased epididymal fat pads and serum leptin levels without increasing energy intake, but IHB decreased them. KTD, but not IHB, attenuated hypothalamic signal transducer and activator of transcription 3 and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in KTD. Serum glucagon levels were markedly higher in the KTD group than in other groups. During an oral glucose tolerance test, serum glucose levels slowly increased until 80 min in the KTD group and then decreased very slowly. Insulin secretion capacity during a hyperglycemic clamp was significantly lower in the IHB group than in other groups. However, a euglycemic hyperinsulinemic clamp revealed that KTD decreased glucose infusion rates and increased hepatic glucose output in hyperinsulinemic states while IHB had opposite effects to KTD. The increased hepatic glucose output in KTD was associated with increased hepatic phosphoenolpyruvate carboxykinase expression through attenuated tyrosine phosphorylation of IRS2 and phosphorylation of Akt(Ser473). Hepatic AMPK(Thr172) phosphorylation was reduced in KTD. In conclusion, KTD impairs energy and glucose homeostasis by exacerbating insulin resistance and attenuating hypothalamic leptin signaling in non-obese type 2 diabetic rats. These changes are not associated with increased serum ketone levels.

  6. Failure of Homeostatic Model Assessment of Insulin Resistance to Detect Marked Diet-Induced Insulin Resistance in Dogs

    Science.gov (United States)

    Ader, Marilyn; Stefanovski, Darko; Richey, Joyce M.; Kim, Stella P.; Kolka, Cathryn M.; Ionut, Viorica; Kabir, Morvarid; Bergman, Richard N.

    2014-01-01

    Accurate quantification of insulin resistance is essential for determining efficacy of treatments to reduce diabetes risk. Gold-standard methods to assess resistance are available (e.g., hyperinsulinemic clamp or minimal model), but surrogate indices based solely on fasting values have attractive simplicity. One such surrogate, the homeostatic model assessment of insulin resistance (HOMA-IR), is widely applied despite known inaccuracies in characterizing resistance across groups. Of greater significance is whether HOMA-IR can detect changes in insulin sensitivity induced by an intervention. We tested the ability of HOMA-IR to detect high-fat diet–induced insulin resistance in 36 healthy canines using clamp and minimal model analysis of the intravenous glucose tolerance test (IVGTT) to document progression of resistance. The influence of pancreatic function on HOMA-IR accuracy was assessed using the acute insulin response during the IVGTT (AIRG). Diet-induced resistance was confirmed by both clamp and minimal model (P HOMA-IR ([fasting insulin (μU/mL) × fasting glucose (mmol)]/22.5) did not detect reduced sensitivity induced by fat feeding (P = 0.22). In fact, 13 of 36 animals showed an artifactual decrease in HOMA-IR (i.e., increased sensitivity). The ability of HOMA-IR to detect diet-induced resistance was particularly limited under conditions when insulin secretory function (AIRG) is less than robust. In conclusion, HOMA-IR is of limited utility for detecting diet-induced deterioration of insulin sensitivity quantified by glucose clamp or minimal model. Caution should be exercised when using HOMA-IR to detect insulin resistance when pancreatic function is compromised. It is necessary to use other accurate indices to detect longitudinal changes in insulin resistance with any confidence. PMID:24353184

  7. Genetic dissection of sleep homeostasis.

    Science.gov (United States)

    Mang, Géraldine M; Franken, Paul

    2015-01-01

    Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.

  8. A theoretical quantitative model for evolution of cancer chemotherapy resistance

    Directory of Open Access Journals (Sweden)

    Gatenby Robert A

    2010-04-01

    Full Text Available Abstract Background Disseminated cancer remains a nearly uniformly fatal disease. While a number of effective chemotherapies are available, tumors inevitably evolve resistance to these drugs ultimately resulting in treatment failure and cancer progression. Causes for chemotherapy failure in cancer treatment reside in multiple levels: poor vascularization, hypoxia, intratumoral high interstitial fluid pressure, and phenotypic resistance to drug-induced toxicity through upregulated xenobiotic metabolism or DNA repair mechanisms and silencing of apoptotic pathways. We propose that in order to understand the evolutionary dynamics that allow tumors to develop chemoresistance, a comprehensive quantitative model must be used to describe the interactions of cell resistance mechanisms and tumor microenvironment during chemotherapy. Ultimately, the purpose of this model is to identify the best strategies to treat different types of tumor (tumor microenvironment, genetic/phenotypic tumor heterogeneity, tumor growth rate, etc.. We predict that the most promising strategies are those that are both cytotoxic and apply a selective pressure for a phenotype that is less fit than that of the original cancer population. This strategy, known as double bind, is different from the selection process imposed by standard chemotherapy, which tends to produce a resistant population that simply upregulates xenobiotic metabolism. In order to achieve this goal we propose to simulate different tumor progression and therapy strategies (chemotherapy and glucose restriction targeting stabilization of tumor size and minimization of chemoresistance. Results This work confirms the prediction of previous mathematical models and simulations that suggested that administration of chemotherapy with the goal of tumor stabilization instead of eradication would yield better results (longer subject survival than the use of maximum tolerated doses. Our simulations also indicate that the

  9. Orally Administered Baker's Yeast β-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice.

    Science.gov (United States)

    Cao, Yan; Sun, Ying; Zou, Siwei; Li, Mengxia; Xu, Xiaojuan

    2017-11-08

    Baker's yeast glucan (BYG) has been reported to be an anti-diabetic agent. In the work described herein, further study on the effect of orally administered BYG on glucose and lipid homeostasis in the livers of ob/ob mice was performed. It was found that BYG decreased the blood glucose and the hepatic glucose and lipid disorders. Western blotting analysis revealed that BYG up-regulated p-AKT and p-AMPK, and down-regulated p-Acc in the liver. Furthermore, RNA-Seq analysis indicated that BYG down-regulated genes responsible for gluconeogenesis (G6pase and Got1), fatty acid biosynthesis (Acly, Acc, Fas, etc.), glycerolipid synthesis (Gpam and Lipin1/2), and cholesterol synthesis (Hmgcr, Fdps, etc.). Additionally, BYG decreased glucose transporters SGLT1 and GLUT2, fat emulsification, and adipogenic genes/proteins in the intestine to decrease glucose and lipid absorption. All these findings demonstrated that BYG is beneficial for regulating glucose and lipid homeostasis in diabetic mice, and thus has potential applications in anti-diabetic foods or drugs.

  10. Computational modeling of drug-resistant bacteria. Final report

    International Nuclear Information System (INIS)

    2015-01-01

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  11. Computational modeling of drug-resistant bacteria. Final report

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Preston [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  12. The effect of L-arginine supplementation on serum resistin concentration in insulin resistance in animal models.

    Science.gov (United States)

    Szulinska, M; Musialik, K; Suliburska, J; Lis, I; Bogdanski, P

    2014-01-01

    Understanding the mechanism of development of the insulin resistance associated with obesity is crucial in identifying new therapeutic options for obese patients. The aim of this study was to examine the effects of L-arginine on the secretion of resistin in the context of insulin resistance in animal models. 30 male and female Wistar rats were assigned to three equal groups: the standard diet group, the high-fat diet group, and the high-fat diet supplemented with L-arg group. After 6 weeks, the weight of the rats was measured. The animals were euthanized. The relative weight of the perirenal fat was determined and blood samples were taken for serum glucose, insulin, NO, and resistin. Insulin resistance was estimated using homeostasis model assessment (HOMA). It was found that the absolute and relative masses of the perirenal fat were significantly higher in rats fed the high-fat diet than in the control group. In rats on the high-fat diet supplemented with L-arginine, a tendency for perirenal fat to decrease was observed. The high-fat diet resulted in significant increases in glucose and insulin concentrations, and L-arginine supplementation significantly ameliorated the increase in both glucose and insulin. Moreover, significant decreases in NO concentration were seen in rats fed the high-fat diet. L-arginine supplementation protected significantly against increased NO concentration. Increases in HOMA-IR level and in resistin concentrations were observed in rats fed the high-fat diet. L-arginine supplementation partially restored HOMA-IR levels to those of the control group and did not influence resistin concentration. L-arginine supplementation improves insulin sensitivity in rats fed a high-fat diet, independently of resistin activity.

  13. Insulin resistance in Nigerians with essential hypertension | Akande ...

    African Journals Online (AJOL)

    Homeostasis model assessment (HOMA) was used to determine insulin resistance (IR). Results: The hypertensive subjects had significantly higher fasting insulin and HOMA-IR compared with normotensives (p =0.02 and 0.04) respectively. There were significant correlations between HOMA-IR, BMI, waist and hip ...

  14. Concept analysis of family homeostasis.

    Science.gov (United States)

    Kim, Heejung; Rose, Karen M

    2014-11-01

    To report a concept analysis of family homeostasis. As family members are a majority of informal caregivers, negative consequences from caregiving duty create a vicious cycle in the family unit resulting in ongoing health crises and care challenges. Concept analysis. Forty empirical studies published from 1956-2012 were selected by searching five electronic bibliographical databases and by a manual search conducted from 2012-2013. Search terms included 'family homeostasis', 'homeostasis in family', 'homeostatic care' and 'family equilibrium'. Clinical experiences in nursing practice were used for constructing cases and clinical implications. Walker and Avant's method guided this analysis. Family homeostasis is defined as the capacity and mechanisms by which equilibrium is re-established in the family after a change occurs. Five critical attributes are identified: (1) predetermined setpoint; (2) self-appraised antecedents; (3) interdependence; (4) tendency to stability; and (5) feedback mechanisms. Antecedents include any type of causative change beyond the tolerable limit, while consequences encompass intermediate and long-term outcomes as well as equilibrium itself. Family homeostasis provides a conceptual rationale of family caregiving. While care recipients remain the primary beneficiaries of healthcare provision, homeostatic mechanisms are required to support the family caregiver's valuable contribution in the caring process to enhance family well-being. Further study should expand the definition and settings of family to reflect healthcare needs of diverse types of families and from the perspectives of different healthcare providers. © 2014 John Wiley & Sons Ltd.

  15. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  16. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency☆ab

    Science.gov (United States)

    Mokadem, Mohamad; Zechner, Juliet F.; Margolskee, Robert F.; Drucker, Daniel J.; Aguirre, Vincent

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) secretion is greatly enhanced after Roux-en-Y gastric bypass (RYGB). While intact GLP-1exerts its metabolic effects via the classical GLP-1 receptor (GLP-1R), proteolytic processing of circulating GLP-1 yields metabolites such as GLP-1(9–36)amide/GLP-1(28–36)amide, that exert similar effects independent of the classical GLP-1R. We investigated the hypothesis that GLP-1, acting via these metabolites or through its known receptor, is required for the beneficial effects of RYGB using two models of functional GLP-1 deficiency – α-gustducin-deficient (α-Gust−/−) mice, which exhibit attenuated nutrient-stimulated GLP-1 secretion, and GLP-1R-deficient mice. We show that the effect of RYGB to enhance glucose-stimulated GLP-1 secretion was greatly attenuated in α-Gust−/− mice. In both genetic models, RYGB reduced body weight and improved glucose homeostasis to levels observed in lean control mice. Therefore, GLP-1, acting through its classical GLP-1R or its bioactive metabolites, does not seem to be involved in the effects of RYGB on body weight and glucose homeostasis. PMID:24634822

  17. Evaluating the Mechanisms of Improved Glucose Homeostasis after Bariatric Surgery in Ossabaw Miniature Swine

    Directory of Open Access Journals (Sweden)

    Jonathan G. Sham

    2014-01-01

    Full Text Available Background. Roux-en-Y gastric bypass (RYGB is the most common bariatric operation; however, the mechanism underlying the profound weight-independent effects on glucose homeostasis remains unclear. Large animal models of naturally occurring insulin resistance (IR, which have been lacking, would provide opportunities to elucidate such mechanisms. Ossabaw miniature swine naturally exhibit many features that may be useful in evaluating the anti diabetic effects of bariatric surgery. Methods. Glucose homeostasis was studied in 53 Ossabaw swine. Thirty-two received an obesogenic diet and were randomized to RYGB, gastrojejunostomy (GJ, gastrojejunostomy with duodenal exclusion (GJD, or Sham operations. Intravenous glucose tolerance tests and standardized meal tolerance tests were performed prior to, 1, 2, and 8 weeks after surgery and at a single time-point for regular diet control pigs. Results. High-calorie-fed Ossabaws weighed more and had greater IR than regular diet controls, though only 70% developed IR. All operations caused weight-loss-independent improvement in IR, though only in pigs with high baseline IR. Only RYGB induced weight loss and decreased IR in the majority of pigs, as well as increasing AUCinsulin/AUCglucose. Conclusions. Similar to humans, Ossabaw swine exhibit both obesity-dependent and obesity-independent IR. RYGB promoted weight loss, IR improvement, and increased AUCinsulin/AUCglucose, compared to the smaller changes following GJ and GJD, suggesting a combination of upper and lower gut mechanisms in improving glucose homeostasis.

  18. Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis

    Directory of Open Access Journals (Sweden)

    Anne-Catherine eVanhove

    2012-08-01

    Full Text Available There is a great need for research aimed at understanding drought tolerance, screening for drought tolerant varieties and breeding cops with an improved water use efficiency. Bananas and plantains are a major staple food and export product with a worldwide production of over 135 million tonnes per year. Water however is the most limiting abiotic factor in banana production. A screening of the Musa biodiversity has not yet been performed. We at KU Leuven host the Musa International Germplasm collection with over 1200 accessions. To screen the Musa biodiversity for drought tolerant varieties, we developed a screening test for in vitro plants. Five varieties representing different genomic constitutions in banana (AAAh, AAA, AAB, AABp and ABB were selected and subjected to a mild osmotic stress. The ABB variety showed the smallest stress induced growth reduction. To get an insight into the acclimation and the accomplishment of homeostasis, the leaf proteome of this variety was characterized via 2D DIGE. After extraction of the leaf proteome of 6 control and 6 stressed plants, 2600 spots could be distinguished. A PCA analysis indicates that control and stressed plants can blindly be classified based on their proteome. One hundred and twelve proteins were significantly more abundant in the stressed plants and eighteen proteins were significantly more abundant in control plants (FDR α 0.05. Twenty four differential proteins could be identified. The proteome analysis clearly shows that there is a new balance in the stressed plants and that the respiration, metabolism of ROS and several dehydrogenases involved in NAD/NADH homeostasis play an important role.

  19. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  20. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson

    2003-01-01

    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  1. Genetic analysis of baculovirus resistance in lepidopteran model ...

    African Journals Online (AJOL)

    In order to clarify the resistant mechanism of BmNPV in silkworm, and from negative to prove agricultural pest inheritance of virus resistance, in this study, we used the highly resistant strain NB and susceptible strain 306 as the material through the method of classical genetics experiment, and proved that the baculovirus ...

  2. Animal models of resistance exercise and their application to neuroscience research.

    Science.gov (United States)

    Strickland, Justin C; Smith, Mark A

    2016-11-01

    Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. Various models have been developed to examine resistance exercise in laboratory animals. Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Necessity of resist model in source mask optimization for negative tone development process

    Science.gov (United States)

    Zhao, Lijun; Dong, Lisong; Chen, Wenhui; Wei, Yayi; Ye, Tianchun; Yue, Liwan; Jiang, Yuntao; Wu, Qiang

    2017-07-01

    As the semiconductor technology node comes to 14 nm and below, using bright-field exposure with negative tone development (NTD) has been a dominant lithographic solution for metal and contact layers, which has benefits of larger process windows and higher image contrasts than positive tone development (PTD). For PTD, a resist model is usually optional in source mask optimization (SMO) because optical models with aerial image blur can predict resist behaviors in most cases. However, NTD has much stronger resist effects, such as resist shrinkage and two-dimensional-effect-induced local stress. It has been suggested that the calibrated resist model is strongly required in the SMO of NTD process. We clarify this issue-the necessity of resist model in SMO for NTD process. First, we analyze the mismatch between simulation and experimental data when the aerial image blur is only used to simulate resist effects. Second, we present the calibration flow of resist model. Finally, we use the calibrated resist model to check the test pattern and run the SMO. The result demonstrates that the simulation data have the same tendency with experimental data, and the model has a good prediction on NTD resist behaviors under different conditions.

  4. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling.

    Science.gov (United States)

    van Westen, Gerard J P; Bender, Andreas; Overington, John P

    2014-10-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of 'orthogonally resistant' agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed 'proteochemometric modelling' (PCM), from the field of chemoinformatics, could aid in the quantification and prediction of resistance that acts via point mutations in the target proteins of an agent. The technique combines information from both the chemical and biological domain to generate bioactivity models across large numbers of ligands as well as protein targets. PCM has previously been validated in prospective, experimental work in the medicinal chemistry area, and it draws on the growing amount of bioactivity information available in the public domain. Here, two potential applications of proteochemometric modelling to agrochemical data are described, based on previously published examples from the medicinal chemistry literature.

  5. Arginine homeostasis in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Harm; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in L-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased

  6. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment......, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet....

  7. THE ICET-A RECOMMENDATIONS FOR THE DIAGNOSIS AND MANAGEMENT OF DISTURBANCES OF GLUCOSE HOMEOSTASIS IN THALASSEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Vincenzo De Sanctis

    2016-10-01

    Full Text Available Iron overload in patients with thalassemia major (TM affects glucose regulation, and is mediated by several mechanisms. These include the oxidative damage inflicted by iron on the pancreatic ß -cells and liver cells leading to pancreatic and hepatic dysfunction and insulin resistance. These disturbances have been identified by oral glucose tolerance test (OGTT, euglycemic insulin clamp, homeostatic model assessment (HOMA, intravenous glucose tolerance test (IVGT and continuous glucose monitoring system (CGMS. A group of endocrinologists, hematologists and paediatricians, members of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A convened to formulate recommendations for the diagnosis and management of abnormalities of glucose homeostasis in thalassemia major patients on the basis of available evidence from clinical and laboratory data and consensus practice. The results of their work and discussions are described in this article. Key words: Thalassemia major; Glucose homeostasis; Diagnosis; Management; Guidelines

  8. Simplified phase noise model for negative-resistance oscillators and a comparison with feedback oscillator models.

    Science.gov (United States)

    Everard, Jeremy; Xu, Min; Bale, Simon

    2012-03-01

    This paper describes a greatly simplified model for the prediction of phase noise in oscillators which use a negative resistance as the active element. It is based on a simple circuit consisting of the parallel addition of a noise current, a negative admittance/resistance, and a parallel (Qlimited) resonant circuit. The transfer function is calculated as a forward trans-resistance (VOUT/IIN) and then converted to power. The effect of limiting is incorporated by assuming that the phase noise element of the noise floor is kT/2, i.e., -177 dBm/Hz at room temperature. The result is the same as more complex analyses, but enables a simple, clear insight into the operation of oscillators. The phase noise for a given power in the resonator appears to be lower than in feedback oscillators. The reasons for this are explained. Simulation and experimental results are included.

  9. Antibiotic Resistances in Livestock: A Comparative Approach to Identify an Appropriate Regression Model for Count Data

    Directory of Open Access Journals (Sweden)

    Anke Hüls

    2017-05-01

    Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate

  10. Simultaneous coffee caffeine intake and sleep deprivation alter glucose homeostasis in Iranian men: a randomized crossover trial.

    Science.gov (United States)

    Rasaei, Behrouz; Talib, Ruzita Abd; Noor, Mohd Ismail; Karandish, Majid; Karim, Norimah A

    2016-12-01

    Sleep deprivation and coffee caffeine consumption have been shown to affect glucose homeostasis separately, but the combined effects of these two variables are unknown. Forty-two healthy Iranian men, aged 20-40 years old, were assigned to three groups in a randomised crossover trial involving three treatments with two-week washout periods. Subjects were moderate coffee consumers (Sleep Quality Index sleep (4 hrs. in bed) plus 3×150 cc/cup of boiled water (BW treatment), decaffeinated coffee (DC treatment, without sugar, 99.9% caffeine-free), and caffeinated coffee (CC treatment, without sugar, 65 mg caffeine/ cup). DC and CC treatments were blinded. At the end of each treatment, fasting serum glucose (using enzyme assays) and insulin (using electrochemiluminescence immunoassay) were measured and, again, two hours after an oral glucose tolerance test (OGTT). Insulin resistance was quantified with the homeostasis model. Repeated measures ANOVA indicated no significant difference between the treatments in fasting serum glucose (p=0.248) or insulin resistance (p=0.079). However, ANOVA demonstrated differences between treatments in fasting serum insulin (p=0.004) and glucose, as well as insulin after OGTT (pcaffeinated coffee was more adverse for glucose homeostasis compared to decaffeinated coffee in individuals who were simultaneously sleep deprived.

  11. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.

    Science.gov (United States)

    Rouch, D A; Lee, B T; Morby, A P

    1995-02-01

    Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

  12. The skill and style to model the evolution of resistance to pesticides and drugs.

    Science.gov (United States)

    2010-07-01

    Resistance to pesticides and drugs led to the development of theoretical models aimed at identifying the main factors of resistance evolution and predicting the efficiency of resistance management strategies. We investigated the various ways in which the evolution of resistance has been modelled over the last three decades, by reviewing 187 articles published on models of the evolution of resistance to all major classes of pesticides and drugs. We found that (i) the technical properties of the model were most strongly influenced by the class of pesticide or drug and the target organism, (ii) the resistance management strategies studied were quite similar for the different classes of pesticides or drugs, except that the refuge strategy was mostly used in models of the evolution of resistance to insecticidal proteins, (iii) economic criteria were rarely used to evaluate the evolution of resistance and (iv) the influence of mutation, migration and drift on the speed of resistance development has been poorly investigated. We propose guidelines for the future development of theoretical models of the evolution of resistance. For instance, we stress the potential need to give more emphasis to the three evolutionary forces migration, mutation and genetic drift rather than simply selection.

  13. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  14. Recovery of immune competence following sublethal X irradiation of young and old mice: a model for studying age-related loss of immunologic homeostasis

    International Nuclear Information System (INIS)

    Peterson, W.J.; Perkins, E.H.; Makinodan, T.

    1982-01-01

    Age-related alteration in lymphohematopoietic homeostasis was assessed kinetically by determining immunologic and stem-cell regenerating capacities of young (5-7 months), middle-aged (13 months), and old (23-24 months) C3H and C57BL/6 mice following their exposure to 500 R. Immunologic activities were based on the ability of spleen cells to respond to sheep erythrocytes, phytohemagglutinin, and bacterial lipopolysaccharide. Stem-cell activity was based on the ability of splenic and bone marrow cells to form colonies in vivo. Reflective of age-related homeostatic imbalance was alteration in the (a) time of recovery, (b) rate of regeneration, and (c) capacity of the regenerating system to overshoot the preirradition steady-state level. Most of the immunologic parameters showed a delay in the time of recovery in old mice. In contrast, the time of recovery of stem cells in old mice was equal to or faster than that in young mice. Furthermore, the magnitude of regeneration of stem cells was greater in old than young mice. These results suggest that recovery of immunologic activities in old mice is delayed partly because of the inability of their stem cells to rapidly generate immunocompetent progenies

  15. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    Science.gov (United States)

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  16. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  17. Modelling nasal high flow therapy effects on upper airway resistance and resistive work of breathing.

    Science.gov (United States)

    Adams, Cletus F; Geoghegan, Patrick H; Spence, Callum J; Jermy, Mark C

    2018-04-07

    The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30-60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (V t ) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. NHF was applied via three different cannula sizes to a 3-D printed human upper airway. Pressure drop and flow rate were measured and used to estimate inspiratory and expiratory upper airway resistances. The resistance information was used to compute the muscular work required to overcome the resistance of the upper airway to flow. NHF raises expiratory resistance relative to spontaneous breathing if the breathing pattern does not change but reduces work of breathing if peak expiratory flow falls. Of the cannula sizes used, the large cannula produced the greatest resistance and the small cannula produced the least. The work required to cause tracheal flow through the upper airway was reduced if the RR and minute volume are reduced by NHF. NHF has been observed to do so in COPD patients (Bräunlich et al., 2013). A reduction in I:E ratio due to therapy was found to reduce work of breathing if the peak inspiratory flow is less than the flow below which no inspiratory effort is required to overcome upper airway resistance. NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of

  18. EGb761, an extract of Ginkgo biloba leaves, reduces insulin resistance in a high-fat-fed mouse model

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    2011-06-01

    Full Text Available EGb761, a standardized and well-defined product extract of Ginkgo biloba leaves, has beneficial effects on the treatment of multiple diseases, including diabetes and dyslipidemia. However, it is still unclear whether EGb761 can increase insulin sensitivity. The objectives of the present study are to evaluate the effects of EGb761 on insulin sensitivity in an obese and insulin-resistant mouse model, established through chronic feeding of C57BL/6J mice with a high-fat diet (HFD, and to explore potential mechanisms. Mice fed with HFD for 18 weeks (starting from 4 weeks of age developed obesity, dyslipidemia (as indicated by biochemical measurements of blood glucose, triglyceride (TG, total cholesterol (TC, and free fatty acids (FFA, and insulin resistance (as determined by the oral glucose tolerance test (OGTT and the homeostasis model assessment of insulin resistance (HOMA-IR index, compared to control mice fed with a standard laboratory chow. Oral treatment of the HFD-fed mice with EGb761, at low (100 mg/kg, medium (200 mg/kg, or high (400 mg/kg doses, via oral gavage (once daily for 8 weeks (starting from 26 weeks of age dose-dependently enhanced glucose tolerance in OGTT, and decreased both the insulin levels (by 29%, 55%, and 70%, respectively, and the HOMA-IR index values (by 50%, 69%, and 80%, respectively. EGb761 treatment also ameliorated HFD-induced obesity, dyslipidemia, and liver injury, as indicated by decreases in body weight (by 4%, 11%, and 16%, respectively, blood TC levels (by 23%, 32%, and 37%, respectively, blood TG levels (by 17%, 23%, and 33%, respectively, blood FAA levels (by 35%, 38%, and 46%, respectively, and liver index (liver weight/body weight values (by 12.8%, 25%, and 28%, respectively in the low, medium, and high EGb761 dose groups, respectively. In further mechanism studies, EGb761 was found to protect hepatic insulin receptor β and insulin receptor substrate 1 from HFD-induced degradation, and to keep the AMP

  19. Associations between depressive symptoms and insulin resistance

    DEFF Research Database (Denmark)

    Adriaanse, M C; Dekker, J M; Nijpels, G

    2006-01-01

    AIMS/HYPOTHESIS: The association between depression and insulin resistance has been investigated in only a few studies, with contradictory results reported. The aim of this study was to determine whether the association between symptoms of depression and insulin resistance varies across glucose...... established type 2 diabetes mellitus. Main outcome measures were insulin resistance defined by the homeostasis model assessment for insulin resistance (HOMA-IR) and symptoms of depression using the Centre for Epidemiologic Studies Depression Scale (CES-D). RESULTS: In the total sample, we found a weak.......942). The association between depressive symptoms and insulin resistance was similar for men and women. CONCLUSIONS/INTERPRETATION: We found only weak associations between depressive symptoms and insulin resistance, which did not differ among different glucose metabolism subgroups or between men and women....

  20. Inflammatory Properties of Diet and Glucose-Insulin Homeostasis in a Cohort of Iranian Adults

    Directory of Open Access Journals (Sweden)

    Nazanin Moslehi

    2016-11-01

    Full Text Available We aimed to investigate associations of the dietary inflammatory index (DII with glucose-insulin homeostasis markers, and the risk of glucose intolerance. This cross-sectional study included 2975 adults from the Tehran Lipid and Glucose Study. Fasting plasma glucose (FPG, 2-h post-load glucose (2h-PG, and fasting serum insulin were measured. Homeostatic model assessment of insulin resistance index (HOMA-IR and β-cell function (HOMA-B, and the quantitative insulin sensitivity check index (QUICKI were calculated. Glucose tolerance abnormalities included impaired fasting glucose (IFG, impaired glucose tolerance (IGT, and type 2 diabetes (T2DM. DII scores were positively associated with 2h-PG (β = 0.04; p = 0.05. There was no significant linear trend across quartiles of DII for adjusted means of glucose-insulin homeostasis markers. Participants in the highest quartile of DII score tended to have higher FPG compared to those in the second quartile of DII score (5.46 vs. 5.38 mmol/L, p = 0.07 and higher fasting insulin and HOMA-IR compared to those in the lowest quartile (8.52 vs. 8.12 µU/mL for fasting insulin, p = 0.07; 2.06 vs. 1.96 for HOMA-IR, p = 0.08. No significant associations were observed between DII and risk of IFG, IGT, T2DM, and insulin resistance. Among glucose-insulin homeostasis markers, DII had a positive weak association only with 2h-PG.

  1. Induced mutations for horizontal resistance. A model study using leaf rust resistance in wheat

    International Nuclear Information System (INIS)

    Chopra, V.L.; Sawhney, R.N.; Kumar, R.

    1983-01-01

    A mutant with seemingly non-specific resistance to leaf rust was obtained some time ago from the wheat variety Kharchia Local treated with NMH. This mutant is being studied genetically and in its disease reaction by laboratories in Australia, Canada and India in co-operation. The mutant showed a dominant inheritance of resistance in F 1 , but different segregation in F 2 and F 3 . This peculiar genetic behaviour has so far not been explained. (author)

  2. Mathematical Model of Plasmid-Mediated Resistance to Ceftiofur in Commensal Enteric Escherichia coli of Cattle

    Science.gov (United States)

    Volkova, Victoriya V.; Lanzas, Cristina; Lu, Zhao; Gröhn, Yrjö Tapio

    2012-01-01

    Antimicrobial use in food animals may contribute to antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of animal intestine may serve as a reservoir of resistance-genes. To understand the dynamics of plasmid-mediated resistance to cephalosporin ceftiofur in enteric commensals of cattle, we developed a deterministic mathematical model of the dynamics of ceftiofur-sensitive and resistant commensal enteric Escherichia coli (E. coli) in the absence of and during parenteral therapy with ceftiofur. The most common treatment scenarios including those using a sustained-release drug formulation were simulated; the model outputs were in agreement with the available experimental data. The model indicated that a low but stable fraction of resistant enteric E. coli could persist in the absence of immediate ceftiofur pressure, being sustained by horizontal and vertical transfers of plasmids carrying resistance-genes, and ingestion of resistant E. coli. During parenteral therapy with ceftiofur, resistant enteric E. coli expanded in absolute number and relative frequency. This expansion was most influenced by parameters of antimicrobial action of ceftiofur against E. coli. After treatment (>5 weeks from start of therapy) the fraction of ceftiofur-resistant cells among enteric E. coli, similar to that in the absence of treatment, was most influenced by the parameters of ecology of enteric E. coli, such as the frequency of transfer of plasmids carrying resistance-genes, the rate of replacement of enteric E. coli by ingested E. coli, and the frequency of ceftiofur resistance in the latter. PMID:22615803

  3. Modeling deployment of Pierce’s disease resistant grapevines

    Science.gov (United States)

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  4. An Experimental Model for Resistance Exercise in Rodents

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available This study aimed to develop an equipment and system of resistance exercise (RE, based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction. Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions, and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and “disturbing” stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.

  5. Energy Homeostasis in Monotremes

    Directory of Open Access Journals (Sweden)

    Stewart C. Nicol

    2017-04-01

    Full Text Available In 1803, the French anatomist Étienne Geoffroy Saint-Hilaire decided that the newly described echidna and platypus should be placed in a separate order, the monotremes, intermediate between reptiles and mammals. The first physiological observations showed monotremes had low body temperatures and metabolic rates, and the consensus was that they were at a stage of physiological development intermediate between “higher mammals” and “lower vertebrates.” Subsequent studies demonstrated that platypuses and echidnas are capable of close thermoregulation in the cold although less so under hot conditions. Because the short-beaked echidna Tachyglossus aculeatus, may show very large daily variations in body temperature, as well as seasonal hibernation, it has been suggested that it may provide a useful model of protoendotherm physiology. Such analysis is complicated by the very significant differences in thermal relations between echidnas from different climates. In all areas female echidnas regulate Tb within 1°C during egg incubation. The lactation period is considered to be the most energetically expensive time for most female mammals but lactating echidnas showed no measurable difference in field metabolic rate from non-lactating females, while the lactation period is more than 200 days for Kangaroo Island echidnas but only 150 days in Tasmania. In areas with mild winters echidnas show reduced activity and shallow torpor in autumn and early winter, but in areas with cold winters echidnas enter true hibernation with Tb falling as low as 4.5°C. Monotremes do not possess brown adipose tissue and maximum rates of rewarming from hibernation in echidnas were only half those of marmots of the same mass. Although echidnas show very large seasonal variations in fat stores associated with hibernation there is no relationship between plasma leptin and adiposity. Leptin levels are lowest during post-reproductive fattening, supporting suggestions that in

  6. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  7. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  8. Cry1F resistance among lepidopteran pests: a model for improved resistance management?

    Science.gov (United States)

    Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D

    2016-06-01

    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Comparison of different initiation protocols in the resistant hepatocyte model

    International Nuclear Information System (INIS)

    Espandiari, Parvaneh; Robertson, Larry W.; Srinivasan, Cidambi; Glauert, Howard P.

    2005-01-01

    Several models in rat liver have been developed to study multistage carcinogenesis, including the Solt-Farber resistant hepatocyte model. In this model, initiation consists of either a necrogenic dose of a hepatocarcinogen or a non-necrogenic dose in conjunction with partial hepatectomy (PH). As an alternative to PH, we investigated two different procedures: fasting for 96 h followed by refeeding, or the use of one-day-old neonates. Male Fisher 344 rats were injected p.o. with diethylnitrosamine (DEN) (0, 20, or 100 mg/kg) 24 h after refeeding or PH (controls received DEN alone with no proliferative stimulus). For the neonatal group, male and female Fisher 344 rats were treated with DEN (0 or 20 mg/kg, i.p.) at one day of age. All initiated animals were treated at the same age (11 weeks) with the following selection agents: three daily doses of 2-acetylaminofluorene (AAF) (30 mg/kg), followed by a single dose of carbon tetrachloride (2 ml/kg), followed by three additional daily treatments of AAF (30 mg/kg). Rats were euthanized 2 weeks after the last AAF injection. The PH, neonatal male, and neonatal female groups receiving DEN developed more γ-glutamyl transpeptidase (GGT)-positive foci per cubic centimeter and foci per liver as compared to untreated rats receiving the same proliferative stimulus, whereas the fasting/refeeding group and the group receiving no proliferative stimulus did not. All DEN-treated groups receiving one of the proliferative stimuli had more foci per cubic centimeter than the DEN-treated group receiving no proliferative stimulus. The volume fractions of GGT-positive foci in the PH/DEN and neonatal male/DEN groups were higher than those of both the DEN-treated group receiving no proliferative stimulus and the groups receiving the same proliferative stimulus without DEN. In neonatal females-receiving DEN, the volume fraction was not different from either neonatal females not receiving DEN or DEN-treated rats receiving no proliferative

  10. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.

    Science.gov (United States)

    Park, Hyeong-Kyu; Ahima, Rexford S

    2015-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Predictor model for seasonal variations in skid resistance. Volume 2: Comprehensive report

    Science.gov (United States)

    Henry, J. J.; Saito, K.; Blackburn, R.

    1984-04-01

    Two models, utilizing data collected in 1979 and 1980, were developed to predict variations in skid resistance due to rainfall conditions, temperature effects, and time of the year. A generalized predictor model was developed from purely statistical considerations and a mechanistic model was developed from hypothesized mechanisms. This model may be utilized to estimate the skid resistance at any time in the season from a measurement made during the same season, or to adjust skid-resistance measurement made at any time during the season to the end-of-season level.

  12. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non-diab......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  13. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  14. Mathematical model for the transport of fluoroquinolone and its resistant bacteria in aquatic environment.

    Science.gov (United States)

    Gothwal, Ritu; Thatikonda, Shashidhar

    2017-08-05

    Development of antibiotic resistance in environmental bacteria is a direct threat to public health. Therefore, it becomes necessary to understand the fate and transport of antibiotic and its resistant bacteria. This paper presents a mathematical model for spatial and temporal transport of fluoroquinolone and its resistant bacteria in the aquatic environment of the river. The model includes state variables for organic matter, fluoroquinolone, heavy metals, and susceptible and resistant bacteria in the water column and sediment bed. Resistant gene is the factor which makes bacteria resistant to a particular antibiotic and is majorly carried on plasmids. Plasmid-mediated resistance genes are transferable between different bacterial species through conjugation (horizontal resistance transfer). This model includes plasmid dynamics between susceptible and resistant bacteria by considering the rate of horizontal resistance gene transfer among bacteria and the rate of losing resistance (segregation). The model describes processes which comprise of advection, dispersion, degradation, adsorption, diffusion, settling, resuspension, microbial growth, segregation, and transfer of resistance genes. The mathematical equations were solved by using numerical methods (implicit-explicit scheme) with appropriate boundary conditions. The development of the present model was motivated by the fact that the Musi River is heavily impacted by antibiotic pollution which led to the development of antibiotic resistance in its aquatic environment. The model was simulated for hypothetical pollution scenarios to predict the future conditions under various pollution management alternatives. The simulation results of the model for different cases show that the concentration of antibiotic, the concentration of organic matter, segregation rate, and horizontal transfer rate are the governing factors in the variation of population density of resistant bacteria. The treatment of effluents for

  15. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption.

    Science.gov (United States)

    Arepyeva, M A; Kolbin, A S; Sidorenko, S V; Lawson, R; Kurylev, A A; Balykina, Yu E; Mukhina, N V; Spiridonova, A A

    2017-03-01

    Infections that are inadequately treated owing to acquired bacterial resistance are a leading cause of mortality. Rates of multidrug-resistant bacteria are rising, resulting in increased antibiotic failures and worsening patient outcomes. Mathematical modelling makes it possible to predict the future spread of bacterial antimicrobial resistance. The aim of this study was to construct a mathematical model that can describe the dependency between the level of antimicrobial resistance and the amount of antibiotic usage. After reviewing existing mathematical models, a cross-sectional, retrospective study was carried out to collect clinical and microbiological data across 3000 patients for the construction of the mathematical model. Based on these data, a model was developed and tested to determine the dependency between antibiotic usage and resistance. Consumption of inhibitor/cephalosporins and fluoroquinolones increases inhibitor/penicillin resistance. Consumption of inhibitor/penicillins increases cephalosporin resistance. Consumption of inhibitor/penicillins increases inhibitor/cephalosporin resistance. It was demonstrated that in some antibiotic-micro-organism pairs, the level of antibiotic usage significantly influences the level of resistance. The model makes it possible to predict the change in resistance and also shows the quantitative effect of antibiotic consumption on the level of bacterial resistance. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  16. Identifying the Reducing Resistance to Change Phase in an Organizational Change Model

    OpenAIRE

    Daniela Bradutanu

    2012-01-01

    In this article we examine where in an organizational change process it is better to place the reducing resistance to change phase, so that employees would accept the new changes easier and not manifest too much resistance. After analyzing twelve organizational change models we have concluded that the place of the reducing resistance to change phase in an organizational change process is not the same, it being modified according to the type of change. The results of this study are helpful for...

  17. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  18. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  19. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  20. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  1. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    was caused by the combination of reduced thymic output, decreased T cell apoptosis, and increased transition of naive T cells to memory T cells. Experiments with bone marrow chimeric mice confirmed that the CD3gammaLLAA mutation exerted a T cell intrinsic effect on T cell homeostasis that resulted...... in an increased transition of CD3gammaLLAA naive T cells to memory T cells and a survival advantage of CD3gammaLLAA T cells compared with wild-type T cells. The experimental observations were further supported by mathematical modeling of T cell homeostasis. Our study thus identifies an important role of CD3gamma......-mediated TCR down-regulation in T cell homeostasis....

  2. Serotonergic Control of Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Steven C. Wyler

    2017-09-01

    Full Text Available New treatments are urgently needed to address the current epidemic of obesity and diabetes. Recent studies have highlighted multiple pathways whereby serotonin (5-HT modulates energy homeostasis, leading to a renewed interest in the identification of 5-HT-based therapies for metabolic disease. This review aims to synthesize pharmacological and genetic studies that have found diverse functions of both central and peripheral 5-HT in the control of food intake, thermogenesis, and glucose and lipid metabolism. We also discuss the potential benefits of targeting the 5-HT system to combat metabolic disease.

  3. Defecto en la homeostasis del óxido nítrico: Mecanismo común subyacente de la insulino-resistencia, la hiperactividad simpática y la morbi-mortalidad cardiovascular Defective nitric oxide homeostasis: Common underlying mechanism between insulin resistance, sympathetic overactivity and cardiovascular morbidity and mortality

    Directory of Open Access Journals (Sweden)

    Marcos Schwab

    2008-06-01

    Full Text Available La incidencia de la obesidad y de la resistencia a la insulina con sus complicaciones asociadas, como la hipertensión arterial y el aumento de la morbi-mortalidad cardiovascular, alcanzan hoy en día proporciones epidémicas y representan un problema mayor de salud pública. En los últimos años se ha demostrado que la administración de insulina, además de sus efectos metabólicos, posee efectos cardiovasculares importantes. El sistema nervioso simpático y el sistema L-arginina - óxido nítrico son los mediadores centrales de estas acciones cardiovasculares de la insulina. Mostramos, gracias a estudios realizados en animales y en humanos, que no sólo un déficit de la síntesis del óxido nítrico (NO, sino también un aumento exagerado en su producción representan un defecto subyacente central de las anomalías metabólicas, cardiovasculares y del sistema nervioso simpático que caracterizan a la insulino resistencia. Mostramos cómo estos resultados establecen el fundamento científico para la utilización de sustancias farmacológicas capaces de liberar de manera prolongada cantidades fisiológicas de NO o de inhibidores de su sobreproducción como futuros tratamientos para la resistencia a la insulina y sus complicaciones asociadas.Obesity, insulin resistance and associated cardiovascular complications are reaching epidemic proportions worldwide and represent a major public health problem. Over the past decade, evidence has accumulated indicating that insulin administration, in addition to its metabolic effects, also has important cardiovascular actions. The sympathetic nervous system and the L-arginine-nitric oxide pathway are the central players in the mediation of insulin's cardiovascular actions. Based on recent animal and human research, we demonstrate that both defective and augmented NO synthesis represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant

  4. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    Science.gov (United States)

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  5. An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Angela J. Westover

    2016-01-01

    Full Text Available Obesity is associated with tissue inflammation which is a crucial etiology of insulin resistance. This inflammation centers around circulating monocytes which form proinflammatory adipose tissue macrophages (ATM. Specific approaches targeting monocytes/ATM may improve insulin resistance without the adverse side effects of generalized immunosuppression. In this regard, a biomimetic membrane leukocyte processing device, called the selective cytopheretic device (SCD, was evaluated in an Ossabaw miniature swine model of insulin resistance with metabolic syndrome. Treatment with the SCD in this porcine model demonstrated a decline in circulating neutrophil activation parameters and monocyte counts. These changes were associated with improvements in insulin resistance as determined with intravenous glucose tolerance testing. These improvements were also reflected in lowering of homeostatic model assessment- (HOMA- insulin resistant (IR scores for up to 2 weeks after SCD therapy. These results allow for the planning of first-in-man studies in obese type 2 diabetic patients.

  6. The establishment of insulin resistance model in FL83B and L6 cell

    Science.gov (United States)

    Liu, Lanlan; Han, Jizhong; Li, Haoran; Liu, Mengmeng; Zeng, Bin

    2017-10-01

    The insulin resistance models of mouse liver epithelial and rat myoblasts cells were induced by three kinds of inducers: dexamethasone, high insulin and high glucose. The purpose is to select the optimal insulin resistance model, to provide a simple and reliable TR cell model for the study of the pathogenesis of TR and the improvement of TR drugs and functional foods. The MTT method is used for toxicity screening of three compounds, selecting security and suitable concentration. We performed a Glucose oxidase peroxidase (GOD-POD) method involving FL83B and L6 cell with dexamethasone, high insulin and high glucose-induced insulin resistance. Results suggested that FL83B cells with dexamethasone-induced (0.25uM) were established insulin resistance and L6 cells with high-glucose (30mM) and dexamethasone-induced (0.25uM) were established insulin resistance.

  7. Two-dimensional modeling of apparent resistivity pseudosections in the Cerro Prieto region

    Energy Technology Data Exchange (ETDEWEB)

    Vega, R.; Martinez, M.

    1981-01-01

    Using a finite-difference program (Dey, 1976) for two-dimensional modeling of apparent resistivity pseudosections obtained by different measuring arrays, four apparent resistivity pseudosections obtained at Cerro Prieto with a Schlumberger array by CFE personnel were modeled (Razo, 1978). Using geologic (Puente and de la Pena, 1978) and lithologic (Diaz, et al., 1981) data from the geothermal region, models were obtained which show clearly that, for the actual resistivity present in the zone, the information contained in the measured pseudosections is primarily due to the near-surface structure and does not show either the presence of the geothermal reservoir or the granitic basement which underlies it.

  8. Insulin resistance in obese pre-pubertal children: Relation to body ...

    African Journals Online (AJOL)

    Heba Elsedfy

    2014-04-16

    Apr 16, 2014 ... and DXA scan for body composition. Insulin sensitivity was determined using homeostasis model assessment for insulin resistance (HOMA-IR), fasting glucose to insulin ratio, Matsuda, and. Cederholm indices. Results: All patients had BMI, waist circumference, and DXA trunk fat more than 2 SDS. Mean.

  9. Insulin resistance in obese pre-pubertal children: Relation to body ...

    African Journals Online (AJOL)

    Insulin sensitivity was determined using homeostasis model assessment for insulin resistance (HOMA-IR), fasting glucose to insulin ratio, Matsuda, and Cederholm indices. Results: All patients had BMI, waist circumference, and DXA trunk fat more than 2 SDS. Mean fasting glucose, insulin, fasting glucose to insulin ratio, ...

  10. (HbA1c) levels with Iinsulin resistance in obese children.

    African Journals Online (AJOL)

    Objectives: We investigated the relationship between insulin resistance reflected by homeostasis model assessment (HOMA-IR) index and serum HbA1c levels of obese children. Material and Methods: This study included 70 obese and 60 normal weight healthy children between the ages of 3 and 15. Anthropometric ...

  11. Resistance and support to electronic government, building a model of innovation

    NARCIS (Netherlands)

    Ebbers, Wolfgang E.; van Dijk, Johannes A.G.M.

    2007-01-01

    In several countries forces that resist e-government innovations apparently override those that support them. A first step is taken in order to identify organizational processes of resistance and support to e-government innovations. A multi-disciplinary and non-linear innovation model is proposed

  12. Clothing evaporative heat resistance - Proposal for improved representation in standards and models

    NARCIS (Netherlands)

    Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.

    1999-01-01

    Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement

  13. Testing a Model of Resistance to Peer Pressure among Mexican-Origin Adolescents

    Science.gov (United States)

    Bamaca, Mayra Y.; Umana-Taylor, Adriana J.

    2006-01-01

    This study examined the factors associated with resistance to peer pressure toward antisocial behaviors among a sample of Mexican-origin adolescents (n=564) living in a large Southwestern city in the U.S. A model examining the influence of generational status, emotional autonomy from parents, and self-esteem on resistance to peer pressure was…

  14. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    Science.gov (United States)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  15. Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy

    Directory of Open Access Journals (Sweden)

    Javier Baez

    2016-11-01

    Full Text Available Predicting the timing of a castrate resistant prostate cancer is critical to lowering medical costs and improving the quality of life of advanced prostate cancer patients. We formulate, compare and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA. We accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT. While these models are simplifications of a previously published model, they fit data with similar accuracy and improve forecasting results. Both models describe the progression of androgen resistance. Although Model 1 is simpler than the more realistic Model 2, it can fit clinical data to a greater precision. However, we found that Model 2 can forecast future PSA levels more accurately. These findings suggest that including more realistic mechanisms of androgen dynamics in a two population model may help androgen resistance timing prediction.

  16. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  17. Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool

    Science.gov (United States)

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, su...

  18. Glycogen autophagy in glucose homeostasis.

    Science.gov (United States)

    Kotoulas, O B; Kalamidas, S A; Kondomerkos, D J

    2006-01-01

    Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.

  19. Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis.

    Science.gov (United States)

    Topf, Ulrike; Wrobel, Lidia; Chacinska, Agnieszka

    2016-08-01

    Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice

    Directory of Open Access Journals (Sweden)

    Luce Périè

    2017-12-01

    Full Text Available Background/Aims: Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance. Methods: We generated transgenic mice overexpressing Gasp-1, a myostatin inhibitor. Results: Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Tg(Gasp-1 transgenic mice could lead to this combination of phenotypes. Conclusion: Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

  1. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  2. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  3. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  4. TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD.

    Science.gov (United States)

    Musso, Giovanni; Cipolla, Ugo; Cassader, Maurizio; Pinach, Silvia; Saba, Francesca; De Michieli, Franco; Paschetta, Elena; Bongiovanni, Daria; Framarin, Luciana; Leone, Nicola; Berrutti, Mara; Rosina, Floriano; Corvisieri, Stefania; Molinaro, Federica; Sircana, Antonio; Gambino, Roberto

    2017-06-01

    Mechanisms underlying the opposite effects of transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 C>T polymorphism on liver injury and cardiometabolic risk in nonalcoholic fatty liver disease (NAFLD) are unclear. We assessed the impact of this polymorphism on postprandial lipoprotein metabolism, glucose homeostasis, and nutrient oxidation in NAFLD. Sixty nonobese nondiabetic normolipidemic biopsy-proven NAFLD patients and 60 matched controls genotyped for TM6SF2 C>T polymorphism underwent: indirect calorimetry; an oral fat tolerance test with measurement of plasma lipoprotein subfractions, adipokines, and incretin glucose-dependent insulinotropic polypeptide (GIP); and an oral glucose tolerance test with minimal model analysis of glucose homeostasis. The TM6SF2 T-allele was associated with higher hepatic and adipose insulin resistance, impaired pancreatic β-cell function and incretin effect, and higher muscle insulin sensitivity and whole-body fat oxidation rate. Compared with the TM6SF2 C-allele, the T-allele entailed lower postprandial lipemia and nefaemia, a less atherogenic lipoprotein profile, and a postprandial cholesterol (Chol) redistribution from smaller atherogenic lipoprotein subfractions to larger intestinal and hepatic VLDL1 subfractions. Postprandial plasma VLDL1-Chol response independently predicted the severity of liver histology. In conclusion, the TM6SF2 C>T polymorphism affects nutrient oxidation, glucose homeostasis, and postprandial lipoprotein, adipokine, and GIP responses to fat ingestion independently of fasting values. These differences may contribute to the dual and opposite effect of this polymorphism on liver injury and cardiometabolic risk in NAFLD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  6. A computational model to monitor and predict trends in bacterial resistance.

    Science.gov (United States)

    Alawieh, Ali; Sabra, Zahraa; Bizri, Abdul Rahman; Davies, Christopher; White, Roger; Zaraket, Fadi A

    2015-09-01

    Current concern over the emergence of multidrug-resistant superbugs has renewed interest in approaches that can monitor existing trends in bacterial resistance and make predictions of future trends. Recent advances in bacterial surveillance and the development of online repositories of susceptibility tests across wide geographical areas provide an important new resource, yet there are only limited computational tools for its exploitation. Here we propose a hybrid computational model called BARDmaps for automated analysis of antibacterial susceptibility tests from surveillance records and for performing future predictions. BARDmaps was designed to include a structural computational model that can detect patterns among bacterial resistance changes as well as a behavioural computational model that can use the detected patterns to predict future changes in bacterial resistance. Data from the European Antimicrobial Resistance Surveillance Network (EARS-Net) were used to validate and apply the model. BARDmaps was compared with standard curve-fitting approaches used in epidemiological research. Here we show that BARDmaps can reliably predict future trends in bacterial resistance across Europe. BARDmaps performed better than other curve-fitting approaches for predicting future resistance levels. In addition, BARDmaps was also able to detect abrupt changes in bacterial resistance in response to outbreaks and interventions as well as to compare bacterial behaviour across countries and drugs. In conclusion, BARDmaps is a reliable tool to automatically predict and analyse changes in bacterial resistance across Europe. We anticipate that BARDmaps will become an invaluable tool both for clinical providers and governmental agencies to help combat the threat posed by antibiotic-resistant bacteria.

  7. Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3

    Czech Academy of Sciences Publication Activity Database

    Christé, G.; Chahine, M.; Chevalier, P.; Pásek, Michal

    2008-01-01

    Roč. 96, - (2008), s. 281-293 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * SCN5A mutation * Long QT syndrome * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  8. Nutrition and protein energy homeostasis in elderly.

    Science.gov (United States)

    Boirie, Yves; Morio, Béatrice; Caumon, Elodie; Cano, Noël J

    2014-01-01

    Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  10. Regulation of glucose homeostasis by KSR1 and MARK2.

    Directory of Open Access Journals (Sweden)

    Paula J Klutho

    Full Text Available Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1⁻/⁻ mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1⁻/⁻ mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2⁻/⁻ksr1⁻/⁻ (DKO mice were compared to wild type, mark2⁻/⁻, and ksr1⁻/⁻ mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2⁻/⁻ mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1⁻/⁻ mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.

  11. Novel Aspects of Renal Magnesium Homeostasis

    Directory of Open Access Journals (Sweden)

    Paula Giménez-Mascarell

    2018-04-01

    Full Text Available Magnesium (Mg2+ is indispensable for several vital functions, such as neurotransmission, cardiac conductance, blood glucose, blood pressure regulation, and proper function of more than 300 enzymes. Thus, Mg2+ homeostasis is subject to tight regulation. Besides the fast and immediate regulation of plasma Mg2+, a major part of Mg2+ homeostasis is realized by a concerted action of epithelial molecular structures that tightly control intestinal uptake and renal absorption. This mechanism is provided by a combination of para- and transcellular pathways. Whereas the first pathway provides the organism with a maximal amount of vital substances by a minimal energy expenditure, the latter enables controlling and fine-tuning by means of local and regional regulatory systems and also, hormonal control. The paracellular pathway is driven by an electrochemical gradient and realized in principal by the tight junction (TJ, a supramolecular organization of membrane-bound proteins and their adaptor and scaffolding proteins. TJ determinants are claudins (CLDN, a family of membrane spanning proteins that generate a barrier or a pore between two adjacent epithelial cells. Many insights into molecular mechanisms of Mg2+ handling have been achieved by the identification of alterations and mutations in human genes which cause disorders of paracellular Mg2+ pathways (CLDN10, CLDN14, CLDN16, CLDN19. Also, in the distal convoluted tubule, a basolateral protein, CNNM2, causes if mutated, familial dominant and also recessive renal Mg2+ wasting, albeit its true function has not been clarified yet, but is assumed to play a key role in the transcellular pathway. Moreover, mutations in human genes that are involved in regulating these proteins directly or indirectly cause, if mutated human diseases, mostly in combination with comorbidities as diabetes, cystic renal disease, or metabolic abnormalities. Generation and characterization of animal models harboring the corresponding

  12. Association of insulin resistance and coronary artery remodeling: an intravascular ultrasound study

    OpenAIRE

    Kim, Sang-Hoon; Moon, Jae-Youn; Lim, Yeong Min; Kim, Kyung Ho; Yang, Woo-In; Sung, Jung-Hoon; Yoo, Seung Min; Kim, In Jai; Lim, Sang-Wook; Cha, Dong-Hun; Cho, Seung-Yun

    2015-01-01

    Background There are few studies that investigated the correlation between insulin resistance (IR) and the coronary artery remodeling. The aim of the study is to investigate the association of IR measured by homeostasis model assessment of insulin resistance (HOMA-IR) and coronary artery remodeling evaluated by intravascular ultrasound (IVUS). Methods A total of 298 consecutive patients who received percutaneous coronary interventions under IVUS guidance were retrospectively enrolled. The val...

  13. Blood Mercury and Insulin Resistance in Nondiabetic Koreans (KNHANES 2008-2010)

    OpenAIRE

    Kim, Kyu-Nam; Park, Soo-Jung; Choi, Beomhee; Joo, Nam-Seok

    2015-01-01

    Purpose Blood mercury levels are associated with inflammation, and chronic low-grade inflammation is a cause of insulin resistance. This study aimed to investigate the association between serum mercury and insulin resistance. Materials and Methods Subjects from the 2008-2010 Korean National Health and Nutrition Examination Survey were selected (n=29235) and the relevant data of 5388 subjects (2643 males and 2745 females) were analyzed cross-sectionally. Homeostasis Model Assessment for Insuli...

  14. Dietary Patterns, Insulin Resistance, and Incidence of Type 2 Diabetes in the Whitehall II Study

    OpenAIRE

    McNaughton, Sarah A.; Mishra, Gita D.; Brunner, Eric J.

    2008-01-01

    OBJECTIVE?The aim of this study was to identify a dietary pattern associated with insulin resistance and investigate whether this pattern was prospectively associated with type 2 diabetes. RESEARCH DESIGN AND METHODS?Analysis was based on 7,339 participants of the Whitehall II study. Dietary intake was measured using a 127-item food frequency questionnaire. We used the reduced rank regression method to determine dietary patterns using the homeostasis model assessment of insulin resistance as ...

  15. Robust stator resistance identification of an IM drive using model reference adaptive system

    International Nuclear Information System (INIS)

    Madadi Kojabadi, Hossein; Abarzadeh, Mostafa; Aghaei Farouji, Said

    2013-01-01

    Highlights: ► We estimate the stator resistance and rotor speed of the IM. ► We proposed a new quantity to estimate the speed and stator resistance of IM. ► The proposed algorithm is robust to rotor resistance variations. ► We estimate the IM speed and stator resistance simultaneously to avoid speed error. - Abstract: Model reference adaptive system (MRAS) based robust stator resistance estimator for sensorless induction motor (IM) drive is proposed. The MRAS is formed with a semi-active power quantity. The proposed identification method can be achieved with on-line tuning of the stator resistance with robustness against rotor resistance variations. Stable and efficient estimation of IM speed at low region will be guaranteed by simultaneous identification of IM speed and stator resistance. The stability of proposed stator resistance estimator is checked through Popov’s hyperstability theorem. Simulation and experimental results are given to highlight the feasibility, the simplicity, and the robustness of the proposed method.

  16. Assessment of the reliability of reproducing two-dimensional resistivity models using an image processing technique.

    Science.gov (United States)

    Ishola, Kehinde S; Nawawi, Mohd Nm; Abdullah, Khiruddin; Sabri, Ali Idriss Aboubakar; Adiat, Kola Abdulnafiu

    2014-01-01

    This study attempts to combine the results of geophysical images obtained from three commonly used electrode configurations using an image processing technique in order to assess their capabilities to reproduce two-dimensional (2-D) resistivity models. All the inverse resistivity models were processed using the PCI Geomatica software package commonly used for remote sensing data sets. Preprocessing of the 2-D inverse models was carried out to facilitate further processing and statistical analyses. Four Raster layers were created, three of these layers were used for the input images and the fourth layer was used as the output of the combined images. The data sets were merged using basic statistical approach. Interpreted results show that all images resolved and reconstructed the essential features of the models. An assessment of the accuracy of the images for the four geologic models was performed using four criteria: the mean absolute error and mean percentage absolute error, resistivity values of the reconstructed blocks and their displacements from the true models. Generally, the blocks of the images of maximum approach give the least estimated errors. Also, the displacement of the reconstructed blocks from the true blocks is the least and the reconstructed resistivities of the blocks are closer to the true blocks than any other combined used. Thus, it is corroborated that when inverse resistivity models are combined, most reliable and detailed information about the geologic models is obtained than using individual data sets.

  17. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    Science.gov (United States)

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2017-11-13

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals.

    Science.gov (United States)

    Cen, Xiuli; Feng, Zhilan; Zheng, Yiqiang; Zhao, Yulin

    2017-12-01

    Antibiotic-resistant bacteria have posed a grave threat to public health by causing a number of nosocomial infections in hospitals. Mathematical models have been used to study transmission dynamics of antibiotic-resistant bacteria within a hospital and the measures to control antibiotic resistance in nosocomial pathogens. Studies presented in Lipstich et al. (Proc Natl Acad Sci 97(4):1938-1943, 2000) and Lipstich and Bergstrom (Infection control in the ICU environment. Kluwer, Boston, 2002) have provided valuable insights in understanding the transmission of antibiotic-resistant bacteria in a hospital. However, their results are limited to numerical simulations of a few different scenarios without analytical analyses of the models in broader parameter regions that are biologically feasible. Bifurcation analysis and identification of the global stability conditions can be very helpful for assessing interventions that are aimed at limiting nosocomial infections and stemming the spread of antibiotic-resistant bacteria. In this paper we study the global dynamics of the mathematical model of antibiotic resistance in hospitals considered in Lipstich et al. (2000) and Lipstich and Bergstrom (2002). The invasion reproduction number [Formula: see text] of antibiotic-resistant bacteria is derived, and the relationship between [Formula: see text] and two control reproduction numbers of sensitive bacteria and resistant bacteria ([Formula: see text] and [Formula: see text]) is established. More importantly, we prove that a backward bifurcation may occur at [Formula: see text] when the model includes superinfection, which is not mentioned in Lipstich and Bergstrom (2002). More specifically, there exists a new threshold [Formula: see text], such that if [Formula: see text], then the system can have two positive interior equilibria, which leads to an interesting bistable phenomenon. This may have critical implications for controlling the antibiotic-resistance in a hospital.

  19. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...

  20. DEM investigation on characteristics of rolling resistance for modelling particle shape

    Science.gov (United States)

    Zhou, Lunlun; Chu, Xihua; Xu, Yuanjie

    2017-06-01

    To examine the capability of rolling resistance to model the effects of particle shape, two sets of samples, composed of binary clumped particles and circular particles with rolling resistance, are tested in DEM simulation. The coefficient of rolling friction is estimated based on the energy dissipation. The effects of rolling resistance and particle shape on the shear strength, deformation behavior and non-coaxiality are compared. The numerical results show that rolling resistance reproduces well the effect of particle shape on the peak strength. However, other macro-properties, such as residual strength, elasticity modulus, poisson's ratio, dilatancy and non-coaxiality, introduced by rolling resistance both exist certain differences compared with the effect of particle shape. The discrepancies is thought to be due to the increasing compressibility of samples as the particle shape becomes more elongated, which cannot be reproduced by increasing rolling friction.

  1. A Compact P⁺ Contact Resistance Model for Characterization of Substrate Coupling in Modern Lightly Doped CMOS Processes

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Jensen, Ole Kiel

    2012-01-01

    Compact modeling of P+ contact resistances is important for characterization of substrate noise coupling in mixed-signal System on Chips (SoCs). Existing contact resistance models can handle uniformly doped bulk or epitaxial substrates. However, compact contact resistance models feasible for modern......, and it is scalable to layout/substrate parameters. The proposed model can also be used to predict noise coupling in terms of S-parameters. The model validation has been done by both EM simulations and measurements, and satisfactory agreement is found between the modeled and measured resistances as well as S-parameters....... lightly-doped CMOS processes with P-well layers are still unavailable. This paper presents a new compact resistance model aiming at solving this problem. A Conformal Mapping(CM) method was used to derive the closed-form expressions for the resistances in the model. The model requires no fitting factors...

  2. Depression and Insulin Resistance

    Science.gov (United States)

    Pearson, Sue; Schmidt, Mike; Patton, George; Dwyer, Terry; Blizzard, Leigh; Otahal, Petr; Venn, Alison

    2010-01-01

    OBJECTIVE To examine the association between depressive disorder and insulin resistance in a sample of young adults using the Composite International Diagnostic Interview to ascertain depression status. RESEARCH DESIGN AND METHODS Cross-sectional data were collected from 1,732 participants aged between 26 and 36 years. Insulin resistance was derived from blood chemistry measures of fasting insulin and glucose using the homeostasis model assessment method. Those identified with mild, moderate, or severe depression were classified as having depressive disorder. RESULTS The 12-month prevalence of depressive disorder was 5.4% among men and 11.7% among women. In unadjusted models mean insulin resistance was 17.2% (95% CI 0.7–36.0%, P = 0.04) higher in men and 11.4% (1.5–22.0%, P = 0.02) higher in women with depressive disorder. After adjustment for behavioral and dietary factors, the increased level of insulin resistance associated with depressive disorder was 13.2% (−3.1 to 32.3%, P = 0.12) in men and 6.1% (−4.1 to 17.4%, P = 0.25) in women. Waist circumference was identified as a mediator in the relationship between depression and insulin resistance, reducing the β coefficient in the fully adjusted models in men by 38% and in women by 42%. CONCLUSIONS A positive association was found between depressive disorder and insulin resistance in this population-based sample of young adult men and women. The association seemed to be mediated partially by waist circumference. PMID:20185745

  3. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices

    Directory of Open Access Journals (Sweden)

    Yongwoo Kwon

    2017-08-01

    Full Text Available Methylamine lead iodide (CH3NH3PbI3, which has recently been in the spotlight as a solar cell material, has also recently shown promise for use as an active material in resistive memory cells with ultralow operation voltages, good transparencies, and flexibilities. The material’s defects, which govern its properties, differ vastly depending on the fabrication process. However, the defect chemistry is not yet entirely understood. We have therefore established a macroscopic transport model with defect-related model parameters, such as trap density, trap energy level, and Fermi level, in order to estimate these parameters for fabricated samples based on their electrical data. Our model will serve as an efficient way to analyze the properties of the active material.

  4. Comparison of clinical prediction models for resistant bacteria in community-onset pneumonia.

    Science.gov (United States)

    Self, Wesley H; Wunderink, Richard G; Williams, Derek J; Barrett, Tyler W; Baughman, Adrienne H; Grijalva, Carlos G

    2015-06-01

    Six recently published algorithms classify pneumonia patients presenting from the community into high- and low-risk groups for resistant bacteria. Our objective was to compare performance of these algorithms for identifying patients infected with bacteria resistant to traditional community-acquired pneumonia antibiotics. This was a retrospective study of consecutive adult patients diagnosed with pneumonia in an emergency department and subsequently hospitalized. Each patient was classified as high or low risk for resistant bacteria according to the following algorithms: original health care-associated pneumonia (HCAP) criteria, Summit criteria, Brito and Niederman strategy, Shorr model, Aliberti model, and Shindo model. The reference for comparison was detection of resistant bacteria, defined as methicillin-resistant Staphylococcus aureus or Gram-negative bacteria resistant to ceftriaxone or levofloxacin. A total of 614 patients were studied, including 36 (5.9%) with resistant bacteria. The HCAP criteria classified 304 (49.5%) patients as high risk, with an area under the receiver operating characteristic curve (AUC) of 0.63 (95% confidence interval [CI] = 0.54 to 0.72), sensitivity of 0.69 (95% CI = 0.52 to 0.83), and specificity of 0.52 (95% CI = 0.48 to 0.56). None of the other algorithms improved both sensitivity and specificity or significantly improved the AUC. Compared to the HCAP criteria, the Shorr and Aliberti models classified more patients as high risk, resulting in higher sensitivity and lower specificity. The Shindo model classified fewer patients as high risk, with lower sensitivity and higher specificity. All algorithms for identification of resistant bacteria included in this study had suboptimal performance to guide antibiotic selection. New strategies for selecting empirical antibiotics for community-onset pneumonia are necessary. © 2015 by the Society for Academic Emergency Medicine.

  5. A Simple Model of Tetracycline Antibiotic Resistance in the Aquatic Environment (with Application to the Poudre River

    Directory of Open Access Journals (Sweden)

    Sarah Sanchez

    2011-02-01

    Full Text Available Antibiotic resistance is a major concern, yet it is unclear what causes the relatively high densities of resistant bacteria in the anthropogenically impacted environment. There are various possible scenarios (hypotheses: (A Input of resistant bacteria from wastewater and agricultural sources is significant, but they do not grow in the environment; (B Input of resistant bacteria is negligible, but the resistant bacteria (exogenous or endogenous grow due to the selection pressure of the antibiotic; (C Exogenous bacteria transfer the resistance to the endogenous bacteria and those grow. This paper presents a simple mechanistic model of tetracycline resistance in the aquatic environment. It includes state variables for tetracyclines, susceptible and resistant bacteria, and particulate and dissolved organic matter in the water column and sediment bed. The antibiotic partitions between freely dissolved, dissolved organic matter (DOM-bound and solids-bound phases, and decays. Bacteria growth is limited by DOM, inhibited by the antibiotic (susceptible bacteria only and lower due to the metabolic cost of carrying the resistance (resistant bacteria only. Resistant bacteria can transfer resistance to the susceptible bacteria (conjugation and lose the resistance (segregation. The model is applied to the Poudre River and can reproduce the major observed (literature data patterns of antibiotic concentration and resistance. The model suggests observed densities of resistant bacteria in the sediment bed cannot be explained by input (scenario A, but require growth (scenarios B or C.

  6. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  7. In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder.

    Science.gov (United States)

    Gallego-Villar, L; Rivera-Barahona, A; Cuevas-Martín, C; Guenzel, A; Pérez, B; Barry, M A; Murphy, M P; Logan, A; Gonzalez-Quintana, A; Martín, M A; Medina, S; Gil-Izquierdo, A; Cuezva, J M; Richard, E; Desviat, L R

    2016-07-01

    Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials.

    Science.gov (United States)

    Dudaniec, Rachael Y; Worthington Wilmer, Jessica; Hanson, Jeffrey O; Warren, Matthew; Bell, Sarah; Rhodes, Jonathan R

    2016-01-01

    Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical. © 2015 John Wiley & Sons Ltd.

  9. Glucose homeostasis and cardiovascular disease biomarkers in older alpine skiers

    DEFF Research Database (Denmark)

    Dela, F; Niederseer, David; Patsch, Wolfgang

    2011-01-01

    Alpine skiing and ski training involves elements of static and dynamic training, and may therefore improve insulin sensitivity. Healthy men and women who where beginners/intermediate level of alpine skiing, were studied before (Pre) and immediately after (Post) 12 weeks of alpine ski training...... a continued decrease was seen in IG (Ret vs Post, Ptraining in IG, while no effect was seen in CG. HOMA2 index for insulin resistance decreased (P..., and did not change. Alpine ski training improves glucose homeostasis and insulin sensitivity in healthy, elderly individuals....

  10. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    Science.gov (United States)

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.

  11. Simian-tropic HIV as a model to study drug resistance against integrase inhibitors.

    Science.gov (United States)

    Wares, Melissa; Hassounah, Said; Mesplède, Thibault; Sandstrom, Paul A; Wainberg, Mark A

    2015-04-01

    Drug resistance represents a key aspect of human immunodeficiency virus (HIV) treatment failure. It is important to develop nonhuman primate models for studying issues of drug resistance and the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses for studying resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell-tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1 were replaced with their SIV counterparts (simian-tropic HIV-1 [stHIV-1](SCA,SVIF)) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H, and R263K on drug resistance, viral infectivity, and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their effects in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the role of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI resistance substitutions on viral persistence, transmissibility, and pathogenesis in a nonhuman primate model. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent antimicrobial resistance in pigs.

    Science.gov (United States)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo; Toft, Nils; Matthews, Louise; Nielsen, Søren Saxmose

    2015-03-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing the resistance levels. The number of competing strains had no apparent effect on the resistance level during treatment, but possession of fewer strains reduced the time to reach equilibrium after the end of treatment. To sum up, epidemiological parameters may have more profound influence on growth dynamics than dosing regimens and should be considered when designing improved treatment protocols. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Nonlinear inversion of resistivity sounding data for 1-D earth models using the Neighbourhood Algorithm

    Science.gov (United States)

    Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.

    2018-01-01

    To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.

  14. A contact resistance model for scanning probe phase-change memory

    International Nuclear Information System (INIS)

    Wang, Lei; Ying, Jin; Wei Yang, Guo; Wright, David; Aziz, Mustafa

    2014-01-01

    A novel mechanical model was proposed to calculate the contact resistance at tip and capping layer interface for scanning probe phase-change memory applications. The resulting I–V curve calculated from this model that combines Hertzian contact theory with the Schottky diode effect has exhibited a good agreement with the experimental measurements under the same system architecture. The role of contact resistance on the write efficacy of scanning probe phase-change memory was also evaluated by introducing the calculated contact resistance into the previous electrothermal simulations for cases of writing crystalline bits in amorphous starting phase and writing amorphous bits in crystalline starting phase. The consequent written marks and I–V curve show a closer match with the experimental observation compared to the case without including contact resistance. (technical note)

  15. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  16. Modelling the influence of steel fibres on the electrical resistivity of cementitious composites

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Stang, Henrik

    2009-01-01

    One of the governing factors on the corrosion of embedded reinforcement is the electrical resistivity of the concrete. The combination of steel fibres and conventional reinforcement bars has been used in a number of structures. However, the addition of electrical con-ductive fibres might influence...... of steel fibre reinforced concrete (SFRC). The parameters investigated in the following are the fibre geometry, the fibre volume and the transitional resistance. On basis of the experimental results, a model, taking the resistivity of the fibres and the concrete matrix into account is proposed....

  17. Positive and normative modeling for Palmer amaranth control and herbicide resistance management.

    Science.gov (United States)

    Frisvold, George B; Bagavathiannan, Muthukumar V; Norsworthy, Jason K

    2017-06-01

    Dynamic optimization models are normative; they solve for what growers 'ought to do' to maximize some objective, such as long-run profits. While valuable for research, such models are difficult to solve computationally, limiting their applicability to grower resistance management education. While discussing properties of normative models in general, this study presents results of a specific positive model of herbicide resistance management, applied to Palmer amaranth control on a representative cotton farm. This positive model compares a proactive resistance management strategy to a reactive strategy with lower short-run costs, but greater risk of herbicide resistance developing. The proactive strategy can pay for itself within 1-4 years, with a yield advantage of 4% or less if the yield advantage begins within 1-2 years of adoption. Whether the proactive strategy is preferable is sensitive to resistance onset and yield losses, but less sensitive to cotton prices or baseline yields. Industry rebates to encourage residual herbicide use (to delay resistance to post-emergence treatments) may be too small to alter grower behavior or they may be paid to growers who would have used residuals anyway. Rebates change grower behavior over a relatively narrow range of model parameters. The size of rebates needed to induce a grower to adopt the proactive strategy declines significantly if growers extend their planning horizon from 1 year to 3-4 years. Whether proactive resistance management is more profitable than a reactive strategy is more sensitive to biological parameters than economic ones. Simulation results suggest growers with longer time horizons (perhaps younger ones) would be more responsive to rebate programs. More empirical work is needed to determine how much rebates increase residual use above what would occur without them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  19. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  20. Trait Stress Resistance and Dynamic Stress Dissipation on Health and Well-Being: The Reservoir Model

    OpenAIRE

    Bergeman, C. S.; Deboeck, Pascal R.

    2014-01-01

    Daily data from the NDHWB (n = 783; age range 37–90) were analyzed to produce ‘dynamic characteristic’ estimates of stress input and dissipation. These were used in multi-level modeling (with age and trait stress resistance) to predict depression and health trajectories. Main effects suggest that dissipation and stress resistance predict lower depression and better health, but lower stress input was only related to lower depression. Interactions revealed that subjects with above average stres...

  1. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  2. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Science.gov (United States)

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  3. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    NARCIS (Netherlands)

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  4. Parameterization of canopy resistance for modeling the energy partitioning of a paddy rice field

    NARCIS (Netherlands)

    Yan, H.; Zhang, C.; Hiroki, Oue

    2018-01-01

    Models for predicting hourly canopy resistance (rc) and latent heat flux (LET) based on the Penman–Monteith (PM) and bulk transfer methods are presented. The micrometeorological data and LET were observed during paddy rice-growing seasons in 2010 in Japan. One approach to model

  5. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  6. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  7. Modelling of electrical resistance of semiconductive polymer pressed sample at the uniaxial compression

    International Nuclear Information System (INIS)

    Karimov, Kh.S.; Radzhabov, A.K.; Akhmedov, Yh.; Valiev, J.; Homidov, I.

    1999-01-01

    In the study the electrical resistance of pressed samples of the poly-N-methylcarbazole complex with iodine (PNMC) under uniaxial compression has been investigated by modeling. Physical model of the samples is considered in the form of contiguous of semiconducting spheres grains. It was investigated the influence of change of geometrical dimensions of the sample and electrical conductivity to resistance at the compression. For description of the polymers conductivity the hoping polaron mechanism of charge transfer was used. In the result of experimental data analysis, mathematical and physical models have been established: constant errors of the experiments are negligible in the linear dependence of the relative resistance on uniaxial pressures; tensity resistive effect caused by change of geometrical dimensions of the sample at the compression is less in comparison with increase of conductivity; the increase of the PMNC conductivity at the uniaxial compression may be result by increase of polaron's radius and dielectric permeability and decrease of polaron's jump length too. Received formula of the relative longitudinal resistance dependence on uruiaxial pressure may be used at the analysis of tensity resistive effect. (author)

  8. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  9. Effect of high-dose pitavastatin on glucose homeostasis in patients at elevated risk of new-onset diabetes: insights from the CAPITAIN and PREVAIL-US studies.

    Science.gov (United States)

    Chapman, M J; Orsoni, A; Robillard, P; Hounslow, N; Sponseller, C A; Giral, P

    2014-05-01

    Statin treatment may impair glucose homeostasis and increase the risk of new-onset diabetes mellitus, although this may depend on the statin, dose and patient population. We evaluated the effects of pitavastatin 4 mg/day on glucose homeostasis in patients with metabolic syndrome in the CAPITAIN trial. Findings were validated in a subset of patients enrolled in PREVAIL-US. Participants with a well defined metabolic syndrome phenotype were recruited to CAPITAIN to reduce the influence of confounding factors. Validation and comparison datasets were selected comprising phenotypically similar subsets of individuals enrolled in PREVAIL-US and treated with pitavastatin or pravastatin, respectively. Mean change from baseline in parameters of glucose homeostasis (fasting plasma glucose [FPG], glycated hemoglobin [HbA1c], insulin, quantitative insulin-sensitivity check index [QUICKI] and homeostasis model of assessment-insulin resistance [HOMA-IR]) and plasma lipid profile were assessed at 6 months (CAPITAIN) and 3 months (PREVAIL-US) after initiating treatment. In CAPITAIN (n = 12), no significant differences from baseline in HbA1c, insulin, HOMA-IR and QUICKI were observed at day 180 in patients treated with pitavastatin. A small (4%) increase in FPG from baseline to day 180 (P validation dataset (n = 9), no significant differences from baseline in glycemic parameters were observed at day 84 (all comparisons P > 0.05). Similar results were observed for pravastatin in the comparison dataset (n = 14). Other than a small change in FPG in the CAPITAIN study, neutral effects of pitavastatin on glucose homeostasis were observed in two cohorts of patients with metabolic syndrome, independent of its efficacy in reducing levels of atherogenic lipoproteins. The small number of patients and relatively short follow-up period represent limitations of the study. Nevertheless, these data suggest that statin-induced diabetogenesis may not represent a class effect.

  10. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  11. Mechanisms of Therapy Resistance in Patient-Derived Xenograft Models of BRCA1-Deficient Breast Cancer.

    Science.gov (United States)

    Ter Brugge, Petra; Kristel, Petra; van der Burg, Eline; Boon, Ute; de Maaker, Michiel; Lips, Esther; Mulder, Lennart; de Ruiter, Julian; Moutinho, Catia; Gevensleben, Heidrun; Marangoni, Elisabetta; Majewski, Ian; Józwiak, Katarzyna; Kloosterman, Wigard; van Roosmalen, Markus; Duran, Karen; Hogervorst, Frans; Turner, Nick; Esteller, Manel; Cuppen, Edwin; Wesseling, Jelle; Jonkers, Jos

    2016-11-01

    Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms. © The Author 2016. Published by Oxford University Press. All rights reserved

  12. Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System.

    Science.gov (United States)

    Llop, Pablo; Latorre, Amparo; Moya, Andrés

    2018-02-01

    Antibiotic resistance is recognized as one of the major challenges in public health. The global spread of antibiotic resistance is the consequence of a constant flow of information across multi-hierarchical interactions, involving cellular (clones), subcellular (resistance genes located in plasmids, transposons, and integrons), and supracellular (clonal complexes, genetic exchange communities, and microbiotic ensembles) levels. In order to study such multilevel complexity, we propose to establish an experimental epidemiology model for the transmission of antibiotic resistance with the cockroach Blatella germanica . This paper reports the results of five types of preliminary experiments with B. germanica populations that allow us to conclude that this animal is an appropriate model for experimental epidemiology: (i) the composition, transmission, and acquisition of gut microbiota and endosymbionts; (ii) the effect of different diets on gut microbiota; (iii) the effect of antibiotics on host fitness; (iv) the evaluation of the presence of antibiotic resistance genes in natural- and lab-reared populations; and (v) the preparation of plasmids harboring specific antibiotic resistance genes. The basic idea is to have populations with higher and lower antibiotic exposure, simulating the hospital and the community, respectively, and with a certain migration rate of insects between populations. In parallel, we present a computational model based on P-membrane computing that will mimic the experimental system of antibiotic resistance transmission. The proposal serves as a proof of concept for the development of more-complex population dynamics of antibiotic resistance transmission that are of interest in public health, which can help us evaluate procedures and design appropriate interventions in epidemiology.

  13. Homeostasis Back and Forth: An Ecoevolutionary Perspective of Cancer.

    Science.gov (United States)

    Basanta, David; Anderson, Alexander R A

    2017-09-01

    The role of genetic mutations in cancer is indisputable: They are a key source of tumor heterogeneity and drive its evolution to malignancy. But, the success of these new mutant cells relies on their ability to disrupt the homeostasis that characterizes healthy tissues. Mutated clones unable to break free from intrinsic and extrinsic homeostatic controls will fail to establish a tumor. Here, we will discuss, through the lens of mathematical and computational modeling, why an evolutionary view of cancer needs to be complemented by an ecological perspective to understand why cancer cells invade and subsequently transform their environment during progression. Importantly, this ecological perspective needs to account for tissue homeostasis in the organs that tumors invade, because they perturb the normal regulatory dynamics of these tissues, often coopting them for its own gain. Furthermore, given our current lack of success in treating advanced metastatic cancers through tumor-centric therapeutic strategies, we propose that treatments that aim to restore homeostasis could become a promising venue of clinical research. This ecoevolutionary view of cancer requires mechanistic mathematical models to both integrate clinical with biological data from different scales but also to detangle the dynamic feedback between the tumor and its environment. Importantly, for these models to be useful, they need to embrace a higher degree of complexity than many mathematical modelers are traditionally comfortable with. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. A simplified model to estimate thermal resistance between carbon nanotube and sample in scanning thermal microscopy

    Science.gov (United States)

    Nazarenko, Maxim; Rosamond, Mark C.; Gallant, Andrew J.; Kolosov, Oleg V.; Dubrovskii, Vladimir G.; Zeze, Dagou A.

    2017-12-01

    Scanning thermal microscopy (SThM) is an attractive technique for nanoscale thermal measurements. Multiwalled carbon nanotubes (MWCNT) can be used to enhance a SThM probe in order to drastically increase spatial resolution while keeping required thermal sensitivity. However, an accurate prediction of the thermal resistance at the interface between the MWCNT-enhanced probe tip and a sample under study is essential for the accurate interpretation of experimental measurements. Unfortunately, there is very little literature on Kapitza interfacial resistance involving carbon nanotubes under SThM configuration. We propose a model for heat conductance through an interface between the MWCNT tip and the sample, which estimates the thermal resistance based on phonon and geometrical properties of the MWCNT and the sample, without neglecting the diamond-like carbon layer covering the MWCNT tip. The model considers acoustic phonons as the main heat carriers and account for their scattering at the interface based on a fundamental quantum mechanical approach. The predicted value of the thermal resistance is then compared with experimental data available in the literature. Theoretical predictions and experimental results are found to be of the same order of magnitude, suggesting a simplified, yet realistic model to approximate thermal resistance between carbon nanotube and sample in SThM, albeit low temperature measurements are needed to achieve a better match between theory and experiment. As a result, several possible avenues are outlined to achieve more accurate predictions and to generalize the model.

  15. Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics.

    Science.gov (United States)

    Milanesi, Pietro; Holderegger, R; Caniglia, R; Fabbri, E; Galaverni, M; Randi, E

    2017-01-01

    Landscape genetics aims to investigate functional connectivity among wild populations by evaluating the impact of landscape features on gene flow. Genetic distances among populations or individuals are generally better explained by least-cost path (LCP) distances derived from resistance surfaces than by simple Euclidean distances. Resistance surfaces reflect the cost for an organism to move through particular landscape elements. However, determining the effects of landscape types on movements is challenging. Because of a general lack of empirical data on movements, resistance surfaces mostly rely on expert knowledge. Habitat-suitability models potentially provide a more objective method to estimate resistance surfaces than expert opinions, but they have rarely been applied in landscape genetics so far. We compared LCP distances based on expert knowledge with LCP distances derived from habitat-suitability models to evaluate their performance in landscape genetics. We related all LCP distances to genetic distances in linear mixed effect models on an empirical data set of wolves (Canis lupus) from Italy. All LCP distances showed highly significant (P ≤ 0.0001) standardized β coefficients and R 2 values, but LCPs from habitat-suitability models generally showed higher values than those resulting from expert knowledge. Moreover, all LCP distances better explained genetic distances than Euclidean distances, irrespective of the approaches used. Considering our results, we encourage researchers in landscape genetics to use resistance surfaces based on habitat suitability which performed better than expert-based LCPs in explaining patterns of gene flow and functional connectivity.

  16. Semianalytical model of the contact resistance in two-dimensional semiconductors

    Science.gov (United States)

    Grassi, Roberto; Wu, Yanqing; Koester, Steven J.; Low, Tony

    2017-10-01

    Contact resistance is a severe performance bottleneck for electronic devices based on two-dimensional (2D) layered semiconductors, whose contacts are Schottky rather than Ohmic. Although there is a general consensus that the injection mechanism changes from thermionic to tunneling with gate biasing, existing models tend to oversimplify the transport problem, by neglecting the 2D transport nature and the modulation of the Schottky barrier height, the latter being of particular importance in back-gated devices. In this paper, we develop a semianalytical model based on Bardeen's transfer Hamiltonian approach to describe both effects. Remarkably, our model is able to reproduce several experimental observations of a metallic behavior in the contact resistance, i.e., a decreasing resistance with decreasing temperature, occurring at high gate voltages.

  17. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  19. Gene flow from single and stacked herbicide-resistant rice (Oryza sativa): modeling occurrence of multiple herbicide-resistant weedy rice.

    Science.gov (United States)

    Dauer, Joseph; Hulting, Andrew; Carlson, Dale; Mankin, Luke; Harden, John; Mallory-Smith, Carol

    2018-02-01

    Provisia™ rice (PV), a non-genetically engineered (GE) quizalofop-resistant rice, will provide growers with an additional option for weed management to use in conjunction with Clearfield ® rice (CL) production. Modeling compared the impact of stacking resistance traits versus single traits in rice on introgression of the resistance trait to weedy rice (also called red rice). Common weed management practices were applied to 2-, 3- and 4-year crop rotations, and resistant and multiple-resistant weedy rice seeds, seedlings and mature plants were tracked for 15 years. Two-year crop rotations resulted in resistant weedy rice after 2 years with abundant populations (exceeding 0.4 weedy rice plants m -2 ) occurring after 7 years. When stacked trait rice was rotated with soybeans in a 3-year rotation and with soybeans and CL in a 4-year rotation, multiple-resistance occurred after 2-5 years with abundant populations present in 4-9 years. When CL rice, PV rice, and soybeans were used in 3- and 4-year rotations, the median time of first appearance of multiple-resistance was 7-11 years and reached abundant levels in 10-15 years. Maintaining separate CL and PV rice systems, in rotation with other crops and herbicides, minimized the evolution of multiple herbicide-resistant weedy rice through gene flow compared to stacking herbicide resistance traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Psychological modeling and adaptations in cognitive representations with increased resistance during motor skill acquisition.

    Science.gov (United States)

    Catina, Peter

    2009-03-01

    It was hypothesized that subjects receiving increased resistance in the squat exercise would demonstrate better technique and better understanding of how to perform the skill than subjects performing the exercise with no increase in resistance. Scores were recorded on the following analyses: the questionnaire analysis, which measured cognitive representation; the video analysis, which measured squat performance technique; and the 3-dimensional figure analysis, which measured the degree of similarity between the position of the model and the position of the subjects during the performance task. Ten undergraduate students were sampled, half of whom received increased resistance in the squat exercise. Admission requirements were that the subjects be men, be matched for age, body weight, and height, and have no experience in resistance training or formal instruction in proper squat technique. After measuring subjects' cognitive representation with the questionnaire, subsequent analyses were conducted to further clarify treatment effects. The second analysis involved measuring differences between the videotaped performance of the model and the videotaped performance of naive subjects. The third analysis consisted of subjects assembling a 3-dimensional wooden figure to duplicate the proper biomechanics of the expert model, which was then photographed and compared with the model's template assembly of the wooden figure. It was concluded that subjects performing the squat with increased resistance showed significant (p technique compared with subjects who performed the squat with no increase in resistance. The directional hypothesis was supported. Namely, the scores of subjects receiving the treatment were predicted to be significantly greater than the scores of those who received no treatment. These data suggest that increasing the resistance in subsequent trials of the squat exercise may be a positive factor in enhancing the performance and improving the biomechanical

  1. The model of mechanisms of materials resistance to fracture

    International Nuclear Information System (INIS)

    Tyugashov, P.F.

    1994-01-01

    A description is made for shear, break-up and combined fracture mechanisms. The potentiality of the model proposed is demonstrated on study of load-elongation diagram for titanium alloy type VT3-1. Comparison of calculation result to with available experimental data confirms the validity of assumptions about materials behaviour under creep conditions. 3 refs., 3 tabs

  2. Low resistive trasparent conductors with metallic grids : modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Rendering, H.; Mannetje, H.H 't; Klerk, L.; Hovestad, A.

    2012-01-01

    At present, transparent conducting oxides (TCOs) are still superior in performance to most other transparent conductors. Results on opto-electronic modeling and design optimization of TCOs are presented using a monolithically integrated CIGS cell configuration as case. For various cell dimensions

  3. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma...

  4. Analytical 1D models of the wall thermal resistance of rectangular minichannels applied in heat exchangers

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2016-09-01

    Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.

  5. Does microbiota composition affect thyroid homeostasis?

    Science.gov (United States)

    Virili, Camilla; Centanni, Marco

    2015-08-01

    The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

  6. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  7. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  8. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd

    2010-01-01

    or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  9. Physiology and role of irisin in glucose homeostasis

    Science.gov (United States)

    Perakakis, Nikolaos; Triantafyllou, Georgios A.; Fernández-Real, José Manuel; Huh, Joo Young; Park, Kyung Hee; Seufert, Jochen; Mantzoros, Christos S.

    2018-01-01

    Irisin is a myokine that leads to increased energy expenditure by stimulating the ‘browning’ of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Consequently, several studies attempted to characterize the role of irisin in glucose regulation, but contradictory results have been reported, and even the existence of this hormone has been questioned. In this Review, we present the current knowledge on the physiology of irisin and its role in glucose homeostasis. We describe the mechanisms involved in the synthesis, secretion, circulation and regulation of irisin, and the controversies regarding the measurement of irisin. We also discuss the direct effects of irisin on glucose regulatory mechanisms in different organs, the indirect effects and interactions with other hormones, and the important open questions with regard to irisin in those organs. Finally, we present the results from animal interventional studies and from human clinical studies investigating the association of irisin with obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome. PMID:28211512

  10. A role of the adaptive immune system in glucose homeostasis.

    Science.gov (United States)

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology.

  11. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  12. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  13. Narcissistic Force Meets Systemic Resistance: The Energy Clash Model.

    Science.gov (United States)

    Sedikides, Constantine; Campbell, W Keith

    2017-05-01

    This article focuses on the interplay between narcissistic leaders and organizations. It attempts to capture the gist of this interplay with a model outlining the narcissistic organizational trajectory. The Energy Clash Model borrows and adapts a phase/state physics metaphor to conceptualize narcissism as a force that enters or emerges in a stable system (i.e., organization) as a leader, destabilizes it, and stabilizes it at a different state or is expelled. The model consists of three time-contingent phases: perturbation, conflict, and resolution. Narcissists create instability through waves of excitement, proposed reforms, and an inspiring vision for organization's future ( perturbation). With the passage of time, though, systemic awareness and alertness intensify, as organizational costs-in terms of human resources and monetary losses-accrue. Narcissistic energy clashes directly with the organization ( conflict), a clash likely to restabilize the system eventually. The conflict may provoke the exit of the narcissistic leader or his or her accommodation, that is, steps or controls negotiated between the system and the leader ( resolution). Although narcissism is subject to organizational liability, narcissistic energy, when managed and directed properly, may contribute to organizational innovation and evolution. Thus, several interventions for working with narcissistic leaders are discussed.

  14. Variable hydraulic resistances and their impact on plant drought response modelling.

    Science.gov (United States)

    Baert, Annelies; De Schepper, Veerle; Steppe, Kathy

    2015-04-01

    Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Directory of Open Access Journals (Sweden)

    Marc Souris

    Full Text Available Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  16. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Science.gov (United States)

    Souris, Marc; Marcombe, Sébastien; Laforet, Julie; Brey, Paul T; Corbel, Vincent; Overgaard, Hans J

    2017-01-01

    Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  17. Homeostasis in defined genotypes of Matthiola incana.

    Science.gov (United States)

    Seyffert, W

    1983-02-01

    Based on 256 defined genotypes of the Brassicaceae Matthiola incana the influence of the alleles at four different loci and of their combinations on homeostasis was investigated against an isogenic background. The measured character was the anthocyanin content of the flowers. There are significant maternal and paternal influences on homeostasis. Moreover the extent of heterozygosity as well as the number of wildtype alleles, summarized over all loci, are positively correlated with the increase of homeostasis. The analysis of individual gene effects shows distinct graduations between the contributions of the particular loci. In principle, the wild-type allele proved to be more homeostatic when compared to the mutant; in some cases monogenic heterosis was indicated. Nonallelic interactions of first and second order do considerably modify the degree of expression of homeostasis; they are neither strongly correlated with the individual gene effects nor with the interactions of lower order, and hence they are not predictable. This means also that it is not possible to formulate a general hypothesis as to the causes of homeostasis. We have to assume rather that homeostasis depends on specific gene combinations which enable the organism to stabilize its phenotype by means of certain physiological conditions.

  18. Modelling of soil penetration resistance for an oxisol under no-tillage

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2012-02-01

    Full Text Available Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G, bulk density (D and organic matter content (M. The penetration resistance curve (PR was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md, where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.

  19. Efficacy of Ceftaroline Fosamil against Penicillin-Sensitive and -Resistant Streptococcus pneumoniae in an Experimental Rabbit Meningitis Model

    OpenAIRE

    Cottagnoud, P.; Cottagnoud, M.; Acosta, F.; Stucki, A.

    2013-01-01

    Ceftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain of S. pneumoniae in an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was a...

  20. Application of DOI index to analysis of selected examples of resistivity imaging models in Quaternary sediments

    Directory of Open Access Journals (Sweden)

    Glazer Michał

    2014-12-01

    Full Text Available Interpretation of resistivity cross sections may be in many cases unreliable due to the presence of artifacts left by the inversion process. One way to avoid erroneous conclusions about geological structure is creation of Depth of Investigation (DOI index maps, which describe durability of prepared model with respect to variable parameters of inversion. To assess the usefulness of this interpretation methodology in resistivity imaging method over quaternary sediments, it has been used to one synthetic data set and three investigation sites. Two of the study areas were placed in the Upper Silesian Industrial District region: Bytom - Karb, Chorzów - Chorzow Stary; and one in the Southern Pomeranian Lake District across Piława River Valley. Basing on the available geological information the results show high utility of DOI index in analysis of received resistivity models, on which areas poorly constrained by data has been designated.

  1. Leveraging Resistance to Change and the Skunk Works Model of Innovation

    DEFF Research Database (Denmark)

    Fosfuri, Andrea; Rønde, Thomas

    We study a situation in which an R&D department promotes the introduction of an innovation, which results in costly re-adjustments for production workers. In response, the production department tries to resist change by improving the existing technology. We show that firms balancing the strengths...... of the two departments perform better. This principle is employed to derive several implications concerning the hiring of talents, monetary incentives, and technology investment policies. As a negative effect, resistance to change might distort the R&D department's effort away from radical innovations....... The firm can solve this problem by implementing the so-called "skunk works model" of innovation where the R&D department is isolated from the rest of the organization. Resistance to change, innovation, skunk works model, contest....

  2. Prediction of Corrosion Resistance of Some Dental Metallic Materials with an Adaptive Regression Model

    Science.gov (United States)

    Chelariu, Romeu; Suditu, Gabriel Dan; Mareci, Daniel; Bolat, Georgiana; Cimpoesu, Nicanor; Leon, Florin; Curteanu, Silvia

    2015-04-01

    The aim of this study is to investigate the electrochemical behavior of some dental metallic materials in artificial saliva for different pH (5.6 and 3.4), NaF content (500 ppm, 1000 ppm, and 2000 ppm), and with albumin protein addition (0.6 wt.%) for pH 3.4. The corrosion resistance of the alloys was quantitatively evaluated by polarization resistance, estimated by electrochemical impedance spectroscopy method. An adaptive k-nearest-neighbor regression method was applied for evaluating the corrosion resistance of the alloys by simulation, depending on the operation conditions. The predictions provided by the model are useful for experimental practice, as they can replace or, at least, help to plan the experiments. The accurate results obtained prove that the developed model is reliable and efficient.

  3. Classical and quantum stochastic models of resistive and memristive circuits

    Science.gov (United States)

    Gough, John E.; Zhang, Guofeng

    2017-07-01

    The purpose of this paper is to examine stochastic Markovian models for circuits in phase space for which the drift term is equivalent to the standard circuit equations. In particular, we include dissipative components corresponding to both a resistor and a memristor in series. We obtain a dilation of the problem which is canonical in the sense that the underlying Poisson bracket structure is preserved under the stochastic flow. We do this first of all for standard Wiener noise but also treat the problem using a new concept of symplectic noise, where the Poisson structure is extended to the noise as well as the circuit variables, and in particular where we have canonically conjugate noises. Finally, we construct a dilation which describes the quantum mechanical analogue.

  4. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  5. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  6. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  7. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    Science.gov (United States)

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  8. Influence of task switching costs on colony homeostasis

    Science.gov (United States)

    Jeanson, Raphaël; Lachaud, Jean-Paul

    2015-06-01

    In social insects, division of labour allows colonies to optimise the allocation of workers across all available tasks to satisfy colony requirements. The maintenance of stable conditions within colonies (homeostasis) requires that some individuals move inside the nest to monitor colony needs and execute unattended tasks. We developed a simple theoretical model to explore how worker mobility inside the nest and task switching costs influence the maintenance of stable levels of task-associated stimuli. Our results indicate that worker mobility in large colonies generates important task switching costs and is detrimental to colony homeostasis. Our study suggests that the balance between benefits and costs associated with the mobility of workers patrolling inside the nest depends on colony size. We propose that several species of ants with diverse life-history traits should be appropriate to test the prediction that the proportion of mobile workers should vary during colony ontogeny.

  9. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis

    Directory of Open Access Journals (Sweden)

    Hannah Schramke

    2016-06-01

    Full Text Available Cells have evolved diverse mechanisms that maintain intracellular homeostasis in fluctuating environments. In bacteria, control is often exerted by bifunctional receptors acting as both kinase and phosphatase to regulate gene expression, a design known to provide robustness against noise. Yet how such antagonistic enzymatic activities are balanced as a function of environmental change remains poorly understood. We find that the bifunctional receptor that regulates K+ uptake in Escherichia coli is a dual sensor, which modulates its autokinase and phosphatase activities in response to both extracellular and intracellular K+ concentration. Using mathematical modeling, we show that dual sensing is a superior strategy for ensuring homeostasis when both the supply of and demand for a limiting resource fluctuate. By engineering standards, this molecular control system displays a strikingly high degree of functional integration, providing a reference for the vast numbers of receptors for which the sensing strategy remains elusive.

  10. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  11. The impact of metagenomic interplay on the mosquito redox homeostasis.

    Science.gov (United States)

    Champion, Cody J; Xu, Jiannong

    2017-04-01

    Mosquitoes are exposed to oxidative challenges throughout their life cycle. The primary challenge comes from a blood meal. The blood digestion turns the midgut into an oxidative environment, which imposes pressure not only on mosquito fecundity and other physiological traits but also on the microbiota in the midgut. During evolution, mosquitoes have developed numerous oxidative defense mechanisms to maintain redox homeostasis in the midgut. In addition to antioxidants, SOD, catalase, and glutathione system, sufficient supply of the reducing agent, NADPH, is vital for a successful defense against oxidative stress. Increasing evidence indicates that in response to oxidative stress, cells reconfigure metabolic pathways to increase the generation of NADPH through NADP-reducing networks including the pentose phosphate pathway and others. The microbial homeostasis is critical for the functional contributions to various host phenotypes. The symbiotic microbiota is regulated largely by the Duox-ROS pathway in Drosophila. In mosquitoes, Duox-ROS pathway, heme-mediated signaling, antimicrobial peptide production and C-type lectins work in concert to maintain the dynamic microbial community in the midgut. Microbial mechanisms against oxidative stress in this context are not well understood. Emerging evidence that microbial metabolites trigger host oxidative response warrants further study on the metagenomic interplay in an oxidative environment like mosquito gut ecosystem. Besides the classical Drosophila model, hematophagous insects like mosquitoes provide an alternative model system to study redox homeostasis in a symbiotic metagenomic context. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Homeostasis and its disruption in the lung microbiome.

    Science.gov (United States)

    Dickson, Robert P; Erb-Downward, John R; Huffnagle, Gary B

    2015-11-15

    The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a "newly discovered organ," ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response. Copyright © 2015 the American Physiological Society.

  13. Homeostasis and its disruption in the lung microbiome

    Science.gov (United States)

    Erb-Downward, John R.; Huffnagle, Gary B.

    2015-01-01

    The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a “newly discovered organ,” ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response. PMID:26432870

  14. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  15. Association of a microsatellite in FASL to type II diabetes and of the FAS-670G>A genotype to insulin resistance

    DEFF Research Database (Denmark)

    Nolsøe, R L; Hamid, Y H; Pociot, F

    2006-01-01

    association to type II diabetes for the allele distribution of the FASL microsatellite (P-value 0.02, Bonferroni corrected). The FAS-670G>A was associated with homeostasis model assessment insulin resistance index and body mass index (P-values 0.02 and 0.02). We conclude that polymorphisms of FASL and FAS...

  16. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance �?c, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  17. Are Available Models Reliable for Predicting the FRP Contribution to the Shear Resistance of RC Beams?

    DEFF Research Database (Denmark)

    Sas, G.; Täljsten, Björn; Barros, J.

    2009-01-01

    In this paper the trustworthiness of the existing theory for predicting the fiber-reinforced plastic contribution to the shear resistance of reinforced concrete beams is discussed. The most well-known shear models for external bonded reinforcement are presented, commented on, and compared...

  18. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...

  19. Safety Analysis of the Patch Load Resistance of Plate Girders: Influence of Model Error and Variability

    Directory of Open Access Journals (Sweden)

    Farzad Shahabian

    2013-12-01

    Full Text Available This study aims to undertake a statistical study to evaluate the accuracy of nine models that have been previously proposed for estimating the ultimate resistance of plate girders subjected to patch loading. For each model, mean errors and standard errors, as well as the probability of underestimating or overestimating patch load resistance, are estimated and the resultant values are compared one to another. Prior to that, the models are initially calibrated in order to improve interaction formulae using an experimental data set collected from the literature. The models are then analyzed by computing design factors associated with a target risk level (probability of exceedance. These models are compared one to another considering uncertainties existed in material and geometrical properties. The Monte Carlo simulation method is used to generate random variables. The statistical parameters of the calibrated models are calculated for various coefficients of variations regardless of their correlation with the random resistance variables. These probabilistic results are very useful for evaluating the stochastic sensitivity of the calibrated models.

  20. Modeling the Responses to Resistance Training in an Animal Experiment Study

    Directory of Open Access Journals (Sweden)

    Antony G. Philippe

    2015-01-01

    Full Text Available The aim of the present study was to test whether systems models of training effects on performance in athletes can be used to explore the responses to resistance training in rats. 11 Wistar Han rats (277 ± 15 g underwent 4 weeks of resistance training consisting in climbing a ladder with progressive loads. Training amount and performance were computed from total work and mean power during each training session. Three systems models relating performance to cumulated training bouts have been tested: (i with a single component for adaptation to training, (ii with two components to distinguish the adaptation and fatigue produced by exercise bouts, and (iii with an additional component to account for training-related changes in exercise-induced fatigue. Model parameters were fitted using a mixed-effects modeling approach. The model with two components was found to be the most suitable to analyze the training responses (R2=0.53; P<0.001. In conclusion, the accuracy in quantifying training loads and performance in a rodent experiment makes it possible to model the responses to resistance training. This modeling in rodents could be used in future studies in combination with biological tools for enhancing our understanding of the adaptive processes that occur during physical training.

  1. Discourse in Action: Parents' use of medical and social models to resist disability stigma.

    Science.gov (United States)

    Manago, Bianca; Davis, Jenny L; Goar, Carla

    2017-07-01

    For parents of children with disabilities, stigmatization is part of everyday life. To resist the negative social and emotional consequences of stigma, parents both challenge and deflect social devaluations. Challenges work to upend the stigmatizing structure, while deflections maintain the interaction order. We examine how parents of children with disabilities deploy deflections and challenges, and how their stigma resistance strategies combine with available models of disability discourse. Disability discourse falls into two broad categories: medical and social. The medical model emphasizes diagnostic labels and treats impairment as an individual deficit, while the social model centralizes unaccommodating social structures. The social model's activist underpinnings make it a logical frame for parents to use as they challenge disability stigma. In turn, the medical model's focus on individual "improvement" seems to most closely align with stigma deflections. However, the relationship between stigma resistance strategies and models of disability is an empirical question not yet addressed in the literature. In this study, we examine 117 instances of stigmatization from 40 interviews with 43 parents, and document how parents respond. We find that challenges and deflections do not map cleanly onto the social or medical models. Rather, parents invoke medical and social meanings in ways that serve diverse ends, sometimes centralizing a medical label to challenge stigma, and sometimes recognizing disabling social structures, but deflecting stigma nonetheless. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Resistive MHD modeling of Coaxial Helicity Injection (CHI) in NSTX

    Science.gov (United States)

    Hooper, E. B.; Raman, R.; Menard, J. E.; Sovinec, C. R.

    2010-11-01

    CHI has generated plasma with current, density, and temperature appropriate for NSTX startup [1] offering the potential of solenoid-free operation of an advanced ST. Whole-device simulations using the NIMROD MHD code [2] have been initiated to extend physics understanding of CHI in NSTX and other STs and to help guide experiments. A computational grid has been developed and boundary conditions applied for external magnetic fields including eddy currents in walls and stabilizing plates. Injection and absorber slots are modeled with current specified at the injector and ExB drift at the absorber to prevent compression of the vacuum toroidal magnetic field, as done in simulations on HIT-II. [3] Initial results will be presented and compared with experiment. Results will also be compared with simulations of the SSPX spheromak [4] to examine the different behaviors in the (q>1) ST and (qPhys. Rev. Letters 104, 095003 (2010). 2. C.R. Sovinec, et al., J. Comp. Phys 195, 355 (2004). 3. A. Bayless, C.R. Sovinec, unpublished. 4. E. B. Hooper, et al., Phys. Plasmas 15, 032502 (2008).

  3. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2015-05-01

    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  4. Dynamics of an HBV Model with Drug Resistance Under Intermittent Antiviral Therapy

    Science.gov (United States)

    Zhang, Ben-Gong; Tanaka, Gouhei; Aihara, Kazuyuki; Honda, Masao; Kaneko, Shuichi; Chen, Luonan

    2015-06-01

    This paper studies the dynamics of the hepatitis B virus (HBV) model and the therapy regimens of HBV disease. First, we propose a new mathematical model of HBV with drug resistance, and then analyze its qualitative and dynamical properties. Combining the clinical data and theoretical analysis, we demonstrate that our model is biologically plausible and also computationally viable. Second, we demonstrate that the intermittent antiviral therapy regimen is one of the possible strategies to treat this kind of complex disease. There are two main advantages of this regimen, i.e. it not only may delay the development of drug resistance, but also may reduce the duration of on-treatment time compared with the long-term continuous medication. Moreover, such an intermittent antiviral therapy can reduce the adverse side effects. Our theoretical model and computational results provide qualitative insight into the progression of HBV, and also a possible new therapy for HBV disease.

  5. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling

    OpenAIRE

    van Westen, Gerard J. P.; Bender, Andreas; Overington, John P.

    2014-01-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of ‘orthogonally resistant’ agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed ‘proteochemometric modelling’ (PCM), from the field of chemoinformatics, could ai...

  6. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes.

    Science.gov (United States)

    Kurtz, C Lisa; Peck, Bailey C E; Fannin, Emily E; Beysen, Carine; Miao, Ji; Landstreet, Stuart R; Ding, Shengli; Turaga, Vandana; Lund, P Kay; Turner, Scott; Biddinger, Sudha B; Vickers, Kasey C; Sethupathy, Praveen

    2014-09-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Association of arsenobetaine with beta-cell function assessed by homeostasis model assessment (HOMA) in nondiabetic Koreans: data from the fourth Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2009.

    Science.gov (United States)

    Baek, Kiook; Lee, Namhoon; Chung, Insung

    2017-01-01

    Arsenic is known as an endocrine disruptor that people are exposed to through various sources such as drinking water and indigestion of marine products. Although some epidemiological and animal studies have reported a correlation between arsenic exposure and diabetes development, there are limited studies regarding the toxic effects of organic arsenic including arsenobetaine on the human body. Here, we analyzed the association between urine arsenobetaine and the homeostasis model assessment of β-cell function (HOMA-β), which is an index for predicting diabetes development and reflecting the function of pancreatic β-cells. In the fourth Korea National Health and Nutrition Examination Survey (KNHANES), health and nutrition surveys and screening tests were performed. Of the total survey population, people with confirmed values for urine total arsenic and arsenobetaine were included, and known diabetic patients were excluded. A total 369 participants were finally included in the study. We collected surveys on health, height, body weight, body mass index, blood mercury level, fasting glucose level, and serum insulin level and calculated HOMA index. Owing to sexual discrepancy, we performed sexually stratified analysis. Urine total arsenic and total arsenic minus arsenobetaine was not associated with HOMA-IR and HOMA-β in univariate analysis or in sexually stratified analysis. However, urine arsenobetaine showed a statistically significant relationship with HOMA-β in univariate analysis, and only male participants showed a significant correlation in sexually stratified analysis. In the analysis adjusted for age, BMI, smoking, alcohol drinking, physical activity and blood mercury, the HOMA-β value in the group below the 25th percentile of arsenobetaine was significantly higher than the group between 50 and 75th percentile, while no difference was shown for HOMA-IR. In sexually stratified analysis, The value of HOMA-β was significantly higher in male participants

  8. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model

    OpenAIRE

    Anderson, KE; Inouye, BD; Underwood, N

    2015-01-01

    © 2015 by the Ecological Society of America. Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all model...

  9. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Maksimov, G. V.; Mosekilde, Erik

    2011-01-01

    . Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes...... in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from...

  10. Corrosion resistance of the Delhi iron pillar-Scale characterisation and passive film growth models

    International Nuclear Information System (INIS)

    Balasubramaniam, R.; Dillmann, P.

    2003-01-01

    The corrosion resistance of the Delhi pillar iron has been reviewed. The corrosion products on several ancient Indian irons have been characterised. The role of entrapped slag particles in aiding passive film formation in ancient Indian iron has been analysed by mixed potential theory. The protective rust formation process has been elucidated and possible models proposed. After an initial period of high corrosion rate, the initial corrosion resistance is conferred by the formation of protective amorphous compact layer of δ-FeOOH. The corrosion rate is further lowered by the formation of phosphates and their phase transformations. (authors)

  11. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.

    Directory of Open Access Journals (Sweden)

    Ann W Walsh

    Full Text Available BACKGROUND: Entecavir (ETV is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT domain involve lamivudine-resistance (LVDr substitutions in the conserved YMDD motif (M204V/I +/- L180M, plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. METHODS/PRINCIPAL FINDINGS: To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of

  12. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.

    Science.gov (United States)

    Walsh, Ann W; Langley, David R; Colonno, Richard J; Tenney, Daniel J

    2010-02-12

    Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position

  13. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  14. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  15. Obesity alters the ovarian glucidic homeostasis disrupting the reproductive outcome of female rats.

    Science.gov (United States)

    Bazzano, María Victoria; Paz, Dante Agustín; Elia, Evelin Mariel

    2017-04-01

    Obesity constitutes a health problem of increasing worldwide prevalence related to many reproductive problems such as infertility, ovulation dysfunction, preterm delivery, fetal growth disorders, etc. The mechanisms linking obesity to these pathologies are not fully understood. Cafeteria diet (CAF) is the animal model used for the study of obesity that more closely reflects western diet habits. Previously we described that CAF induces obesity associated to hyperglycemia, reduced ovarian reserve, presence of follicular cysts and ovulatory impairments. The aim of the present study was to contribute in the understanding of the physiological mechanisms altered as consequence of obesity. For that purpose, female Wistar rats were fed ad libitum with a standard diet (control group) or CAF (Obese group). We found that CAF fed-rats developed obesity, glucose intolerance and insulin resistance. Ovaries from obese rats showed decreased glucose uptake and became insulin resistant, showing decreased ovarian expression of glucotransporter type 4 and insulin receptor gene expression respect to controls. These animals showed an increased follicular nitric oxyde synthase expression that may be responsible for the ovulatory disruptions and for inflammation, a common feature in obesity. Obese rats resulted subfertile and their pups were macrosomic. We conclude that obesity alters the systemic and the ovarian glucidic homeostasis impairing the reproductive outcome. Since macrosomia is a risk factor for metabolic and obstetric disorders in adult life, we suggest that obesity is impacting not only on health and reproduction but it is also impacting on health and reproduction of the offspring. Published by Elsevier Inc.

  16. Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods

    Science.gov (United States)

    Samuel A. Cushman; Jesse S. Lewis; Erin L. Landguth

    2014-01-01

    There have been few assessments of the performance of alternative resistance surfaces, and little is known about how connectivity modeling approaches differ in their ability to predict organism movements. In this paper, we evaluate the performance of four connectivity modeling approaches applied to two resistance surfaces in predicting the locations of highway...

  17. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  18. Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    Science.gov (United States)

    Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.

    2018-01-01

    A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.

  19. Leveraging Resistance to Change and the Skunk Works Model of Innovation

    DEFF Research Database (Denmark)

    Fosfuri, Andrea; Rønde, Thomas

    We study a situation in which an R&D department promotes the introduction of an innovation that results in costly re-adjustments for a production department. In response, the production department tries to resist change by improving the existing technology. We show that firms balancing...... the strengths of the two departments perform better. As a negative effect, resistance to change might distort the R&D department's effort away from radical innovations. The firm can solve this problem by implementing the so-called skunk works model of innovation where the R&D department is isolated from...... the rest of the organization. Several implications for managing resistance to change and for the optimal design of R&D activities are derived...

  20. Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations.

    Science.gov (United States)

    Volkova, Victoriya V; Lu, Zhao; Lanzas, Cristina; Scott, H Morgan; Gröhn, Yrjö T

    2013-01-01

    The ubiquitous commensal bacteria harbour genes of antimicrobial resistance (AMR), often on conjugative plasmids. Antimicrobial use in food animals subjects their enteric commensals to antimicrobial pressure. A fraction of enteric Escherichia coli in cattle exhibit plasmid-gene mediated AMR to a third-generation cephalosporin ceftiofur. We adapted stochastic differential equations with diffusion approximation (a compartmental stochastic mathematical model) to research the sources and roles of stochasticity in the resistance dynamics, both during parenteral antimicrobial therapy and in its absence. The results demonstrated that demographic stochasticity among enteric E. coli in the occurrence of relevant events was important for the AMR dynamics only when bacterial numbers were depressed during therapy. However, stochasticity in the parameters of enteric E. coli ecology, whether externally or intrinsically driven, contributed to a wider distribution of the resistant E. coli fraction, both during therapy and in its absence, with stochasticities in individual parameters interacting in their contribution.

  1. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used.Conclusion: Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....

  2. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes.......Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor...

  3. Why Did the Bear Cross the Road? Comparing the Performance of Multiple Resistance Surfaces and Connectivity Modeling Methods

    Directory of Open Access Journals (Sweden)

    Samuel A. Cushman

    2014-12-01

    Full Text Available There have been few assessments of the performance of alternative resistance surfaces, and little is known about how connectivity modeling approaches differ in their ability to predict organism movements. In this paper, we evaluate the performance of four connectivity modeling approaches applied to two resistance surfaces in predicting the locations of highway crossings by American black bears in the northern Rocky Mountains, USA. We found that a resistance surface derived directly from movement data greatly outperformed a resistance surface produced from analysis of genetic differentiation, despite their heuristic similarities. Our analysis also suggested differences in the performance of different connectivity modeling approaches. Factorial least cost paths appeared to slightly outperform other methods on the movement-derived resistance surface, but had very poor performance on the resistance surface obtained from multi-model landscape genetic analysis. Cumulative resistant kernels appeared to offer the best combination of high predictive performance and sensitivity to differences in resistance surface parameterization. Our analysis highlights that even when two resistance surfaces include the same variables and have a high spatial correlation of resistance values, they may perform very differently in predicting animal movement and population connectivity.

  4. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  5. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    Science.gov (United States)

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  6. Efficacy of ceftaroline fosamil against penicillin-sensitive and -resistant streptococcus pneumoniae in an experimental rabbit meningitis model.

    Science.gov (United States)

    Cottagnoud, P; Cottagnoud, M; Acosta, F; Stucki, A

    2013-10-01

    Ceftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain of S. pneumoniae in an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was approximately 14%. Ceftaroline fosamil was slightly superior to ceftriaxone against the penicillin-sensitive strain and significantly superior to the combination of ceftriaxone and vancomycin against the penicillin-resistant strain.

  7. Compact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM

    Directory of Open Access Journals (Sweden)

    Marc Bocquet

    2014-01-01

    Full Text Available Emerging non-volatile memories based on resistive switching mechanisms attract intense R&D efforts from both academia and industry. Oxide-based Resistive Random Acces Memories (OxRAM gather noteworthy performances, such as fast write/read speed, low power and high endurance outperforming therefore conventional Flash memories. To fully explore new design concepts such as distributed memory in logic, OxRAM compact models have to be developed and implemented into electrical simulators to assess performances at a circuit level. In this paper, we present compact models of the bipolar OxRAM memory based on physical phenomenons. This model was implemented in electrical simulators for single device up to circuit level.

  8. Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-25

    A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.

  9. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  10. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, M.R.

    1988-06-01

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  11. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to Streptococcus pneumoniae.

    Science.gov (United States)

    Blanquart, François; Lehtinen, Sonja; Fraser, Christophe

    2017-05-31

    The frequency of resistance to antibiotics in Streptococcus pneumoniae has been stable over recent decades. For example, penicillin non-susceptibility in Europe has fluctuated between 12% and 16% without any major time trend. In spite of long-term stability, resistance fluctuates over short time scales, presumably in part due to seasonal fluctuations in antibiotic prescriptions. Here, we develop a model that describes the evolution of antibiotic resistance under selection by multiple antibiotics prescribed at seasonally changing rates. This model was inspired by, and fitted to, published data on monthly antibiotics prescriptions and frequency of resistance in two communities in Israel over 5 years. Seasonal fluctuations in antibiotic usage translate into small fluctuations of the frequency of resistance around the average value. We describe these dynamics using a perturbation approach that encapsulates all ecological and evolutionary forces into a generic model, whose parameters quantify a force stabilizing the frequency of resistance around the equilibrium and the sensitivity of the population to antibiotic selection. Fitting the model to the data revealed a strong stabilizing force, typically two to five times stronger than direct selection due to antibiotics. The strong stabilizing force explains that resistance fluctuates in phase with usage, as antibiotic selection alone would result in resistance fluctuating behind usage with a lag of three months when antibiotic use is seasonal. While most antibiotics selected for increased resistance, intriguingly, cephalosporins selected for decreased resistance to penicillins and macrolides, an effect consistent in the two communities. One extra monthly prescription of cephalosporins per 1000 children decreased the frequency of penicillin-resistant strains by 1.7%. This model emerges under minimal assumptions, quantifies the forces acting on resistance and explains up to 43% of the temporal variation in resistance.

  12. Seismic resistant analysis of coupled model of reactor coolant system and reactor building

    International Nuclear Information System (INIS)

    Wang Xiaowen; Xia Zufeng

    2005-01-01

    Reactor coolant system(RCS) and reactor building are actually coupled with each other. SRP (Revision 2) edited by USNRC particularly pointed out in 3.7.2 that RCS, which is considered a subsystem but is usually analyzed using a coupled model with building. Under this background, this paper selects PC-NPP as a study object, and seismic resistant analysis is performed with a coupled model of building and RCS using response spectrum method and time history method. Finally, analyzed results are compared with those of uncoupled RCS model. In the analysis, building is simulated with cantilever beam model of shear wall combination. In the uncoupled model, each supporting of equipment is modeled using elastic beam element with actual supporting stiffness, which is connected to a rigid cantilever (single-point input) and to an elastic cantilever (multipoint input). Seismic load of coupled model is input from the bottom of building. After comparison, it is shown that the effect of interaction between RCS and building can not be ignored, and the uncoupled model for seismic resistant analysis is inappropriate to be applied in actual seismic design. Through this research, we can control the seismic analysis technique in coupled model and enhance our analysis level of NPP. (authors)

  13. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis

    DEFF Research Database (Denmark)

    Byberg, Stine; Hansen, Anne-Louise Smidt; Christensen, Dirk Lund

    2012-01-01

    Abstract Aims  Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible...... associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. Methods  The study comprised 771 participants from the Danish, population-based cross-sectional ‘Health2008’ study. Sleep duration and sleep quality were......), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. Results  A 1-h increment in sleep duration was associated with a 0.3 mmol...

  15. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  16. Identifying the Reducing Resistance to Change Phase in an Organizational Change Model

    Directory of Open Access Journals (Sweden)

    Daniela Bradutanu

    2012-04-01

    Full Text Available In this article we examine where in an organizational change process it is better to placethe reducing resistance to change phase, so that employees would accept the new changes easier andnot manifest too much resistance. After analyzing twelve organizational change models we haveconcluded that the place of the reducing resistanceto change phase in an organizational changeprocess is not the same, it being modified according to the type of change. The results of this studyare helpful for researchers, but especially for organizational change leaders. As change leaders areusually the ones confronted with resistance from their subordinates, they must know exactly how todeal with it and when is the best moment to reduceit, depending on the type of change that is desiredto be implemented. The key contribution to this paper is that the best way to gain employee’s supportand change attachment is to try and reduce resistance to change before the actual implementation.Only when an immediate or imposed change is required to be implemented, the methods and ways forovercoming resistance should be applied during andafter the implementation stage, to ensure asuccessful implementation of the change.

  17. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review

    Science.gov (United States)

    de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral

    2016-01-01

    Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605

  18. Uncertainty Analysis of Resistance Tests in Ata Nutku Ship Model Testing Laboratory of Istanbul Technical University

    Directory of Open Access Journals (Sweden)

    Cihad DELEN

    2015-12-01

    Full Text Available In this study, some systematical resistance tests, where were performed in Ata Nutku Ship Model Testing Laboratory of Istanbul Technical University (ITU, have been included in order to determine the uncertainties. Experiments which are conducted in the framework of mathematical and physical rules for the solution of engineering problems, measurements, calculations include uncertainty. To question the reliability of the obtained values, the existing uncertainties should be expressed as quantities. The uncertainty of a measurement system is not known if the results do not carry a universal value. On the other hand, resistance is one of the most important parameters that should be considered in the process of ship design. Ship resistance during the design phase of a ship cannot be determined precisely and reliably due to the uncertainty resources in determining the resistance value that are taken into account. This case may cause negative effects to provide the required specifications in the latter design steps. The uncertainty arising from the resistance test has been estimated and compared for a displacement type ship and high speed marine vehicles according to ITTC 2002 and ITTC 2014 regulations which are related to the uncertainty analysis methods. Also, the advantages and disadvantages of both ITTC uncertainty analysis methods have been discussed.

  19. Insulin Resistance Predicts Mortality in Nondiabetic Individuals in the U.S.

    OpenAIRE

    Ausk, Karlee J.; Boyko, Edward J.; Ioannou, George N.

    2010-01-01

    OBJECTIVE Insulin resistance is a suspected causative factor in a wide variety of diseases. We aimed to determine whether insulin resistance, estimated by the homeostasis model assessment for insulin resistance (HOMA-IR), is associated with all-cause or disease-specific mortality among nondiabetic persons in the U.S. RESEARCH DESIGN AND METHODS We determined the association between HOMA-IR and death certificate–based mortality among 5,511 nondiabetic, adult participants of the third U.S. Nati...

  20. Detection of antibiotic resistance is essential for gonorrhoea point-of-care testing: a mathematical modelling study.

    Science.gov (United States)

    Fingerhuth, Stephanie M; Low, Nicola; Bonhoeffer, Sebastian; Althaus, Christian L

    2017-07-26

    Antibiotic resistance is threatening to make gonorrhoea untreatable. Point-of-care (POC) tests that detect resistance promise individually tailored treatment, but might lead to more treatment and higher levels of resistance. We investigate the impact of POC tests on antibiotic-resistant gonorrhoea. We used data about the prevalence and incidence of gonorrhoea in men who have sex with men (MSM) and heterosexual men and women (HMW) to calibrate a mathematical gonorrhoea transmission model. With this model, we simulated four clinical pathways for the diagnosis and treatment of gonorrhoea: POC test with (POC+R) and without (POC-R) resistance detection, culture and nucleic acid amplification tests (NAATs). We calculated the proportion of resistant infections and cases averted after 5 years, and compared how fast resistant infections spread in the populations. The proportion of resistant infections after 30 years is lowest for POC+R (median MSM: 0.18%, HMW: 0.12%), and increases for culture (MSM: 1.19%, HMW: 0.13%), NAAT (MSM: 100%, HMW: 99.27%), and POC-R (MSM: 100%, HMW: 99.73%). Per 100 000 persons, NAAT leads to 36 366 (median MSM) and 1228 (median HMW) observed cases after 5 years. Compared with NAAT, POC+R averts more cases after 5 years (median MSM: 3353, HMW: 118). POC tests that detect resistance with intermediate sensitivity slow down resistance spread more than NAAT. POC tests with very high sensitivity for the detection of resistance are needed to slow down resistance spread more than by using culture. POC with high sensitivity to detect antibiotic resistance can keep gonorrhoea treatable longer than culture or NAAT. POC tests without reliable resistance detection should not be introduced because they can accelerate the spread of antibiotic-resistant gonorrhoea.

  1. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  2. Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling.

    Science.gov (United States)

    Holobotovskyy, Vasyl; Manzur, Mitali; Tare, Marianne; Burchell, Jennifer; Bolitho, Erin; Viola, Helena; Hool, Livia C; Arnolda, Leonard F; McKitrick, Douglas J; Ganss, Ruth

    2013-03-01

    Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.

  3. An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere

    Science.gov (United States)

    Swidinsky, Andrei; Liu, Lifei

    2017-11-01

    We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.

  4. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia.

    Science.gov (United States)

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-12-25

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.

  5. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model.

    Directory of Open Access Journals (Sweden)

    Jangsup Moon

    Full Text Available BACKGROUND: Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE. In our study, spontaneous recurrent seizures (SRSs were investigated by video-EEG monitoring during the entire procedure. METHODS/PRINCIPAL FINDINGS: In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV and valproate (VPA in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS group or VPA (n = 7, LEV resistant/VPA sensitive (LRVS group, while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR group. On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p, which were differently modulated in the MDR group versus both control and LS groups. CONCLUSION: This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.

  6. Study on modeling of resist heating effect correction in EB mask writer EBM-9000

    Science.gov (United States)

    Nomura, Haruyuki; Kamikubo, Takashi; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Nakayamada, Noriaki; Anze, Hirohito; Ogasawara, Munehiro

    2015-07-01

    Resist heating effect which is caused in electron beam lithography by rise in substrate temperature of a few tens or hundreds of degrees changes resist sensitivity and leads to degradation of local critical dimension uniformity (LCDU). Increasing writing pass count and reducing dose per pass is one way to avoid the resist heating effect, but it worsens writing throughput. As an alternative way, NuFlare Technology is developing a heating effect correction system which corrects CD deviation induced by resist heating effect and mitigates LCDU degradation even in high dose per pass conditions. Our developing correction model is based on a dose modulation method. Therefore, a kind of conversion equation to modify the dose corresponding to CD change by temperature rise is necessary. For this purpose, a CD variation model depending on local pattern density was introduced and its validity was confirmed by experiments and temperature simulations. And then the dose modulation rate which is a parameter to be used in the heating effect correction system was defined as ideally irrelevant to the local pattern density, and the actual values were also determined with the experimental results for several resist types. The accuracy of the heating effect correction was also discussed. Even when deviations depending on the pattern density slightly remains in the dose modulation rates (i.e., not ideal in actual), the estimated residual errors in the correction are sufficiently small and acceptable for practical 2 pass writing with the constant dose modulation rates. In these results, it is demonstrated that the CD variation model is effective for the heating effect correction system.

  7. A Two-Dimensional Modeling Procedure to Estimate the Loss Equivalent Resistance Including the Saturation Effect

    Directory of Open Access Journals (Sweden)

    Rosa Ana Salas

    2013-11-01

    Full Text Available We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.

  8. Insulin resistance and glucose levels in subjects with subclinical hypothyroidism

    International Nuclear Information System (INIS)

    Kahn, S.H.; Fazal, N.; Yasir, M.; Asif, N.; Rafi, T.

    2017-01-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Study Design: Comparative cross-sectional study. Place and Duration of Study: Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Methodology: Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Results: Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Conclusion: Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism. (author)

  9. Relationship of visfatin level to pancreatic endocrine hormone level, HOMA-IR index, and HOMA β-cell index in overweight women who performed hydraulic resistance exercise

    OpenAIRE

    Ha, Chang Ho; Swearingin, Brenda; Jeon, Yong Kyun

    2015-01-01

    [Purpose] This study aimed to examine the correlation of visfatin level to pancreatic endocrine hormone level, homeostasis model assessment of insulin resistance (HOMA-IR) index, and HOMA β-cell index in hydraulic resistance exercise. Furthermore, it investigated the relationship between visfatin level and other variables affected by exercise in overweight women. [Subjects and Methods] The exercise group trained for 12 weeks, 70 minutes/day, 5 days/week. Visfatin level, pancreatic endocrine h...

  10. Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Susana Sangiao-Alvarellos

    2010-01-01

    Full Text Available Ghrelin is a 28-amino-acid peptide that displays a strong growth hormone- (GH- releasing activity through the activation of the growth hormone secretagogue receptor (GHSR. The first studies about role of ghrelin were focused on its orexigenic ability, but despite indisputable pharmacological data, the evidence for a physiological role for ghrelin in the control of appetite is much less clear. Mice with targeted deletion of either ghrelin or the GHSR exhibit an essentially normal metabolic phenotype when fed a regular chow diet, suggesting that ghrelin may have a redundant role in the regulation of food intake. RNAs for ghrelin as well as GHSR are expressed in the pancreas of rats and humans and several studies propose that ghrelin could have an important function in glucose homeostasis and insulin release, independent of GH secretion. Low plasma ghrelin levels are associated with elevated fasting insulin levels and insulin resistance, suggesting both physiological and pathophysiological roles for ghrelin. For this reason, at least theoretically, ghrelin and/or its signalling manipulation could be useful for the treatment or prevention of diseases of glucose homeostasis such as type 2 diabetes.

  11. Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model.

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J; Steinle, Jena J

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models.

  12. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  13. Abnormal brain iron homeostasis in human and animal prion disorders.

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2009-03-01

    Full Text Available Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrP(Sc, a beta-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrP(C. Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease-affected human, hamster, and mouse brains show increased total and redox-active Fe (II iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf and transferrin receptor (TfR at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD-affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrP(Sc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrP(Sc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrP(Sc-ferritin complexes induces a state of iron bio-insufficiency in prion disease-affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These

  14. SICR rumor spreading model in complex networks: Counterattack and self-resistance

    Science.gov (United States)

    Zan, Yongli; Wu, Jianliang; Li, Ping; Yu, Qinglin

    2014-07-01

    Rumor is an important form of social interaction. However, spreading of harmful rumors could have a significant negative impact on the well-being of the society. In this paper, considering the counterattack mechanism of the rumor spreading, we introduce two new models: Susceptible-Infective-Counterattack-Refractory (SICR) model and adjusted-SICR model. We then derive mean-field equations to describe their dynamics in homogeneous networks and conduct the steady-state analysis. We also introduce the self-resistance parameter τ, and study the influence of this parameter on rumor spreading. Numerical simulations are performed to compare the SICR model with the SIR model and the adjusted-SICR model, respectively, and we investigate the spreading peak of the rumor and the final size of the rumor with various parameters. Simulation results are congruent exactly with the theoretical analysis. The experiment reveals some interesting patterns of rumor spreading involved with counterattack force.

  15. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance. PMID:26808374

  16. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...... and discharge observations. The method was applied to field data collected at a Danish field site. Our results show that a competitive hydrological model can be constructed from the AEM dataset using the automatic procedure outlined above....

  17. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    and heterogeneity, which spatially scarce borehole lithology data may overlook, are well resolved in AEM surveys. This study presents a semi-automatic sequential hydrogeophysical inversion method for the integration of AEM and borehole data into regional groundwater models in sedimentary areas, where sand/ clay...... distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...

  18. A Collective Study on Modeling and Simulation of Resistive Random Access Memory

    Science.gov (United States)

    Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen

    2018-01-01

    In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.

  19. A Dynamic Decision Model of Technology Adoption under Uncertainty: Case of Herbicide-Resistant Rice

    OpenAIRE

    Annou, Mamane Malam; Wailes, Eric J.; Thomsen, Michael R.

    2005-01-01

    Herbicide-resistant (HR) rice technology is a potential tool for control of red rice in commercial rice production. Using an ex ante mathematical programming framework, this research presents an empirical analysis of HR rice technology adoption under uncertainty. The analysis accounts for stochastic germination of red rice and sheath blight to model a profit maximization problem of crop rotation among HR rice, regular rice, and soybeans. The results demonstrate that risk attitudes and technol...

  20. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  1. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  2. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  3. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  4. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  5. The UPS and downs of cholesterol homeostasis

    NARCIS (Netherlands)

    Sharpe, Laura J.; Cook, Emma C. L.; Zelcer, Noam; Brown, Andrew J.

    2014-01-01

    An emerging theme in the regulation of cholesterol homeostasis is the role of the ubiquitin proteasome system (UPS), through which proteins are ubiquitylated and then degraded in response to specific signals. The UPS controls all aspects of cholesterol metabolism including its synthesis, uptake, and

  6. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  7. A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes.

    Science.gov (United States)

    Zheng, Xueying; Huang, Bin; Luo, Sihui; Yang, Daizhi; Bao, Wei; Li, Jin; Yao, Bin; Weng, Jianping; Yan, Jinhua

    2017-05-01

    Insulin resistance (IR) is a risk factor to assess the development of micro- and macro-vascular complications in type 1 diabetes (T1D). However, diabetes management in adults with T1D is limited by the difficulty of lacking simple and reliable methods to estimate insulin resistance. The aim of this study was to develop a new model to estimate IR via clinical parameters in adults with T1D. A total of 36 adults with adulthood onset T1D (n = 20) or childhood onset T1D (n = 16) were recruited by quota sampling. After an overnight insulin infusion to stabilize the blood glucose at 5.6 to 7.8 mmol/L, they underwent a 180-minute euglycemic-hyperinsulinemic clamp. Glucose disposal rate (GDR, mg kg -1  min -1 ) was calculated by data collected from the last 30 minutes during the test. Demographic factors (age, sex, and diabetes duration) and metabolic parameters (blood pressure, glycated hemoglobin A 1c [HbA 1c ], waist to hip ratio [WHR], and lipids) were collected to evaluate insulin resistance. Then, age at diabetes onset and clinical parameters were used to develop a model to estimate lnGDR by stepwise linear regression. From the stepwise process, a best model to estimate insulin resistance was generated, including HbA 1c , diastolic blood pressure, and WHR. Age at diabetes onset did not enter any of the models. We proposed the following new model to estimate IR as in GDR for adults with T1D: lnGDR = 4.964 - 0.121 × HbA 1c (%) - 0.012 × diastolic blood pressure (mmHg) - 1.409 × WHR, (adjusted R 2  = 0.616, P Insulin resistance in adults living with T1D can be estimated using routinely collected clinical parameters. This simple model provides a potential tool for estimating IR in large-scale epidemiological studies of adults with T1D regardless of age at onset. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea

    Science.gov (United States)

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.

    2001-01-01

    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and

  9. Study of abrasive resistance of foundries models obtained with use of additive technology

    Science.gov (United States)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  10. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    Science.gov (United States)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  11. Log-rise of the resistivity in the holographic Kondo model

    Science.gov (United States)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  12. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  13. A multistate model of cognitive dynamics in relation to resistance training: the contribution of baseline function.

    Science.gov (United States)

    Fallah, Nader; Hsu, Chun L; Bolandzadeh, Niousha; Davis, Jennifer; Beattie, B Lynn; Graf, Peter; Liu-Ambrose, Teresa

    2013-08-01

    We investigated: (1) the effect of different targeted exercise training on an individual's overall probability for cognitive improvement, maintenance, or decline; and (2) the simultaneous effect of targeted exercise training and baseline function on the dynamics of executive functions when a multistate transition model is used. Analyses are based on a 12-month randomized clinical trial including 155 community-dwelling women 65-75 years of age who were randomly allocated to once-weekly resistance training (1x RT; n = 54), twice-weekly resistance training (2x RT; n = 52), or twice-weekly balance and tone training (BAT; n = 49). The primary outcome measure was performance on the Stroop test, an executive cognitive test of selective attention and conflict resolution. Secondary outcomes of executive functions were set shifting and working memory. Individuals in the 1x RT or 2x RT group demonstrated a significantly greater probability for improved performance on the Stroop Test (0.49; 95% confidence interval, 0.41-0.57) compared with those in the BAT group (0.25; 95% confidence interval, 0.25-0.40). Resistance training had significant effects on transitions in selective attention and conflict resolution. Resistance training is efficacious in improving a measure of selective attention and conflict resolution in older women, probably more so among those with greater baseline cognitive function. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile.

    Science.gov (United States)

    León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A

    2014-06-01

    To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevale