WorldWideScience

Sample records for resin-modified glass-ionomers rm-gic

  1. Comparison of the Amount of Fluoride Release from Nanofilled Resin Modified Glass Ionomer Conventional and Resin Modified Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    Sumitha Upadhyay

    2013-01-01

    Full Text Available Objective: To investigate and compare the amount of fluoride release of conventional, resin modified and nanofilled resin modified glass ionomer cements.Materials and Methods: Tablets of glass-ionomer cements were immersed in deionized water and incubated at 37◦C. After 1, 2, 7, 15 and 30 days, fluoride ion was measured under normal atmospheric conditions by fluoride ion selective electrode. Buffer (TISAB II was used to decomplex the fluoride ion and to provide a constant background ionic strength and to maintain the pH of water between 5.0 and 5.5 as the fluoride electrode is sensitive to changes in pH. Statistical evaluation was carried out by one way ANOVA (Analysis of Variance using SPSS 11.0. The significance level was set at p< 0.05.Results: The release of fluoride was highest on day 1 and there was a sudden fall on day 2 in all three groups. Initially fluoride release from conven-tional glass-ionomer cement was highest compared to the other two glass-ionomer cements, but the amount drastically reduced over the period. Although the amount of fluoride release was less than both the resin modified and nanofilled resin modified glass-ionomer cement, the release was sustained consistently for 30 daysConclusion: The cumulative fluoride release of nanofilled resin modified glass ionomer cement was very less compared to the conventional and resin modified glass ionomer cements and Nanofilled resin modified glass ionomer cement released less but steady fluoride as compared to other resin modified glass ionomer cements.

  2. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  3. Effect of G-Coat Plus on the mechanical properties of glass-ionomer cements.

    Science.gov (United States)

    Bagheri, R; Taha, N A; Azar, M R; Burrow, M F

    2013-12-01

    Although various mechanical properties of tooth-coloured materials have been described, little data have been published on the effect of ageing and G-Coat Plus on the hardness and strength of the glass-ionomer cements (GICs). Specimens were prepared from one polyacid-modified resin composite (PAMRC; Freedom, SDI), one resin-modified glass-ionomer cement; (RM-GIC; Fuji II LC, GC), and one conventional glass-ionomer cement; (GIC; Fuji IX, GC). GIC and RM-GIC were tested both with and without applying G-Coat Plus (GC). Specimens were conditioned in 37 °C distilled water for either 24 hours, four and eight weeks. Half the specimens were subjected to a shear punch test using a universal testing machine; the remaining half was subjected to Vickers Hardness test. Data analysis showed that the hardness and shear punch values were material dependent. The hardness and shear punch of the PAMRC was the highest and GIC the lowest. Applying the G-Coat Plus was associated with a significant decrease in the hardness of the materials but increase in the shear punch strength after four and eight weeks. The mechanical properties of the restorative materials were affected by applying G-Coat Plus and distilled water immersion over time. The PAMRC was significantly stronger and harder than the RM-GIC or GIC. © 2013 Australian Dental Association.

  4. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  5. Resin-modified and conventional glass ionomer restorations in primary teeth: 8-year results

    DEFF Research Database (Denmark)

    Qvist, V.; Manscher, E.; Teglers, P.T.

    2004-01-01

    clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer......clinical trial, cariostatic effects, dental restorations, glass ionomer cement, long-term behaviour, pedodontics, resin-modified glass ionomer...

  6. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  7. Physical Property Investigation of Contemporary Glass lonomer and Resin Modified Glass lonomer Restorative Materials

    Science.gov (United States)

    2016-05-24

    selected physical properties of nine contemporary and recently-marketed glass-ionomer cement (GIC) and four resin-modified glass-ionomer cement {RMGIC...stainless steel molds. Testing was completed on a universal testing machine unt il failure. Knoop Hardness was obtained using fai led fracture toughness...address caries, function, biocompatibility, and minimal environmental impact. 2·3 Glass-ionomer cements were invented and developed by Wilson and Kent

  8. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  9. Comparative study of resin sealant and resin modified glass ionomer as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Shirin Malek

    2017-02-01

    Full Text Available The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, in vitro. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.

  10. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  11. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  12. Comparative efficacy of nanofilled and microfilled resin-modified glass ionomer as pits and fissure sealant in permanent molar teeth

    Directory of Open Access Journals (Sweden)

    Manzuma Akhter Zakaria

    2017-05-01

    Full Text Available The purpose of the present study was to compare the efficacy of nanofilled and microfilled resin- modified glass ionomer as pits and fissure sealants in permanent molar teeth. Ninety six teeth having fissure at the occlusal surface were randomly divided into two groups: Group I: Treated by nanofilled resin-modified glass ionomer sealant and Group II: Treated by microfilled resin- modified glass ionomer sealants. Clinical assessment was performed by modified Ryge´s criteria by means of retention, color match, marginal adaptation at 3, 6, and 12 months follow-up visit. Chi-square test was used for testing differences between the two groups; a value of p<0.05 was considered as statistically significant. The results revealed that at 12 months observation period, nanofilled resin-modified glass ionomer sealant showed better retention, color stability and marginal adaptation than that of microfilled resin-modified glass ionomer sealants. Furthermore, the differences between two groups in respect to marginal adaptation and color match were statistically significant (p<0.05. It can be concluded that nanofilled resin-modified glass ionomer sealant could be a better alternative to microfilled resin- modified glass ionomer sealant.

  13. Bond strength of resin modified glass ionomer cement to primary dentin after cutting with different bur types and dentin conditioning

    Directory of Open Access Journals (Sweden)

    Rebeca Di Nicoló

    2007-10-01

    Full Text Available The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS of a resin modified glass ionomer cement (RM-GIC to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12. In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37ºC for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5% and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.

  14. Lateral-access Class II restoration using resin-modified glass-ionomer or silver-cermet cement.

    Science.gov (United States)

    Croll, T P

    1995-02-01

    Direct-access preparation of a carious proximal surface is perhaps the most conservative approach to restoration. Physical properties and handling characteristics of silver amalgam and of resin composite and lack of fluoride ion release make these materials unsuitable for direct buccal- or lingual-access proximal restoration. Insufficient strengths and radiolucency of self-hardening glass-ionomer cements preclude their use for Class II restorations. However, glass-ionomer silver-cermet cement and some resin-modified glass-ionomer materials are proving useful for non-stress-bearing Class II restorations and may have applications in preventive dentistry. This article describes lateral-access Class II restoration with modified glass-ionomer cements. Emphasis is placed on careful handling of materials, maintenance of an ideal operative field, and conservation of tooth structure.

  15. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  16. Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer.

    Science.gov (United States)

    Enan, Enas T; Hammad, Shaza M

    2013-11-01

    To estimate the in vivo effect of nano-hydroxyapatite (HA) modification of banding glass-ionomer cement on microleakage under orthodontic bands. Eighty noncarious premolars scheduled for extraction in 20 orthodontic patients were randomly divided into four groups. Grouping was based on the ratio of nano-HA (0%, 5%, 10%, 15% by weight) added to the luting glass-ionomer cement (GIC) Ketac-Cem, which was used for cementation of prefabricated micro-etched orthodontic bands. Dye penetration method was used for microleakage evaluation at the cement-band and cement-enamel interfaces. Statistical evaluation was performed with a Kruskal-Wallis test and a Mann-Whitney U-test, and a Bonferroni-adjusted significance level was calculated. Bands cemented with conventional GIC showed the highest microleakage scores in comparison to those cemented with nano-HA-modified GIC. No significant difference was found between teeth banded with 10% and 15% modified GIC. Modification of the banding GIC with 15% nano-HA revealed a positive effect on reducing microleakage around orthodontic bands.

  17. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement.

    Science.gov (United States)

    Ibrahim, Marrwa A; Neo, Jennifer; Esguerra, Roxanna J; Fawzy, Amr S

    2015-10-01

    The aim is to investigate the effect of modifying the liquid phase of a conventional glass ionomer restorative material with different chitosan volume contents on the antibacterial properties and adhesion to dentin. The liquids of commercially available restorative glass ionomer cements (GIC) were modified with chitosan (CH) solutions at different volume contents (5%, 10%, 25%, and 50%). The GIC powders were mixed with the unmodified and the CH-modified liquids at the desired powder/liquid (P/L) ratio. For the characterization of the antibacterial properties, Streptococcus mutans biofilms were formed on GIC discs and characterized by scanning electron microscope (SEM), confocal microscopy, colony forming unit (CFU) count, and cell viability assay (MTS). The unmodified and CH-modified GICs were bonded to dentin surfaces and the micro-tensile bond strength (µTBs) was evaluated and the interface was investigated by SEM. Modification with CH solutions enhanced the antibacterial properties against S. mutans in terms of resistance to biofilm formation, CFU count, and MTS assay. Generally, significant improvement in the antibacterial properties was found with the increase in the CH volume content. Modification with 25% and 50% CH adversely affected the µTBs with predominant cohesive failure in the GIC. However, no difference was found between the control and the 5% and 10% CH-modified specimens. Incorporation of acidic solutions of chitosan in the polyacrylic acid liquid of GIC at v/v ratios of 5-10% improved the antibacterial properties of conventional glass ionomer cement against S. mutans without adversely affecting its bonding to dentin surface. © The Author(s) 2015.

  18. Bond Strength of Silorane- and Methacrylate-Based Composites to Resin-Modified Glass Ionomers

    Science.gov (United States)

    2012-01-13

    genre was given the name of resin-modified glass ionomers (RMGI) (Antonucci et al., 1988). The addition of resin improved many of the drawbacks of...entire surface for 15 seconds then gentle air was used to create an even film over the sample. This layer was cured for 10 seconds using the Bluephase

  19. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  20. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  1. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    Science.gov (United States)

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  2. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  3. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Directory of Open Access Journals (Sweden)

    Dong-Ae KIM

    2015-08-01

    Full Text Available AbstractSome weaknesses of conventional glass ionomer cement (GIC as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol% of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05 and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  4. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Science.gov (United States)

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  5. Two-year survival of glass ionomer sealanTs placed as parT of ...

    African Journals Online (AJOL)

    2010-09-09

    Sep 9, 2010 ... Two-year survival of glass ionomer sealanTs placed as parT of proximal aTraumaTic. resToraTive ... absTracT. Objective: To evaluate after two years, the survival rate of glass ionomer cement (gic) ... or symptoms of periodontal disease, and clinically the ..... saliva contamination on the bond of dentine resin-.

  6. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Directory of Open Access Journals (Sweden)

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  7. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  8. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  9. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  10. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-01-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  11. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating.

    Science.gov (United States)

    Lohbauer, Ulrich; Krämer, Norbert; Siedschlag, Gustavo; Schubert, Edward W; Lauerer, Brigitte; Müller, Frank A; Petschelt, Anselm; Ebert, Johannes

    2011-04-01

    To evaluate the influence of different resin coating protocols on the fracture strength and wear resistance of a commercial glass-ionomer cement (GIC). A new restorative concept [Equia (GC Europe)] has been introduced as a system application consisting of a condensable GIC (Fuji IX GP Extra) and a novel nanofilled resin coating material (G-Coat Plus). Four-point fracture strength (FS, 2 x 2 x 25 mm, 14-day storage, distilled water, 37 degrees C) were produced and measured from three experimental protocols: no coating GIC (Group 1), GIC coating before water contamination (Group 2), GIC coating after water contamination (Group 3). The strength data were analyzed using Weibull statistics. Three-body wear resistance (Group 1 vs. Group 2) was measured after each 10,000 wear cycles up to a total of 200,000 cycles using the ACTA method. GIC microstructure and interfaces between GIC and coating materials were investigated under SEM and CLSM. The highest FS of 26.1 MPa and the most homogenous behavior (m = 7.7) has been observed in Group 2. The coated and uncoated GIC showed similar wear resistance until 90,000 cycles. After 200,000 wear cycles, the coated version showed significantly higher wear rate (ANOVA, P< 0.05). The coating protocol has been shown to determine the GIC fracture strength. Coating after water contamination and air drying is leading to surface crack formation thus significantly reducing the FS. The resin coating showed a proper sealing of GIC surface porosities and cracks. In terms of wear, the coating did not improve the wear resistance of the underlying cement as similar or higher wear rates have been measured for Group 1 versus Group 2.

  12. A Review of Glass-Ionomer Cements for Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Sharanbir K. Sidhu

    2016-06-01

    Full Text Available This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature.

  13. Comparative evaluation of different periods of enamel microabrasion on the microleakage of class V resin-modified glass ionomer and compomer restorations: An In vitro study.

    Science.gov (United States)

    Bansal, Disha; Mahajan, Mrinalini

    2017-01-01

    The design of the class V cavity presents a clinical challenge in the field of adhesive dentistry as the margin placement is partially in enamel and partly in dentin, and the trouble associated with this design is the microleakage at the dentinal margin. When these restorations undergo microabrasion due to cosmetic reasons, this trouble aggravates to the significant levels. The aim of this study was the measurement of microleakage of class V glass ionomer restorations over two different periods of enamel microabrasion. This in vitro experimental study was conducted on 120 class V cavities which had been prepared on the buccal and lingual surfaces of 60 sound human premolars. One-half of the cavities were restored with the resin-modified glass ionomer cement (GIC) (60 cavities) and another half with the compomer (60 cavities). Finishing and polishing were performed. Then, the teeth were classified into six groups (n = 20). Microabrasion treatment was performed with Opaluster (Ultradent Product Inc., South Jordan, UT, USA) for 0 (control no treatment), 60 and 120 s. Then, teeth were thermocycled between 5°C and 55°C, immersed in rhodamine B solution (24 h), and sectioned longitudinally in buccolingual direction. Dye penetration was examined with stereomicroscope (×10). Microleakage scores were statistically analyzed. The mean occlusal margin scores and gingival margin scores were compared between all the groups using the Kruskal-Wallis test, Mann-Whitney U-test, Wilcoxon signed-rank test, and post hoc comparison. There was a significant difference between Group 1a, Group 2a, Group 1b, Group 2b, Group 1c, and Group 2c. Statistical analysis used in this study was Kruskal-Wallis test, Mann-Whitney U-test, Wilcoxon signed-rank test, and post hoc comparison. The least microleakage scores were observed in occlusal margins of control groups (without microabrasion). Moreover, in both restorations, the microleakage scores in occlusal margins were higher than gingival

  14. Fluoride release and recharge behavior of a nano-filled resin-modified glass ionomer compared with that of other fluoride releasing materials.

    Science.gov (United States)

    Mitra, Sumita B; Oxman, Joe D; Falsafi, Afshin; Ton, Tiffany T

    2011-12-01

    To compare the long-term fluoride release kinetics of a novel nano-filled two-paste resin-modified glass-ionomer (RMGI), Ketac Nano (KN) with that of two powder-liquid resin-modified glass-ionomers, Fuji II LC (FLC) and Vitremer (VT) and one conventional glass-ionomer, Fuji IX (FIX). Fluoride release was measured in vitro using ion-selective electrodes. Kinetic analysis was done using regression analysis and compared with existing models for GIs and compomers. In a separate experiment the samples of KN and two conventional glass-ionomers, FIX and Ketac Molar (KM) were subjected to a treatment with external fluoride source (Oral-B Neutra-Foam) after 3 months of fluoride release and the recharge behavior studied for an additional 7-day period. The cumulative amount of fluoride released from KN, VT and FLC and the release profiles were statistically similar but greater than that for FIX at P coating of KN with its primer and of DY with its adhesive did not significantly alter the fluoride release behavior of the respective materials. The overall rate for KN was significantly higher than for the compomer DY. DY showed a linear rate of release vs. t and no burst effect as expected for compomers. The nanoionomer KN showed fluoride recharge behavior similar to the conventional glass ionomers FIX and KM. Thus, it was concluded that the new RMGI KN exhibits fluoride ion release behavior similar to typical conventional and RMGIs and that the primer does not impede the release of fluoride.

  15. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  16. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    Science.gov (United States)

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  17. Shear bond strengths of three glass ionomer cements to enamel and dentine

    NARCIS (Netherlands)

    Carvalho, T.S.; van Amerongen, W.E.; de Gee, A.; Bönecker, M.; Sampaio, F.C.

    2011-01-01

    Objectives: The shear bond strength of three glass ionomer cements (GIC) to enamel and dentine was evaluated. Study Design: Sound permanent human molars (n=12) were grinded perpendicular to their axial axes, exposing smooth, flat enamel and dentine surfaces. The teeth were embedded in resin and

  18. Comparative evaluation of different periods of enamel microabrasion on the microleakage of class V resin-modified glass ionomer and compomer restorations: An In vitro study

    Directory of Open Access Journals (Sweden)

    Disha Bansal

    2017-01-01

    Full Text Available Context: The design of the class V cavity presents a clinical challenge in the field of adhesive dentistry as the margin placement is partially in enamel and partly in dentin, and the trouble associated with this design is the microleakage at the dentinal margin. When these restorations undergo microabrasion due to cosmetic reasons, this trouble aggravates to the significant levels. Aims: The aim of this study was the measurement of microleakage of class V glass ionomer restorations over two different periods of enamel microabrasion. Settings and Design: This in vitro experimental study was conducted on 120 class V cavities which had been prepared on the buccal and lingual surfaces of 60 sound human premolars. One-half of the cavities were restored with the resin-modified glass ionomer cement (GIC (60 cavities and another half with the compomer (60 cavities. Finishing and polishing were performed. Subjects and Methods: Then, the teeth were classified into six groups (n = 20. Microabrasion treatment was performed with Opaluster (Ultradent Product Inc., South Jordan, UT, USA for 0 (control no treatment, 60 and 120 s. Then, teeth were thermocycled between 5°C and 55°C, immersed in rhodamine B solution (24 h, and sectioned longitudinally in buccolingual direction. Dye penetration was examined with stereomicroscope (×10. Microleakage scores were statistically analyzed. The mean occlusal margin scores and gingival margin scores were compared between all the groups using the Kruskal–Wallis test, Mann–Whitney U-test, Wilcoxon signed-rank test, and post hoc comparison. There was a significant difference between Group 1a, Group 2a, Group 1b, Group 2b, Group 1c, and Group 2c. Statistical Analysis Used: Statistical analysis used in this study was Kruskal–Wallis test, Mann–Whitney U-test, Wilcoxon signed-rank test, and post hoc comparison. Results: The least microleakage scores were observed in occlusal margins of control groups (without

  19. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  20. In vitro mechanical stimulation facilitates stress dissipation and sealing ability at the conventional glass ionomer cement-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2018-06-01

    The aim of this study was to evaluate the induced changes in the chemical and mechanical performance at the glass-ionomer cement-dentin interface after mechanical load application. A conventional glass-ionomer cement (GIC) (Ketac Bond), and a resin-modified glass-ionomer cement (RMGIC) (Vitrebond Plus) were used. Bonded interfaces were stored in simulated body fluid, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling, 24 h cycled in sine or loaded in sustained hold waveforms. The cement-dentin interface was evaluated using a nano-dynamic mechanical analysis, estimating the complex modulus and tan δ. Atomic Force Microscopy (AFM) imaging, Raman analysis and dye assisted confocal microscopy evaluation (CLSM) were also performed. The complex modulus was lower and tan delta was higher at interfaces promoted with the GIC if compared to the RMGIC unloaded. The conventional GIC attained evident reduction of nanoleakage. Mechanical loading favored remineralization and promoted higher complex modulus and lower tan delta values at interfaces with RMGIC, where porosity, micropermeability and nanoleakage were more abundant. Mechanical stimuli diminished the resistance to deformation and increased the stored energy at the GIC-dentin interface. The conventional GIC induced less porosity and nanoleakage than RMGIC. The RMGIC increased nanoleakage at the porous interface, and dye sorption appeared within the cement. Both cements created amorphous and crystalline apatites at the interface depending on the type of mechanical loading. Remineralization, lower stress concentration and resistance to deformation after mechanical loading improved the sealing of the GIC-dentin interface. In vitro oral function will favor high levels of accumulated energy and permits micropermeability at the RMGIC-dentin interface which will become remineralized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of two prophylaxis methods on marginal gap of Cl Vresin-modified glass-ionomer restorations.

    Science.gov (United States)

    Kimyai, Soodabeh; Pournaghi-Azar, Fatemeh; Daneshpooy, Mehdi; Abed Kahnamoii, Mehdi; Davoodi, Farnaz

    2016-01-01

    Background. This study evaluated the effect of two prophylaxis techniques on the marginal gap of CI V resin-modified glass-ionomer restorations. Methods. Standard Cl V cavities were prepared on the buccal surfaces of 48 sound bovine mandibular incisors in this in vitro study. After restoration of the cavities with GC Fuji II LC resin-modified glass-ionomer, the samples were randomly assigned to 3 groups of 16. In group 1, the prophylactic procedures were carried out with rubber cup and pumice powder and in group 2 with air-powder polishing device (APD). In group 3 (control), the samples did not undergo any prophylactic procedures. Then the marginal gaps were measured. Two-way ANOVA was used to compare marginal gaps at the occlusal and gingival margins between the groups. Post hoc Tukey test was used for two-by-two comparisons. Statistical significance was set at P marginal gaps in terms of prophylactic techniques (P marginal gaps in the APD group compared to the pumice and rubber cup group, which in turn exhibited significantly larger marginal gaps compared to the control group (P marginal gaps were significant in terms of the margin type (P margins compared to the occlusal margins (P marginal gaps of Cl V resin-modified glass-ionomer restorations.

  2. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  3. Comparative Evaluation of Microleakage Between Nano-Ionomer, Giomer and Resin Modified Glass Ionomer Cement in Class V Cavities- CLSM Study.

    Science.gov (United States)

    Bollu, Indira Priyadarshini; Hari, Archana; Thumu, Jayaprakash; Velagula, Lakshmi Deepa; Bolla, Nagesh; Varri, Sujana; Kasaraneni, Srikanth; Nalli, Siva Venkata Malathi

    2016-05-01

    Marginal integrity of adhesive restorative materials provides better sealing ability for enamel and dentin and plays an important role in success of restoration in Class V cavities. Restorative material with good marginal adaptation improves the longevity of restorations. Aim of this study was to evaluate microleakage in Class V cavities which were restored with Resin Modified Glass Ionomer Cement (RMGIC), Giomer and Nano-Ionomer. This in-vitro study was performed on 60 human maxillary and mandibular premolars which were extracted for orthodontic reasons. A standard wedge shaped defect was prepared on the buccal surfaces of teeth with the gingival margin placed near Cemento Enamel Junction (CEJ). Teeth were divided into three groups of 20 each and restored with RMGIC, Giomer and Nano-Ionomer and were subjected to thermocycling. Teeth were then immersed in 0.5% Rhodamine B dye for 48 hours. They were sectioned longitudinally from the middle of cavity into mesial and distal parts. The sections were observed under Confocal Laser Scanning Microscope (CLSM) to evaluate microleakage. Depth of dye penetration was measured in millimeters. The data was analysed using the Kruskal Wallis test. Pair wise comparison was done with Mann Whitney U Test. A p-valueNano-Ionomer showed less microleakage which was statistically significant when compared to Giomer (p=0.0050). Statistically no significant difference was found between Nano Ionomer and RMGIC (p=0.3550). There was statistically significant difference between RMGIC and Giomer (p=0.0450). Nano-Ionomer and RMGIC showed significantly less leakage and better adaptation than Giomer and there was no statistically significant difference between Nano-Ionomer and RMGIC.

  4. Mechanical behavior of a bi-layer glass ionomer

    NARCIS (Netherlands)

    Bonifácio, C.C.; de Jager, N.; Kleverlaan, C.J.

    2013-01-01

    Objective A high-viscosity consistency of the glass-ionomer cement (GIC) may lead to poor adaptation into the cavity. The use of a flowable GIC layer seemed to improve its adaptation in approximal restorations in vitro. In this study we assessed the flexural strength of a two-layered GIC, using a

  5. Release profile of synthesized coumarin derivatives as a novel antibacterial agent from glass ionomer cement (GIC)

    Science.gov (United States)

    Rahman, Fatimah Suhaily Abdul; Osman, Hasnah; Mohamad, Dasmawati

    2017-12-01

    Glass ionomer cements (GIC) are widely used as dental restorative materials due to their aesthetics features and fluoride content. However, a capability of fluoride content in GIC to inhibit bacteria growth in an oral environment was insufficient for a long term which may lead to secondary caries. Therefore, two types of synthesized coumarin derivatives were incorporated with GIC to act as new antibacterial agent. However prior to the antibacterial evaluation, this study investigated the release profile of GIC incorporated with 3-Acetylcoumarin (GIC-1) and hydrazinyl thiosemicarbazide of coumarin derivatives (GIC-2) at three different concentrations of 0.5, 1.0 and 1.5 wt% up to 30 days. At early incubation period, GIC-1 revealed a higher release profile at 0.5 % fabrication that reached almost 45 % of cumulative release for 8 hours observational. Meanwhile, a slightly different output was obtained for GIC-2 in which 1.0 % fabrication of coumarin gave a better release in the initial hour. However, the pattern was replaced by 0.5 % substitution after 4 hours incubation time. A substitution of 1.5 % coumarin seems to be low in releasing activity for all materials. Conversely, in a longer period 1.0 % fabrication was discovered to be the highest coumarin release among others fabrications for both materials. Filler particle size and porosity of the materials were considered to be the main factor that may affect the coumarin release. Nonetheless, both synthesized coumarin derivatives can be incorporated with GIC as their release profile look very promising. Ultimately, the coumarin derivatives could improve the properties of GIC.

  6. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  7. Coating glass-ionomer cements with a nanofilled resin

    NARCIS (Netherlands)

    Bonifacio, C.C.; Werner, A.; Kleverlaan, C.J.

    2012-01-01

    Objectives. The objective of this study was to investigate the effect of a nanofilled resin coat on the flexural strength (FS) and the early wear (after 50 000 and 200 000 cycles) of the glass-ionomer cements Fuji IX GP Extra (FIXE) and Ketac Molar Aplicap (KM). Materials and methods. Specimens were

  8. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  9. Evaluation of dentin hypersensitivity treatment with glass ionomer cements: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Marina de Matos MADRUGA

    Full Text Available Abstract A randomized, double-blind, split-mouth clinical trial was performed compared the desensitizing efficacy of the resin-modified glass ionomer cement (GIC ClinproTM XT (3M ESPE, Minnesota, USA and the conventional GIC Vidrion R (SS White, Gloucester, UK in a 6-month follow-up. Subjects were required to have at least two teeth with dentin hypersensitivity. Teeth were divided at random into 2 groups, one group received Clinpro XT and the other conventional GIC Vidrion R. Treatments were assessed by tactile and air blast tests using Visual Analogue Scale (VAS at baseline, after 20 minutes, and at 7, 15, 21, 30, 90 and 180 days post-treatment. Twenty subjects (152 teeth were included. Both tests (tactile and air blast showed a significant reduction of dentin hypersensitivity immediately after the application of Vidrion R and Clinpro XT (20 min. VAS scores obtained along the 6-month follow-up were statistically lower when compared to initial rates (p 0.05. Both cements provided satisfactory results in long-term dental sensitivity reduction.

  10. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  11. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  12. Evaluation of Marginal Microgaps of Two Glass-ionomer Cements (GIC in Dogs and Sheep in vivo

    Directory of Open Access Journals (Sweden)

    M. Figurová

    2006-01-01

    Full Text Available The aim of the experiment was to evaluate the marginal microgaps of two ionomer cements: Kavitan Plus (Spofa Dental and Vitremer (3M ESPE in dog and sheep dentition in vivo. Dentitions of sheep and dogs were restored in vivo with a conventional, glass polyalkenoic, chemically activated cement Kavitan Plus with hydrophilic properties capable and with a resinmodified glass-ionomer cement Vitremer with light-induced polymerization and autopolymerization reaction of methyl metacrylate group. The parameters of glass-ionomers were evaluated in 6 groups of animals, 2 animals in each, at various time intervals (after 1, 4 and 6 months in dogs and 3, 6 and 9 months in sheep, starting from the beginning of the experiment. The restorative materials were placed to buccal surfaces of permanent teeth. At the intervals specified, under general injection anaesthesia, throughout the experiment we extracted 24 teeth from sheep and 30 from dogs. When processing the samples of dog's teeth two samples were damaged. One month after the placement, Kavitan plus restorations became loose only in one case in dogs (80% successfulness. In sheep two Kavitan Plus restorations became loose after 9 months (50% successfulness. During the experiment we observed neither cracks nor marginal discoloration in both Kavitan Plus and Vitremer restorations. Statistically significant (P = 0.04 differences were observed in the dentin of dogs receiving glass-ionomer Vitremer restorations which exhibited lower marginal microgaps. The remaining results were non- significant (ANOVA test. Fluoride ions released from GIC support the treatment of dental hard tissues. These materials could be used as definitive restorations of class A - D cavities in dogs and dental cervical caries in sheep as well as underlying layers ofcomposite and amalgam materials.

  13. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  14. Glass-ionomer cements as restorative and preventive materials.

    Science.gov (United States)

    Ngo, Hien

    2010-07-01

    This article focuses on glass-ionomer cement (GIC) and its role in the clinical management of caries. It begins with a brief description of GIC, the mechanism of fluoride release and ion exchange, the interaction between GIC and the external environment, and finally the ion exchange between GIC and the tooth at the internal interface. The importance of GIC, as a tool, in caries management, in minimal intervention dentistry (MI), and Caries Management by Risk Assessment (CAMBRA) also will be highlighted. Copyright 2010. Published by Elsevier Inc.

  15. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...... conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...

  16. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the "smart" materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA. Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications.

  17. A study of the interactions between glass-ionomer cement and S. sanguis biofilms

    Science.gov (United States)

    Hengtrakool, Chanotai

    Glass-ionomer cements (GIC) have been used for dental procedures for many years and more recently in other medical applications such as bone cements, for bone reconstruction and also as drug release agents. The postulated caries-preventive activities of GIC are thought to result from their sealing ability, remineralization potential and antibacterial effects. Extensive 'in vitro' investigations have attempted to quantify these effects. In this study, an artificial mouth model, simulating 'in vivo' conditions at the tooth surface, was used to achieve a better understanding of the interaction of oral bacteria with the cements. This study investigated the interaction of Streptococcus sanguis, a common mouth commensal, with two glass-ionomer formulations (one containing fluoride and the other without fluoride ion) with particular reference to bacterial growth, changes in surface roughness and hardness of the glass-ionomer cement with respect to time. Restorative materials with rough surfaces will promote bacterial accumulation 'in vivo' and plaque formation is one factor in surface degradation. The constant depth film fermenter (CDFF) permits the examination of these phenomena and was used to investigate glass-ionomer/S. sanguis biofilm interaction over periods up to 14 days. In conjunction with these studies, surface roughness was measured using a 3-dimension laser profilometer and the surface hardness evaluated using a micro-indenter. Fluoride release from the cement was measured over 84 days. The results showed that autoclaving the CDFF prior to bacterial innoculate did not appear to affect the long-term fluoride release of the GIC. Laser profilometry revealed that the initial roughness and surface area of the GICs was significantly greater than the hydroxyapatite control. S. sanguis viable counts were significantly reduced for both glass-ionomer formulations in the shortterm, the greater reduction being with fluoride-GIC. S. sanguis biofilms produced similar

  18. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  19. Comparison of Caries Prevention With Glass Ionomer and Composite Resin Fissure Sealants

    Directory of Open Access Journals (Sweden)

    Aylin Akbay Oba

    2009-11-01

    Conclusion: Under field conditions in which moisture control was not effective, a high-viscosity and less technique-sensitive glass ionomer material can be used as an effective sealant material, rather than resin.

  20. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals

    International Nuclear Information System (INIS)

    Silva, Rafael M.; Pereira, Fabiano V.; Mota, Felipe A.P.; Watanabe, Evandro; Soares, Suelleng M.C.S.; Santos, Maria Helena

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength, modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material. - Highlights: • Cellulose microfibers (CmF) and cellulose nanocrystals (CNC) were prepared. • The CmF and CNC were incorporated in commercial dental glass ionomer cement (GIC). • Small amount of CNC improved significantly all the mechanical properties evaluated. • Modified GIC with CNC can represent a new and promising dental restorative material.

  1. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  2. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant: A comparative clinical study

    Directory of Open Access Journals (Sweden)

    Subramaniam P

    2008-09-01

    Full Text Available Sealing occlusal pits and fissures with resin-based sealants is a proven method of preventing occlusal caries. Retention of the sealant is very essential for its efficiency. This study evaluated the retention of glass ionomer used as a fissure sealant when compared to a self-cure resin-based sealant. One hundred and seven children between the ages of 6-9 years, with all four newly erupted permanent first molars were selected. Two permanent first molars on one side of the mouth were sealed with Delton, a resin-based sealant, and the contralateral two permanent first molars were sealed with Fuji VII glass ionomer cement. Evaluation of sealant retention was performed at regular intervals over 12 months, using Simonsen′s criteria. At the end of the study period, the retention of the resin sealant was seen to be superior to that of the glass ionomer sealant.

  4. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment

    NARCIS (Netherlands)

    Bonifacio, C.C.; Kleverlaan, C.J.; Raggio, D.P.; Werner, A.; de Carvalho, R.C.R.; van Amerongen, W.E.

    2009-01-01

    Background:  This study evaluated mechanical properties of glass ionomer cements (GICs) used for atraumatic restorative treatment. Wear resistance, Knoop hardness (Kh), flexural (Fs) and compressive strength (Cs) were evaluated. The GICs used were Riva Self Cure (RVA), Fuji IX (FIX), Hi Dense (HD),

  5. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  6. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Initial Sliding Wear Kinetics of Two Types of Glass Ionomer Cement: A Tribological Study

    Directory of Open Access Journals (Sweden)

    Cyril Villat

    2014-01-01

    Full Text Available The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement under sliding friction after 28-day storing in distilled water or Ringer’s solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student’s t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P>0.05. However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P<0.0001. The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material.

  8. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements Retenção de microrganismos bucais em cimentos de ionômero de vidro convencionais e modificados por resina

    Directory of Open Access Journals (Sweden)

    Denise PEDRINI

    2001-09-01

    Full Text Available Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R and resin-modified (Vitremer and Fuji II LC glass-ionomer cements, in situ, using a hybrid composite resin (Z100 as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2, at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R e modificados por resina (Vitremer e Fuji II LC e de resina composta híbrida (Z100, utilizada como controle. Nos testes de reten

  9. Properties of New Glass Ionomer Restorative Materials Marketed for Stress Bearing Areas

    Science.gov (United States)

    2018-03-22

    REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Prope1iies of New Glass-Ionomer Restorative Materials Marketed for Stress -Bearing Areas 6...Adobe Professional 7 .0 INTRODUCTION Equia Forte is a new GIC which is marketed for posterior stress bearing restorations due to its newer...research on this and other newer glass ionomer systems being indicated for use in class II posterior stress - bearing preparations. OBJECTIVE The

  10. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Ladik, I; Convents, R; Declercq, H; Martens, L C; Verbeeck, R M H

    2017-04-01

    Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al 3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO 4 3- -and Ca 2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al 3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al 3+ are most promising, when added in ≤20wt% to a GIC. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effects of instrumentation time on microleakage of resin-modified glass ionomer cements.

    Science.gov (United States)

    Yap, Adrian U J; Yeo, Egwin J C; Yap, W Y; Ong, Debbie S B; Tan, Jane W S

    2003-01-01

    This study investigated the effect of instrumentation time on the microleakage of resin-modified glass ionomer cements (RMGICs). Class V cavities were prepared on buccal and lingual/ palatal surfaces of 64 freshly extracted non-carious premolars. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]). The restored teeth were randomly divided into two groups of 32 teeth. Finishing/polishing was done immediately after light-polymerization in one group and was delayed for one week in the other group. The following finishing/polishing systems were evaluated: (a) Robot Carbides (RC); (b) SuperSnap (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each instrumentation time, material and finishing/polishing system combination was 8. Storage medium for both immediate and delayed instrumentation groups was distilled water at 37 degrees C during the hiatus period. The teeth were subsequently subjected to dye penetration testing (0.5% basic fushcin), sectioned and scored. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests at significance level 0.05. For PF, significant difference in enamel leakage was observed between immediate and delayed instrumentation with SS and CS. Significant differences in dentin leakage were also observed between the two instrumentation times for SS. For FT, significant differences in leakage between instrumentation times were observed only in dentin and with RC. Where significant differences in dye penetration scores existed, delayed finishing/polishing resulted in less microleakage.

  12. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    Science.gov (United States)

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  13. A Histopathologic Study on Pulp Response to Glass Ionomer Cements in Human Teeth

    Directory of Open Access Journals (Sweden)

    M. Ghavamnasiri

    2005-12-01

    Full Text Available Statement of Problem: Despite the wide range of new dental materials, there is still a need for biomaterials demonstrating high biocompatibility, antimicrobial effects and ideal mechanical properties.Purpose: The aim of this study was to histologically evaluate the pulpal response to a conventional glass ionomer, a resin modified glass ionomer and a calcium hydroxide in human teeth.Materials and Methods: Fifty five deep class V cavities were prepared in premolars of 31 patients and were divided into 3 groups based on application of the following liners:resin modified glass ionomer (Vivaglass Liner, conventional glass ionomer (ChembondSuperior and calcium hydroxide (Dycal. After applying varnish, teeth were filled with amalgam. Each group was further divided into three subgroups according to time intervals of 7, 30 and 60 days. Teeth were then extracted and their crowns were fixed in formalin. Each sample was assessed microscopically for odontoblastic changes,inflammatory cell infiltration, reactionary dentin formation, remaining dentinal thickness and presence of microorganisms. Statistical analysis including Kruskal Wallis and Mann Whitney was carried out for comparison of mean ranks. (P=0.05.Results: In the Vivaglass Liner group, pulpal response was significantly higher on day 7 as compared to days 30 and 60 (P0.05. There was no correlation between pulpal responses with micro-organisms and remaining dentin thickness (P>0.05.Conclusion: According to the results of this study, light-cured glass ionomer as well as the other tested lining materials were determined to be biologically compatible with vital pulps in deep cavities of sound human teeth.

  14. Effect of a self-adhesive coating on the load-bearing capacity of tooth-coloured restorative materials.

    Science.gov (United States)

    Bagheri, R; Palamara, Jea; Mese, A; Manton, D J

    2017-03-01

    The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.

  15. Genotoxic and cytotoxic effects of different types of dental cement on normal cultured human lymphocytes.

    Science.gov (United States)

    Bakopoulou, A; Mourelatos, D; Tsiftsoglou, A S; Giassin, N P; Mioglou, E; Garefis, P

    2009-01-31

    In this study we have investigated the genotoxic and cytotoxic effects of eluates derived from different types of commercially available dental cements, including glass ionomer cements (GICs) (Ketac Cem/3M ESPE and GC Fuji I/GC Corp), resin-modified glass ionomer cements (RM-GICs) (RelyX Luting/3M ESPE and Vitrebond/3M ESPE) and dual-cure resin cements (RCs) (Variolink II/ Ivoclar-Vivadent and Panavia F 2.0/Kuraray) on normal cultured human lymphocytes. Lymphocyte primary cultures obtained from blood samples of three healthy donors were exposed to serial dilutions of eluates derived from specimens of each material tested. Metaphases were induced with phytohaemagglutinin, collected after 72h treatment by use of colchicine and stained according to the fluorescence plus giemsa (FPG) procedure. Preparations were scored for sister chromatid exchange (SCE) and chromosomal aberrations (CAs), while the proliferation rate index (PRI) was also calculated. Our results show that eluates derived from the RM-GICs and RCs caused severe genotoxic effects by significantly increasing the frequencies of SCEs and CAs in cultures of peripheral blood lymphocytes and by decreasing the relevant PRI values in a dose-dependent manner, whereas the two GICs caused only minor cytogenetic effects. Eluates of the two RM-GICs (Vitrebond and RelyX) were also very cytotoxic, as the first serial dilutions of both materials caused a complete mitotic arrest in lymphocyte cultures. Overall, the degree of genotoxicity and cytotoxicity caused by dental cements decreased as follows: Viterbond>Rely X>Panavia F 2.0>Variolink II>Ketac Cem=GC Fuji I. These results indicate that different types of dental cement differ extensively in their genotoxic and cytotoxic potential and their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair. Although these results cannot be directly extrapolated to the clinical situation, the potential occurrence of adverse effects caused by the

  16. Influence of Salvadora persica (miswak) extract on physical and antimicrobial properties of glass ionomer cement

    NARCIS (Netherlands)

    El-Tatari, A.; de Soet, J.J.; de Gee, A.J.; Abou Shelib, M.; van Amerongen, W.E.

    2011-01-01

    AIM: To investigate physical and antimicrobial properties of Glass Ionomer Cement (GIC) combined with Salvadora Persica Extract (SPE). METHODS: SPE was added to GIC (Fuji IX) in concentrations of 1%, 2% and 4% w/w. The compressive strength and diametral tensile strength were measured at 1 h, 24 h

  17. Influence of citric acid on the surface texture of glass ionomer restorative materials.

    Science.gov (United States)

    Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani

    2014-09-01

    This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials.

  18. Thermo-cured glass ionomer cements in restorative dentistry.

    Science.gov (United States)

    Gorseta, Kristina; Glavina, Domagoj

    2017-01-01

    Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  19. Glass ionomer application for vocal fold augmentation: Histopathological analysis on rabbit vocal fold.

    Science.gov (United States)

    Demirci, Sule; Tuzuner, Arzu; Callıoglu, Elif Ersoy; Yumusak, Nihat; Arslan, Necmi; Baltacı, Bülent

    2016-04-01

    The aim of this study was to investigate the use of glass ionomer cement (GIC) as an injection material for vocal fold augmentation and to evaluate the biocompatibility of the material. Ten adult New Zealand rabbits were used. Under general anesthesia, 0.1-cc GIC was injected to one vocal fold and the augmentation of vocal fold was observed. No injection was applied to the opposite side, which was accepted as the control group. The animals were sacrificed after 3 months and the laryngeal specimens were histopathologically evaluated. The injected and the noninjected control vocal folds were analyzed. The GIC particles were observed in histological sections on the injected side, and no foreign body giant cells, granulomatous inflammation, necrosis, or marked chronic inflammation were detected around the glass ionomer particles. Mild inflammatory reactions were noticed in only two specimens. The noninjected sides of vocal folds were completely normal. The findings of this study suggest that GIC is biocompatible and may be further investigated as an alternative injection material for augmentation of the vocal fold. Further studies are required to examine the viscoelastic properties of GIC and the long-term effects in experimental studies. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Glass ionomer cement: literature review

    Directory of Open Access Journals (Sweden)

    Sérgio Spezzia

    2017-12-01

    Full Text Available Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV, coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive and Minimally Invasive Dentistry and the new preservative techniques recommended. Objective: The objective of the present article was to carry out a literature review study, to determine the characteristics of CIV that has a prominent role in the Minimally Invasive Dentistry profile. Results: The dentist surgeon must be aware of the classification, according to its composition and physical-chemical nature: conventional ionomers; ionomers reinforced by metals; high viscosity and various types of resin modified glass ionomers to correctly choose the CIV that will be used in their clinical interventions, which should occur based on the properties of the material and its clinical indication. Conclusion: It was concluded that the implementation of preventive techniques with CIV in public health care, tend to minimize curative treatments, concurrently valuing the low complexity dental procedures performed in Primary Care, avoiding referrals for treatment of cases of greater complexity at the level Secondary and tertiary care, saving resources.

  1. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Rene GARCIA-CONTRERAS

    2015-06-01

    Full Text Available The use of nanoparticles (NPs has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC compared to GIC supplemented with titanium dioxide (TiO2 nanopowder at 3% and 5% (w/w. Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc, Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05. In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05, flexural and compressive strength (p<0.05, and antibacterial activity (p<0.001, without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  2. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  3. [Effect of nano-hydroxyapatite to glass ionomer cement].

    Science.gov (United States)

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  4. The effect of salivary pH on diametral tensile strength of resin modified glass ionomer cement coated with coating agent

    Science.gov (United States)

    Ismayanti, D.; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to evaluate the effect of artificial saliva with different acidities on the diametral tensile strength of Resin Modified Glass Ionomer Cement (RMGIC) coated with varnish and nanofilled coating agent. The specimens coated with coating agents were immersed in artificial saliva with pH of 4.5, 5.5, and 7 for 24 hours in an incubatorat 37°C. The diametral tensile strength of the specimens was tested with Universal Testing Machine. There were no significant differences on the diametral tensile strength of all specimens that were put into groups based on the acidity of the saliva and the type of coating agent (p>0.05). Both varnish and nanofilled coating agent stayed on the RMGIC in the acidic condition that simulated the true condition of oral cavity in people with high caries risk for the 24 hours of maturation.

  5. Evaluation of the effect of different food media on the marginal integrity of class v compomer, conventional and resin-modified glass-ionomer restorations: an in vitro study.

    Science.gov (United States)

    Dinakaran, Shiji

    2015-03-01

    Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract(®)), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins.

  6. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Fraeyman, S; Verbeeck, R M H

    2014-09-01

    Glass ionomer cements (GIC) are clinically accepted dental restorative materials mainly due to their direct chemical adhesion to both enamel and dentin and their ability to release fluoride. However, their mechanical properties are inferior compared to those of amalgam and composite. The aim of this study is to investigate if combinations of nano- and macrogranular glass with different compositions in a glass ionomer cement can improve the mechanical and physical properties. Glasses with the composition 4.5 SiO2-3 Al2O3-1.5 P2O5-(5-x) CaO-x CaF2 (x=0 and x=2) were prepared. Of each type of glass, particles with a median size of about 0.73 μm and 6.02 μm were made. The results show that the setting time of GIC decreases when macrogranular glass particles are replaced by nanogranular glass particles, whereas the compressive strength and Young's modulus, measured after 24 h setting, increase. The effects are more pronounced when the nanogranular glass particles contain fluoride. After thermocycling, compressive strength decreases for nearly all formulations, the effect being most pronounced for cements containing nanogranular glass particles. Hence, the strength of the GIC seems mainly determined by the macrogranular glass particles. Cumulative F--release decreases when the macrogranular glass particles with fluoride are replaced by nanogranular glass particles with(out) fluoride. The present study thus shows that replacing macro- by nanogranular glass particles with different compositions can lead to cements with approximately the same physical properties (e.g. setting time, consistency), but with different physicochemical (e.g. F--release, water-uptake) and initial mechanical properties. On the long term, the mechanical properties are mainly determined by the macrogranular glass particles. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  8. Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study.

    Science.gov (United States)

    Villat, Cyril; Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P glass ionomer cement weakens the tribological behaviour of this material.

  9. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Directory of Open Access Journals (Sweden)

    Maximilian eFuchs

    2015-10-01

    Full Text Available Bioactive glasses (BG are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid, ions were released fast (up to 90% within 15 minutes at pH 1, which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa, staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid, which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  10. Caries-preventive effect of a one-time application of composite resin and glass ionomer sealants after 5 years.

    NARCIS (Netherlands)

    Beiruti, N.; Frencken, J.E.F.M.; Hof, M.A. van 't; Taifour, D.; Palenstein Helderman, W.H. van

    2006-01-01

    The aim of the present trial was to (1) compare the caries-preventive effect of glass ionomer sealants, placed according to the atraumatic restorative treatment (ART) procedure, with composite resin sealants over time and (2) investigate the caries-preventive effect after complete disappearance of

  11. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (pbracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  12. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.

    Science.gov (United States)

    Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B

    2002-01-01

    This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS

  13. Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    2018-01-01

    Full Text Available The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok® were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure® and compomer (Ultra Band Lok® cause genetic damage in mammalian cells in vitro.

  14. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    International Nuclear Information System (INIS)

    Rodrigues, S R; Moraes, M; Youssef, M N; De Souza-Zaroni, W C; Hanashiro, F S; Brugnera Junior, A; Nobre-dos-Santos, M

    2016-01-01

    Although the cariostatic effects of CO 2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO 2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO 2 laser with an energy density of 6.0 J cm −2   +  non-fluoride dentifrice; and L  +  FD, CO 2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey–Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC–C group. It was concluded that CO 2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used. (paper)

  15. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  16. Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth.

    NARCIS (Netherlands)

    Frencken, J.E.F.M.; Wolke, J.G.C.

    2010-01-01

    OBJECTIVES: Resin composite sealants are retained longer than low-viscosity glass-ionomer sealants. Nevertheless, a systematic review showed that there is no evidence that resin composite sealants are superior to low-viscosity glass-ionomers in preventing dentine carious lesion development. This

  17. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer.

    Science.gov (United States)

    Hankins, Amanda D; Hatch, Robert H; Benson, Jarred H; Blen, Bernard J; Tantbirojn, Daranee; Versluis, Antheunis

    2014-04-01

    A nanofilled, resin-based light-cured coating (G-Coat Plus, GC America, Alsip, Ill.) may reduce water absorption by glass ionomers. The authors investigated this possibility by measuring cuspal flexure caused by swelling of glass ionomer-restored teeth. The authors cut large mesio-occlusodistal slots (4-millimeter wide, 4-mm deep) in 12 extracted premolars and restored them with a glass ionomer cement (Fuji IX GP Extra, GC America). Six teeth were coated, and the other six were uncoated controls. The authors digitized the teeth in three dimensions by using an optical scanner after preparation and restoration and during an eight-week storage in water. They calculated cuspal flexure and analyzed the results by using an analysis of variance and Student-Newman-Keuls post hoc tests (significance level .05). They used dye penetration along the interface to verify bonding. Inward cuspal flexure indicated restoration shrinkage. Coated restorations had significantly higher flexure (mean [standard deviation], -11.9 [3.5] micrometers) than did restorations without coating (-7.3 [1.5] μm). Flexure in both groups decreased significantly (P < .05) during water storage and, after eight weeks, it changed to expansion for uncoated control restorations. Dye penetration along the interfaces was not significant, which ruled out debonding as the cause of cuspal relaxation. Teeth restored with glass ionomer cement exhibited shrinkage, as seen by inward cuspal flexure. The effect of the protective coating on water absorption was evident in the slower shrinkage compensation. The study results show that teeth restored with glass ionomers exhibited setting shrinkage that deformed tooth cusps. Water absorption compensated for the shrinkage. Although the coating may be beneficial for reducing water absorption, it also slows the shrinkage compensation rate (that is, the rate that hygroscopic expansion compensates for cuspal flexure from shrinkage).

  18. Microleakage after Thermocycling of Three Self-Etch Adhesives under Resin-Modified Glass-Ionomer Cement Restorations

    Directory of Open Access Journals (Sweden)

    Sabine O. Geerts

    2010-01-01

    Full Text Available This study was designed to evaluate microleakage that appeared on Resin-Modified Glass-Ionomer Cement (RMGIC restorations. Sixty class V cavities (h×w×l=2mm×2mm×3mm were cut on thirty extracted third molars, which were randomly allocated to three experimental groups. All the buccal cavities were pretreated with polyacrylic acid, whereas the lingual cavities were treated with three one-step Self-Etch adhesives, respectively, Xeno III (Dentsply Detrey GmbH, Konstanz, Germany, iBond exp (Heraeus Kulzer gmbH & Co. KG, Hanau, Germany, and Adper Prompt-L-Pop (3M ESPE AG, Dental products Seefeld, Germany. All cavities were completely filled with RMGIC, teeth were thermocycled for 800 cycles, and leakage was evaluated. Results were expressed as means ± standard deviations (SDs. Microleakage scores were analysed by means of generalized linear mixed models (GLMMs assuming an ordinal logistic link function. All results were considered to be significant at the 5% critical level (<.05. The results showed that bonding RMGIC to dentin with a Self-Etch adhesive rather than using polyacrylic acid did not influence microleakage scores (=.091, except for one tested Self-Etch adhesive, namely, Xeno III (<.0001. Nevertheless, our results did not show any significant difference between the three tested Self-Etch adhesive systems. In conclusion, the pretreatment of dentin with Self-Etch adhesive system, before RMGIC filling, seems to be an alternative to the conventional Dentin Conditioner for the clinicians as suggested by our results (thermocycling and others (microtensile tests.

  19. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate.

    Science.gov (United States)

    Yadiki, Josna Vinutha; Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103.

  20. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial

    NARCIS (Netherlands)

    Hesse, D.; Bonifácio, C.C.; Guglielmi, C. de Almeida Brandao; da Franca, C.; Mendes, F.M.; Raggio, D.P.

    2015-01-01

    Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC), but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost

  1. Clinical Evaluation of Microhybrid Composite and Glass lonomer Restorative Material in Permanent Teeth.

    Science.gov (United States)

    Kharma, Khalil; Zogheib, Tatiana; Bhandi, Shilpa; Mehanna, Carina

    2018-02-01

    The aim of this study was to clinically compare glass ionomer cement (GIC) with microhybrid composite resin used in class I cavities on permanent teeth over a period of 9 months. A total of 40 teeth with class I cavities were divided into two groups (n = 20) and restored with GIC (EQUIA; GC) and microhybrid resin composite (Amelogen Plus; Ultradent). Restorations were evaluated at ×4.5 magnification using the United States Public Health Service (USPHS) criteria every 3 months. Statistical analysis was performed using the Fisher's exact test (a material handling, adaptation, and marginal staining. The results of this clinical study showed that GIC (EQUIA; GC) can be used for the restoration of permanent teeth and may be more appropriate for certain clinical situations than the resin composite material. EQUIA (GIC) is a viable alternative to resin composite in restoring class I cavities in permanent teeth.

  2. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  3. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement.

    Science.gov (United States)

    Mazzaoui, S A; Burrow, M F; Tyas, M J; Dashper, S G; Eakins, D; Reynolds, E C

    2003-11-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) nanocomplexes have been shown to prevent demineralization and promote remineralization of enamel subsurface lesions in animal and in situ caries models. The aim of this study was to determine the effect of incorporating CPP-ACP into a self-cured glass-ionomer cement (GIC). Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH. MALDI mass spectrometry also showed casein phosphopeptides from the CPP-ACP nanocomplexes to be released. The release of CPP-ACP and fluoride from the CPP-ACP-containing GIC was associated with enhanced protection of the adjacent dentin during acid challenge in vitro.

  4. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  5. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  6. Influence of Porous Spherical-Shaped Hydroxyapatite on Mechanical Strength and Bioactive Function of Conventional Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Szu-Yu Chiu

    2017-01-01

    Full Text Available Glass-ionomer-cement (GIC is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC. A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS, crystalline HAp (HAp200 or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS, fluoride release concentrations (fluoride electrode and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times and strontium ions (1.5 times compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC.

  7. Class II glass ionomer cermet tunnel, resin sandwich and amalgam restorations over 2 years.

    Science.gov (United States)

    Wilkie, R; Lidums, A; Smales, R

    1993-08-01

    This study compared the clinical behavior of a glass ionomer (polyalkenoate) silver cermet, a posterior resin composite used with the "tunnel" technique, a posterior resin composite used with the "closed sandwich" technique, and a high-copper amalgam for restoring small, proximal surface carious lesions. Two dentists placed 86 restorations in the posterior permanent teeth of 26 adults treated at a dental hospital. Restorations were assessed at 6-month intervals over 2 years for gingivitis adjacent to them, the tightness of proximal contacts, occlusal wear, surface voids, roughness and cracking, surface and marginal staining, and marginal fracture. Small filling defects, surface voids and occlusal wear were obvious with the cermet material, with surface crazing and cracking present in 48% of the tunnel restorations. Two of the posterior resin composites, but none of the amalgam restorations, also failed. The cermet cannot be recommended as a long-term permanent restorative material in situations where it is likely to be subjected to heavy occlusal stresses and abrasive wear.

  8. A systematic review of dental disease management in cancer patients

    DEFF Research Database (Denmark)

    Hong, Catherine H L; Hu, Shijia; Haverman, Thijs

    2018-01-01

    INTRODUCTION: This systematic review aims to update on the prevalence of odontogenic-related infections and the efficacy of dental strategies in preventing dental-related complications in cancer patients since the 2010 systematic review. REVIEW METHOD: A literature search was conducted in the dat....../treatment protocols. The use of chlorhexidine, fluoride mouth rinses as well as composite resin, resin-modified glass ionomer cement (GIC), and amalgam restorations over conventional GIC in post head and neck radiation patients who are compliant fluoride users is recommended....

  9. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Soares, Ana Lúcia Silva; De Oliveira, Rodrigo; Nahórny, Sidnei

    2016-07-01

    FT-Raman spectroscopy and scanning electron microscopy (SEM) were employed to test the hypothesis that the beverage consumption or mouthwash utilization would change the chemistry of dental materials and enamel inorganic content. Bovine enamel samples (n = 36) each received two cavity preparations (n = 72), each pair filled with one of three dental materials (R: nanofilled composite resin, GIC: glass-ionomer cement, RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: artificial saliva, E: erosion/Pepsi Twist or EM: erosion + mouthwash/Colgate Plax). Reduction of carbonate content of enamel was greater in RE than RS (P erosion. Material degradation was greater after E and EM than S. GIC and RMGIC materials had a positive effect against acid erosion in the adjacent enamel after remineralization with mouthwash. The beverage and mouthwash utilization would change R and GIC chemical properties. A professional should periodically monitor the glass-ionomer and resin restorations, as they degrade over time under erosive challenges and mouthwash utilization. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc. Microsc. Res. Tech. 79:646-656, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina).

    Science.gov (United States)

    Milhem, Manar M; Al-Hiyasat, Ahmad S; Darmani, Homa

    2008-01-01

    This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (plarvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (pshrimp larvae followed by GICs and then composites.

  11. Effect of salivary pH on diametral tensile strength of glass ionomer cement coated with coating agent

    Science.gov (United States)

    Farahdillah; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to analyze the effect of salivary pH to diametral tensile strength of glass ionomer cement (GIC) coated with a coating agent. GIC specimens coated with varnish and nano-filled coating agent were stored in artificial saliva at pH values of 4.5, 5.5, and 7 for 24 h at 37°C, then the diametral tensile strength was tested by universal testing machine. Results showed that there was no significant difference in the diametral tensile strength of the GIC coated with varnish and nano-filled coating agent with decreasing of salivary pH (p salivary pH does not affect the diametral tensile strength of GIC coated by varnish or nano-filled coating agent

  12. Fluoride release/recharging ability and bond strength of glass ...

    African Journals Online (AJOL)

    2015-08-17

    Aug 17, 2015 ... 2017 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer - ... Objectives: The aim of this in vitro study was to evaluate the microtensile bond strength (μTBS) of different glass ... Glass ionomer cements (GICs) have often been used as the ... with nano‑fluoride‑/hydroxyapatite or resin‑modified.

  13. Coating glass-ionomer cements with a nanofilled resin.

    Science.gov (United States)

    Bonifácio, Clarissa Calil; Werner, Arie; Kleverlaan, Cornelis Johanes

    2012-12-01

    The objective of this study was to investigate the effect of a nanofilled resin coat on the flexural strength (FS) and the early wear (after 50,000 and 200,000 cycles) of the glass-ionomer cements Fuji IX GP Extra (FIXE) and Ketac Molar Aplicap (KM). Specimens were prepared and half of them were coated with G-Coat plus. The uncoated specimens were used as controls. Flexural strength (n = 10) was evaluated after 24 h using a 3-point bending test on a universal testing machine (ISO 9917-2). Wear (n = 20) was evaluated after 50,000 and 200,000 cycles using the ACTA wear machine. One-way, two-way ANOVA and Tukey post-hoc tests were used to analyze differences in FS and wear. For FIXE the coat significantly increased the FS and the wear along the two time spans. KM did not show a significant difference in FS with the coat. Improvements in wear were observed only after 50,000 cycles. Based on these laboratory results, it is concluded that G-coat Plus is indicated in association with GP IX Extra with the aim to improve the mechanical properties of the former. However, this study is limited to a short-term observation.

  14. Two-year survival rates of proximal atraumatic restorative treatment restorations in relation to glass ionomer cements and postrestoration meals consumed

    NARCIS (Netherlands)

    Kemoli, A.M.; Opinya, G.N.; van Amerongen, W.E.; Mwalili, S.M.

    2011-01-01

    Purpose: The purpose of this study was to investigate the influence of 3 glass ionomer cement (GIC) brands and the postrestoration meal consumed on the survival rate of proximal atraumatic restorative treatment (ART) restorations. Methods: A total of 804 proximal restorations were placed in primary

  15. Microleakage of Glass Ionomer-based Provisional Cement in CAD/CAM-Fabricated Interim Crowns: An in vitro Study.

    Science.gov (United States)

    Farah, Ra'fat I; Al-Harethi, Naji

    2016-10-01

    The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass

  16. A preliminary clinical trial using flowable glass-ionomer cement as a liner in proximal-ART restorations: the operator effect

    NARCIS (Netherlands)

    Bonifácio, C.C.; Hesse, D.; Bönecker, M.; van Loveren, C.; van Amerongen, W.E.; Raggio, D.P.

    2013-01-01

    .Objectives: This in vivo study was carried out to assess the influence of the operator experience on the survival rate of proximal-ART restorations using a two-layer technique to insert the glass-ionomer cement (GIC). Study Design: Forty five proximal cavities in primary molars were restored in a

  17. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    Science.gov (United States)

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  18. Effects of Topical Fluoride on the Marginal Microleakage of Composite Resin and Resin-Modified Glass Ionomer Restorations in Primary Molars: An In-vitro Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Mir

    2017-12-01

    Full Text Available Introduction: Topical fluoride may deteriorate dental restorations. The present study aimed to evaluate the effects of topical fluoride on the marginal microleakage of composite resin and resin-modified glass ionomer (RMGI restorations in primary molars. Materials and Methods: In this experimental study, 60 primary molars were randomly divided into six groups of 10 based on the type of the restoration materials and before/after the application of fluoride gel, including FC (fluoride + composite, CF (composite + fluoride, C (composite, FG (fluoride + RMGI, GF (RMGI + fluoride, and G (RMGI. Class V cavities were prepared on the buccal surface, so that the gingival margins were located in cementum. After storing, thermocycling, and immersing the specimens in basic fuchsin, they were sectioned buccolingually and evaluated in terms of dye penetration. Data analysis was performed in SPSS version 18 using Kruskal-Wallis and Mann-Whitney U test at the significance level of 0.05. Results: No significant difference was observed between the three composite groups in terms of microleakage (P>0.05. In the RMGI groups, GF showed a significantly higher microleakage compared to G (P=0.029. However, no significant difference was observed between the other groups in this regard (P>0.05. Moreover, comparison of composite and RMGI groups (matched in terms of fluoride application indicated that microleakage was significantly higher in FG than FC (P=0.024, as well as in GF than CF (P=0.002. However, no significant difference was observed between groups C and G in this regard (P=0.268. Conclusion: According to the results, the marginal seal of composite restorations in the primary molars were not affected by the acidic fluoride gel. On the other hand, applying the acidic fluoride gel was associated with a higher microleakage in the cavities restored with RMGI.

  19. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties.

    Science.gov (United States)

    Kim, Dong-Ae; Lee, Jung-Hwan; Jun, Soo-Kyung; Kim, Hae-Won; Eltohamy, Mohamed; Lee, Hae-Hyoung

    2017-07-01

    This study investigated the mechanical and in vitro biological properties (in immortalized human dental pulp stem cells (ihDPSCs)) of bioactive glass nanoparticle (BGN)-incorporated glass ionomer cement (GIC) with or without chitosan as a binder. After the BGNs were synthesized and characterized, three experimental GICs and a control (conventional GIC) that differed in the additive incorporated into a commercial GIC liquid (Hy-bond, Shofu, Japan) were produced: BG5 (5wt% of BGNs), CL0.5 (0.5wt% of chitosan), and BG5+CL0.5 (5wt% of BGNs and 0.5wt% of chitosan). After the net setting time was determined, weight change and bioactivity were analyzed in simulated body fluid (SBF) at 37°C. Mechanical properties (compressive strength, diametral tensile strength, flexural strength and modulus) were measured according to the incubation time (up to 28 days) in SBF. Cytotoxicity (1day) and biomineralization (14 days), assessed by alizarin red staining, were investigated using an extract from GIC and ihDPSCs. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post hoc test; pproperties were increased in the BGN-incorporated GICs compared to those in the control (pproperties such as compressive, diametral tensile and flexural strength as well as in vitro biomineralization properties in ihDPSCs without cytotoxicity. Therefore, the developed BGN-incorporated GIC is a promising restorative dental material, although further in vivo investigation is needed before clinical application. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets

    Directory of Open Access Journals (Sweden)

    Marcela Cristina Damião ANDRUCIOLI

    Full Text Available Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC (Fuji ORTHO LC and a light cured composite resin (Transbond XT, and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF on SM counts. In a parallel study design, two groups (n=14/15 were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.

  1. Clinical performance of a glass ionomer sealant protected with two different resin-based agents over a 2-year follow-up period.

    Science.gov (United States)

    Ulusoy, A T; Tunc, E S; Bayrak, Ş

    2017-03-01

    To evaluate the effects of two different resin coating materials on the clinical performance of a conventional glass ionomer sealant. Permanent first mandibular molars of 60 children aged 6-9 years were sealed with Fuji VII. In each child, G-Coat Plus coating agent was applied to molars on one side and Heliobond coating agent to molars on the opposite side of the mouth. Clinical evaluations were carried out at 1, 6, 12, 18 and 24 months after sealant and coating application. At 1, 6, 12, 18 and 24 months after sealant and coating application, total sealant retention rates were 88%, 40%, 19%, 15% and 9% for molars coated with G-Coat Plus, and 93%, 47%, 17%, 15% and 7% for those coated with Heliobond. The differences between the two coating agents were not statistically significant (p>0.05). No incidence of caries was observed in either group during the two-year evaluation period. Wilcoxon signed rank test was used to compare differences in retention rates and caries incidence by coating agent. Although retention rates of Fuji VII were relatively low and similar for both resin coating agents tested, dental caries were not observed in either group during the 24-month study period. In children with a high risk of caries and partially erupted molars, the use of a glass ionomer sealant with a resin-based coating agent should be encouraged.

  2. Comparison between effectiveness of a low-viscosity glass ionomer and a resin-based glutaraldehyde containing primer in treating dentine hypersensitivity--a 25.2-month evaluation.

    NARCIS (Netherlands)

    Polderman, R.N.; Frencken, J.E.F.M.

    2007-01-01

    OBJECTIVES: The null-hypothesis tested was; there is no difference in effectiveness between a new low-viscosity glass ionomer and a resin-based glutaraldehyde containing primer in treating hypersensitive teeth after 2 years. METHODS: Using a split-mouth design, hypersensitive teeth in 14 adult

  3. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  4. Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene.

    Science.gov (United States)

    Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin

    2018-06-01

    The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing

  5. Effects of Hybrid Coat on shear bond strength of five cements: an in vitro study.

    Science.gov (United States)

    Guo, Yue; Zhou, Hou-De; Feng, Yun-Zhi

    2017-12-01

    To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using astereomicroscope. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

  6. Confocal microscopic observation of structural changes in glass-ionomer cements and tooth interfaces.

    Science.gov (United States)

    Watson, T F; Pagliari, D; Sidhu, S K; Naasan, M A

    1998-03-01

    This study aimed to develop techniques to allow dynamic imaging of a cavity before, during and after placement of glass-ionomer restorative materials. Cavities were cut in recently extracted third molars and the teeth longitudinally sectioned. Each hemisected tooth surface was placed in green modelling compound at 90 to the optical axis of the microscope. The cavity surface was imaged using a video rate confocal microscope in conjunction with an internally focusable microscope objective. The sample on the stage was pushed up to the objective lens which 'clamped' the cover glass onto it. Water, glycerine or oil was placed below the coverglass, with oil above. Internal tooth structures were imaged by changing the internal focus of the objective. The restorative material was then placed into the cavity. Video images were stored either onto video tape or digitally, using a frame grabber, computer and mass memory storage. Software controls produced time-lapse recordings of the interface over time. Preliminary experiments have examined the placement and early maturation of conventional glass-ionomer cements and a syringeable resin-modified glass-ionomer cement. Initial contact of the cement matrix and glass particles was visible as the plastic material rolled past the enamel and dentine, before making a bond. Evidence for water movement from the dentine into the cement has also been seen. After curing, the early dimensional changes in the cements due to water flux were apparent using the time-lapse facility. This new technique enables examination of developing tooth/restoration interfaces and the tracking of movement in materials.

  7. Modified glass ionomer and orthodontic band: An interim alternative for the treatment of molar incisor hypomineralization. A case report.

    Directory of Open Access Journals (Sweden)

    Carla Orellana

    2017-03-01

    Full Text Available Introduction: Molar incisor hypomineralization (MIH is a developmental condition resulting in defects in the enamel characterized by demarcated opacities mainly affecting first permanent molars and occasionally permanent incisors in 1 of every 6 children worldwide. Affected molars have greater susceptibility to post eruptive breakdown, extensive caries and, in severe cases, are difficult to restore. When the MIH-affected molar presents severe crown destruction, it is necessary to perform an intermediate restoration to preserve the remaining dental structure in order to maintain occlusion, proper hygiene and periodontal health. The case of an 11-year-old patient with severe MIH is reported. The patient had extensive crown destruction by caries in tooth 1.6 without clinical or radiographic signs of pulp pathology. After an initial preventive intervention, enamel without dentin support and carious dentin were removed from tooth 1.6. Subsequently, crown restoration was performed with resin-modified glass ionomer, followed by the cementation of an orthodontic band. After 18 months of follow-up, the patient reported no pain or discomfort. The restoration was preserved intact, maintaining occlusal functionality, pulp and gingival health. Conclusion: The interim treatment, cementing an orthodontic band over a tooth restored with glass ionomer seems to favor retention and compressive strength, keeping the MIH-affected molar asymptomatic for at least 18 months. Further studies evaluating this treatment option in similar clinical situations are recommended.

  8. Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Raji Viola Solomon

    2014-01-01

    Full Text Available Background: Class ll sandwich restorations are routinely performed where conventional Glass ionomer cement (GIC or Resin-modified GIC (RMGIC is used as a base or dentin substitute and a light curing composite resin restorative material is used as an enamel substitute. Various authors have evaluated the microleakage of composite resin restorations where glass ionomer cement has been used as a base in class II sandwich restorations, but a literature survey reveals limited studies on the microleakage analysis of similar restorations with biodentine as a dentin substitute, as an alternative to glass ionomer cement. The aim of this study is: To evaluate the marginal sealing efficacy of a new calcium-silicate-based material (Biodentine as a dentin substitute, at the cervical margins, in posterior class II sandwich restorations.To compare and evaluate the microleakage at the biodentine/composite interface with the microleakage at the resin-modified GIC/composite interface, in posterior class II open sandwich restorations. To compare the efficacy between a water-based etch and rinse adhesive (Scotch bond multipurpose and an acetone-based etch and rinse adhesive (Prime and bond NT, when bonding biodentine to the composite. To evaluate the enamel, dentin, and interfacial microleakage at the composite and biodentine/RMGIC interfaces. Materials and Methods: Fifty class II cavities were prepared on the mesial and distal surfaces of 25 extracted human maxillary third molars, which were randomly divided into five groups of ten cavities each: (G1 Biodentine group, (G2 Fuji II LC GIC group, (G3 Biodentine as a base + prime and bond NT + Tetric N-Ceram composite, (G4 Biodentine + scotchbond multi-purpose + Tetric N-Ceram composite, (G5 Fuji II LC as a base + prime and bond NT+ Tetric-N Ceram composite. The samples were then subjected to thermocycling, 2500× (5°C to 55°C, followed by the dye penetration test. Scores are given from 0 to 3 based on the depth of

  9. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  10. Randomized clinical trial of encapsulated and hand-mixed glass-ionomer ART restorations: one-year follow-up.

    Science.gov (United States)

    Freitas, Maria Cristina Carvalho de Almendra; Fagundes, Ticiane Cestari; Modena, Karin Cristina da Silva; Cardia, Guilherme Saintive; Navarro, Maria Fidela de Lima

    2018-01-18

    This prospective, randomized, split-mouth clinical trial evaluated the clinical performance of conventional glass ionomer cement (GIC; Riva Self-Cure, SDI), supplied in capsules or in powder/liquid kits and placed in Class I cavities in permanent molars by the Atraumatic Restorative Treatment (ART) approach. A total of 80 restorations were randomly placed in 40 patients aged 11-15 years. Each patient received one restoration with each type of GIC. The restorations were evaluated after periods of 15 days (baseline), 6 months, and 1 year, according to ART criteria. Wilcoxon matched pairs, multivariate logistic regression, and Gehan-Wilcoxon tests were used for statistical analysis. Patients were evaluated after 15 days (n=40), 6 months (n=34), and 1 year (n=29). Encapsulated GICs showed significantly superior clinical performance compared with hand-mixed GICs at baseline (p=0.017), 6 months (p=0.001), and 1 year (p=0.026). For hand-mixed GIC, a statistically significant difference was only observed over the period of baseline to 1 year (p=0.001). Encapsulated GIC presented statistically significant differences for the following periods: 6 months to 1 year (p=0.028) and baseline to 1 year (p=0.002). Encapsulated GIC presented superior cumulative survival rate than hand-mixed GIC over one year. Importantly, both GICs exhibited decreased survival over time. Encapsulated GIC promoted better ART performance, with an annual failure rate of 24%; in contrast, hand-mixed GIC demonstrated a failure rate of 42%.

  11. Distribusi Streptococcus mutans pada Tepi Tumpatan Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Abdul Muthalib

    2015-10-01

    Full Text Available Secondary caries always occurs as a result of the filling not being hermetically. Purposes of this research is to prove whether there is a leak on the border of the tooth enamel and border between the Glass-ionomer filling with the Streptococcus mutans infection with parameter of SMAAPPI (Simplified S. mutans Approximal Plaque Index by Keeni et al, 1981. The subject of the research were 20 patients who came to the Dental Clinic at University of Indonesia with criteria possessing Glass-ionomer filling at the lower jaws. Collection of the samples were dental plaque gathered using a 1.5 mm excavator to scrape one way direction from the enamel, along the border between the enamel and Glass-ionomer filling and Glass-ionomer filling's surface. Isolation with medium transport sem-synthetic Cariostat and TSY20B and identification by using biochemical test. isolated colony strain local Streptococcus mutans from enamel, the border enamel and Glass-ionomer and the surface of the Glass-ionomer. The results were Streptococcus mutans were found from enamel 3006 colonies, on the border between the enamel and Glass-ionomer 143 colonies and on the surface of the Glss-ionomer 7291 colonies. Amoung of Streptococcus mutans colony obtained on the border of the enamel and Glass-ionomer were smaller compared to the surface of the Glass-ionomer and tooth enamel. Concluded that the leak of the filling was not caused by the number of distributed Streptooccus mutans colonies on the side, because the fluoroapatite fastener occurred due to the Glass-ionomer releasing in fluor along the border of the filling.

  12. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation.

    Science.gov (United States)

    Renné, Walter G; Lindner, Amanda; Mennito, Anthony S; Agee, Kelli A; Pashley, David H; Willett, Daniel; Sentelle, David; Defee, Michael; Schmidt, Michael; Sabatini, Camila

    2017-01-01

    This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

  13. SALIVARY PH CHANGES AFTER GIC RESTORATION ON DECIDUOUS TEETH

    Directory of Open Access Journals (Sweden)

    Chandra Nila Sukma

    2015-06-01

    Full Text Available Glass Ionomer Cement (GIC is the most widely used material in pediatric dentistry. The purpose of this study was to analyze pH changes of saliva after GIC restoration on primary teeth. For this purpose, 20 primary canines which were restored with GIC 24 hours previously were plunged into 20 tubes containing each 1,5 ml pH 6,8 Fusayama artificial saliva and then stored in incubator at the temperature of 37°C. The pH changes were measured at 30, 60, and 90 minutes later with digital pH meter PH-201. It was revealed that the highest pH acceleration was at 30 minutes exposure an decrease thereafter and the lowest pH acceleration was at 90 minutes exposure. Statistical analysis was performed by Anova and Tukey HSD.

  14. Occlusal glass ionomer cermet, resin sandwich and amalgam restorations: a 2-year clinical study.

    Science.gov (United States)

    Lidums, A; Wilkie, R; Smales, R

    1993-08-01

    This study compared the clinical behavior of a glass ionomer silver cermet (Ketac-Silver), a posterior resin composite (Visio-Molar) used with the "sandwich" technique, and a high-copper amalgam (Dispersalloy) for restoring conventional Class I occlusal cavity preparations. Two dentists placed 116 restorations in the posterior permanent teeth of 35 adults treated at a dental hospital. Restorations were assessed at 6-month intervals over 2 years for bulk loss of material and occlusal wear, surface voids, roughness and cracking, surface and marginal staining, and marginal fracture. Losses of material and surface voids were obvious with the cermet material, with surface crazing or cracking being present in 33% of the restorations. The cermet cannot be recommended as a long-term permanent restorative material if the restorations are likely to be subjected to heavy occlusal stresses and abrasive wear.

  15. Microleakage of adhesive and nonadhesive luting cements for stainless steel crowns.

    Science.gov (United States)

    Memarpour, Mahtab; Mesbahi, Maryam; Rezvani, Gita; Rahimi, Mehran

    2011-01-01

    This study's purpose was to compare the ability of 5 luting cements to reduce microleakage at stainless steel crown (SSC) margins on primary molar teeth. Standard preparations were performed on 100 extracted primary molar teeth for SSC restoration. After fitting SSCs, samples were randomly divided into 5 groups of 20 teeth each, which were cemented with nonadhesive cement consisting of polycarboxylate (PC) or zinc phosphate (ZP), or with adhesive cement consisting of glass ionomer (GIC), resin-modified glass ionomer cement (RMGIC), or RMGIC with a bonding agent (RMGIC+DBA). After aging and thermocycling, the specimens were placed in 1% methylene blue, sectioned, and evaluated under a digital microscope. The data were compared between groups with the t test, analysis of variance, and the least significant difference test. Microleakage with adhesive cements was significantly lower than with nonadhesive cements (Pcements were statistically significant at Pcement showed the greatest microleakage. Adhesive cements were more effective in reducing microleakage in stainless steel crowns than nonadhesive cements. Use of a bonding agent with a resin-modified glass ionomer cement yielded better results than using the latter alone.

  16. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    Directory of Open Access Journals (Sweden)

    Monika Aleksiejunaite

    2017-01-01

    Full Text Available The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC and resin-modified glass ionomer (RMGI on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n=10. Tubes were bonded using LCC (Transbond XT in group 1 and RMGI (Fuji Ortho LC in group 2. The tubes in each group were bonded following manufacturers’ instructions (experiment I and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III. Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p<0.05. LCC and RMGI (especially RMGI provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted.

  17. Low-cost glass ionomer cement as ART sealant in permanent molars: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Daniela HESSE

    2015-01-01

    Full Text Available Clinical trials are normally performed with well-known brands of glass ionomer cement (GIC, but the cost of these materials is high for public healthcare in less-affluent communities. Given the need to research cheaper materials, it seems pertinent to investigate the retention rate of a low-cost GIC applied as atraumatic restorative treatment (ART sealants in two centers in Brazil. Four hundred and thirty-seven 6-to-8-year-old schoolchildren were selected in two cities in Brazil. The children were randomly divided into two groups, according to the tested GIC applied in the first permanent molars. The retention rate was evaluated after 3, 6 and 12 months. Kaplan-Meier survival analysis and the log-rank test were performed. The variables were tested for association with sealant longevity, using logistic regression analyses (α = 5%. The retention rate of sealants after 12 months was 19.1%. The high-cost GIC brand presented a 2-fold-more-likely-to-survive rate than the low-cost brand (p < 0.001. Significant difference was also found between the cities where the treatments were performed, in that Barueri presented a higher sealant survival rate than Recife (p < 0.001. The retention rate of a low-cost GIC sealant brand was markedly lower than that of a well-known GIC sealant brand.

  18. Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects.

    Science.gov (United States)

    Magne, Pascal; Silva, Silvana; Andrada, Mauro de; Maia, Hamilton

    2016-01-01

    To assess the influence of conventional glass ionomer cement (GIC) vs resin-modified GIC (RMGIC) as a base material for novel, super-closed sandwich restorations (SCSR) and its effect on shrinkage-induced crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slottype tooth preparation was applied to 30 extracted maxillary molars (5 mm depth/5 mm buccolingual width). A modified sandwich restoration was used, in which the enamel/dentin bonding agent was applied first (Optibond FL, Kerr), followed by a Ketac Molar (3M ESPE)(group KM, n = 15) or Fuji II LC (GC) (group FJ, n = 15) base, leaving 2 mm for composite resin material (Miris 2, Coltène-Whaledent). Shrinkageinduced enamel cracks were tracked with photography and transillumination. Samples were loaded until fracture or to a maximum of 185,000 cycles under isometric chewing (5 H z), starting with a load of 200 N (5,000 X), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 X each. Groups were compared using the life table survival analysis (α = .008, Bonferroni method). Group FJ showed the highest survival rate (40% intact specimens) but did not differ from group KM (20%) or traditional direct restorations (13%, previous data). SCSR generated less shrinkage-induced cracks. Most failures were re-restorable (above the cementoenamel junction [CEJ]). Inclusion of GIC/RMGIC bases under large direct SCSRs does not affect their fatigue strength but tends to decrease the shrinkage-induced crack propensity. The use of GIC/ RMGIC bases and the SCSR is an easy way to minimize polymerization shrinkage stress in large MOD defects without weakening the restoration.

  19. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A.; Angioletto, Ev.

    2010-01-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  20. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    Directory of Open Access Journals (Sweden)

    Padmaja Sharma

    2013-01-01

    Full Text Available Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs, due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel and NaOCL on the rate of bond failure (with immediate ligation at 30 min of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1 Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2 Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3 Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4 Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC.

  1. Class II glass ionomer/silver cermet restorations and their effect on interproximal growth of mutans streptococci.

    Science.gov (United States)

    Berg, J H; Farrell, J E; Brown, L R

    1990-02-01

    The release of fluoride from glass ionomer materials is one of the most important features of this newly implemented material, and the remineralization effects of this phenomenon have been documented (Hicks and Silverstone 1986). This paper examines the effects of glass ionomer/silver cermet restorations on the plaque levels of interproximal mutans streptococci. Fifteen patients with Class II lesions in primary molars were selected for study. Interproximal plaque samples were obtained from each of the lesion sites and from one caries-free site approximal to a primary molar. One lesion was restored with composite resin to serve as a treated control to the glass ionomer/silver cermet (Ketac Silver, ESPE/Premier Sales Corp., Norristown, Pennsylvania) test site. A sound (unaltered) interproximal site served as the untreated control site. Plaque samples were collected before and at one week, one month, and three months post-treatment. Samples were serially diluted to enable colony counts of mutans streptococci. One week post-treatment counts showed that the glass ionomer/silver cermet restorations significantly reduced (P less than 0.05) the approximal plaque levels of mutans streptococci. Conversely, the untreated and treated control sites did not exhibit reductions in approximal plaque levels of mutans streptococci. These results indicate that glass ionomer restorations may be inhibitory to the growth of mutans streptococci in dental plaque approximal to this restorative material in the primary dentition.

  2. Effect of Sandblasting and Type of Cement on the Bond Strength of Molar Bands on Stainless Steel Crowns.

    Science.gov (United States)

    Bawazir, Omar A; Elaraby, Alaa; Alshamrani, Hamed; Salama, Fouad S

    2015-01-01

    The purposes of this study were to: (1) compare the bond strength of molar bands cemented to stainless steel crowns (SSCs) using glass ionomer cement (GIC), resin-modified glass ionomer cement (RMGIC), or polycarboxylate cement (PXC); and (2) assess the influence of sandblasting molar bands on the mean bond strength between the band and the SSC. Sixty SSCs and 60 molar bands were used. The inner surfaces of 30 molar bands were roughened by sandblasting prior to cementation. The bond strength was measured after dislodging the SSC using a push-out test. In the nonsandblasted group, a significant difference was observed between PXC and RMGIC (P >.04). In the sandblasted group, a significant difference was observed between PXC and RMGIC (P >.02), while there was only a marginal difference between GIC and RMGIC (P >.05). The sandblasted group exhibited superior bond strength overall. However, the only significant improvement was observed for GIC (P >.03). PXC showed the highest bond strength of molar bands to SSCs, while RMGIC showed the lowest. Sandblasting the inner surface of bands enhanced the bond strength of different cements.

  3. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    Science.gov (United States)

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  4. In vitro and in vivo evaluations of glass-ionomer cement containing chlorhexidine for Atraumatic Restorative Treatment

    Science.gov (United States)

    Duque, Cristiane; Aida, Kelly Limi; Pereira, Jesse Augusto; Teixeira, Gláucia Schuindt; Caldo-Teixeira, Angela Scarparo; Perrone, Luciana Rodrigues; Caiaffa, Karina Sampaio; Negrini, Thais de Cássia; de Castilho, Aline Rogéria Freire; Costa, Carlos Alberto de Souza

    2017-01-01

    Abstract Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Results: Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. Conclusions: The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short

  5. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  6. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'.

    Science.gov (United States)

    Aliping-McKenzie, M; Linden, R W A; Nicholson, J W

    2004-11-01

    The interaction of tooth-coloured dental restorative materials (a conventional glass-ionomer, two resin-modified glass-ionomers and two compomers) with acidic beverages has been studied with the aim of investigating how long-term contact affects solution pH and specimen surface hardness. For each material (ChemFil Superior, ChemFlex, Vitremer Core Build-Up/Restorative, Fuji II LC, Dyract AP and F2000) disc-shaped specimens were prepared and stored in sets of six in the following storage media: 0.9% NaCl (control), Coca-Cola, apple juice and orange juice. After time intervals of 1 day, 1 week, 1 month, 3 months, 4 months, 6 months and 1 year, solution pH and Vickers Hardness Number were determined for each individual specimen. Differences were analysed by anova followed by Student-Newman-Keuls post hoc analysis. All materials were found to reduce the pH of the 0.9% NaCl, but to increase the pH of the acidic beverages. The conventional glass-ionomers dissolved completely in apple juice and orange juice, but survived in Coca-Cola, albeit with a significantly reduced hardness after 1 year. The other materials survived in apple juice and orange juice, but showed greater reductions in surface hardness in these beverages than in Coca-Cola. Fruit juices were thus shown to pose a greater erosive threat to tooth coloured materials than Coca-Cola, a finding which is similar to those concerning dentine and enamel towards these drinks.

  7. Effect of different thermo-light polymerization on flexural strength of two glass ionomer cements and a glass carbomer cement.

    Science.gov (United States)

    Gorseta, Kristina; Borzabadi-Farahani, Ali; Moshaverinia, Alireza; Glavina, Domagoj; Lynch, Edward

    2017-07-01

    Whether polymerization lights can be used for heating glass ionomer cements (GICs) or glass carbomer (GCP) to improve their mechanical properties is not well established. The purpose of this in vitro study was to assess the effect of thermo-light polymerization on the flexural strength (FS) of 2 GICs (Fuji IX GP Fast, Ketac Molar) and a GCP. Specimens (n=10) were prepared in stainless steel molds (2×2×25 mm), compressed, exposed to 3 polymerization lights (500, 1000, 1200 mW/cm 2 ) for 2 cycles of 40 seconds on each side, and stored in petroleum jelly (37°C, 24 hours). Significant FS differences were detected among groups after different thermo-light polymerization regimens (F=50.926, df=11, Pthermo-light polymerization with power outputs of 1000 (127.1 ±25.8 MPa) and 1200 mW/cm 2 (117.4 ±18.5 MPa), with no significance difference between them (P=.98), compared with 500 mW/cm 2 (24.1 ±1.7 MPa). For Ketac Molar, compared with autopolymerization setting (15.5 ±3.1 MPa), a significant increase in mean FS (∼2.5 times) was only observed in specimens treated with 1200 mW/cm 2 polymerization light (P=.03). For Fuji IX GP Fast, only the light with 1000 mW/cm 2 output significantly increased the FS (98.9 ±23.4 MPa, PThermo-light polymerization accelerated the development of FS in the tested GICs, potentially protecting against saliva contamination during the first 3 to 4 minutes after mixing GIC. Thermo-light polymerization of the glass carbomer with power outputs of 1000 and 1200 mW/cm 2 also substantially increased FS. The clinical advantages of the findings should be validated by in vivo studies. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Gisele Fernandes DIAS

    Full Text Available Abstract Background Fluoride plays an important role in the control of dental caries. Aim To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC and primary dentin with application of sodium fluoride (NaF 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20 according to dentin condition: sound (1 and demineralized (2. Sub-groups (n=10 were formed to investigate the isolated action of the GIC or the association with NaF (F. This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling, to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05 was used for statistical analysis. Micro-Raman data were qualitatively described. Result Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p0.05. In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate occurs without the influence of NaF.

  9. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  10. Research gaps identified during systematic reviews of clinical trials: glass-ionomer cements.

    Science.gov (United States)

    Mickenautsch, Steffen

    2012-06-29

    To report the results of an audit concerning research gaps in clinical trials that were accepted for appraisal in authored and published systematic reviews regarding the application of glass-ionomer cements (GIC) in dental practice Information concerning research gaps in trial precision was extracted, following a framework that included classification of the research gap reasons: 'imprecision of information (results)', 'biased information', 'inconsistency or unknown consistency' and 'not the right information', as well as research gap characterization using PICOS elements: population (P), intervention (I), comparison (C), outcomes (O) and setting (S). Internal trial validity assessment was based on the understanding that successful control for systematic error cannot be assured on the basis of inclusion of adequate methods alone, but also requires empirical evidence about whether such attempt was successful. A comprehensive and interconnected coverage of GIC-related clinical topics was established. The most common reasons found for gaps in trial precision were lack of sufficient trials and lack of sufficient large sample size. Only a few research gaps were ascribed to 'Lack of information' caused by focus on mainly surrogate trial outcomes. According to the chosen assessment criteria, a lack of adequate randomisation, allocation concealment and blinding/masking in trials covering all reviewed GIC topics was noted (selection- and detection/performance bias risk). Trial results appear to be less affected by loss-to-follow-up (attrition bias risk). This audit represents an adjunct of the systematic review articles it has covered. Its results do not change the systematic review's conclusions but highlight existing research gaps concerning the precision and internal validity of reviewed trials in detail. These gaps should be addressed in future GIC-related clinical research.

  11. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Directory of Open Access Journals (Sweden)

    Stuart G Dashper

    Full Text Available Glass ionomer cements (GIC are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  12. Novel Nanotechnology of TiO2 Improves Physical-Chemical and Biological Properties of Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Daniela Dellosso Cibim

    2017-01-01

    Full Text Available The aim of this study was to assess the performance of glass ionomer cement (GIC added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w] were incorporated into GIC’s (Ketac Molar EasyMix™ powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS, surface roughness (SR, Knoop hardness (SH, fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05. Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

  13. Effectiveness of a resin-modified glass ionomer liner in reducing hypersensitivity in posterior restorations: a study from the practitioners engaged in applied research and learning network.

    Science.gov (United States)

    Strober, Brad; Veitz-Keenan, Analia; Barna, Julie Ann; Matthews, Abigail G; Vena, Donald; Craig, Ronald G; Curro, Frederick A; Thompson, Van P

    2013-08-01

    The objectives of this randomized comparative effectiveness study conducted by members of the Practitioners Engaged in Applied Research and Learning (PEARL) Network were to determine whether using a resin-modified glass ionomer (RMGI) liner reduces postoperative hypersensitivity (POH) in dentin-bonded Class I and Class II resin-based composite (RBC) restorations, as well as to identify other factors (putative risk factors) associated with increased POH. PEARL Network practitioner-investigators (P-Is) (n = 28) were trained to assess sensitivity determination, enamel and dentin caries activity rankings, evaluation for sleep bruxism, and materials and techniques used. The P-Is enrolled 341 participants who had hypersensitive posterior lesions. Participants were randomly assigned to receive an RBC restoration with or without an RMGI liner before P-Is applied a one-step, self-etching bonding agent. P-Is conducted sensitivity evaluations at baseline, at one and four weeks after treatment, and at all visits according to patient-reported outcomes. P-Is collected complete data regarding 347 restorations (339 participants) at baseline, with 341 (98 percent) (333 participants) recalled at four weeks. Treatment groups were balanced across baseline characteristics and measures. RBC restorations with or without an RMGI liner had the same one-week and four-week POH outcomes, as measured clinically (by means of cold or air stimulation) and according to patient-reported outcomes. Use of an RMGI liner did not reduce clinically measured or patient-reported POH in moderate-depth Class I and Class II restorations. Cold and air clinical stimulation findings were similar between groups. Practical Implications. The time, effort and expense involved in placing an RMGI liner in these moderate-depth RBC restorations may be unnecessary, as the representative liner used did not improve hypersensitivity outcomes.

  14. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment.

    Science.gov (United States)

    Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

    2013-01-01

    Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs.

  15. Nanoionomer: Evaluation of microleakage

    Directory of Open Access Journals (Sweden)

    S Upadhyay

    2011-01-01

    Full Text Available Background: Glass ionomer cements are widely used in pediatric practice due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the restorative material to the cavity walls is one of the most important characteristic for it to be proven as an ideal material as it prevents microleakage. Aims and Objectives: This study was aimed at evaluating the microleakage of nanofilled resin-modified glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Materials and Methods: Standard class V cavities of size 3 mm x 2 mm x 2 mm were made on a total of 30 extracted teeth and restored with the conventional glass ionomer, resin-modified glass ionomer or nanoionomer. After thermocycling, teeth were immersed in 0.5% methylene blue dye for 24 h. They were then sectioned buccolingually. Microleakage was assessed for the occlusal and gingival walls using a compound microscope by two examiners independently. Results: Nanoionomer demonstrated the least microleakage, with a mean score of 1.3, compared with the resin-modified glass ionomer (score of 3.2 and conventional glass ionomer cement (score 2.6. Conclusion: Nanoionomer exhibited adequate resistance to microleakage and thus may prove better than conventional or resin-modified glass ionomers.

  16. Clinical evaluation of glass-ionomer cement restorations Avaliação clínica de restaurações de cimento de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Martin John Tyas

    2006-01-01

    Full Text Available This article mentions the general structure, properties and clinical performance of conventional and resin-modified glass-ionomer cements, focusing on adhesion, caries inhibition effect and recommendations of their use.Este artigo menciona a estrutura geral, propriedades e performance clínica de cimentos de ionômero de vidro convencionais e modificados por resina, enfocando propriedades como adesão, efeito anti-cariogênico e recomendações de uso.

  17. Surface hardness of hybrid ionomer cement after immersion in antiseptic solution

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2006-06-01

    Full Text Available Hybrid ionomer cement or resin modified glass ionomer cement is a developed form of conventional glass ionomer cement. This hybrid ionomer cement can be eroded if in direct contact with acid solution which will affect surface hardness. The aim of this study is to learn surface hardness of hybrid ionomer cement after immersion in methyl salicylate 0.06% (pH 3.6 and povidon iodine 1% (pH 2.9 solution. Sample of hybrid ionomer cement with 5 mm diameter and 3 mm thickness was immersed in sterile aquadest solution (control, methyl salicylate pH 3.6, povidon iodine pH 2.9 for 1 minute, 7 and 14 minutes. Surface hardness was measured with Micro Vickers Hardness Tester. The obtained data was analyzed statistically with ANOVA followed by LSD test. The result of hybrid ionomer cement after immersion in sterile aquadest, methyl salicylate 0.06% pH 3.6 and povidon iodine 1% pH 2.9 for one minute, showed no significant difference; while immersion for 7 and 14 minutes showed a significant difference. The conclusion states that hybrid ionomer cement after 14 minutes immersion in povidon iodine 1% pH 2.9 has the lowest surface hardness.

  18. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  19. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements.

    Science.gov (United States)

    Sauro, Salvatore; Watson, Timothy; Moscardó, Agustin Pascual; Luzi, Arlinda; Feitosa, Victor Pinheiro; Banerjee, Avijit

    2018-06-01

    To evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto dentine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. RMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS immersion and subsequently μTBS tested. Results were analysed statistically by two-way ANOVA and Student-Newman-Keuls test (α = 0.05). Fractographic analysis was performed using FE-SEM, while further RMGIC-bonded specimens were surveyed for interfacial ultramorphology characterisation (dye-assisted nanoleakage) using confocal microscopy. RMGIC applied onto dentine air-abraded with BAG regardless PAA showed no significant μTBS reduction after 6 months of AS storage and/or load cycling (p > 0.05). RMGIC-dentine interface showed no sign of degradation/nanoleakage after both aging regimens. Conversely, interfaces created in PAA-conditioned SiC-abraded specimens showed significant reduction in μTBS (p air-abrasion might be a suitable strategy to enhance the bonding performance and durability of RMGIC applied to dentine. The use of PAA conditioner in smear layer-covered dentine may increase the risk of degradation at the bonding interface. A combined dentine pre-treatment using bioglass followed by PAA may increase the bond strength and maintain it stable over time. Conversely, the use of PAA conditioning alone may offer no significant contribute to the immediate and prolonged bonding performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Kekuatan Geser Semen Ionomer Kaca Modifikasi Sebagai Pelekat Braket Begg Logam Dengan dan Tanpa Etsa

    Directory of Open Access Journals (Sweden)

    Dyah Karunia

    2015-10-01

    Full Text Available The adhesive of composite resin has been used for direct bonding of a bracket system of bracket fixed orthodontic treatment by etching. The disadvantage of etching is enamel loss and difficult procedure. Modified glass ionomer cement has been suggested as a bracket bonding system without etching. The chemical bonding without etching can reduce enamel loss and make the procedure more efficient. The purpose of this study was to determine the shear bond strength of modified glass ionomer cement as metal Begg bracket bonding system with and without etching. The subject of this study consisted of two groups which had 15 intact extracted permanent human upper bicuspids for each group. Group I was etched with ortho phosphate acid (37% for 20 seconds and bonded with modified glass ionomer cement. Group II was untreated and bonded with the same adhesive. The shear bond strength was measured with Pearson Pankee Equipment, and bond failure location was observed under stereo microscope. To differentiate the effects with and without etching, t test was performed, while to observe the location of bond failures, chi-square test was conducted. The results of this study indicated that the shear bond strength of modified glass ionomer cement as bonding system metal Begg Brackets with etching was significantly higher (p<0.001 than without etching. Without etching, bond failure occurred between enamel and bonding agent. With etching, the bond failure was mostly found within the adhesive.

  1. Kekuatan perlekatan geser semen ionomer kaca terhadap dentin dan NiCr alloy (Shear bond strenght of glass ionomer cement in dentin and NiCr alloy

    Directory of Open Access Journals (Sweden)

    Mira Leonita

    2006-03-01

    Full Text Available Glass ionomer cements were used broadly in restorative dentistry. That’s why researchers always try to invent new form of glass ionomer cement. The newest invention was the paste-paste formulation. Shear bond strenght of powder-liquid glass ionomer cement and paste-paste glass ionomer cement in dentin and NiCr alloy was tested to 4 groups of samples. Each group consisted contain 6 samples that were shaped into cylinder with 4 mm of diameter and 5 mm of height. Group A was dentin with powder-liquid glass ionomer cement, group B was dentin with paste-paste glass ionomer cement, group C was alloy with powder-liquid glass ionomer cement, and group D was alloy with paste-paste glass ionomer cement. Each sample in each group was tested with Autograph. The datas were analyzed statistically using T-test with level of signficance 0.05. The result showed that powder-liquid glass ionomer cement shear bond strenght was 211 N and paste-paste glass ionomer cement was 166.92 N. That showed that powder-liquid glass ionomer cement had a better shear bond strenght.

  2. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    International Nuclear Information System (INIS)

    Moon, Joo Hoon; Choi, Eui Hwan

    2000-01-01

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  3. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hoon [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Chosun University, Kwangju (Korea, Republic of); Choi, Eui Hwan [Dept. of Conservative Dentistry, College of Dentistry, Chosun University, Kwangju (Korea, Republic of)

    2000-12-15

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  4. A Comparative Study of the Addition Effect of Diopside and Silica Sulfuric Acid Nanoparticles on Mechanical Properties of Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    M. Rezazadeh

    2016-09-01

    Full Text Available The aim of the present study is to study the effects of adding  diopside (CaMgSi2O6 as well as silica sulfuric acid nanoparticles to ceramic part of glass ionomer cement (GIC in order to improve its mechanical properties. To do this, firstly, diopside (DIO nanoparticles with chemical formula of CaMgSi2O6 were synthesized using sol-gel process and then, the structural and morphological properties of synthesized diopside nanoparticles were investigated. The results of scanning electron microscopy (SEM and particle size analyzing (PSA confirmed that synthesized diopside are nanoparticles and agglomerated. Besides, the result of X-ray diffraction (XRD analyses approved the purity of diopside nanoparticles compounds. Silica sulfuric acid (SSA nanoparticles are also prepared by chemical modification of silica nanoparticles by means of chlorosulfonic acid. Fourier transform infrared spectroscopy (FTIR technique was used to find about the presence of the (SO3H groups on the surface of silica sulfuric acid nanoparticles. Furthermore, various amounts (0.1, 3 and 5 wt.% of diopside and silica sulfuric acid nanoparticles were added to the ceramic part of GIC (Fuji II GIC commercial type to produce glass ionomer cement nanocomposites. The mechanical properties of the produced nanocomposites were measured using the compressive strength, three-point flexural strength and diametral tensile strength methods. Fourier transform infrared spectroscopy technique confirmed the presence of the (SO3H groups on the surface of silica nanoparticles. The compressive strength, three-point flexural strength and diametral tensile strength were 42.5, 15.4 and 6 MPa, respectively, without addition. Although adding 1% silica solfonic acid improved nanocomposite mchanical properties by almost 122%, but maximum increase in nanocomposite mechanical properties was observed in the nanocomposites with 3% diposid, in which 160% increase was seen in the mechanical properties.

  5. EFEKTIFITAS PENCEGAHAN KARIES DENGAN A TRAUMATIC RESTORATIVE TREATMENT DAN TUMPATAN GLASS IONOMER CEMENT DALAM PENGENDALIAN KARIES DI BEBERAPA NEGARA

    Directory of Open Access Journals (Sweden)

    Magdarina Destri Agtini

    2012-12-01

    Full Text Available Worldwide caries is still mainly problem in oral and dental diseases. In developing countries 30%-90% of 12-years old children do not get oral and dental treatment. In Indonesia, several programs have been implemented to improve oral and dental health status for all age groups. How over, a few reports/National dental health profile showed that mean DMF-T tend to increase, year 1970 DMF-T=0,70, 1980 DMF-T= 2,30, 1990 DMF-T=2,70, and National Health Research (Riskesdas 2007 DMFT=4,8. In National Health Research 2007, it was revealed 29,8% of active caries found in 12-years old children. If the active caries are not managed further complication will occure that may cause teeth extraction. An early teeth extraction can influence mastication and general health. Atraumatic Restorative Treatment (ART is a preventive and restorative approach for managing carious lesions ofthe teeth. It constitutes of hand instruments only (no electric drills used for widening cavity openings and for excavating soft decayed tissue from within the cavity, followed by the application of an adhesive dental material, usually a high-viscosity glass-ionomer (GIC filling material, into the cavity and over the adjacent pits and fissures. ART-GIC consepts are minimally invasive, inhibit further progression ofdental caries., preventive, as well as curative. Effectiveness of ART-GIC can be determined by successrate of ART-GIC fillings (F and effect of ART-GIC on both Decayed (D and Performance Treatment Index (PTI. Several studies showed that success rate ART-GIC are varies, around 71%-85%. There is no significant difference of success rate ART-GIC between dentis and dental nurses. The highest rate of Fluor release occurred on the first day after ART-GIC filling. Further more ART-GIC also inhibit new caries, as well as inhibit increased DMF-T. The increasing of F, may influence improvement of PTI (PTI around 50%-52%. Additional can improve dental health services. It is suggested

  6. Research gaps identified during systematic reviews of clinical trials: glass-ionomer cements

    Directory of Open Access Journals (Sweden)

    Mickenautsch Steffen

    2012-06-01

    Full Text Available Abstract Background To report the results of an audit concerning research gaps in clinical trials that were accepted for appraisal in authored and published systematic reviews regarding the application of glass-ionomer cements (GIC in dental practice Methods Information concerning research gaps in trial precision was extracted, following a framework that included classification of the research gap reasons: ‘imprecision of information (results’, ‘biased information’, ‘inconsistency or unknown consistency’ and ‘not the right information’, as well as research gap characterization using PICOS elements: population (P, intervention (I, comparison (C, outcomes (O and setting (S. Internal trial validity assessment was based on the understanding that successful control for systematic error cannot be assured on the basis of inclusion of adequate methods alone, but also requires empirical evidence about whether such attempt was successful. Results A comprehensive and interconnected coverage of GIC-related clinical topics was established. The most common reasons found for gaps in trial precision were lack of sufficient trials and lack of sufficient large sample size. Only a few research gaps were ascribed to ‘Lack of information’ caused by focus on mainly surrogate trial outcomes. According to the chosen assessment criteria, a lack of adequate randomisation, allocation concealment and blinding/masking in trials covering all reviewed GIC topics was noted (selection- and detection/performance bias risk. Trial results appear to be less affected by loss-to-follow-up (attrition bias risk. Conclusion This audit represents an adjunct of the systematic review articles it has covered. Its results do not change the systematic review’s conclusions but highlight existing research gaps concerning the precision and internal validity of reviewed trials in detail. These gaps should be addressed in future GIC-related clinical research.

  7. Tunnel restorations using glass ionomer or glass cermet: in vitro marginal ridge fracture and microleakage.

    Science.gov (United States)

    Shetty, R; Munshi, A K

    1996-01-01

    The purpose of this in vitro study was to compare the marginal ridge fracture resistance and microleakage following restorations of partial tunnel preparations using glass ionomer and glass cermet cements. Sixty eight sound premolars were selected for this study and were divided randomly into six groups. A standardized partial tunnel preparation was done on all the teeth except specimens belonging to Group I. The partial tunnel preparations of Groups III & V were restored with glass ionomer and that of Groups IV & VI were restored with glass cermet. The teeth belonging to Groups I, II, III & IV were subjected to marginal ridge fracture resistance testing. The teeth of Groups V & VI were tested for microleakage after immersing them in 5% methylene blue solution for 4 hours. The results indicated that the teeth restored with glass cermet were marginally better than that with glass ionomer in terms of marginal ridge fracture resistance. Both the materials failed to reinforce the marginal ridge to the level of an intact tooth. The microleakage which occurred around both the materials were statistically insignificant, but on comparison glass ionomer showed better results. Hence, glass ionomer is preferred as a restorative material for partial tunnel preparations because of additional inherent advantages like superior esthetics and fluoride leachability.

  8. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  9. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  10. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    Science.gov (United States)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  11. In vitro Evaluation of Effect of Dental Bleaching on the Shear Bond Strength of Sapphire Orthodontics Brackets Bonded with Resin Modified Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Zainab M Kadhom

    2017-11-01

    Full Text Available Aim: This study aimed to assess the effect of various types of bleaching agents on the shear bond strength of sapphire brackets bonded to human maxillary premolar teeth using resin modified glass ionomer cement (RMGIC and to determine the site of bond failure. Materials and Methods: Thirty freshly extracted maxillary human premolars were selected and assigned into three equal groups, ten teeth in each. The first group was the control (unbleached group; the second group comprised teeth bleached with hydrogen peroxide group (HP 37.5% (in-office bleaching while the third group included teeth bleached with carbamide peroxide group (CP 16% (at-home bleaching. The teeth in the experimental groups were bleached and stored in water one day then bonded with sapphire brackets using RMGIC with the control group and left another day. De-bonding was performed using Instron universal testing machine. To determine the site of bond failure, both the enamel surface and bracket base of each tooth were examined under magnifying lens (20X of a stereomicroscope. Results: Results showed statistically highly significant difference in the shear bond strengths between control group and both of bleaching groups being low in the control group. Score III was the predominant site of bond failure in all groups. Conclusions: RMGIC provides adequate bond strength when bonding the sapphire brackets to bleached enamel; this bonding was strong enough to resist both the mechanical and masticatory forces. Most of the adhesive remained on the brackets, so it reduced the time required for removal of the bonding material’s remnants during enamel finishing and polishing.

  12. Effects of aging and HEMA content on the translucency, fluorescence, and opalescence properties of experimental HEMA-added glass ionomers.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin; Zhao, Guang-Feng; Lim, Jin Ik

    2010-01-01

    Changes in the translucency, fluorescence, and opalescence of experimental 10-50% 2-hydroxyethyl methacrylate (HEMA)-added glass ionomers (HAGIs) after 5,000 cycles of thermocycling were determined and compared with those of commercial resin-modified glass ionomers (RMGIs). Changes in the translucency (TP), fluorescence (FL), and opalescence (OP) parameters were in the range of -3.5 to 0.2, -2.3 to 0.3 and -2.6 to 9.1 units respectively for HAGIs; and -0.9 to 0.3, -0.7 to 0.6, and 1.1 to 2.3 units respectively for RMGIs. Changes in the TP, FL, and OP of HAGIs were influenced by the HEMA content and powder shade, and were generally larger than those of RMGIs. Since the changes in TP, FL, and OP of experimental HAGIs were influenced by the HEMA content, there arises a need to determine the optimal HEMA ratio to attain high stability for these optical properties. In addition, results of this study showed that apart from optimal HEMA ratio, future studies should include other aspects and factors that contribute to age-dependent changes in optical properties.

  13. Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

    Science.gov (United States)

    Dorri, Mojtaba; Martinez-Zapata, Maria José; Walsh, Tanya; Marinho, Valeria Cc; Sheiham Deceased, Aubrey; Zaror, Carlos

    2017-12-28

    Dental caries is a sugar-dependent disease that damages tooth structure and, due to loss of mineral components, may eventually lead to cavitation. Dental caries is the most prevalent disease worldwide and is considered the most important burden of oral health. Conventional treatment methods (drill and fill) involve the use of rotary burs under local anaesthesia. The need for an electricity supply, expensive handpieces and highly trained dental health personnel may limit access to dental treatment, especially in underdeveloped regions.To overcome the limitations of conventional restorative treatment, the Atraumatic Restorative Treatment (ART) was developed, mainly for treating caries in children living in under-served areas of the world where resources and facilities such as electricity and trained manpower are limited. ART is a minimally invasive approach which involves removal of decayed tissue using hand instruments alone, usually without use of anaesthesia and electrically driven equipment, and restoration of the dental cavity with an adhesive material (glass ionomer cement (GIC), composite resins, resin-modified glass-ionomer cement (RM-GICs) and compomers). To assess the effects of Atraumatic Restorative Treatment (ART) compared with conventional treatment for managing dental caries lesions in the primary and permanent teeth of children and adults. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 22 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 1), MEDLINE Ovid (1946 to 22 February 2017), Embase Ovid (1980 to 22 February 2017), LILACS BIREME Virtual Health Library (Latin American and Caribbean Health Science Information database; 1982 to 22 February 2017) and BBO BIREME Virtual Health Library (Bibliografia Brasileira de Odontologia; 1986 to 22 February 2017). The US National Institutes of Health Trials Registry (Clinical

  14. Microstructural and mechanical development and characterization of glass ionomer cements; Desenvolvimento e caracterizacao microestrutural e mecanica de cimentos de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Freire, W.P.; Barbosa, R.C.; Castanha, E.M.M.; Barbosa, E. F.; Fook, M.V.L., E-mail: waldeniafreire@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Ciencias e Engenharia de Materiais

    2013-07-01

    Glass Ionomer Cements (GICs) are widely used in dentistry, indicated as a restorative material, cement for orthopedic and dental prostheses. However, there is need for development of new bone cements as alternative or replacement to current polymethylmethacrylate cements. Thus the aim of this research was develop of an experimental GIC and the mechanical and microstructural characterization of this composite; as a control group it was used a commercial GIC called Vidrion R (SS WHITE). These composites were characterized by X-ray diffraction, Infrared Spectroscopy Fourier Transform and Scanning Electron Microscopy. The mechanical properties of the composites were measured by Vickers microhardness testing, flexural strength and compression. These cements were characterized as a semicrystalline; in FTIR spectra observed characteristic bands of these materials and microstructural studies of experimental GIC revealed that there was no proper interaction of the inorganic particles in the polymer matrix, whereas in the control group this interaction was effective resulting in greater homogeneity among its constituent phases. Experimental cement showed a higher value of microhardness in the control group, however, flexural strength of cement experimental cement was lower than the control group, and this behavior can possibly be attributed to inadequate interaction particle / matrix. In tests of compressive strength, experimental GIC showed resistance similar to that shown for control group after variation in the processing conditions of the material. (author)

  15. Effects of polishing on surface roughness, gloss and color of surface reaction type pre-reacted glass-ionomer filled resin composite.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Miyazaki, Masashi; García-Godoy, Franklin

    2011-06-01

    To evaluate the effects of polishing on surface roughness, gloss and color of different shades of surface reaction type pre-reacted glass-ionomer (S-PRG) filled nano-hybrid resin composite. Resin disks of 15 mm diameter and 2 mm thickness and final polish with 1000-grit SiC paper, super fine cut diamond (FG) point, silicon (MFR) point and Super-Snap mini-disk red (SNAP) were made with Beautifil II shades: A2, A20, Inc). One week after curing, the surface roughness, gloss and color were measured. Data was analyzed with ANOVA and Fisher's PLSD with alpha= 0.05 For all shades, the order of roughness (Ra) ranked according to groups of 1000-grit SiC > FG > MFR > SNAP with significant differences among all groups. For all shades, the order of gloss ranked according to groups of SNAP > MFR > FG > 1000-grit SiC with significant differences among the groups except for between MFR and FG without significant difference. The influence of the surface roughness on color differed among the polishing groups and shades. However, the values of the color differences (deltaE*ab) between the polishing groups of all shades were imperceptible to the naked eye.

  16. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns--an in vitro study.

    Science.gov (United States)

    Reddy, R; Basappa, N; Reddy, V V

    1998-03-01

    This study was conducted on 30 extracted human primary molars to assess the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements. The teeth were embedded in resin blocks and were randomly divided into 3 groups of 10 each. The occlusal surfaces of all teeth were reduced uniformly by 1.0 to 1.5 mm. All mesial, distal undercuts were removed and sharp angles rounded. This was followed by cementing pretrimmed and precontoured stainless steel crowns on each tooth with hand pressure and storing in artificial saliva at 37 degrees C for 24 hours. Retentive strength was tested using Instron Universal Testing Machine. The load was applied starting from a zero reading and gradually increased until the cemented stainless steel crowns showed signs of movement and then the readings were recorded. It was found that retentive strengths of zinc phosphate and glass ionomer cements were statistically better (P cement. Negligible difference (0. 59 kg/cm2) was however observed between zinc phosphate and glass ionomer cements.

  17. Marginal leakage of two newer glass-ionomer-based sealant materials assessed using micro-CT.

    NARCIS (Netherlands)

    Chen, X.; Cuijpers, V.M.J.I.; Fan, M.; Frencken, J.E.F.M.

    2010-01-01

    OBJECTIVES: To test newer glass-ionomer-based materials as sealant materials. One glass-ionomer sealant was light-cured to obtain an early setting reaction. The null-hypothesis tested was: there is no difference in marginal leakage of sealants produced with high-viscosity glass-ionomer, with and

  18. Retention Strength after Compressive Cyclic Loading of Five Luting Agents Used in Implant-Supported Prostheses

    Directory of Open Access Journals (Sweden)

    Angel Alvarez-Arenal

    2016-01-01

    Full Text Available The purpose of this study was to evaluate and compare the retention strength of five cement types commonly used in implant-retained fixed partial dentures, before and after compressive cyclic loading. In five solid abutments screwed to 5 implant analogs, 50 metal Cr-Ni alloy copings were cemented with five luting agents: resin-modified glass ionomer (RmGI, resin composite (RC, glass ionomer (GI, resin urethane-based (RUB, and compomer cement (CC. Two tensile tests were conducted with a universal testing machine, one after the first luting of the copings and the other after 100,000 cycles of 100 N loading at 0.72 Hz. The one way ANOVA test was applied for the statistical analysis using the post hoc Tukey test when required. Before and after applying the compressive load, RmGI and RC cement types showed the greatest retention strength. After compressive loading, RUB cement showed the highest percentage loss of retention (64.45%. GI cement recorded the lowest retention strength (50.35 N and the resin composite cement recorded the highest (352.02 N. The type of cement influences the retention loss. The clinician should give preference to lower retention strength cement (RUB, CC, and GI if he envisages any complications and a high retention strength one (RmGI, RC for a specific clinical situation.

  19. Comparison of retention and demineralization inhibition potential of adhesive banding cements in primary teeth.

    Science.gov (United States)

    Prabhakar, A R; Mahantesh, T; Ahuja, Vipin

    2010-01-01

    The purpose of this study was to evaluate the efficacy of banding cements in terms of retentive capability and demineralization inhibition potential. We included 48 non-carious primary mandibular second molar teeth. Preformed stainless steel bands were adapted onto the teeth. All teeth were randomly assigned to four groups: Group I (Adaptation of bands without cementation), Group II (Cementation of bands using conventional Glass Ionomer Cement), Group III (Cementation of bands using Resin-modified Glass Ionomer Cement), Group IV (Cementation of bands using Resin cement), and placed in artificial saliva. Each day, specimens were taken from artificial saliva and suspended in an artificial caries solution for 35 minutes, every 8 hours. At the end of 3 months, retention of bands was estimated using an Instron Universal Testing Machine. The mode of failure was recorded and specimens were sectioned and examined under polarized microscope for demineralized lesions. The mean retention value was highest with resin cement, followed by RMGIC, GIC, and Control group respectively. The RMGIC group showed more favorable modes of failures. All the experimental groups showed significant demineralization inhibition potential. RMGIC is the preferable banding cement and can be used effectively to cement bands in primary dentition.

  20. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  1. Tensile bond strength between different glass ionomer cement and composite resin using three adhesive systems Avaliação da resistência de união interfacial entre diferentes cimentos de ionômero de vidro e resina composta, usando três sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2005-10-01

    Full Text Available The purpose of this study was to evaluate the tensile bond strength (TBS among a Composite Resin (Filtek Z250 and six conventional Glass Ionomer Cements, three used for lining (Bioglass F, Vidrion F and Glass Ionomer L.C. and three for restorations (Ketac Fil, Vidrion R and Glass Ionomer type II etched and non etched, using three adhesive systems (Single Bond, Bond 1 and Stae. Thirty-six groups were made, ten samples for each group, totalizing 360 specimens. There were significant differences on TBS among groups. Group 31 (Glass Ionomer Cement type II showed the highest TBS (9.65 MPa in comparison to other tested groups. Group 16 (Glass Ionomer L.C presented the lowest TBS (2.72 MPa in comparison to all the other groups. Therefore, it can be concluded that the acid etching of the Glass Ionomer Cement is not necessary. Foi avaliada, ">in vitro, a resistência de união, por tração, entre uma Resina Composta micro-híbrida (Filtek Z-250 e seis Cimentos de Ionômero de Vidro (CIV convencionais: três utilizados para base/forramento (Bioglass F, Vidrion F e Glass Ionomer Lining Cement e três para restauração (Ketac Fil, Vidrion R e Glass Ionomer Cement type II, sem e com condicionamento ácido ortofosfórico a 37%, usando três sistemas adesivos (Single Bond, Bond 1 e Stae. Foram confeccionados 36 grupos de 10 corpos-de-prova cada, totalizando 360 espécimes. Para análise estatística, foi utilizado o teste de Tukey-Kramer. Dentre os três CIV de base/forramento, os grupos 2 e 5 (Bioglass F apresentaram valores mais altos de adesividade à resina (7,24 e 6,03 MPa respectivamente. Quanto aos três CIV de restauração, todos apresentaram maior resistência de união, superior aos de base/forramento, sendo que o Glass Ionomer Cement type II (Grupo 31 e Vidrion R apresentaram maior força de adesão (9,65 e 7,47 MPa à resina composta. O grupo 16 (Glass Ionomer L.C. mostrou menor adesividade à resina (2,72 MPa. Houve diferenças significantes

  2. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    Science.gov (United States)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  3. In vitro quantitative evaluation of marginal microleakage in class II restorations confected with a glass ionomer cement and two composite resins

    Directory of Open Access Journals (Sweden)

    BIJELLA Maria Fernanda Borro

    2001-01-01

    Full Text Available This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey?s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.

  4. Sealants for preventing dental decay in the permanent teeth

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Forss, Helena; Walsh, Tanya

    2013-01-01

    of bias and two studies at high risk of bias), 482 children evaluated; risk ratio (RR) 0.24, 95% CI 0.12 to 0.45, one study at unclear risk of bias, 203 children evaluated).- Glass ionomer sealant compared with no sealant: There is insufficient evidence to make any conclusions about whether glass ionomer......, outcomes, time of outcomes reported and background fluoride exposure if this was reported.Fifteen trials compared glass ionomer with resin sealants and there is insufficient evidence to make any conclusions about the superiority of either of the two materials. Although there were 15 trials the event rate...... was very low in many of these which restricted their contribution to the results.Three trials compared resin-modified glass ionomer with resin sealant and reported inconsistent results.Two small low quality trials compared polyacid-modified resin sealants with resin sealants and found no difference...

  5. DEHYDRATION AND REHYDRATION OF AN ION-LEACHABLE GLASS USED IN GLASS-IONOMER CEMENTS

    Directory of Open Access Journals (Sweden)

    Jacek Klos

    2017-03-01

    Full Text Available Samples of the ionomer glass known as G338 have been heated at 240°C for 24 hours, after which they lost 1.19 % (Standard deviation 0.16% of their original mass. This loss was attributed to removal of water, as both molecular water and the product of reaction of silanol groups to form siloxane bridges. Exposing samples of glass either to air at ambient humidity or to air at 95% relative humidity showed a degree of rehydration, but mass uptake did not approach the original mass loss in either case. It is suggested that this is because of the relatively difficulty in forming new silanol groups from the siloxane bridges. Glass-ionomer cements prepared from these glass samples with aqueous poly(acrylic acid solution had different properties, depending on the glass used. Dehydrated glass gave cements which set faster but were weaker than those formed by as-received glass. The role of silanol groups in influencing reaction rate and promoting strength development is discussed.

  6. Clinical evaluation of three caries removal approaches in primary teeth

    DEFF Research Database (Denmark)

    Phonghanyudh, A; Phantumvanit, P; Songpaisan, Y

    2012-01-01

    To evaluate the clinical performance and radiographic outcome of glass ionomer cement (GIC) restoration in primary molars using three caries removal techniques.......To evaluate the clinical performance and radiographic outcome of glass ionomer cement (GIC) restoration in primary molars using three caries removal techniques....

  7. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  8. Development of antimicrobial optimum glass ionomer; Desenvolvimento de ionomero de vidro antimicrobiano otimo

    Energy Technology Data Exchange (ETDEWEB)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Angioletto, Ev. [Biorosam Biotecnologia Ltda., SC (Brazil)

    2010-07-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  9. Evaluation of enamel mineral loss around cavities prepared by the Er,Cr:YSGG laser and restored with different materials

    Science.gov (United States)

    Navarro, Ricardo Scarparo; Lago, Andréa. Dias Neves; Bonifácio, Clarissa Calil; Mendes, Fausto Medeiros; de Freitas, Patrícia Moreira; Baptista, Alessandra; Nunez, Silvia Cristina; Matos, Adriana Bona; Imparato, José Carlos P.

    2018-02-01

    The aim of this study was to evaluate the enamel demineralization around cavities prepared by Er,Cr:YSGG laser (2780 nm) and restored with different materials after an acid challenge. The human dental enamel samples were randomly divided in 12 groups (n=10): G1- high-speed drill (HD); G2- Er,Cr:YSGG laser L (3 W, 20 Hz, 53.05 J/cm2)(air 65% - water 55%); G3- L (4 W, 20 Hz, 70.74 J/cm2); G4- L (5 W, 20 Hz, 88.43 J/cm2). Each group was divided in subgroups: 1- glass ionomer cement (GIC), 2- resin modified GIC (RMGIC), 3- composite resin (C). Samples were submitted to an acid challenge (4.8 pH) for7 days. The calcium ion contend (ppm/mm2) from demineralizing solutions were analyzed by atomic emission spectrometry. ANOVA and LSD tests were performed (α=5%). The significant lower average values of calcium loss were observed on G2 + GIC, G2 + RMGIC, G1 + RMGIC (penamel demineralization. The findings of this in vitro study suggest that the Er,Cr:YSGG lased cavities restored with GIC or RMGIC or conventional drill cavities with RMGIC were effective on reducing the demineralization around restorations, showing an important potential in preventing secondary caries.

  10. Glass-ionomer-silver-cermet interim Class I restorations for permanent teeth.

    Science.gov (United States)

    Croll, T P; Killian, C M

    1992-11-01

    Glass-ionomer-silver-cermet cement has proved to be a worthy alternative to silver amalgam for restoring certain Class I lesions in primary teeth. Such restorations are now known to last up to 8 years without need for repair or replacement. Cermet cement has also been used for interim restoration of permanent teeth in special cases, with ideal results. The procedure for placing a glass-ionomer-silver-cermet cement Class I restoration is described.

  11. Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Rani Somani

    2014-01-01

    Full Text Available Aim and Objective: The aim of the following study is to comparatively evaluate the microleakage of triclosan incorporated GIC with conventional restorative GIC. Materials and Methods: Triclosan in powder form was added to conventional GIC to formulate a concentration of 2.5%. Class five cavities were prepared in non-carious extracted molars and were respectively restored with conventional restorative GIC and triclosan incorporated GIC. Samples were kept in 10% methylene blue dye. Ground sections were obtained and were observed under a binocular microscope for dye penetration. Result: No significant difference was found in the microleakage of two groups. Conclusion: Triclosan incorporated GIC can be considered as an alternative to GIC with enhanced antibacterial property.

  12. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  13. Evaluation of Candida albicans biofilm formation on various dental ...

    African Journals Online (AJOL)

    Evaluation of Candida albicans biofilm formation on various dental restorative material surfaces. ... Nigerian Journal of Clinical Practice ... was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. ... Conclusion: This finding emphasizes the use of glass ionomer restorative cements and ...

  14. Role of pH Changes on Transforming Growth Factor-β1 Release and on the Fibrin Architecture of Platelet-rich Fibrin When Layered with Biodentine, Glass Ionomer Cement, and Intermediate Restorative Material.

    Science.gov (United States)

    Mullaguri, Harish; Suresh, Nandini; Surendran, Smitha; Velmurugan, Natanasabapathy; Chitra, Selvarajan

    2016-05-01

    The purpose of this study was to evaluate the influence of pH that is due to setting reaction of Biodentine, glass ionomer cement (GIC), and intermediate restorative material (IRM) on transforming growth factor-β1 (TGF-β1) release and on the fibrin architecture of platelet-rich fibrin (PRF). PRF was obtained from 8 volunteers and layered over the freshly prepared GIC, IRM, and Biodentine mixtures. TGF-β1 release was estimated by using enzyme-linked immunosorbent assay (ELISA), and fibrin structure of PRF was analyzed by using scanning electron microscope at 1 and 5 hours. Biodentine, GIC, and IRM increased the TGF-β1 release in comparison with that of control group (PRF alone) at both 1 and 5 hours. Biodentine released significantly more TGF-β1 than GIC and IRM at 1 hour. At 5 hours both GIC and Biodentine released significantly more TGF-β1 than IRM. The fibrin architecture of the Biodentine group was similar to that of control group at both 1 and 5 hours. In GIC and IRM groups the fibrillar structure of fibrin was collapsed, ill-defined, and cloudy with very thick fibers and irregularly reduced porosities. Biodentine induces larger amount of TGF-β1 release and also maintains the integrity of fibrin structure when compared with GIC and IRM when layered over PRF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Microleakage of class V cavities restored with nanofilled resin modified glass ionomer and conventional glass ionomer with self etch adhesive and self etch primer

    Directory of Open Access Journals (Sweden)

    Mansore Mirzaie

    2016-03-01

    Full Text Available Background and Aims: Microleakage is a criterion proposed for assessing the success of any restorative material. Complete seal is difficult especially for dentin margins compared to enamel margins. The aim of this study was to assess the microleakage at the enamel and dentin margins of class V cavities restored by two GIs and two self-etch adhesive systems. Materials and Methods: This study was done on forty third molars. Class V cavities (3×2×2mm were prepared on the buccal and lingual surfaces of teeth using high speed handpiece with 0.8 mm diamond fissure burr. The occlusal margins of the cavities in the enamel and gingival marginswere placed 1 mm below the CEJ. The teeth were divided into 4 groups and the bondings were cured for 20 sec and the teeth were restored. The specimens were kept in distilled water at the temperature of 37°C for 24 hrs. The teeth were thermo cycled and cut in buccolingual direction using diamond disc under water. The dye penetration was evaluated using a stereomicroscope and the leakage was scored. The scores were compared using Kruskal-Wallis test while the paired comparisons were done using Bonferroni correction. P≤0.05 was regarded as significant results. Results: Microleakage scores were similar at the occlusal and gingival walls of all test groups. At the gingival walls, the least microleakage scores were observed. “Fuji IX + SE bond” group showed significant differences with the “Fuji IX + G bond” and “Nanoglass + G bond” groups (P≤0.05. At the occlusal walls, the least scores were observed in the “Fuji IX+SE bond” specimens which were significantly different from the other groups (P≤0.05. Conclusion: Self-Cure glass ionomers yielded less microleakage scores compared to the different types of light-cures due to the less polymerization shrinkage.

  16. Clinical evaluation of glass ionomer-silver cermet restorations in primary molars: one year results.

    Science.gov (United States)

    Hung, T W; Richardson, A S

    1990-03-01

    Using the half mouth technique, 33 silver amalgam (Dispersalloy) and 40 glass ionomer (Ketec silver) restorations were placed in the primary molars of children aged five to seven years. After one year, 73 restorations were evaluated. The amalgam restorations rated 90-100 per cent alpha for anatomic form and margins with no recurrent caries or fractures. The glass ionomer restorations rated 35 to 55 per cent alpha for anatomic form and margins with 40 per cent being replaced due to fracture of the material. Within the guidelines of this study, glass ionomer silver cermet was not a suitable material for the restoration of interproximal cavities in primary molars.

  17. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina

    Directory of Open Access Journals (Sweden)

    Manar M. Milhem

    2008-08-01

    Full Text Available This study investigated the effect of extracts of different composites, glass ionomer cement (GICs and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy, a conventional GIC (Ketac-Fil, a resin-modified glass ionomer cement (Vitremer, two compomers (F2000; Dyract AP, and a flowable compomer (Dyract Flow were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively. One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001. Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (α =0.05 showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001. Follow-up comparison between the groups by Tukey's test (α = 0.05 showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.

  18. Glass ionomer cement: literature review

    OpenAIRE

    Sérgio Spezzia

    2017-01-01

    Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV), coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive a...

  19. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Objectives: To investigate the effects of substituting strontium for calcium in fluoroaluminosilicate glass on the mechanical and ion-releasing properties of high-viscosity glass ionomer cements. Design: An exploratory, laboratory-based study. Setting: Dental biomaterials research laboratory, Dental Physical Sciences Unit, ...

  20. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús

    2013-01-01

    This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. How mobile are protons in the structure of dental glass ionomer cements?

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Jacobsen, Johan; Lehnhoff, Benedict

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength...... the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength...

  2. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    Science.gov (United States)

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  3. Comparative evaluation of fluoride release and recharge of pre-reacted glass ionomer composite and nano-ionomeric glass ionomer with daily fluoride exposure: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jayanthi Mungara

    2013-01-01

    Full Text Available Aim: This in vitro study was designed to investigate the effects of daily fluoride exposures on fluoride release and recharge by prereacted glass ionomer (PRG composite and nano-ionomeric glass ionomer. Materials and Methods: Seventy-two specimens (36 of each material were prepared and by placing the restorative materials into Teflon mold. Each specimen was subjected to one of three daily treatments (n = 12: (1 No fluoride treatment (control; (2 application of a fluoride dentifrice (1,000 ppm once daily; and (3 the same regimen as (2, plus immersion in a 0.05% sodium fluoride (NaF mouth rinse (225 ppm immediately following the dentifrice application. Specimens were suspended in a storage vial containing 10 ml demineralizing solution for 6 h and transferred to a new test tube containing 10 ml remineralizing solution for 18 h. Fluoride treatments of the specimens were completed every day prior to their immersion in the demineralizing solution. Media solutions were buffered with equal volumes of total ionic strength adjustment buffer (TISAB II; fluoride levels were measured using a digital ion analyzer and fluoride electrode throughout the 21 day duration of the experiment. Results: Nano-ionomeric glass ionomer showed a better amount of fluoride release than PRG composite irrespective of the fluoride treatment supplementation (P < 0.01. Additional fluoride supplementation improved fluoride release and recharge ability for both the materials when compared to their respective control groups. The fluoride recharge for both materials did not show any sustained pattern of release. Conclusion: Nano-ionomeric glass ionomer demonstrated a greater ability to release and recharge compared with that of PRG composite.

  4. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    Science.gov (United States)

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  5. Influence of citric acid on the surface texture of glass ionomer restorative materials

    OpenAIRE

    Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani

    2014-01-01

    Aim: This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Materials and Methods: Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were...

  6. Indirect pulp capping in primary molar using glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Murtia Metalita

    2014-12-01

    Full Text Available Background: Indirect pulp capping in primary teeth, however, is more rarely conducted than permanent teeth, since it thought to have low impact and most suggestion is for taking caries lesion aggressively on primary teeth. Purpose: The study was aimed to evaluate the subjective complaint, clinical symptom, and radiographic appearance of indirect pulp capping treatment using glass ionomers cements in primary molar. Methods: Sixteen children in range of age 6 to 8 years old, who visited Clinic of Pediatric Dentistry Universitas Airlangga Dental Hospital, Surabaya Indonesia, were the subject of study. They had one occlusal dental caries on one side of maxillary or mandibular primary molar with the diagnose of pulpitis reversible. The experimental group, had indirect pulp capping treatment with glass ionomer cements (GC Fuji VII®, while the control group, had indirect pulp capping treatment with calcium hydroxide (Metapaste. Each group was filled with GC Fuji IX® as permanent restoration. After one week, one month, and three months later, the observations were made on subjective complaint, clinical symptom, and radiographic appearance. Results: The results showed no subjective complaint such as pain or problem on mastication; no negative clinical symptoms such as pain on palpation, gingivitis or periodontitis, and abnormal tooth mobility; no negative radiographic appearance such as pathological apical radioluscency, internal or external resorbtion, and change of ligament periodontal widthafter the treatment. Conclusion: The study suggested that indirect pulp capping treatment using glass ionomer cement materials on primary teeth might be considered to be the treatment choice.Latar belakang: Indirect pulp capping pada gigi sulung lebih jarang dilakukan dibandingkan gigi permanen, karena dianggap memiliki dampak yang rendah dan sebagian besar menyarankan untuk mengambil lesi karies secara agresif pada gigi sulung. Tujuan: Penelitian ini bertujuan

  7. Comparative evaluation of microleakage of various retrograde filling materials: An in vitro study.

    Science.gov (United States)

    Galhotra, Virat; Sofat, Anjali; Pandit, Inder K; Gambhir, Ramandeep Singh; Srivastava, Nikhil; Gugnani, Neeraj

    2013-07-01

    The present study is envisaged to evaluate and compare the microleakage of mineral trioxide aggregate (MTA) with commonly used retrograde filling materials, like light-cured composite with dentin-bonding agents, light-cured glass ionomer cement (LC GIC) and resin-modified zinc oxide eugenol. Ninety freshly extracted non-carious single-rooted human anterior teeth were used in the study. They were randomly divided into four experimental groups and two control groups of 15 each. Following the biomechanical preparation, all teeth were obturated and then the apices of the obturated teeth were resected by removing 3 mm of each apex at 90° to the long axis of the tooth with a straight fissure bur in a high-speed air-rotor handpiece with water coolant. A 3-mm-deep root end cavity was prepared and the root end fillings were placed as per the manufacturer's instructions and according to the groups divided. The samples were then immersed in 1% methylene blue at room temperature for 72 h, 96 h and 1 week and the dye penetration was measured. All the four materials used in the study showed some microleakage throughout the experimental period. The sealing ability in terms of microleakage can be summarized as: MTA > Composite resin with dentin bonding agent > LC GIC > Resin modified zinc oxide eugenol.

  8. Effects of finishing/polishing techniques on microleakage of resin-modified glass ilonomer cement restorations.

    Science.gov (United States)

    Yap, Adrian U J; Yap, W Y; Yeo, Egwin J C; Tan, Jane W S; Ong, Debbie S B

    2003-01-01

    This study investigated the effect of finishing/polishing techniques on the microleakage of resin-modified glass ionomer restorations. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with eight-fluted tungsten carbide burs. The teeth were then randomly divided into four groups and finishing/polishing was done with one of the following systems: (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each material-finishing/polishing system combination was eight. After finishing/polishing, the teeth were stored in distilled water at 37 degrees C for one week. The root apices were then sealed with acrylic and two coats of varnish was applied 1 mm beyond the restoration margins. The teeth were subsequently subjected to dye penetration testing (0.5% basic fuchsin), sectioned and scored. Data was analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of 0.05. Results of statistical analysis were as follows: Enamel margins: PF-OG

  9. Glass ionomer ART sealants in Chinese school children-6-year results.

    Science.gov (United States)

    Holmgren, Christopher J; Lo, Edward C M; Hu, Deyu

    2013-09-01

    To evaluate longitudinally ART sealants placed in Chinese school children under field conditions. 191 ART sealants were placed in 140 children, aged 11-14 years, by five assistant dentists in four secondary schools in Deyang, Sichuan Province, China. Teeth selected for sealing were those with pits and fissures that were deep or showing early enamel caries. Teeth were excluded if there was obvious cavitation extending into dentine. Standard instruments and procedures for ART sealants were used. The material used was a high-viscosity glass-ionomer (Ketac-Molar, 3MESPE) that was inserted into the pits and fissures with the "press-finger" technique. The status of the sealants was evaluated annually over 6 years after placement by the same examiner who was not involved in the placement of the sealants using explorers, mouth-mirrors and an intra-oral fibre-optic light. No missing sealants were replaced during the study. 107 sealants (56% of the original) were examined after 6 years. The cumulative survival rates of the sealants (partially or fully retained) after 2, 4 and 6 years were 79%, 68% and 59%, respectively. Caries prevention lagged the fall in sealant survival but remained high throughout the study period, being over 90% in the first 4 years and 85% after 6 years. ART sealants placed under field conditions in Chinese schoolchildren have a high retention rate. Missing sealants should be replaced to maintain their preventive efficacy. The sealing of pits and fissures can be an effective caries preventive approach. Resin-based sealants have the disadvantage in that they require an optimal level of moisture control during placement. In children and in outreach situations glass ionomer ART sealants, which are more moisture tolerant, can offer a viable alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Meenal Nitin Gulve

    2013-01-01

    Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling.

  11. Biohazards associated with materials used in prosthodontics

    African Journals Online (AJOL)

    2012-06-21

    Jun 21, 2012 ... Nigerian Journal of Clinical Practice • Apr-Jun 2013 • Vol 16 • Issue 2. Review Article ... evaluated in different test settings.[8] Red blood cells ..... glass ionomers and resin modified glass ionomers, and found that after 24 ...

  12. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Brajkovic, Denis [Clinic for Dentistry, Department of Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac (Serbia); Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Kisic, Danilo [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia); Zelic, Ksenija; Djuric, Marija [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Rakocevic, Zlatko, E-mail: zlatkora@vinca.rs [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia)

    2014-08-30

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  13. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    International Nuclear Information System (INIS)

    Brajkovic, Denis; Antonijevic, Djordje; Milovanovic, Petar; Kisic, Danilo; Zelic, Ksenija; Djuric, Marija; Rakocevic, Zlatko

    2014-01-01

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  14. Molar incisor hypomineralization: Considerations about treatment in a controlled longitudinal case

    Directory of Open Access Journals (Sweden)

    Daniela Cristina de Oliveira

    2015-01-01

    Full Text Available Molar incisor hypomineralization (MIH is a defect in the tooth enamel of systemic origin and may affect one or all four first permanent molars frequently associated with the permanent incisors. This case reports a 7-year-old child with severe MIH in the permanent molars associated with tooth decay and intense pain. In the first stage of treatment, therapy was performed with fluoride varnish and restoration with glass ionomer cement (GIC. After 6 years of clinical and radiographic follow-up, the restorations presented wear and fractures on the margins, indicating their replacement with composite resin. Severe cases of MIH in the early permanent molars can be treated with varnish and GIC to restore the patient′s comfort and strengthen the hypomineralized dental structures. The clinical and radiographic monitoring frequently indicated when the restoration with composite resin should be performed.

  15. Restorative dentistry for children.

    Science.gov (United States)

    Donly, Kevin J

    2013-01-01

    This article discusses contemporary pediatric restorative dentistry. Indications and contraindications for the choice of different restorative materials in different clinical situations, including the risk assessment of the patient, are presented. The specific use of glass ionomer cement or resin-modified glass ionomer cement, resin-based composite, and stainless steel crowns is discussed so that preparation design and restoration placement is understood. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Compressive strength of glass ionomer cements using different specimen dimensions Resistência à compressão de cimentos de ionômero de vidro utilizando-se diferentes tamanhos de corpos-de-prova

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-09-01

    Full Text Available The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL and a resin-modified material (Vitro Fil LC® - DFL, using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC, at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%. Mean compressive strength values (MPa were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.Este estudo teve como objetivo avaliar a resistência à compressão de dois cimentos de ionômero de vidro, um convencional (Vitro Fil® - DFL e outro modificado por resina (Vitro Fil LC® - DFL, utilizando-se dois tamanhos de amostras: uma com 6 mm de altura e 4 mm de diâmetro e outra com 12 mm de altura e 6 mm de diâmetro, seguindo-se a especificação 7489:1986 da ISO e a especificação n. 66 da ANSI/ADA para Cimento Dental de Ionômero de Vidro, respectivamente. Foram confeccionados 10 corpos-de-prova (CP de cada material para cada tamanho de amostra, totalizando

  17. Tensile bond strength of glass fiber posts luted with different cements Resistência à tração de pinos de fibra de vidro cimentados com diferentes materiais

    Directory of Open Access Journals (Sweden)

    Gerson Bonfante

    2007-06-01

    Full Text Available Proper selection of the luting agent is fundamental to avoid failure due to lack of retention in post-retained crowns. The objective of this study was to investigate the tensile bond strength and failure mode of glass fiber posts luted with different cements. Glass fiber posts were luted in 40 mandibular premolars, divided into 4 groups (n = 10: Group 1 - resin-modified glass ionomer RelyX Luting; Group 2 - resin-modified glass ionomer Fuji Plus; Group 3 - resin cement RelyX ARC; Group 4 - resin cement Enforce. Specimens were assessed by tensile strength testing and light microscopy analysis for observation of failure mode. The tensile bond strength values of each group were compared by ANOVA and Tukey test. The significance level was set at 5%. The failure modes were described as percentages. The following tensile strength values were obtained: Group 1 - 247.6 N; Group 2 - 256.7 N; Group 3 - 502.1 N; Group 4 - 477.3 N. There was no statistically significant difference between Groups 1 and 2 or between Groups 3 and 4, yet the resin cements presented significantly higher tensile bond strength values than those presented by the glass ionomer cements. Group 1 displayed 70% of cohesive failures, whereas Groups 2, 3 and 4 exhibited 70% to 80% of adhesive failures at the dentin-cement interface. We concluded that resin cements and glass ionomer cements are able to provide clinically sufficient retention of glass fiber posts, and that glass ionomer cements may be especially indicated when the application of adhesive techniques is difficult.A seleção adequada do agente cimentante é essencial para evitar falhas por perda de retenção em coroas retidas por núcleos. O objetivo deste estudo foi investigar a resistência à tração e o tipo de falha de pinos de fibra de vidro cimentados com diferentes materiais. Cimentaram-se pinos de fibra de vidro em 40 pré-molares inferiores, divididos em 4 grupos (n = 10: Grupo 1 - ionômero de vidro modificado

  18. [The effects of topical fluoridation of Ketac Molar Aplicap glass-ionomer material on the growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Modern fluoride-containing restorative materials are capable of releasing fluoride to the environment. Fluoride can be also accumulated in glass-ionomer cements, thus an attempt was made to saturate these materials with fluoride. The aim of the study was to evaluate the effect of topical fluoridation of Ketac Molar Aplicap glass-ionomer cement on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings with conventional glass-ionomer material, Ketac Molar Aplicap, were performed. After 6 months, three-day dental plaque from these fillings was examined. Next, fluoride was rubbed on the glass-ionomer surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.143) in the amounts of Lactobacillus spp. in the plaque collected prior to and after topical fluoridation were revealed. Fluoride rubbed in the conventional glass-ionomer cement, Ketac Molar Aplicap, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  19. [The effects of Ketac Molar Aplicap glass-ionomer material on growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Sakowska, Danuta; Paul-Stalmaszczyk, Małgorzata; Bołtacz-Rzepkowska, Elzbieta

    2012-01-01

    In the aging population, the prevalence of root caries has been observed, which is a characteristic feature of the elderly people. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. The aim of the study was to evaluate the effect of Ketac Molar Aplicap glass-ionomer on the growth of Lactobacillus sp. bacteria, one of the species most frequently found in the carietic focus of the tooth root. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings from Ketac Molar Aplicap conventional glass-ionomer material were performed. After 6 months, three-day dental plaque from these fillings and from the tooth enamel of the control group was examined. No statistically significant differences (p = 0.554) in the amounts of Lactobacillus sp. between the study and control group were revealed. Lack of inhibiting effect of glass-ionomer material on the growth of the dental plaque with Lactobacillus sp. after the time of observation is implied.

  20. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  1. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2012-01-01

    Full Text Available Glass ionomer cements (GICs are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial microleakage may occur, resulting in secondary caries. As microleakage cannot be completely prevented, GICs possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (QPEI nanoparticles incorporated at 1% w/w in two clinically available GICs were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (DCT and the agar diffusion test (ADT. Using the direct contact test, antibacterial activity (<0.05 was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  2. Effect of insertion method on knoop hardness of high viscous glass ionomer cements

    NARCIS (Netherlands)

    Raggio, D.P.; Bonifácio, C.C.; Bönecker, M.; Imparato, J.C.P.; de Gee, A.J.; van Amerongen, W.E.

    2010-01-01

    The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 -

  3. Comparison of invitro cytotoxic and genotoxic potential of glass ionomer cement type IX on human lymphocytes before and after electron beam irradiation

    International Nuclear Information System (INIS)

    Hegde, Mithra N.; Brijesh; Shetty, Shilpa S.; Hegde, Nidarsh D.; Suchetha Kumari; Sanjeev, Ganesh

    2013-01-01

    Glass ionomer cements are widely used in dentistry as an adhesive restorative materials. However, the results of cytotoxicity and genotoxicity studies using these materials are inconclusive in literature. The aim of this study was to examine the cytotoxic and genotoxic potential of glass ionomer cement type IX available commercially before and after irradiation. Glass ionomer cement type IX was obtained commercially. Samples were prepared as per the ISO standard size of 25x2x2 mm using polytetrafluoroethylene teflon mould and divided into two groups - non irradiated and irradiated groups. The samples in radiated category were exposed to 10 KGy of electron beam irradiation at Microtron Centre, Mangalore University, Mangalore, India. For hemolysis assay, the samples were immersed in phosphate buffer saline and incubated at 370℃ for 24 hrs, 7 days and 14 days. 200 μL of 24 hr material extract was mixed with human peripheral blood lymphocyte tested for comet assay by single cell DNA comet assay and apoptosis by DNA diffusion assay. Hemolytic activity of non irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 78.18±10.13, 32.57±12.28, 38.56±4.68 respectively whereas hemolytic activity of irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 58.90±2.28, 35.04±1.09 and 34.26±7.71 respectively. The irradiation of Glass ionomer cement type IX with 10 KGy dose of electron beam irradiation did not show significant increase in the frequency of DNA damage when compared to that of the nonirradiated group. Apoptotic index did not show much difference between non-irradiated and irradiated groups. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects. (author)

  4. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper

  5. Marginal Integrity of Glass Ionomer and All Ceramic Restorations

    Science.gov (United States)

    2015-06-01

    North Carolina), scanned by the CEREC Omnicam , and milled by CEREC inLab MC XL system. 15 List of Procedures in Chronological Order 1. The...Fuji II LC, GC America, Alsip, Illinois). Forty lithium disilicate porcelain ceramic inlays will be milled from CEREC Block PC (Sirona, Charlotte...evolution of the CEREC system. Journal of the American Dental Association, 137, 7s-13s. Mount G.J. (1991). Adhesion of glass-ionomer cement in the clinical

  6. Evaluation of the Effects of Different Mouthrinses on the Color Stability of One Type of Glass Ionomer, Compomer and Giomer

    Directory of Open Access Journals (Sweden)

    Shaghayegh Razavi

    2016-03-01

    Full Text Available Objectives: The aim of this study was to evaluate the effect of four commercially available mouthrinses on the color stability of one type of glass ionomer, giomer and compomer. Method: 60 disc-shaped specimens, 180 in total (7*2mm, fabricated from each of the following materials: A resin modified glass ionomer Fuji II LC (GC International Corp, a giomer Beautifil II (SHOFU INC and a compomer Ionosit (DMG. All specimens were stored in artificial saliva at 37˚C for 24 hours in an incubator. The initial colour value (L*,a*,b* were recorded with spectrophotometer according to CIELAB scale. After baseline evaluation, the specimens were divided into five subgroups, according to the testing and control storage solutions (n=12. Randomly selected specimens from each material were immersed in 20 ml of the treatment solutions (Oral-B Pro Expert, Listerine, Colgate Plax, Irasha at 37˚c for 24 hours. Each specimen was then subjected to second color measurement. The collected data was statistically analyzed using two-way analysis of variance (ANOVA and Tukey’s HSD at a significance level of 0.05. Results: All samples displayed color changes after immersion in the mouthrinses. The observed color difference showed that mouthrinses have a significant effect on the color shift of tested materials. A significant interaction was found between the materials and the mouthrinses. Overall, discoloration with all mouthrinses was significant when compared to the control specimens stored in artificial saliva. Oral-B induced the highest level of discoloration (ΔE*= 11.62 in Compomer and the least discoloration was found with Irsha (ΔE*= 1.47 in RMGI. Conclusions: All tested restorative materials showed a color shift after immersion in mouthrinses, amongst which compomer displayed the highest change. Discolorations were clinically perceptible in most of the cases. Thus it can be concluded that daily use of mouthrinses increases the stainability of tested materials.

  7. An evaluation of retention and marginal seating of Ni-Cr alloy cast restorations using three different luting cements: An in vitro study

    Directory of Open Access Journals (Sweden)

    Bikash K Pattanaik

    2012-01-01

    Conclusions: Marginal seating of adhesive resin cement was significantly greater than that of zinc phosphate and resin-modified GIC. Retentive strength of adhesive resin cement and resin-modified GIC was significantly greater than that of zinc phosphate There was no significant difference of retentive strength between adhesive resin cement and resin-modified GIC.

  8. Evaluation of a novel approach in the prevention of white spot lesions around orthodontic brackets.

    Science.gov (United States)

    Yap, J; Walsh, L J; Naser-Ud Din, S; Ngo, H; Manton, D J

    2014-03-01

    The purpose of this study was to evaluate and compare the relative efficacy of a resin fissure sealant, nano-filled self-adhesive protective coating, resin infiltrant, glass ionomer cement (GIC), and GIC containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in preventing the formation of subsurface lesions of enamel (SLE) adjacent to orthodontic brackets by acting as an enamel surface sealant (ESS). Eighty-five enamel specimens with molar tubes bonded at their centre were randomly divided into five groups, each treated with a different material at the bracket's periphery. Specimens were stored in an acetate demineralization solution at pH 4.5 for 7 days at 37 °C then imaged using quantitative light-induced fluorescence (QLF) to determine the difference in fluorescence (∆F) between sound- and acid-exposed enamel. Lesion cross-sections were then examined using backscattered scanning electron microscopy (SEM) to measure lesion depth. The use of GIC alone or incorporating CPP-ACP significantly reduced ∆F compared with other materials. Backscattered SEM images showed no measurable demineralization for enamel treated with either GIC material in contrast with other groups, which showed statistically significant demineralization levels. The fluoride-releasing effects and CPP-ACP benefits of the GIC materials show promise as an effective ESS in inhibiting enamel demineralization adjacent to orthodontic brackets. © 2014 Australian Dental Association.

  9. Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement.

    Science.gov (United States)

    Menne-Happ, Ulrike; Ilie, Nicoleta

    2013-03-01

    The effect of gloss and heat on the mechanical behaviour of a recently launched glass carbomer cement (GCP, GCP dental) was evaluated and compared with resin-modified glass ionomer cements (Fuji II LC, GC and Photac Fil Quick Aplicap, 3M ESPE). 120bar-shaped specimens (n=20) were produced, maintained in distilled water at 37°C and tested after one week. The GCP specimens were cured with and without heat application and with and without gloss. The flexural strength and modulus of elasticity in flexural test as well as the micro-mechanical properties (Vickers Hardness, indentation modulus, creep) of the top and bottom surface were evaluated. The amount and size of the fillers, voids and cracks were compared using a light and a scanning electron microscope. In the flexural test, the resin-modified glass ionomer cements performed significantly better than GCP. Fuji II LC and Photac Fil (Weibull parameter: 17.7 and 14.3) proved superior reliability in the flexural test compared to GCP (1.4-2.6). The highest Vickers Hardness and lowest creep were achieved by GCP, whereas Fuji II LC reached the highest indentation modulus. The results of this study proved that relationships exist between the compositions, microstructures and mechanical properties of the cements. Heat treatment and gloss application did not influence the mechanical properties of GCP. The mechanical properties were basically influenced by the type of cement and its microstructure. Considering the measured mechanical properties, there is no need of using gloss or heat when restoring teeth with GCP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    International Nuclear Information System (INIS)

    Liu Ping; Guan Qingbao; Gu Aijuan; Liang Guozheng; Yuan Li; Chang Jianfei

    2011-01-01

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  11. An in vitro radiographic analysis of the density of dental luting cements as measured by CCD-based digital radiography.

    Science.gov (United States)

    Antonijevic, Djordje; Jevremovic, Danimir; Jovanovic, Svetlana; Obradovic-Djuricic, Kosovka

    2012-05-01

    According to the ISO, the radiopacity of luting cements should be equal to or greater than that of aluminum. The aim of this in vitro study was to determine the radiopacity of 13 commercially available dental luting cements and compare them with human enamel and dentin. Five classes of luting cements were evaluated: zinc phosphate (Cegal N and Harvard Zinc Phosphate), zinc polycarboxylate (Harvard Polycarboxylate and Hoffmann's Carboxylate), glass ionomers (Ketac Cem Easymix, Ketac Cem Radiopaque, and Fuji I), resin-modified glass ionomer (Rely X Luting), and resin cements (Multilink Automix, Variolink II, Speed CEM, Rely X Unicem Automix, and three shades of Variolink Veneer). Tooth slices served as controls. Five specimens of each material measuring 8 mm in diameter and 1 mm thick were prepared and radiographed alongside tooth slices and an aluminum stepwedge using a Trophy RVG sensor. The radiopacity values were expressed in mm Al and analyzed by the ANOVA and Tukey tests (P cements examined except Variolink Veneer had significantly higher radiopacities than that of dentin. Rely X Unicem Automix, glass ionomer, and resin-modified glass-ionomer cements demonstrated radiopacities that were not significantly different with respect to enamel. Zinc phosphate, zinc polycarboxylate, and three of the resin cements presented radiopacity values that were significantly greater than that of enamel. Almost all the investigated materials presented an acceptable radiopacity. Radiopacity of dental cements seems to depend more on the presence of elements with high atomic numbers than on the type of the material.

  12. Marginal ridge fracture resistance, microleakage and pulpal response to glass ionomer/glass cermet partial tunnel restorations.

    Science.gov (United States)

    Prabhu, N T; Munshi, A K; Shetty, T R

    1997-01-01

    Sixty sound premolars which were to be extracted for orthodontic treatment purposes were restored either with glass ionomer cement or glass cermet cements after partial tunnel preparation, and prior to the extraction after a time interval of 30 and 60 days respectively. The teeth were then subjected to marginal ridge fracture resistance, microleakage study using dye penetration and histological evaluation of the pulpal response to these materials. Both the materials exhibited increase in marginal ridge fracture resistance at 60 days, with minimal degree of microleakage and were biologically compatible with the dental pulp.

  13. A field-trial of two restorative materials used with atraumatic restorative treatment in rural Turkey: 24-month results

    Directory of Open Access Journals (Sweden)

    Ertugrul Ercan

    2009-08-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the clinical performance of high-strength glass ionomer cement (HSGIC and resin-modified glass ionomer (RMGIC in single and multiple surface carious cavities in the field conditions. MATERIAL AND METHODS: A split-mouth design, including ninety-one fillings placed on contra lateral molar pairs of 37 children, was used in permanent dentition. As filling materials, a HSGIC (Ketac Molar/3M ESPE and a RMGIC (Vitremer/ 3M ESPE were used with the Atraumatic Restorative Treatment (ART. Baseline and 6, 12 and 24-month evaluations of the fillings were made with standard-ART and USPHS criteria by two examiners with kappa values of 0.92 and 0.87 for both criteria. RESULTS: According to the USPHS criteria, the retention rates of RMGIC and HSGIC restorations were 100% and 80.9% for single surface, and 100% and 41.2% for multiple surface restorations after 24 months, respectively. Irrespective of surface number, RMGIC was significantly superior to HSGIC (p= 0.004, according to both standard-ART and USPHS criteria. CONCLUSION: The results indicate that RMGIC may be an alternative restorative technique in comparison to high-strength GIC applications in ART-field-trials. However, further clinical and field trials are needed to support this conclusion.

  14. Benefits and drawbacks of zinc in glass ionomer bone cements

    International Nuclear Information System (INIS)

    Brauer, Delia S; Hill, Robert G; Gentleman, Eileen; Stevens, Molly M; Farrar, David F

    2011-01-01

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements ( 2+ or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  15. Doxycycline-containing glass ionomer cement for arresting residual caries: an in vitro study and a pilot trial

    Science.gov (United States)

    Duque, Cristiane; Kreling, Paula Fernanda; Pereira, Jesse Augusto; de Paula, Andreia Bolzan; Sinhoreti, Mario Alexandre Coelho; Puppin-Rontani, Regina Maria

    2018-01-01

    Abstract In a previous study, we demonstrated that the incorporation of doxycycline hyclate (DOX) into resin-modified glass ionomer cement (RMGIC) inhibited important cariogenic microorganisms, without modifying its biological and mechanical characteristics. In this study, we keep focused on the effect of that experimental material as a potential therapy for arresting residual caries by analyzing other in vitro properties and conducting a pilot clinical trial assessing the in vivo effect of DOX-containing RMGIC on residual mutans streptococci after partial carious removal in primary molars. Specimens of the groups RMGIC (control); RMGIC + 1.5% DOX; RMGIC + 3% DOX; and RMGIC + 4.5% DOX were made to evaluate the effect of DOX incorporation on surface microhardness and fluoride release of RMGIC and against biofilm of Streptococcus mutans. Clinical intervention consisted of partial caries removal comparing RMGIC and RMGIC + 4.5% DOX as lining materials. After 3 months, clinical and microbiologic evaluations were performed. Data were submitted to ANOVA/Tukey or Wilcoxon/Mann-Whitney set as α=0.05. Fluoride release and surface microhardness was not influenced by the incorporation of DOX (p>0.05). There was a significant reduction of S. mutans biofilm over the material surface with the increase of DOX concentration. After clinical trial, the remaining dentin was hard and dry. Additionally, mutans streptococci were completely eliminated after 3 months of treatment with RMGIC + 4.5% DOX. The incorporation of DOX provided better antibiofilm effect, without jeopardizing fluoride release and surface microhardness of RMGIC. This combination also improved the in vivo shortterm microbiological effect of RMGIC after partial caries removal. PMID:29742263

  16. Doxycycline-containing glass ionomer cement for arresting residual caries: an in vitro study and a pilot trial.

    Science.gov (United States)

    Castilho, Aline Rogéria Freire de; Duque, Cristiane; Kreling, Paula Fernanda; Pereira, Jesse Augusto; Paula, Andreia Bolzan de; Sinhoreti, Mario Alexandre Coelho; Puppin-Rontani, Regina Maria

    2018-01-01

    In a previous study, we demonstrated that the incorporation of doxycycline hyclate (DOX) into resin-modified glass ionomer cement (RMGIC) inhibited important cariogenic microorganisms, without modifying its biological and mechanical characteristics. In this study, we keep focused on the effect of that experimental material as a potential therapy for arresting residual caries by analyzing other in vitro properties and conducting a pilot clinical trial assessing the in vivo effect of DOX-containing RMGIC on residual mutans streptococci after partial carious removal in primary molars. Specimens of the groups RMGIC (control); RMGIC + 1.5% DOX; RMGIC + 3% DOX; and RMGIC + 4.5% DOX were made to evaluate the effect of DOX incorporation on surface microhardness and fluoride release of RMGIC and against biofilm of Streptococcus mutans. Clinical intervention consisted of partial caries removal comparing RMGIC and RMGIC + 4.5% DOX as lining materials. After 3 months, clinical and microbiologic evaluations were performed. Data were submitted to ANOVA/Tukey or Wilcoxon/Mann-Whitney set as α=0.05. Fluoride release and surface microhardness was not influenced by the incorporation of DOX (p>0.05). There was a significant reduction of S. mutans biofilm over the material surface with the increase of DOX concentration. After clinical trial, the remaining dentin was hard and dry. Additionally, mutans streptococci were completely eliminated after 3 months of treatment with RMGIC + 4.5% DOX. The incorporation of DOX provided better antibiofilm effect, without jeopardizing fluoride release and surface microhardness of RMGIC. This combination also improved the in vivo shortterm microbiological effect of RMGIC after partial caries removal.

  17. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: An in vitro trial"

    OpenAIRE

    S Tiwari; B Nandlal

    2013-01-01

    Context: To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. Aim: The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. Settings and Design: This in vitro ...

  18. INTERACTION OF FLUORIDE COMPLEXES DERIVED FROM GLASS-IONOMER CEMENTS WITH HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    Lewis S. M.

    2013-09-01

    Full Text Available A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoride complexes with protons as HF or HF2-, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes, whether or not it was complexed. SEM (EDAX study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process.

  19. SUSTENTAÇÃO DE ESMALTE COM IONÔMEROS DE VIDRO E RESINA COMPOSTA: EFEITO NA RESISTÊNCIA À FRATURA DAS CÚSPIDES DE DENTES RESTAURADOS SUPPORTING ENAMEL WITH GLASS IONOMER CEMENT AND COMPOSITE RESIN: EFFECT ON FRACTURE RESISTANCE OF CUSPS OF RESTORED TEETH

    Directory of Open Access Journals (Sweden)

    Angelo Stefano SECCO

    1997-10-01

    Full Text Available Este estudo determinou a resistência e o tipo de fratura do esmalte suportado pelos materiais restauradores ionômeros de vidro convencional e modificado por resina e resina composta, bem como a influência dessa técnica restauradora na resistência das cúspides dos dentes. A remoção da estrutura dental para o preparo de cavidades tipo classe II e a presença de esmalte socavado diminuiram significativamente a resistência das cúspides dos dentes em relação ao dente hígido (p This study determined the resistance to fracture and its pattern for enamel supported with conventional and modified glass ionomer cements, and composite resin restorative materials, as well as the influence of these restorative techniques on cuspal strength of teeth. Removal of dental structure by class II cavity preparations and unsupported enamel had decreased significantly the cuspal strength in relation to healthy teeth (p < 0.01. Restorative materials used to support enamel reduced the fracture rate of restored cusps, but did not increase the fracture resistance values statistically. All tested groups presented alterations in the fracture pattern

  20. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro Cárie secundária adjacente a restaurações de cimento de ionômero de vidro, resina composta e amálgama induzida por Streptococcus mutans in vitro

    Directory of Open Access Journals (Sweden)

    Adriana Gama-Teixeira

    2007-12-01

    Full Text Available The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC; amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.O objetivo deste estudo foi definir, in vitro, o potencial de materiais restauradores, usados rotineiramente na prática clínica, na inibição da cárie secundária. Cavidades padronizadas foram preparadas nas faces vestibulares e linguais de 50 terceiros molares humanos extraídos. Os dentes foram divididos aleatoriamente em 5 grupos, cada um restaurado com um dos seguintes materiais: cimento de ionômero de vidro (CIV; amálgama; resina composta fotopolimerizável; compósito que libera íons, e resina composta fotopolimeriz

  1. Browse Title Index

    African Journals Online (AJOL)

    Items 1 - 45 of 45 ... Vol 3, No 3 (2002), Community involvement in health development: an evaluation of ... coefficients of resin/ionomer dental restorative biomaterials, Details ... Vol 1, No 1 (2000), Prevalence and clinical features of acute ... Vol 1, No 1 (2000), Toothbrush/Abrasion rates of modified glass ionomer restoratives ...

  2. Moisture-tolerant resin-based sealant: A boon

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar Bhat

    2013-01-01

    Full Text Available Background and Objectives: Pit and fissure sealants are highly effective in preventing occlusal caries. The present study clinically evaluated and compared the retention and development of caries when sealed with moisture-tolerant resin-based sealant, conventional resin-based sealant with and without a bonding agent, and Glass Ionomer Cement Sealant in young permanent teeth. Materials and Methods: A total of 80 healthy cooperative children aged 6-9 years who were at high caries risk with all four newly erupted permanent first molars were included in the study. Teeth were divided into 4 groups using a full-factorial design, and each of the molars was sealed with the four different sealant material. Evaluation of sealant retention and development of caries was performed at 6 and 12 months using Modified Simonsen′s criteria. The data obtained were tabulated and subjected to statistical analysis using Kruskal-Wallis Test and Mann-Whitney Test. Result and Conclusion: The result from the present study indicated that moisture-tolerant resin-based sealant could be successfully used as a pit and fissure sealant because its hydrophilic chemistry makes it less technique sensitive and simplifies the sealant application procedure.

  3. Quantitative analysis of enamel on debonded orthodontic brackets.

    Science.gov (United States)

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Uso das técnicas de infravermelho e de ressonância magnética nuclear na caracterização da reação ácido-base de um cimento odontológico experimental Use of infrared and magnetic nuclear resonance techniques in the characterization of the acid-base reaction of an experimental dental cement

    Directory of Open Access Journals (Sweden)

    Marcio José Bertolini

    2009-01-01

    Full Text Available Glass ionomer cements (GICs are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.

  5. Evaluation of Microhardness of Mineral Trioxide Aggregate after Immediate Placement of Different Coronal Restorations: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Maryam Kazemipoor

    2018-02-01

    Full Text Available Objectives: The purpose of this research was to evaluate the effect of immediate placement of different restorative materials in comparison with a temporary restoration on the surface microhardness of mineral trioxide aggregate (MTA.Materials and Methods: Access cavities were prepared in 40 extracted human molars, and a 3-mm layer of MTA was placed in the pulp chamber. The samples were divided into eight groups (n=5. Ten minutes after the MTA placement, two groups were restored with Zonalin temporary restoration, while the other six groups were restored with glass-ionomer cement (GIC, resin-modified glass-ionomer (RMGI, or resin-based composite. In each group, the Vickers microhardness (VMH of MTA was determined after 7 and 21 days. Data were entered into SPSS 17 software program and were analyzed by two-way analysis of variance (ANOVA. The significance level was set at 5%.Results: The type of restorative materials had a statistically significant effect on the microhardness of MTA (P=0.002. However, the microhardness of MTA was neither significantly influenced by the timing of final restoration (P=0.246 nor by the time-material interaction (P=0.116.Conclusions: Based on the results of the present study and by considering the limitations of laboratory studies, it is recommended to postpone the placement of final restorations until the underlying MTA is completely set. Otherwise, in the clinical conditions in which early covering of MTA is recommended, sufficient moist-curing and hydration should be guaranteed by selecting a restorative material with the lowest hydrophilic interaction energy.

  6. Effect of artificial aging on the surface roughness and microhardness of resin-based materials.

    Science.gov (United States)

    Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C

    2016-01-01

    This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.

  7. Influence of HEMA content on the mechanical and bonding properties of experimental HEMA-added glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Ho-Nam Lim

    2009-08-01

    Full Text Available The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs on the mechanical and shear bond strength (SBS of these materials. Increasing contents of uncured HEMA (10-50 wt.% were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan, and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa or SiC abrasive paper grinding (Sp. Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05. These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition.

  8. The crushing truth about glass ionomer restoratives: exposing the standard of the standard.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-03-01

    The compressive fracture strength (CFS) test is the only strength test for glass ionomers (GIs) in ISO 9917-1: 2003. The CFS test was the subject of much controversy in 1990 and has been challenged over its appropriateness and reproducibility and the study aimed to revisit the suitability of the CFS test for GIs.

  9. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    Science.gov (United States)

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.

  10. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)

    NARCIS (Netherlands)

    Molina, G.F.; Cabral, R.J.; Mazzola, I.; Lascano, L.B.; Frencken, J.E.F.M.

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. OBJECTIVE: To test the

  11. NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness

    Science.gov (United States)

    Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.

    2016-12-01

    In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as

  12. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.

    Science.gov (United States)

    Veerabadhran, M M; Reddy, V; Nayak, U A; Rao, A P; Sundaram, M A

    2012-01-01

    sandblasted was 16.445 kg/cm 2 with a mean difference of 2.436 kg/cm 2 . These results were again statistically significant. It was found that the crowns luted with resin-modified glass ionomer cements (RMGIC's) offered better retentive strength of crowns than glass ionomer cements (GIC) and stainless steel crowns which were cemented without sandblasting showed higher mean retentive strength than with sandblasting of crowns. The presence of groove did not influence the retentive strength of stainless steel crowns.

  13. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  14. A Scanning Electron Microscopic Study

    African Journals Online (AJOL)

    2018-06-11

    Jun 11, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow ... evaluate and compare the effect of different concentrations of carbamide .... Cements such as resin, glass ionomer, resin‑modified.

  15. Evaluation of effects of ionizing radiation on the glass ionomer used in dental restorations

    International Nuclear Information System (INIS)

    Maio, F.M.; Santos, A.; Fernandes, M.A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on glass ionomer, a material used in dental restorations. Glass ionomer is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  16. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  17. Analysis of the interface zone between the glass ionomer and enamel and dentin of primary molars

    Directory of Open Access Journals (Sweden)

    Petrović Bojan B.

    2008-01-01

    Full Text Available Restoring carious teeth is one of the major dental treatment needs of young children. Conventional glassionomer materials are frequently used as filling materials in contemporary pediatric dentistry. The objective of this study was to evaluate the restorative and prophylactic efficacy of the newly marketed glass ionomer, Fuji Triage (GC, Tokyo, Japan, through morphological analysis of the interface zone between the material and the enamel and the dentin of primary molars and to determine the extent of the ion exchange at the interface zone. The sample consisted of 5 extracted intact first primary molars in which glassionomer had been used as filling material after standard class I cavity preparation. The material was placed according to the manufacturer's instructions and teeth were placed into dionised water prior to experiment. Six sections of each tooth had been examined using scanning electron microscopic and electron dispersive spectroscopic techniques (SEM/EDS. The parameters for evaluation included: morphological characteristics of the interface zone and the extent of the ion exchange between the material and the tooth structures Results were statistically analyzed using descriptive statistical methods. SEM/EDS analysis revealed the presence of the chemical bonding between the glass ionomer and the enamel and dentin, 5 and 15 μm in width, respectively. Ion exchange has not been detected in the enamel at the EDS sensitivity level. Strontium and fluor penetration has been detected in dentin. The ion exchange and chemical bonding formation justify the usage of the conventional glass ionomer materials for restorative procedures in primary molars.

  18. Evaluation of internal adaptation of dental adhesive restorations using micro-CT

    Directory of Open Access Journals (Sweden)

    Oh-Hyun Kwon

    2012-02-01

    Full Text Available Objectives The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC was analyzed non-destructively using Microcomputed tomography (micro-CT. Materials and Methods Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05. There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05. Conclusions The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.

  19. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials.

    Science.gov (United States)

    Türker, S B; Biskin, T

    2002-07-01

    This study investigated the effects of three home bleaching agents on the microhardness of various dental aesthetic restorative materials. The restorative materials were: feldspatic porcelain, microfilled composite resin and light-cured modified glass-ionomer cement and the bleaching agents Nite-White (16% carbamide peroxide), Opalescence (10% carbamide peroxide and carbapol jel) and Rembrandt (10% carbamide peroxide jel). A total of 90 restorative material samples were prepared 1 cm diameter and 6 mm thick and kept in distilled water for 24 h before commencing bleaching which was carried out for 8 h day-1 for 4 weeks. Microhardness measurements were then made using a Tukon tester. Statistically significant differences with respect to unbleached controls were found only for the feldspatic porcelain and microfilled composite resins (P light cured modified glass-ionomer cement. For the composite resin, whereas Nite-White increased its microhardness, the other bleaching agents decreased it. There were no significant differences between the bleaching agents for any of the restorative materials.

  20. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - an in vitro study.

    Science.gov (United States)

    Raghunath Reddy, M H; Subba Reddy, V V; Basappa, N

    2010-01-01

    An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 ) and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 ) were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 ). Negligible difference (0.59 kg/cm 2 ) of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 ) and glass ionomer cements (20.69 kg/cm 2 ). Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  1. Comparison of Film Thickness of Two Commercial Brands of Glass lonomer Cement and One Dual-cured Composite: An in vitro Study.

    Science.gov (United States)

    Khajuria, Rajat R; Singh, Rishav; Barua, Pranamee; Hajira, Nausheen; Gupta, Naveen; Thakkar, Rohit R

    2017-08-01

    The present study is undertaken to examine the film thickness of three most commonly used luting cements and to determine their usage as a luting agent. This study was carried out strictly according to the guidelines of American Dental Association (ADS) specification no. 8. Two glass slabs of 5 cm in length and 2 cm in width were used. One glass slab was kept over the other glass slab and the space between the two glass slabs was measured using metallurgical microscope at the power of 10*. Two brands of glass ionomer cement (GIC) and one dual-cured resin cement were used in this study. The test cement is sandwiched between two glass slabs. A static load of 15 kg was applied using universal testing machine on the glass slabs for 1 hour and the space present between the two glass slabs was measured using metallurgical microscope at the power of 10*. Greatest film thickness was found in group III (Paracore) followed by group II (micron) and lowest in group I (GC luting and lining cement). All the tested samples can be used for luting purposes. Greatest film thickness was observed in Paracore followed by micron and lowest in GC luting and lining cement. This suggests that the 25 to 27°C is ideal for mixing of the cement when used for luting consistency. The cement with film thickness more than 30 urn should never be used for luting purposes. The dentist should choose the luting cement with utmost care noting the film thickness and bond strength of the cement. The cement with low exothermic heat production and good bond strength should be encouraged.

  2. Six-year success rates of occlusal amalgam and glass-ionomer restorations placed using three minimal intervention approaches.

    NARCIS (Netherlands)

    Mandari, G.J.; Frencken, J.E.F.M.; Hof, M.A. van 't

    2003-01-01

    The present randomised clinical trial was aimed at comparing three minimally invasive restorative treatment approaches for managing dental caries in occlusal surfaces using a non-gamma-2 amalgam and a low-viscosity glass-ionomer as the restorative material. The treatment approaches tested in

  3. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The state-of-the-art of ART sealants.

    Science.gov (United States)

    Frencken, Jo E

    2014-03-01

    Sealing caries-prone pits and fissure systems is an effective caries-preventive measure. There are basically two types of sealant materials: glass-ionomer and resin-based materials. Low- and medium-viscosity glass-ionomers were initially used and showed a low level of retention. With the advent of the ART approach in the mid-nineties, high-viscosity glass-ionomers were introduced as sealant material and the retention rate of ART sealants increased substantially. As the effectiveness of a sealant is measured by its capacity to prevent (dentine) carious lesion development, sealant retention is considered a surrogate endpoint. The ART sealant protocol is described. Systematic reviews and meta-analysis covering low- medium- and high-viscosity glass-ionomer (ART) sealants have concluded that there is no evidence that either glass-ionomer or resin-based sealants prevent dentine carious lesions better. The annual dentine carious lesion development in teeth with high-viscosity glass-ionomer ART sealants over the first three years is 1%. These ART sealants have a high capacity of preventing carious lesion development. Because no electricity and running water is required, ART sealants can be placed both inside and outside the dental surgery. High-viscosity glass-ionomer ART sealants can be used alongside resin-based sealants.41:119-124

  5. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  6. Erosive Potential of Cola and Orange Fruit Juice on Tooth Colored ...

    African Journals Online (AJOL)

    Annals of Medical and Health Sciences Research | Sep-Oct 2014 | Vol 4 | Special Issue 3 | ... Aim: The main aim of this study is to evaluate and to compare the erosive potential ... these shortcomings resin modified glass ionomer cements and.

  7. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Directory of Open Access Journals (Sweden)

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  8. Tanzania Dental Journal, Vol. 18 No. 1 November, 2013

    African Journals Online (AJOL)

    mwakagugu

    2013-11-01

    Nov 1, 2013 ... on all the evaluated drinks except beer. 70% of the ... It is the aim of this study to evaluate some of these television habits .... because clinical observation was not performed to determine .... resin-modified glass ionomer (28).

  9. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - An in vitro study

    Directory of Open Access Journals (Sweden)

    Raghunath Reddy M

    2010-01-01

    Full Text Available An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 . Negligible difference (0.59 kg/cm 2 of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 and glass ionomer cements (20.69 kg/cm 2 . Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  10. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  11. Where and how are Brazilian dental students using Glass lonomer Cement?

    Directory of Open Access Journals (Sweden)

    Marina Sousa Azevedo

    2010-12-01

    Full Text Available Glass Ionomer Cements (GICs have a wide range of uses in Dentistry, and the manipulation technique used can influence the results obtained. This study aimed at assessing the knowledge held by Dental School students from a city in Southern Brazil regarding the use of GIC, and the clinical technique chosen for its use and its applications. A structured questionnaire was applied to 60 advanced dental students. Descriptive statistics was used to analyze the quantitative data. All students had already used the material. Regarding the purpose for which the material was used, all students (100% had used it as a dental cavity liner, 83.3% had used it as a temporary restorative material after endodontic treatment, and 73.3% had used it as a permanent restoration in primary teeth. Regarding the clinical technique used, 86.7% said that they insert the material while it still has a shiny surface, 33% said that they finish and polish the restoration in a following session, and only 28.3% said that they apply a surface protection immediately after the restoration is placed. Although students generally seem to be acquainted with the fundamental knowledge and main techniques involved in GIC use, they occasionally fail to follow all the technical steps required during clinical application, which may affect treatment outcome. Therefore, professors should stress that all the clinical procedures required during GIC application must be followed strictly to improve the performance of this material.

  12. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  13. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Beyth, N.; Weiss, E.I.; Pilo, R.

    2012-01-01

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  14. Solubility and fluoride release in ionomers and compomers.

    Science.gov (United States)

    Bertacchini, S M; Abate, P F; Blank, A; Baglieto, M F; Macchi, R L

    1999-03-01

    The degree of solubility and the fluoride release of glass-ionomer cements and "compomers" were determined as a function of time. Three conventional glass-ionomer cements, three hybrid ionomers, and two compomers were included in the study. Disk-shaped specimens were prepared and immersed in a lactic acid solution. Solubility was evaluated from determinations of loss of mass as a function of time. To evaluate fluoride release, similar specimens were immersed in 50 mL of deionized water to which 50 mL of buffer solution was added. A fluoride ion detector was used to read the concentration of fluoride ion in the overall solution at different times after immersion. Material and time factors had a significant influence on results. The compomers showed less corrosion and fluoride release than the ionomers. Some correlation was found between solubility and fluoride leakage values. Components of both the ionomers and compomers that were studied can dissolve in water. The materials leak fluoride ions in amounts that differ according to the characteristics of the individual products.

  15. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. ... Impact fatigue; static fatigue; residual stress; E-glass fibre; vinylester resin. 1. ... The present work ..... American Society for Testing and Materials) 497 p. 311.

  16. Is there a best conventional material for restoring posterior primary teeth? A network meta-analysis.

    Science.gov (United States)

    Pires, Carine Weber; Pedrotti, Djessica; Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Ziegelmann, Patricia Klarmann; Rocha, Rachel de Oliveira

    2018-03-01

    This study aimed to compare the longevity of different conventional restorative materials placed in posterior primary teeth. This systematic review was conducted following the PRISMA statement and registered in PROSPERO (CRD42016035775). A comprehensive electronic search without date or language restrictions was performed in PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Scopus, Turning Research Into Practice (TRIP) and Clinical Trials databases up to January 2017, selecting randomized clinical trials that assessed the longevity of at least two different conventional restorative materials performed in primary molars. Seventeen studies were included in this systematic review. Pairwise and network meta-analyses were performed and relative risks and 95% confidence intervals (CI) calculated. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Restorations of primary molars with conventional glass ionomer cement showed increased risk of failure than compomer, resin-modified glass ionomer cement, amalgam, and composite resin. Risk of bias was low in most studies (45.38% of all items across studies). Pediatric dentists should avoid conventional glass ionomer cement for restoring primary molars.

  17. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.

    Science.gov (United States)

    Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A

    2004-09-01

    Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the

  18. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  19. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    Science.gov (United States)

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  20. Comparison of enamel discoloration associated with bonding with three different orthodontic adhesives and cleaning-up with four different procedures.

    Science.gov (United States)

    Ye, Cui; Zhao, Zhihe; Zhao, Qing; Du, Xi; Ye, Jun; Wei, Xing

    2013-11-01

    The aim of this study was to compare whether there was any difference in the enamel discoloration after staining when three orthodontic adhesives and four enamel clean-up methods were tested. Three types of orthodontic adhesives were used: chemically cured resin, light-cured resin and resin-modified glass-ionomer cement. A total of 120 human extracted premolars were included. 10 teeth of each orthodontic adhesive were randomly cleaned-up with one of four different procedures and stained in coffee for seven days: (1) carbide bur (TC); (2) carbide bur; Sof-Lex polishers (TC+SL); (3) carbide bur and one gloss polishers (TC+OG); and (4) carbide bur and PoGo polishers (TC+PG). Color measurements were made with Crystaleye dental spectrophotometer at baseline and after storage in a coffee solution one week. Two-way ANOVA and Bonferroni tests were used for statistical analyses (P0.05). The resin-modified glass-ionomer cement groups showed the lowest color differences and chemically cured resin groups showed the highest ΔE* values among all the orthodontic adhesives (P<0.05). The color change of enamel surface was affected by the type of adhesive materials and cleanup procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  2. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2012-03-01

    Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.

  3. Clinical performance of a glass ionomer restorative system: a 6-year evaluation.

    Science.gov (United States)

    Gurgan, Sevil; Kutuk, Zeynep Bilge; Ergin, Esra; Oztas, Sema Seval; Cakir, Filiz Yalcin

    2017-09-01

    The aim of this study is to evaluate the long-term clinical performance of a glass ionomer (GI) restorative system in the restoration of posterior teeth compared with a micro-filled hybrid posterior composite. A total of 140 (80 Cl1 and 60 Cl2) lesions in 59 patients were restored with a GI system (Equia) or a micro hybrid composite (Gradia Direct). Restorations were evaluated at baseline and yearly during 6 years according to the modified-USPHS criteria. Negative replicas at each recall were observed under SEM to evaluate surface characteristics. Data were analyzed with Cohcran's Q and McNemar's tests (p evaluated in 47 patients with a recall rate of 79.6% at 6 years. Significant differences were found in marginal adaptation and marginal discoloration for both restorative materials for Cl1 and Cl2 restorations (p  0.05). A significant decrease in color match was observed in Equia restorations (p performance after 6 years. SEM evaluations were in accordance with the clinical findings. Both materials showed a good clinical performance for the restoration of posterior teeth during the 6-year evaluation. The clinical effectiveness of Equia and Gradia Direct Posterior was acceptable in Cl1 and Cl2 cavities subsequent to 6-year evaluation.

  4. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  5. The Effect of Bracket Base Pylon Orientation on the Shear Bond Strength of the ODP ANCHOR-LOCK Bracket Pad

    Science.gov (United States)

    2013-06-06

    in the dark) ( Bourke et al., 1992; McClean et al., 1994). Resin-modified glass ionomer cements that possess photochemical settling reactions also...primer/adhesive on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop 2001; 119(6):621-624. 61 Bourke AM, Walls AW

  6. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  7. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  8. One-pot synthesis of hydroxyapatite–silica nanopowder composite ...

    Indian Academy of Sciences (India)

    (GIC) and Vickers hardness was evaluated. Results shown that the ... property might lead to extend the clinical indications, especially in stress bearing areas. Keywords. Hydroxyapatite–silica nanopowder; sol–gel technique; glass ionomer cement; hardness. 1. ..... A large hardness means greater resistance to plastic defor-.

  9. Durability of cermet ionomer cement conditioned in different media.

    Science.gov (United States)

    el-Din, I M

    1992-01-01

    The glass ionomer cement has exhibited significant adhesion to hard tooth structures, and good cariostatic properties. The sintering of the silver alloy powder and glass ionomer cement "cermet cement" has provided additional improvement in the physical properties of the restorative material. These were flexural resistance, wear resistance, increased radio-opacity, hardness and porosity. The improvement in the physical properties of the cermet glass cements has provided an extension in their clinical use as core build up, lining for inlays, amalgam and composite restoratives, fissure filling, restoration of primary teeth, class II tunnel preparation, treatment of root caries and repair of defective metal margins in crown and inlays.

  10. Wear and superficial roughness of glass ionomer cements used as sealants, after simulated toothbrushing Desgaste e rugosidade superficial de cimentos de ionômero de vidro utilizados como selantes, após escovação simulada

    Directory of Open Access Journals (Sweden)

    Daniela Rios

    2002-12-01

    Full Text Available The purpose of this study was to evaluate, in vitro, the properties (wear and roughness of glass ionomer cements that could influence their indication as pit and fissure sealants. The utilized materials were Fuji Plus, Ketac-Molar and Vitremer (in two different proportions: 1:1 and ¼:1. The resin-based sealant Delton was used as control. By means of an electronic balance (precision of 10-4 g, wear was measured in function of weight loss after simulated toothbrushing. Superficial roughness was determined by means of a surface roughness-measuring apparatus. The results revealed that diluted Vitremer and Fuji Plus were less resistant to toothbrushing abrasion and had the greatest increase in superficial roughness.Although in clinical situations luting or diluted ionomer cements are often utilized as alternatives to resin-based sealants, the resultsof this study revealed that the properties of those cements are worse than those of restorative ionomers, whichpresented results similar to those of the evaluated resin sealant.O presente estudo foi conduzido in vitro com o intuito de constatar as propriedades (desgaste e rugosidade dos CIV, as quais influenciam na sua indicação como material selador de fossas e fissuras. Os materiais empregados foram Fuji Plus, Ketac-Molar e Vitremer (duas proporções: 1:1 e ¼:1. O selante Delton foi controle. A determinação do desgaste foi obtida através da quantidade de massa perdida após a escovação e a rugosidade através da análise quantitativa da superfície. Os resultados mostraram que o Vitremer diluído e o Fuji Plus apresentaram maior grau de desgaste e maior aumento de rugosidade. Apesar de clinicamente se encontrar um maior uso dos ionômeros de vidro cimentantes ou diluídos como forma alternativa para material selador; este trabalho permitiu concluir que estes possuem propriedades bastante inferiores quando comparados aos ionômeros restauradores que, por sua vez, possuem resultados semelhantes

  11. Sliding Malar Bone Augmentation Technique with a High Le Fort I ...

    African Journals Online (AJOL)

    2016-02-03

    Feb 3, 2016 ... Upon clinical evaluation of the frontal view, maxillary hypoplasia is often associated ... resin. For the cementation of the appliance, light-cured glass ionomer cement (Unitek Multi-Cure Glass Ionomer. Orthodontic Band Cement ...

  12. [Comparative investigation of compressive resistance of glass-cermet cements used as a core material in post-core systems].

    Science.gov (United States)

    Ersoy, E; Cetiner, S; Koçak, F

    1989-09-01

    In post-core applications, addition to the cast designs restorations that are performed on fabrication posts with restorative materials are being used. To improve the physical properties of glass-ionomer cements that are popular today, glass-cermet cements have been introduced and those materials have been proposed to be an alternative restorative material in post-core applications. In this study, the compressive resistance of Ketac-Silver as a core material was investigated comparatively with amalgam and composite resins.

  13. An in vitro atomic force microscopic study of commercially available dental luting materials.

    Science.gov (United States)

    Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic

    2013-09-01

    The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.

  14. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    Directory of Open Access Journals (Sweden)

    M. Ghandehari

    2012-01-01

    Full Text Available Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur.Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope.Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05.Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation.Key Words: Er:YAG laser, Glass ionomer, Microleakage

  15. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities.

    Science.gov (United States)

    Karaman, E; Ozgunaltay, G

    2014-01-01

    To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p>0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (pcomposite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.

  16. Adhesive dental materials

    International Nuclear Information System (INIS)

    Unlu, N.

    2005-01-01

    Two main classes of material are involved, the glass-ionomer cements and the composite resins. This investigation describes the way they are bonded to the tooth and highlights their differences. Glass ionomers develop a zone of interaction with the tooth as they age which ultimately gives an extremely strong bond, and results in excellent retention rates. By contrast, bonding of composite resins is more complicated and possibly less effective, though these materials have better wear resistance and better aesthetics than glass ionomers. Assessment of bond durability is difficult. This is because a dental restorative can fail by a number of mechanisms apart from de bonding: for example, through wear or fracture

  17. Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique.

    Science.gov (United States)

    Camargo, Samira Esteves Afonso; Valera, Marcia Carneiro; Camargo, Carlos Henrique Ribeiro; Gasparoto Mancini, Maria Nadir; Menezes, Marcia Maciel

    2007-09-01

    This study evaluated the pulp chamber penetration of peroxide bleaching agent in human and bovine teeth after office bleach technique. All the teeth were sectioned 3 mm apical of the cement-enamel junction and were divided into 2 groups, A (70 third human molars) and B (70 bovine lateral incisors), that were subdivided into A1 and B1 restored by using composite resin, A2 and B2 by using glass ionomer cement, and A3 and B3 by using resin-modified glass ionomer cement; A4, A5, B4, and B5 were not restored. Acetate buffer was placed in the pulp chamber, and the bleaching agent was applied for 40 minutes as follows: A1-A4 and B1-B4, 38% hydrogen peroxide exposure and A5 and B5, immersion into distilled water. The buffer solution was transferred to a glass tube in which leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to analysis of variance and Dunnett, Kruskal-Wallis, and Tukey tests (5%). A higher level of hydrogen peroxide penetrated into the pulp chamber in resin-modified glass ionomer cements in bovine (0.79 +/- 0.61 microg) and human (2.27 +/- 0.41 microg) groups. The bleaching agent penetration into the pulp chamber was higher in human teeth for any experimental situation. The penetration of the hydrogen peroxide depends on restorative materials, and under the conditions of this study human teeth are more susceptible to penetration of bleaching agent into the pulp chamber than bovine teeth.

  18. In vitro activity of zinc oxide-eugenol and glass ionomer cements on Candida albicans Atividade in vitro dos cimentos de óxido de zinco e eugenol e ionômero de vidro sobre Candida albicans

    Directory of Open Access Journals (Sweden)

    Anna Carolina Aguiar Cassanho

    2005-06-01

    Full Text Available The aim of this study was to evaluate in vitro the antimicrobial activity of glass ionomer (GIC and zinc oxide-eugenol (ZOE cements against Candida albicans. Standardized GIC and ZOE specimens were maintained in contact with C. albicans suspension (1 ´ 10(6 cells/ml at 37°C for 24 h, 48 h or 7 days. A control group without any testing cement was included. After the incubation period, aliquots of 0.1 ml were plated on Sabouraud's agar, and then the number of colonies was counted. The results were expressed as values of logarithms of colony-forming units per milliliter (log CFU/mL and were analyzed statistically by Kruskal-Wallis ANOVA. After 48 h of incubation, the ZOE group presented no growth of C. albicans. GIC and control groups presented similar mean values at all tested periods. According to the results obtained, it could be concluded that, under the experimental conditions, ZOE cement was more effective in vitro against C. albicans than GIC.O objetivo deste estudo foi avaliar in vitro a atividade antimicrobiana dos cimentos de ionômero de vidro (CIV e óxido de zinco e eugenol (OZE sobre Candida albicans. Corpos-de-prova padronizados de CIV e OZE foram mantidos em contato com suspensão (1 ´ 10(6 células/ml de C. albicans a 37°C por 24 horas, 48 horas ou 7 dias. Um grupo controle sem nenhum cimento teste foi incluído. Após o período de incubação, alíquotas de 0,1 ml foram semeadas em ágar Sabouraud e o número de colônias foi contado. Os resultados foram expressos em logaritmos de valores de unidades formadoras de colônias por ml (log UFC/mL e analisados estatisticamente pelo teste ANOVA Kruskal-Wallis. Após 48 horas de incubação, o grupo OZE não apresentou crescimento de C. albicans. Os grupos CIV e controle apresentaram médias similares em todos os períodos testados. De acordo com os resultados obtidos, pode ser concluído que, sob as condições experimentais testadas, o cimento OZE apresentou-se mais efetivo in

  19. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  20. Molar incisor hypomineralization (MIH): conservative treatment management to restore affected teeth.

    Science.gov (United States)

    Fragelli, Camila Maria Bullio; Souza, Juliana Feltrin de; Jeremias, Fabiano; Cordeiro, Rita de Cássia Loiola; Santos-Pinto, Lourdes

    2015-01-01

    The purpose of this study was to evaluate the 12-month clinical performance of glass ionomer restorations in teeth with MIH. First permanent molars affected by MIH (48) were restored with glass ionomer cement (GIC) and evaluated at baseline, at 6 and at 12 months, by assessing tooth enamel breakdown, GIC breakdown and caries lesion associations. The data were analyzed using the chi-square test and actuarial survival analysis. The likelihood of a restored tooth remaining unchanged at the end of 12 months was 78%. No statistically significant difference was observed in the association between increased MIH severity and caries at baseline (p > 0.05) for a 6-month period, or between increased MIH severity and previous unsatisfactory treatment at baseline (p > 0.05) for both a 6- and 12-month period. A statistically significant difference was observed in the association between increased MIH severity and extension of the restoration, involving 2 or more surfaces (p MIH severity and caries at baseline (p < 0.05) at a 12-month period. Because the likelihood of maintaining the tooth structures with GIC restorations is high, invasive treatment should be postponed until the child is sufficiently mature to cooperate with the treatment, mainly of teeth affected on just one face.

  1. Avaliação da microinfiltração marginal e profundidade de penetração dos cimentos de ionômero de vidro utilizados como selantes oclusais Evaluation of marginal microleakage and depth of penetration of glass ionomer cements used as occlusal sealants

    Directory of Open Access Journals (Sweden)

    Marina de Lourdes Calvo Fracasso

    2005-09-01

    Full Text Available OBJETIVE: the aim of this study was to conduct an in vitro comparison of marginal microleakage (MM and the depth of penetration (DP of glass ionomer cements (GIC and a resin sealant (RS into occlusal pit and fissures. METHODS: for that purpose, 60 intact third molars were equally distributed to 5 groups: G1 - 37% phosphoric acid / Delton; G2 - 40% polyacrylic acid / Ketac-Molar / nail varnish; G3 - Fuji Plus conditioner / Fuji Plus/ nail varnish; G4 -37% phosphoric acid / Vitremer / Finishing gloss; G5 -37% phosphoric acid / Vitremer prepared with a 1:4 ratio of powder / Finishing gloss. The teeth were submitted to a thermal treatment corresponding to 300 cycles (15 sec, 5/55(0C, followed by complete coating with nail varnish, except for 1mm beyond the contour of the sealant. Afterwards, the teeth were immersed in 0.5% basic fuchsine for 24 hours. Thereafter, the teeth were sectioned in buccolingual direction and microscopically analyzed (150x magnification by means of predetermined scores. The results were subject to the Kruskal-Wallis test. RESULTS: there was no statistical difference between the materials tested in relation to the DP, being that all groups displayed nearly complete filling of the fissures. No sealant material was able to prevent dye penetration; however, the GICs provided better results of MM, with significant difference when compared to the RS. CONCLUSION: all materials investigated presented a satisfactory degree of penetration into the fissures; however, the glass ionomer cements displayed better performance in the marginal microleakage test compared to the resin sealant.OBJETIVO: o objetivo deste estudo foi comparar in vitro a microinfiltração marginal (MM e o grau de profundidade de penetração (DP de cimentos de ionômero de vidro (CIV e um selante resinoso (SR em fossas e fissuras oclusais. MATERIAIS E MÉTODOS: para tanto, 60 terceiros molares hígidos foram igualmente distribuídos em 5 grupos: G1- ácido fosf

  2. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  3. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    Science.gov (United States)

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  4. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  5. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  6. Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth

    Directory of Open Access Journals (Sweden)

    Behnam Khosravanifard

    2012-04-01

    Full Text Available Background and aims. Bleaching can considerably reduce shear bond strength (SBS of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on compositeto-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glassionomer cement (RMGIC has not been studied, which was the aim of this study. Materials and methods. Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI. Sodium ascorbate 10% was applied to the experimental specimens (n=25. All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent and bonded using RMGIC (Fuji Ortho LC, GC. The specimens were subjected to incubation (37°C, 24h and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min. The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI was scored under ×10 magnification. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’s exact test (α=0.05. Results. The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The difference was statistically significant (P=0.000 by t-test. SBS of both control (P=0.014 and experimental (P=0.000 groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion. Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments, which deserves further studies.

  7. In vitro caries-inhibitory properties of a silver cermet.

    Science.gov (United States)

    Swift, E J

    1989-06-01

    Recurrent caries is one of the primary causes of failure of dental restorations. One method for reducing the frequency and severity of this problem is the use of fluoride-releasing restorative materials. The glass-ionomer cements are a type of fluoride-releasing material. They have been used extensively in recent years for a variety of clinical applications. However, in comparison with other restorative materials such as amalgam and composite resins, glass ionomers have relatively poor physical properties. Sintering of silver particles to glass-ionomer powder is a means of improving these physical properties. The sintered material is called a silver-glass ionomer or silver cermet. This study examined the in vitro caries-inhibitory potential of a silver cement by means of two methods. First, long-term fluoride release was measured. Second, an artificial caries system was used for evaluation of caries inhibition by cerment restorations in extracted teeth. In comparison with a standard glass-ionomer restorative material, fluoride release from the cermet material was significantly less throughout a 12-month period. The results from the artificial caries system indicated that this decreased fluoride release corresponded with a lesser degree of caries inhibition. Lesions around cermet restorations in both enamel and root surfaces were significantly more severe than those around conventional glass-ionomer restorations. However, in comparison with amalgam and composite resin restorations, the cermet did have some cariostatic activity.

  8. Effect of mechanical load cycling on the microleakage of three different glass ionomer restorations in class V cavities

    OpenAIRE

    Baharan Ranjbar Omidi; Ladan Madani; Aida Mirnejad Joybari; Ensyeh Rashvand; Sonia Oveisi

    2015-01-01

    Background and Aims: Microleakage is an important problem with direct restorations and familiarity with contributing factors is of utmost importance. The aim of this study was to evaluate the microleakage of three glass ionomer restorations in class V cavities.   Materials and Methods: In this in vitro study, class V cavity preparations were made on the buccal and lingual/ palatal surfaces of 30 human premolars (60 cavities). The specimens were divided into three group (n=10, 20 cavities). Re...

  9. Güncel bir cam iyonomer restoratif sistemin 36-aylık klinik performansının değerlendirilmesi

    OpenAIRE

    Kütük, Zeynep Bilge; Gürgan, Sevil; Yalçın Çakır, Filiz; Ergin, Esra; Öztaş, Sema Seval

    2014-01-01

    Objectives: To evaluate the 36 month clinical performance of a current glass-ionomer restorative system by comparing with a micro-filled resin composite, on Class II cavities.Materials and Methods: Sixty cavities in 26 patients were randomly divided into two groups according to the restorative systems used (n=30); the cavities in Group 1 were restored with a glass-ionomer restorative system (EQUIA/GC); packable glass-ionomer (Fuji IX GP EXTRA/GC)+self-adhesive nano-filled coating (G-Coat PLUS...

  10. A comparative microleakage evaluation of three different base materials in Class I cavity in deciduous molars in sandwich technique using dye penetration and dentin surface interface by scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Babita Niranjan

    2016-01-01

    Full Text Available Introduction: A major objective in restorative dentistry is the control of marginal leakage, which may occur because of dimensional changes or lack of adaptation of restorative material to the cavity preparation. Numerous techniques have been advocated to overcome polymerization shrinkage in composite restorations. Aim and Objectives: This study investigated microleakage of three different bases under composite resin in sandwich technique using dye penetration and dentin surface interface using scanning electron microscope (SEM. Materials and Methods: Sixty extracted deciduous molars were stored in distilled water and Class I cavities with a width of about one-fourth of intercuspal distance and a depth of 0.5-1 mm below the dentino-enamel junction was prepared without bevels. In Group 1 - glass ionomer cement (GIC; Group 2 - mineral trioxide aggregate (MTA; Group 3 - Biodentine™ was placed as a base under composite. Teeth were longitudinally sectioned in two halves, through the centers of the restoration, immersed in 2% methylene blue and microleakage was evaluated under stereomicroscope and surface interface between base and dentin was evaluated under SEM. Results:Under the condition of in vitro study, less microleakage and less internal gaps were seen in Biodentine™ (0.00 ± 0.00 and 4.00 ± 1.59 group than MTA (0.00 ± 0.00 and 6.08 ± 1.82 and GIC (25.25 ± 6.57 and 14.73 ± 3.72, respectively and showed very strong positive correlation between microleakage and internal gaps. Conclusion: Biodentine™ exhibits superior marginal sealing ability as well as marginal adaptation under composite resin as compared to MTA and GIC.

  11. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p glass fiber (p glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  12. Chemoviscosity modeling for thermosetting resins, 2

    Science.gov (United States)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  13. The use of a reinforced glass-ionomer cermet for the restoration of primary molars: a clinical trial.

    Science.gov (United States)

    Kilpatrick, N M; Murray, J J; McCabe, J F

    1995-09-09

    The development of adhesive restorative materials has led to more conservative cavity design with greater reliance being placed upon the bond of a material with tooth tissue for retention of the restoration. Glass-ionomer cements may offer particular advantages but have yet to achieve the durability reported for amalgam. This study reports on the results of a 2.5-year prospective clinical trial comparing the durability of two glass-ionomer cements, a conventional material (Ketac Fil) and a metal reinforced cermet (Ketac Silver) in the restoration of Class II lesions in primary molars. Forty-six pairs of restorations were assessed in 37 children. The failure rate of Ketac Fil, 23%, was significantly lower than that of Ketac Silver, 41% (P < 0.05). The median survival time of the Ketac Fil restorations was significantly greater, 25.3 months, than that of the Ketac Silver restorations, 20.3 months (P < 0.05). These values may be an underestimate of the true longevity of both restoration types as many of the restorations survived intact at the censor date. Neither the age of the child nor the tooth restored influenced the durability of the restoration. The deterioration in both marginal integrity and anatomic form of the Ketac Silver restorations was significantly greater than the Ketac Fil restorations (P < 0.05). The durability of Ketac Silver was such that it cannot be recommended for use in restoring carious primary molars.

  14. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiang, Haiyun [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); School of Materials Science and Engineering, Southeast University, Nanjing Institute of Technology, Nanjing 210013 (China); Jiang, Nan [Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China)

    2009-12-10

    The pyrolysis of pure phenol-formaldehyde (PF) resin and boron carbide (B{sub 4}C) modified PF resin was investigated by using thermogravimetry (TG) and pyrolysis gas-chromatography-mass-spectrometry (PY-GC/MS). Scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy were also employed to investigate the micro-structural evolution. It was shown from the TG analysis that the char residues of pure PF resin were 62.9 and 60.5% after being pyrolyzed at 700 and 1000 {sup o}C, respectively. The degradation and failure of the resin matrix were mainly resulted from the release of volatiles. The phenol and its methyl derivates took a large proportion in the amount of volatiles. In comparison with the pure PF resin, the char residues of B{sub 4}C modified PF resin were obviously higher, with the values of 71.9 and 68.4% at 700 and 1000 {sup o}C, respectively. Due to the oxidation-reduction reactions between B{sub 4}C additive and oxygen-containing volatiles including CO and H{sub 2}O, partial carbon and oxygen elements in the volatiles remained in the resin matrix in the forms of amorphous carbon and B{sub 2}O{sub 3}, respectively. The results of SEM and FT-IR characterization demonstrated the occurrence of the modification, and the amorphous carbon existed in the form of reticular substance. In addition, the amount of the released phenol and its methyl derivates was also decreased drastically due to the formation of borate.

  15. Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites

    International Nuclear Information System (INIS)

    Jiang, Z.X.; Huang, Y.D.; Liu, L.; Long, J.

    2007-01-01

    The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface

  16. Molar incisor hypomineralization (MIH: conservative treatment management to restore affected teeth

    Directory of Open Access Journals (Sweden)

    Camila Maria Bullio FRAGELLI

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the 12-month clinical performance of glass ionomer restorations in teeth with MIH. First permanent molars affected by MIH (48 were restored with glass ionomer cement (GIC and evaluated at baseline, at 6 and at 12 months, by assessing tooth enamel breakdown, GIC breakdown and caries lesion associations. The data were analyzed using the chi-square test and actuarial survival analysis. The likelihood of a restored tooth remaining unchanged at the end of 12 months was 78%. No statistically significant difference was observed in the association between increased MIH severity and caries at baseline (p > 0.05 for a 6-month period, or between increased MIH severity and previous unsatisfactory treatment at baseline (p > 0.05 for both a 6- and 12-month period. A statistically significant difference was observed in the association between increased MIH severity and extension of the restoration, involving 2 or more surfaces (p < 0.05 at both periods, and between increased MIH severity and caries at baseline (p < 0.05 at a 12-month period. Because the likelihood of maintaining the tooth structures with GIC restorations is high, invasive treatment should be postponed until the child is sufficiently mature to cooperate with the treatment, mainly of teeth affected on just one face.

  17. Flexural properties and impact strength of denture base resins reinforced with micronized glass flakes

    Directory of Open Access Journals (Sweden)

    Ronak H Choksi

    2016-01-01

    Conclusion: Flexural strength of unmodified PMMA denture base resin decreases with increase in the concentration of glass flakes. Impact strength does not show any significant change at 5% concentration of glass flakes and impact strength significantly reduces with the addition of glass flakes in 10% and 20%.

  18. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis.

    Science.gov (United States)

    Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A

    2014-09-01

    The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.

  19. Aging in CTBN modified epoxy resin stocks

    International Nuclear Information System (INIS)

    Creed, K.E. Jr.

    1979-01-01

    The cause of degradation in the glass transition temperature (T/sub G/) of a partially crystallized polymer was investigated. Sample epoxy resin filled capacitors were cured at 90 0 C for 24 hours, then stored at room atmospheric conditions. These showed typical degradation in T/sub G/ after storage for one month. One set of epoxy resin castings was stored at room atmosphere and another set was stored in a dry box at 0% relative humidity and 27 0 C. The samples at room atmospheric conditions showed typical degradation in T/sub G/, while the T/sub G/ for those stored in the dry box increased. Further tests were then made on epoxy resin castings at various curing temperatures and times at both room atmosphere and 0% humidity. Resulting data indicated that absorption of moisture during storage was the predominant cause of T/sub G/ degradation, with stress relaxation another, though smaller, contributing factor

  20. Preparation of carbon nanotubes/epoxy resin composites by using hollow glass beads as the carrier

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhao, Y.K.; Zhang, D.; Chen, T.B.; Ma, L.Y.

    2012-01-01

    Hollow glass beads had been utilized as the carrier to assist dispersion of carbon nanotubes in epoxy resin. Hollow glass beads were firstly aminated with gamma-aminopropyl-triethoxysilane, sencondly reacted with carboxyl-functionalized carbon nanotubes via an amidation reaction and susequently mixed with epoxy resin and hardener. The experimental results showed that carbon nanotubes could be loaded on the surfaces of hollow glass beads and approximately a monolayer of carbon nanotubes was formed when the weight ratio of hollow glass beads to carbon nanotubes was 100:5. Moreover, the dispersity of carbon nanotubes in the matrix was improved as compared to the control samples prepared by using a conventional mixing method. (author)

  1. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  2. Geomanetically Induced Currents (GIC) calculation, impact assessment on transmission system and validation using 3-D earth conductivity tensors and GIC measurements.

    Science.gov (United States)

    Sharma, R.; McCalley, J. D.

    2016-12-01

    Geomagnetic disturbance (GMD) causes the flow of geomagnetically induced currents (GIC) in the power transmission system that may cause large scale power outages and power system equipment damage. In order to plan for defense against GMD, it is necessary to accurately estimate the flow of GICs in the power transmission system. The current calculation as per NERC standards uses the 1-D earth conductivity models that don't reflect the coupling between the geoelectric and geomagnetic field components in the same direction. For accurate estimation of GICs, it is important to have spatially granular 3-D earth conductivity tensors, accurate DC network model of the transmission system and precisely estimated or measured input in the form of geomagnetic or geoelectric field data. Using these models and data the pre event, post event and online planning and assessment can be performed. The pre, post and online planning can be done by calculating GIC, analyzing voltage stability margin, identifying protection system vulnerabilities and estimating heating in transmission equipment. In order to perform the above mentioned tasks, an established GIC calculation and analysis procedure is needed that uses improved geophysical and DC network models obtained by model parameter tuning. The issue is addressed by performing the following tasks; 1) Geomagnetic field data and improved 3-D earth conductivity tensors are used to plot the geoelectric field map of a given area. The obtained geoelectric field map then serves as an input to the PSS/E platform, where through DC circuit analysis the GIC flows are calculated. 2) The computed GIC is evaluated against GIC measurements in order to fine tune the geophysical and DC network model parameters for any mismatch in the calculated and measured GIC. 3) The GIC calculation procedure is then adapted for a one in 100 year storm, in order to assess the impact of the worst case GMD on the power system. 4) Using the transformer models, the voltage

  3. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: an in vitro trial".

    Science.gov (United States)

    Tiwari, S; Nandlal, B

    2013-01-01

    To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. This in vitro study comprised of total 80 samples (40 samples of each with and without surface coating). Specimens were prepared, G coat plus was applied and light cured. Fluoride release of the sample was measured every 24 h for 7 days and weekly from 7th to 21 st day using Sension4 pH/ISE/MV Meter. Descriptive Statistics, Repeated Measure ANOVA, Paired Sample t-test, Independent Sample t-test, Scheffe post hoc test. Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both groups. Non-coated group released significantly more fluoride than surface coated group (Pagent will reduce the amount of fluoride released into oral environment as compared to non-coated group and at the same time releasing fluoride into surrounding cavity walls to create zones of inhibition into the cavity floor to help internal remineralization.

  4. PENGARUH PERBEDAAN DURASI APLIKASI KONDISIONER TERHADAP GAMBARAN PENETRASI SEMEN IONOMER KACA PADA DENTIN SULUNG (Evaluasi Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Suzanty Ariany

    2015-07-01

    Full Text Available The purpose of this study was to determine whether different durations of conditioner application influenced glass ionomer cement penetration in dentin primary teeth. The conditioner being used was 10% polyacrylic acid. Samples in this study were 40 non-carious primary mandibular incisors. Samples were divided into 4 groups (10 samples each: group A, withoud conditioner, group B, with 10 seconds of conditioner application, group C, with 20 seconds of conditioner application, and group D with 30 seconds of conditioner application. Penetration of glass ionomer cement was observed using scanning electron microscopy (SEM with 200x magnification. One-way ANOVA and Tukey HSD test showed significant difference between groups. Longer conditioner application resulted in longer glass ionomer penetration in dentin of primary teeth.

  5. Space charge distributions in glass fibre/epoxy resin composites under dc 10 kV mm-1 electric field

    International Nuclear Information System (INIS)

    Tanaka, Hidesato; Ohki, Yoshimichi; Fukunaga, Kaori; Maeno, Takashi; Okamoto, Kenji

    2007-01-01

    In this paper, the authors discuss one- and three-dimensional space charge distributions in glass fibre/epoxy resin composites. By the conventional pulsed electroacoustic (PEA) method, only a one-dimensional distribution of the average charge over a whole area parallel to the two electrodes can be observed. Therefore, the authors have developed a new PEA system capable of measuring a three-dimensional space charge distribution. Using this system, they measured the charge distribution in glass fibre/epoxy resin composites made of lattice-woven glass fibre and epoxy resin. It has become clear that spatial variation in signal intensity observed depends on the internal structure of the composite. There appear repetitious positions where a high charge density is observed on the same lateral cross section along the vertical direction in the composite. Such positions are consistent with the intersections of the glass fibres. Accumulation of mobile charge carriers or appearance of polarization charge due to mismatch of the ratio of the conductivity and permittivity between the glass fibre and the epoxy resin is thought to be responsible for the PEA signals

  6. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...

  7. Study on direct-chain diacid modified phenolic resin for Al-alloy casting

    Directory of Open Access Journals (Sweden)

    Yundong JI

    2005-02-01

    Full Text Available Resin coated sand (RCS with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but these methods tend to reduce the initial strength of RCS. Synthesis of modified phenolic resin with direct-chain diacid DAn (/JS=6, where n means carbon amount was studied here. The effects of the addition of modifying agent on molecular weight, gel time and softening point were investigated. Optimal addition of DAn (10% phenol was obtained by testing the initial and retained flexural strengths of the modified resin. FT-IR spectra showed that carbonyl shifts to higher wave number. With the use of TG, SEM and strength loss curves, the relation between initial and retained strengths was analysed. Tests on the heated deformation curve, before and after resin modification, show that PF-DA10 has the characteristic of higher initial and retained strengths together.

  8. Artificial caries formation around fluoride-releasing restorations in roots.

    Science.gov (United States)

    Dionysopoulos, P; Kotsanos, N; Papadogiannis, Y; Konstantinidis, A

    1998-11-01

    Secondary caries is one of the most important factors leading to replacement of dental restorations. This investigation assessed the capacity of fluoride-releasing restorative materials to resist caries in vitro when used in roots. Class 5 cavities were prepared in the buccal and lingual surfaces of 30 extracted premolars. The six materials used were: glass-ionomer cement (Fuji), glass-ionomer cement with silver particles added (Ketac-silver), fluoride-containing composite resin (Tetric), composite resin (Silux plus), fluoride-containing amalgam (Fluor-Alloy) and high-copper amalgam (Dispersalloy). After 5 weeks in an acid gel for caries-like lesion formation, the teeth were sectioned longitudinally and examined with polarized light. The results showed that repair with glass-ionomer materials of a carious lesion may be of great importance in the prevention of secondary caries around the restorations in roots.

  9. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered, however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to those

  10. Product consistency testing of three reference glasses in stainless steel and perfluoroalkoxy resin vessels

    International Nuclear Information System (INIS)

    Olson, K.M.; Smith, G.L.; Marschman, S.C.

    1995-03-01

    Because of their chemical durability, silicate glasses have been proposed and researched since the mid-1950s as a medium for incorporating high-level radioactive waste (HLW) generated from processing of nuclear materials. A number of different waste forms were evaluated and ranked in the early 1980s; durability (leach resistance) was the highest weighted factor. Borosilicate glass was rated the best waste form available for incorporation of HLW. Four different types of vessels and three different glasses were used to study the possible effect of vessel composition on durability test results from the Production Consistency Test (PCT). The vessels were 45-m 304 stainless steel vessels, 150-m 304 L stainless steel vessels, and 60-m perfluoroalkoxy (PFA) fluoropolymer resin vessels. The three glasses were the Environmental Assessment glass manufactured by Corning Incorporated and supplied by Westinghouse Savannah River company, and West Valley Nuclear Services reference glasses 5 and 6, manufactured and supplied by Catholic University of America. Within experimental error, no differences were found in durability test results using the 3 different glasses in the 304L stainless steel or PFA fluoropolymer resin vessels over the seven-day test period

  11. Two-year survival of glass ionomer sealants placed as part of ...

    African Journals Online (AJOL)

    , ... Results: The two-year cumulative survival of the sealants was 10.9%, and the survival of the sealants was not significantly affected by the GIC material brand and the toothisolation method used. However, slightly more sealants survived ...

  12. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    Science.gov (United States)

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  13. Studies on chemoviscosity modeling for thermosetting resins

    Science.gov (United States)

    Bai, J. M.; Hou, T. H.; Tiwari, S. N.

    1987-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure.

  14. Three Incomplete Caries Removal Techniques Compared Over Two Years in Primary Molars with Asymptomatic Deep Caries or Reversible Pulpitis.

    Science.gov (United States)

    Chompu-inwai, Papimon; Boonsongsawat, Kamolthip; Sastraruji, Thanapat; Sophasri, Tidarat; Mankaen, Siripun; Nondon, Sutasinee; Tunlek, Sumattaya; Katwong, Supitchaya

    2015-01-01

    To directly compare the survival rates of three incomplete caries removal techniques that differed in the amount of caries removal and the base material used. Ninety-six primary molars with asymptomatic deep caries or reversible pulpitis were randomly assigned to three groups: (1) indirect pulp treatment (IPT); (2) minimal caries removal with both resin-modified glass ionomer base material and luting cement (MCRB/L); and (3) minimal caries removal with only resin-modified glass ionomer luting cement (MCRL). The treatments were followed clinically and radiographically for two years. The two-year survival probabilities in the IPT, MCRB/L, and MCRL groups were 0.90 (95 percent confidence interval [CI] equals 0.73 to 0.97), 0.93 (95 percent CI equals 0.76 to 0.98), and 0.77 (95 percent CI equals 0.58 to 0.89), respectively. There was no significant difference in the two-year survival probabilities of the three studied groups (generalized Wilcoxon P=.07). Following two years, neither the amount of caries removal nor the base material affected the success of incomplete caries removal treatment. However, minimal caries removal with MCRB/L presented the highest survival rate among the tested groups and resulted in no incidence of pulp exposure.

  15. Study of surface alterations of composite and ionomeric materials submitted to simulation of a high cariogenic challenge Estudo da erosão superficial de materiais compósitos e inoméricos submetidos à simulação de um alto desafio cariogênico

    Directory of Open Access Journals (Sweden)

    Alexandre Rezende VIEIRA

    1999-12-01

    Full Text Available We evaluated the surface of composite resins and glass-ionomer cements in a situation of high cariogenic challenge. Based on seventy-five standard test specimens of one glass-ionomer cement (Chelon Fil - ESPE, one resin-modified glass-ionomer (Vitremer - 3M, two polyacid-modified composite (VariGlass and Dyract - Dentsply and one composite resin (Heliomolar - Vivadent, submitted to fourteen days of demineralization and remineralization cycling to simulate a high cariogenic challenge, the erosive aspects of the surface of the materials were assessed. All of the samples were evaluated by scanning electronic microscope and compared with another five test specimens of each material, prepared in the same way and serving as control. All of the materials studied suffered erosive action by the media, with different characteristics due to the different compositions, after being submitted to in vitro simulation of a high cariogenic challenge.O objetivo deste trabalho foi avaliar a superfície de compósitos e cimentos de ionômero de vidro, frente a uma situação de alto desafio cariogênico. A partir de setenta e cinco corpos-de-prova padronizados de um cimento de ionômero de vidro (Chelon Fil - ESPE, um ionômero de vidro resina-modificado (Vitremer - 3M, dois compósitos poliácido-modificados (VariGlass e Dyract - Dentsply e um compósito (Heliomolar - Vivadent, e após serem submetidos a quatorze dias a ciclagens de desmineralização e remineralização, para simular um alto desafio cariogênico, foram avaliados os aspectos erosivos da superfície dos materiais. Todos os corpos-de-prova foram avaliados ao microscópio eletrônico de varredura e comparados com cinco outros corpos-de-prova de cada material, confeccionados da mesma forma e que serviram como controle. Todos os materiais estudados sofreram ação erosiva dos meios, com características distintas, devido às suas diferentes composições, após serem submetidos à simulação in vitro

  16. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement

    International Nuclear Information System (INIS)

    Toda, Maria Aparecida

    2003-01-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 μm diameter; fluency of 99,52 J/ cm 2 , assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  17. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Behjat-Al-Molook Ajami

    2013-01-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration

  18. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Taraneh Movahhed

    2012-09-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration.

  19. Nanosilica Modification of Elastomer-Modified VARTM Epoxy Resins for Improved Resin and Composite Toughness

    National Research Council Canada - National Science Library

    Robinette, Jason; Bujanda, Andres; DeSchepper, Daniel; Dibelka, Jessica; Costanzo, Philip; Jensen, Robert; McKnight, Steven

    2007-01-01

    Recent publications have reported a synergy between rubber and silica in modified epoxy resins that results in significantly improved fracture toughness without reductions in other material properties...

  20. Download this PDF file

    African Journals Online (AJOL)

    ... oral hygiene. Keywords: Demineralisation; Fluoride; Glass Ionomer; Compomer; Orthodontics. .... A union of composite resin and fluoride .... Sonis A, Snell W. An evaluation of a fluoride- ... comparative clinical trial of a compomer and a resin ...

  1. Evaluation of glass ionomer sealants placed according to the ART approach in a community with high caries experience: 1-year follow-up Avaliação de selantes ionoméricos realizados pela técnica do ART em comunidade com alta experiência de cárie: 1 ano de acompanhamento

    Directory of Open Access Journals (Sweden)

    Ana Luiza Falavinha Vieira

    2006-08-01

    Full Text Available The aim of this study was to investigate the retention rates and effect on occlusal caries incidence of two glass ionomers used as sealants, placed according to the Atraumatic Restorative Treatment (ART approach, in a high caries-risk community. A total of 150 newly erupted first molars of 42 schoolchildren, between 6-8 years of age were selected. The teeth were divided into two groups: experimental and control groups. In the experimental group, 76 teeth were sealed using Vidrion R-SS White (conventional GIC and in the control group, 74 teeth were sealed using ChemFlex-Dentsply (high-viscosity conventional GIC. The sealants were applied by one operator following the "press finger technique", described in the ART-WHO manual. Two calibrated independent examiners carried out the evaluation according to the ART criteria. The intra and inter-examiner agreements were 0.84 and 0.81, respectively. Data were submitted to Mann-Whitney and Chi-square tests (pO objetivo deste trabalho foi avaliar o índice de retenção e o efeito na incidência de cárie oclusal de dois selantes ionoméricos realizados pela técnica do Tratamento Restaurador Atraumático (ART em comunidades com alto índice de cárie. Foram selecionados 150 primeiros molares recém-erupcionados de 42 escolares, entre 6-8 anos de idade. Os dentes foram divididos em dois grupos: experimental e controle. No grupo experimental 76 dentes foram selados com Vidrion R-SSWhite (CIV-convencional e no grupo controle, 74 dentes foram selados com ChemFlex-Dentsply (CIV-alta viscosidade. Os selantes foram realizados por apenas um operador pela técnica da "pressão digital", descrita no manual de ART da OMS. Dois avaliadores independentes e calibrados segundo os critérios do ART realizaram a avaliação. A concordância intra e inter-examinadores foi de 0,84 e 0,81, respectivamente. Os resultados foram submetidos aos testes Mann-Whitney e Q-quadrado (p<0,05. Após um ano, 136 (90,7% selante foram

  2. Primary study on synthesis and characterization of the new type EB curable resins. Pt.1: Acrylic resins modified by light-oil

    International Nuclear Information System (INIS)

    Wei Jinshan; Yi Min; Wang Ruiyu; Li Jun; Ha Hongfei

    1995-01-01

    An acrylic resin modified by vegetable oil with high degree of unsaturation level has been synthesized. The characterization of coating film EB cured by the modified acrylic resin was studied primarily. The new type of EB curable acrylic resin is possessed of many merits such as cheap raw materials, simple synthesis technique and pretty characteristics of coating film. It is especially fit for timber surface coatings cured by EB radiation

  3. The effect of clinical performance on the survival estimates of direct restorations

    Directory of Open Access Journals (Sweden)

    Kyou-Li Kim

    2013-02-01

    Full Text Available Objectives In most retrospective studies, the clinical performance of restorations had not been considered in survival analysis. This study investigated the effect of including the clinically unacceptable cases according to modified United States Public Health Service (USPHS criteria into the failed data on the survival analysis of direct restorations as to the longevity and prognostic variables. Materials and Methods Nine hundred and sixty-seven direct restorations were evaluated. The data of 204 retreated restorations were collected from the records, and clinical performance of 763 restorations in function was evaluated according to modified USPHS criteria by two observers. The longevity and prognostic variables of the restorations were compared with a factor of involving clinically unacceptable cases into the failures using Kaplan-Meier survival analysis and Cox proportional hazard model. Results The median survival times of amalgam, composite resin and glass ionomer were 11.8, 11.0 and 6.8 years, respectively. Glass ionomer showed significantly lower longevity than composite resin and amalgam. When clinically unacceptable restorations were included into the failure, the median survival times of them decreased to 8.9, 9.7 and 6.4 years, respectively. Conclusions After considering the clinical performance, composite resin was the only material that showed a difference in the longevity (p < 0.05 and the significantly higher relative risk of student group than professor group disappeared in operator groups. Even in the design of retrospective study, clinical evaluation needs to be included.

  4. Morphological analysis of ionomers

    International Nuclear Information System (INIS)

    1991-01-01

    Anomalous small-angle x-ray scattering (SAXS) investigations were carried out on amorphous and semi-crystalline ionomers (Ni- neutralized sulfonated polystyrene ionomers, polyurethane ionomer). Ionomers with semicrystalline matrices (three-phase materials) were also studied with SAXS (poly(ethylene-co-methacrylic acid) ionomer). Ethylene oxide units were incorporated into the backbone of sulfonated polyurethane ionomers in an attempt to induce aggregate dissociation. Small-angle neutron scattering was used to study the effect of ionic aggregation on ionomer chain dimensions in telechelic and model polyurethane ionomers. Studies have been completed on carboxylated and sulfonated model polyurethane ionomers in order to determine the effect of the pendant ionic group on ionomer structure- property relationships (mechanical properties)

  5. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Nayana Anasane

    2013-01-01

    Full Text Available Background : Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each, depending upon the joint surface contour (butt, bevel, rabbet and round, with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05. Results: Transverse strength values for all repaired groups were significantly lower than those for the control group ( P < 0.001 (88.77 MPa, with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa which was significantly superior to the other joint surface contours ( P < 0.001. Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin ( P < 0.001. Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins.

  6. Synthesis and Characterization of Modified Epoxy Resins by Silicic Acid Tetraethyl Ester and Nano-SiO2

    Institute of Scientific and Technical Information of China (English)

    李海燕; 张之圣

    2004-01-01

    A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 °C.The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric (TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.

  7. Chemoviscosity modeling for thermosetting resin systems, part 3

    Science.gov (United States)

    Hou, T. H.; Bai, J. M.

    1988-01-01

    A new analytical model for simulating chemoviscosity resin has been formulated. The model is developed by modifying the well established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature (T sub g (t)) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature-dependent functions of the modified WLF theory parameters C sub 1 (T) and C sub 2 (T) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents a progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure.

  8. Preparation and Characterization of UPR/ LNR/ Glass Fiber Composite by using Unsaturated Polyester Resin (PET) from PET Wastes

    International Nuclear Information System (INIS)

    Siti Farhana Hisham; Ishak Ahmad; Rusli Daik

    2011-01-01

    UPR/ LNR/ glass fibre composite had been prepared by using unsaturated polyester resin (UPR) based from recycled PET product. PET waste was recycled by glycolysis process and the glycides product was then reacted with maleic anhydride to produce unsaturated polyester resin. The preparation of UPR/ LNR blends were conducted by varying the amount of LNR addition to the resin ranging from 0-7.5 % (wt). The composition of UPR/LNR blend with good mechanical properties had been selected as a matrix of the glass fiber reinforced composite. Glass fibre was also treated by (3-Amino propil)triethoxysilane as a coupling agent. From the result, the addition of 2.5 % LNR in UPR had showed the optimum mechanical and morphological properties where the elastomer particle's were well dispersed in the matrix with smaller size. The silane treatment on the glass fiber increased the tensile and impact strength values of the UPR/ LNR/ GF composite compared to untreated fiber reinforcement. (author)

  9. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  10. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  11. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  12. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs

    Directory of Open Access Journals (Sweden)

    Sarah Trabia

    2018-04-01

    Full Text Available Ionic polymer-metal composites (IPMCs are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C than precursor Nafion (200 °C and a larger glass transition range (32–65°C compared with 21–45 °C. The two have the same thermal degradation temperature (~400 °C. Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes.

  13. Effect of metal ion species on mechanical relaxation of ethylene-co-methacrylic acid based ionomers; Ethylene-metakuriru san ionomer no rikigaku kanwa ni oyobosu kinzoku ion shu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X; Araki, O; Takigawa, T; Masuda, T [Kyoto University, Kyoto (Japan); Takahashi, M [Kyoto Institute of Technology, Kyoto (Japan)

    1996-12-15

    Dynamic viscoelasticity of ethylene-co-methacrylic acid (EMAA) based ionomers containing Zn or Na as well as EMAA was investigated. The film samples used for viscoelasticity measurements were molded at 195{degree}C. Two kinds of specimens, quenched and slowly cooled samples after molding, were prepared for each polymer specimen. For the quenched samples, the effect of aging on dynamic viscoelasticity was also examined. The temperature dispersion curves of dynamic storage modulus (E{prime}) of the ionomers obtained by quenching showed a large decrease around 35{degree}C due to the glass transition of EMAA ionomers. The ionomers prepared by slow cooling showed a high value of E{prime} in the high temperature region, compared with the quenched samples. This may be due to the difference in the degree of ionic cluster formation in the ionomers. The values of E{prime} at low temperatures increased with aging time for the quenched samples, which originates from the equilibration of the glassy state by aging. 14 refs., 7 figs., 1 tab.

  14. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  15. Sealing properties of three luting agents used for complete cast crowns: a bacterial leakage study.

    Science.gov (United States)

    Zmener, O; Pameijer, C H; Rincon, S M H; Serrano, S A; Chaves, C

    2013-01-01

    To assess the sealing properties of three different luting materials used for cementation of full cast crowns on extracted human premolars. Thirty noncarious human premolars were prepared in a standardized fashion for full cast crown restorations. All margins were placed in dentin. After impressions of the preparations, stone dies were fabricated on which copings were waxed, which were cast in type III alloy using standardized laboratory methods. Teeth were randomly assigned to three groups of 10 samples each (n=10), for which the following cements were used: 1) a resin-modified glass ionomer cement, Rely X Luting Plus (3M ESPE, St Paul, MN, USA); 2) a self-adhesive resin cement, Maxcem Elite (Kerr Corporation, Orange, CA, USA); and 3) a glass ionomer cement, Ketac Cem (3M ESPE), the latter used as control. After cementation the samples were allowed to bench-set for 10 minutes, stored in water at 37°C, subjected to thermal cycling (2000×, between 5°C and 55°C, dwell time 35 seconds), and then stored in sterile phosphate buffer for seven days at 37°C. Subsequently, the occlusal surface was carefully reduced until the dentin was exposed. Finishing on wet sand paper removed the gold flash caused by grinding. After sterilization, the specimens were subjected to bacterial microleakage in a dual chamber apparatus for 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meier survival test. Significant pairwise differences were analyzed using the log-rank test followed by Fisher exact test at a p<0.05 level of significance. Rely X Luting Plus showed the lowest microleakage scores, which statistically differed significantly from Maxcem Elite and Ketac Cem (p<0.05). Rely X Luting Plus cement displayed significantly lower microleakage scores than a self-adhesive resin-based and conventional glass ionomer cement.

  16. Microleakage, adaptation ability and clinical efficacy of two fluoride releasing fissure sealants

    Directory of Open Access Journals (Sweden)

    Marković Dejan

    2012-01-01

    Full Text Available Background/Aim. Retention of fissure sealants and good adaptation to enamel are essential for their success. Fluoride releasing resin-based materials are widely accepted for pit and fissure sealing, but newly designed glass ionomers can serve as a good alternative. The aim of this study was to evaluate microleakage and sealing ability in vitro, and to clinically assess two fluoride releasing fissure sealants. Methods. The sample for experimental study consisted of 20 freshly extracted intact human third molars, divided in two experimental groups according to the sealing material: fluoride releasing resin-based (Heliosel F and glass ionomer (Fuji Triage material. Digital images and scanning electron microscope were used to assess microleakage and adaptation ability. Sample for clinical study consisted of 60 children, aged 6-8 years, with high caries risk, divided in two groups according to the sealant material. Fissure sealant was applied to all erupted, caries-free first permanent molars. Sealants were evaluated after 3, 6 and 12 months using modified Ryge criteria for retention, marginal adaptation, colour match, surface smoothness and caries. Results. Microleakage was detected in more than half of the specimen, without significant differences between the two groups (p > 0.05. Both materials exhibited acceptable sealing ability. Complete retention at the end of the observation period was 81.8% for resin-based, and 21.1% for glass-ionomer fissure sealant (p < 0.001. The presence of caries in sealed molars has been detected in one patient in both groups. During the 12-month observation period, Helioseal F demonstrated better retention, marginal adaptation and surface smoothness (p < 0.001. There were no differences between the two materials regarding caries and color match (p > 0.05. Conclusion. Both tested materials demonstrate satisfactory clinical and caries prophylactic characteristics that justify their use in contemporary preventive

  17. Weather ability studies of phenolic resin coated woods and glass fiber reinforced laminates

    International Nuclear Information System (INIS)

    Munir, A.; Hussain, R.; Rizvi, M.H.; Ahmed, F.

    1997-01-01

    Phenolic resins have made a major breakthrough in the field of high technology in 80's. These are now active participants of h igh tech' areas ranging from electronics, computers, communication, outer space, aerospace, advanced materials, bio materials and technology. A phenol - formaldehyde (1:1.5) resin having resin content of 70% synthesized in the laboratory has been applied for wood coating and reinforcing glass fiber. The weatherability and solvent resistance of these items have been studied and results discussed keeping in view the envisaged application for structural materials and chemical equipment. The toxic materials released during contact with solvents for chemical applications and during degradation general have been monitored. The results are discussed with reference to environmental pollution due to these resins and their composites under different conditions. (authors)

  18. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  19. An Invitro Comparative Evaluation of Compressive Strength and Antibacterial Activity of Conventional GIC and Hydroxyapatite Reinforced GIC in Different Storage Media.

    Science.gov (United States)

    Bali, Praveen; Prabhakar, Attiguppe Ramasetty; Basappa, Nadig

    2015-07-01

    GIC is the most commonly used restorative material in pediatric dentistry since it has got various advantages like fluoride release, anticariogenic property and chemical adhesion to tooth but a major disadvantage is its contraindication in posterior teeth because of poor mechanical properties. The purpose of this study is a modest attempt to explore the influence of the addition of 8% hydroxyapatite to conventional GIC on its compressive strength when immersed in different storage media and antibacterial activity. One hundred and twenty six pellets of the specific dimension of 6 x 4 mm were prepared and divided into 6 groups and were immersed in deionized water, artificial saliva, lactic acid solution respectively for three hours everyday over 30 days test period. The compressive strength was measured by using a universal testing machine (AG-50kNG) at cross head of 1mm(2)/min and strength was determined after 1 day, 7 days, 30 days respectively and the antibacterial activity evaluated against Streptococcus mutans strain in brain heart infusion broth using serial dilution method. Group wise comparisons were made by one-way ANOVA followed by post-hoc Tukey's test, Intergroup comparison was done with Mann-Whitney test. GIC±HAp showed significantly greater antibacterial activity against Streptococcus mutans when compared to GIC group. There was no statistically significant change in the compressive strength among the groups except for group 3 and group 6 when immersed in lactic acid had shown significant difference at the end of 24 hours. The addition of 8% hydroxyapatite to GIC showed marked increased in the antibacterial activity of the conventional GIC against caries initiating organism without much increase in the compressive strength of the GIC when immersed in the different storage media.

  20. Experimental studies on a new bioactive material: HAIonomer cements.

    Science.gov (United States)

    Yap, A U J; Pek, Y S; Kumar, R A; Cheang, P; Khor, K A

    2002-02-01

    The lack of exotherm during setting, absence of monomer and improved release of incorporated therapeutic agents has resulted in the development of glass ionomer cements (GICs) for biomedical applications. In order to improve biocompatibility and biomechanically match GICs to bone, hydroxyapatite-ionomer (HAIonomer) hybrid cements were developed. Ultra-fine hydroxyapatite (HA) powders were produced using a new induction spraying technique that utilizes a radio-frequency source to spheriodize an atomized suspension containing HA crystallites. The spheriodized particulates were then held at 800 degrees C for 4 h in a carbolite furnace using a heating and cooling rate of 25 degrees C/min to obtain almost fully crystalline HA powders. The heat-treated particles were characterized and introduced into a commercial glass ionomer cement. 4 (H4), 12 (H12) and 28 (H28) vol% of fluoroalumino silicate were substituted by crystalline HA particles that were dispersed using a high-speed dispersion technique. The HAIonomer cements were subjected to hardness, compressive and diametral tensile strength testing based upon BS6039:1981. The storage time were extended to one week to investigate the effects of cement maturation on mechanical properties. Commercially available capsulated GIC (GC) and GIC at maximum powder:liquid ratio (GM) served as comparisons. Results were analyzed using factorial ANOVA/Scheffe's post-hoc tests and independent samples t-test at significance level 0.05. The effect of time on hardness was material dependent. With the exception of H12, a significant increase in hardness was observed for all materials at one week. A significant increase in compressive strength was, however, observed for H12 over time. At 1 day and 1 week, the hardness of H28 was significantly lower than for GM, H4, and H12. No significant difference in compression and diametral tensile strengths were observed between materials at both time intervals. Results show that HAIonomers is a

  1. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  2. Optimization of the rheological properties of epoxy resins for glass and carbon reinforced plastics

    Science.gov (United States)

    Phyo Maung, Pyi; Malysheva, G.; Romanova, I.

    2016-10-01

    Vacuum assisted resin transfer moulding (VARTM) offers advantages such as simplicity, low cost of consumables, and the ability to carry out the impregnation process and curing without using expensive equipment and tooling. In the VARTM process, rheological properties of resin have a critical impact on the impregnation and curing process. In this article, the experimental results of viscosity are presented, including the glass transition temperature, and the tensile and bending strength of the epoxy binders with the amine hardener, which depend on the quantity of its active solvent composition. The active solvent used is diethylene glycol. It shows that for an increase in the content of the active solvent, a reduction in the viscosity and a reduction of the glass transition temperature and strength occurs. The optimum composition of the binder is selected by using the Pareto optimization criteria and the Cayley - Smorodinskaya method. By using the epoxy binder, the active solvent should not exceed 10-15% by weight. This approach helps to optimize the amount of active solvent added to the epoxy resins for the criterion of viscosity, strength, and heat resistance.

  3. Rheological characterization of geopolymer binder modified by organic resins

    Science.gov (United States)

    Cekalová, M.; Kovárík, T.; Rieger, D.

    2017-01-01

    The purpose of this study is going to investigate properties of alkali-activated powder (calcined kaoilinitic clay and granulated blast furnace slag) prepared as a geopolymer paste and modified by various amount of organic resin. Hybrid organic-inorganic binders were prepared as a mix of organic resin and geopolymer inorganic paste under vacuum conditions. The process of solidification was investigated by measurements of storage (G’) and loss modulus ( G’) in torsion. The measurement was conducted in oscillatory mode by constant strain of 0.01 %. This strain is set in linear visco-elastic region for minimization influence of paste structure. The effect of organic resin is presented and determined by changes of viscosity (‘n*), modules in torsion and tangent of loss angle (tan 8). Results indicate that addition of organic resin significantly affects the initial viscosity and hardening kinetics.

  4. Synthesis of adhesive radiohardenable resins of the modified polyepoxide type

    International Nuclear Information System (INIS)

    Acquacalda, J.-M.

    1972-01-01

    Eight adhesive radiohardenable resins of the modified epoxide type have been synthesized. Four were obtained from commercial resins: EPON 812, 827, 871 and ARALDITE 106. The synthesis of the four others required the development of analytical techniques to characterize of the reagents beforehand and then to identify the resins themselves. From a study of behavior under irradiation it seems that all the compounds obey a law of acrylic double bond disappearance with the logarithm of irradiation dose for which it is hard to find a detailed theoretical interpretation. The fracture of irradiated adhesive assemblies and their comparison has shown that for acceptable irradiation doses the synthesized resins, especially the product of Bisphenol A condensation on glycidyl acrylate, behave quite as well as polyepoxide resins without possessing the disadvantages inherent to the incorporation of standard chemical hardeners [fr

  5. Influence of Adhesives and Methods of Enamel Pretreatment on the Shear Bond Strength of Orthodontic Brackets.

    Science.gov (United States)

    Jurišić, Sanja; Jurišić, Gordan; Jurić, Hrvoje

    2015-12-01

    The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT). The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B-37% phosphoric acid; Fuji Ortho LC, group C-self etching primer; Transbond XT, group D-37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated. After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups. The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer's recommendation is the "gold standard" for brackets bonding for fixed orthodontic appliances.

  6. Testing of residual monomer content reduction possibility on acrilic resins quality

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2011-01-01

    Full Text Available Poly (methyl methacrylate (PMMA is material widely used in dentistry. Despite the various methods used to initiate the polymerization of acrylic resins, the conversion of monomer to polymer is not complete thus leaving some unreacted methyl methacrylate (MMA, known as residual monomer (RM, in denture structure. RM in dental acrylic resins has deleterious effects on their mechanical properties and their biocompatibility. The objective of the work was to test the residual monomer reduction possibility by applying the appropriate postpolymerization treatment as well as to determine the effects of this reduction on pressure yields stress and surface structure characteristics of the acrylic resins. Postpolymerization treatments and water storage induced reduction of RM amount in cold-polymerized acrylic resins improved their mechanical properties and the homogenized surface structure. After the polymerization of heat-polymerized acrylic resins the post-polymerization treatments for improving the quality of this material type are not necessary.

  7. Phosphorus-containing imide resins - Modification by elastomers

    Science.gov (United States)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A.; Varma, D. S.

    1984-01-01

    The syntheses and general features of addition-type maleimide resins based on bis(m-aminophenyl)phosphine oxide and tris(m-aminophenyl)phosphine oxide have been reported previously. These resins have been used to fabricate graphite cloth laminates having excellent flame resistance. These composites did not burn even in pure oxygen. However, these resins were somewhat brittle. This paper reports the modification of these phosphorus-containing resins by an amine-terminated butadiene-acrylonitrile copolymer (ATBN) and a perfluoroalkylene diaromatic amine elastomer (3F). An approximately two-fold increase in short beam shear strength and flexural strength was observed at 7 percent ATBN concentration. The tensile, flexural, and shear strengths were reduced when 18 percent ATBN was used. Anaerobic char yields of the resins at 800 C and the limiting oxygen indexes of the laminates decreased with increasing ATBN concentration. The perfluorodiamine (3F) was used with both imide resins at 6.4 percent concentration. The shear strength was doubled in the case of the bisimide with no loss of flammability characteristics. The modified trisimide laminate also had improved properties over the unmodified one. The dynamic mechanical analysis of a four-ply laminate indicated a glass transition temperature above 300 C. Scanning electron micrographs of the ATBN modified imide resins were also recorded.

  8. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  9. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    Science.gov (United States)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  10. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  11. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  12. Morphological analysis of ionomers

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the progress made during the period of April 1st, 1989 and March 31st, 1990. Topics covered are: SANS of Telechelic Ionomers, SANS of Sulfonated Polyurethanes, Effect of Matrix Polarity and Ambient Aging on the Morphology of Sulfonated Polyurethane Ionomers, Adhesive Sphere Model for Analysis of SAXS Data from Ionomers, Comparison of Structure-Property Relationships in Carboxylated and Sulfonated Polyurethane Ionomers, Development of a Liquid-like Hard Sphere Model for Deformed Ionomer Samples, and Polymer Synthesis for Proposed Research

  13. [Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites].

    Science.gov (United States)

    Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng

    2017-12-01

    This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (Pglass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (Pglass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (Pglass ceramics treated with 4

  14. Oxygen reduction at platimun/ionomer interface: effects of phase separation of ionomer

    Energy Technology Data Exchange (ETDEWEB)

    Chlistunoff, Jerzy [Los Alamos National Laboratory

    2008-01-01

    Oxygen reduction reaction (ORR) at the interface between platinum and recast ionomers (Nafion EW 1100 and 950 and 6F-40) was studied at different temperatures (20--80{sup o}C) and humidities (10--100%) employing smooth Pt and Pt-black-covered ultramicroelectrodes. ORR was strongly inhibited on smooth electrodes. The inhibition increased with the reduction time, temperature and humidity, but was absent for Nafion EW 1100 in contact with liquid water. It was attributed to the hydrophobic component of ionomer blocking both active sites and oxygen transport. It was postulated that the dynamic changes in interfacial phase separation of ionomer are facilitated by the attractive interactions between the hydrophobic component of ionomer and bare platinum and between oxide-covered Pt and the hydrophilic component of ionomer. These interactions were also proposed to be responsible for the differences in ORR voltammetry for films prepared and equilibrated under different conditions. The decrease in ORR inhibition, Nafion EW 950> Nafion EW 1100> 6F-40, was correlated with physical and molecular properties of the ionomers. The lack of inhibition for Pt-black-covered electrodes was attributed to the more random distribution of ionomer chains and the high activation barriers for the ionomer restructuring at rough interfaces.

  15. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effectiveness of two new types of sealants: retention after 2 years

    NARCIS (Netherlands)

    Chen, X.; Du, M.; Fan, M.; Mulder, J.; Huysmans, M.C.; Frencken, J.E.

    2012-01-01

    The hypotheses tested were: survival rate of fully and partially retained glass-carbomer sealants is higher than those of high-viscosity glass-ionomer, with and without energy supplied, and that of resin composite; survival rate of fully and partially retained sealants of high-viscosity

  17. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of pre-impregnated resin-glass systems for insulating superconducting magnets

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1975-01-01

    Superconducting magnets using adiabatically stable conductors may be fabricated using a resin-glass insulating system applied to the conductor before winding and cured after winding. Preliminary screening for strength and convenience of use has been performed on seven possible candidate systems. Results are presented for butt-tensile tests at 300 0 K and 77 0 K and a description is given of the physical handling characteristics for each system. (U.S.)

  19. [Three-point bending moment of two types of resin for temporary bridges after reinforcement with glass fibers].

    Science.gov (United States)

    Didia, E E; Akon, A B; Thiam, A; Djeredou, K B

    2010-03-01

    One of the concerns of the dental surgeon in the realization of any operational act is the durability of this one. The mechanical resistance of the provisional prostheses contributes in a large part to the durability of those. The resins in general, have weak mechanical properties. The purpose of this study is to evaluate the resistance in inflection of temporary bridges reinforced with glass fibre. To remedy the weak mechanical properties of resins, we thought in this study, to reinforce them with glass fibres. For this purpose, we realized with two different resins, four groups of temporary bridges of 3 elements, including two groups reinforced fibreglass and the others not. Tests of inflection 3 points have been made on these bridges and resistance to fracture was analysed. The statistical tests showed a significant difference in four groups with better resistance for the reinforced bridges.

  20. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass.

    Science.gov (United States)

    Korkut, Emre; Torlak, Emrah; Altunsoy, Mustafa

    2016-07-26

    The aim of this study was to evaluate the antimicrobial efficacy and mechanical properties of dental resin composites containing different amounts of microparticulate bioactive glass (BAG). Experimental resin composites were prepared by mixing resin matrix (70% BisGMA and 30% TEGDMA) and inorganic filler with various fractions of BAG to achieve final BAG concentrations of 5, 10 and 30 wt%. Antimicrobial efficacy was assessed in aqueous suspension against Escherichia coli, Staphylococcus aureus and Streptococcus mutans and in biofilm against S. mutans. The effect of incorporation of BAG on the mechanical properties of resin composite was evaluated by measuring the surface roughness, compressive strength and flexural strength. Under the dynamic contact condition, viable counts of E. coli, S. aureus and S. mutans in suspensions were reduced up to 78%, 57% and 50%, respectively, after 90 minutes of exposure to disc-shaped composite specimens, depending on the BAG contents. In 2-day-old S. mutans biofilm, incorporation of BAG into composite at ratios of 10% and 30% resulted in 0.8 and 1.4 log reductions in the viable cell counts compared with the BAG-free composite, respectively. The surface roughness values of composite specimens did not show any significant difference (p>0.05) at any concentration of BAG. However, compressive and flexural strengths of composite were decreased significantly with addition of 30% BAG (p<0.05). The results demonstrated the successful utilization of BAG as a promising biomaterial in resin composites to provide antimicrobial function.

  1. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    DEFF Research Database (Denmark)

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for B40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical...... interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces...

  2. Frequency of remnants of sealants left behind in pits and fissures of occlusal surfaces after 2 and 3 years.

    NARCIS (Netherlands)

    Hu, X.; Zhang, W.; Fan, M.; Mulder, J.; Frencken, J.E.F.M.

    2017-01-01

    OBJECTIVES: The null-hypothesis tested was that there was no difference in the frequency of remnants of high-viscosity glass-ionomer sealants left behind in pits and fissures of occlusal surfaces of first permanent molars and that of resin composite and glass-carbomer sealants. MATERIALS AND

  3. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    International Nuclear Information System (INIS)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2015-01-01

    Highlights: • Bisphenol-F based boron-phenolic resins (B-BPF) with B−O bonds were synthesized. • The modified silicon nitride (m-SiN) was well dispersed and adhered in the B-BPF. • B-BPF/m-SiN composites have good thermal resistance and mechanical properties. • The grinding wheels bound by B-BPF/m-SiN have excellent grinding quality. - Abstract: In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link B−O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins

  4. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  5. A high sensitivity investigation of $K_{\\rm S}$ and neutral hyperon decays using a modified $K_{\\rm S}$ beam

    CERN Multimedia

    Kalmus, G E; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S; Monnier, E; Swallow, E C; Winston, R; Gudzovskiy, E; Gurev, D; Kuz'Min, N; Madigozhin, D; Molokanova, N; Potrebenikov, Y; Rubin, P D; Walker, A; Dabrowski, A E; Cotta Ramusino, A; Damiani, C; Gianoli, A; Savrie, M; Scarpa, M; Wahl, H; Bizzeti, A; Calvetti, M; Iacopini, E; Lenti, M; Veltri, M; Bocquet, G; Ceccucci, A; Gatignon, L; Gonidec, A; Anvar, S; Cheze, J-B; De Beer, M; Debu, P; Gouge, G; Le Provost, H; Mandjavidze, I; Marel, G; Mazzucato, E; Peyaud, B; Vallage, B; Behler, M; Eppard, K; Kleinknecht, K; Masetti, L; Moosbrugger, U; Morales Morales, C; Wanke, R; Winhart, A; Anzivino, G; Cenci, P; Imbergamo, E; Nappi, A; Pepe, M S; Petrucci, M C; Piccini, M; Valdata, M; Cerri, C; Collazuol, G; Costantini, F; Giudici, S; Lamanna, G; Mannelli, I; Pierazzini, G; Sozzi, M; Holder, M; Maier, A; Ziolkowski, M; Cartiglia, N; Menichetti, E; Pastrone, N; Dibon, H; Jeitler, M; Neuhofer, G; Pernicka, M; Taurok, A

    2002-01-01

    %NA48/1 The experiment performs a search for rare $K_{\\rm S}$ and neutral hyperon decays. A neutral beam is produced by 400 GeV protons striking a beryllium target. About 1/3 of the produced $K_{\\rm S}$ particles live long enough to enter the decay region 6m downstream of the target. The experiment aims to an exposure of about $3 \\times 10^{10}$ neutral kaon decays. The experimental apparatus is based on the existing NA48 detector, with upgraded read-out systems. Charged particles are reconstructed by a magnetic spectrometer; photons are measured by a liquid krypton calorimeter (LKr). Among the most interesting decay decay modes there are the $\\pi^0 e^+ e^-$, $ 3 \\pi^0$, and $\\gamma \\gamma$. A measurement of the $ K_{\\rm S} \\rightarrow \\pi^0 e^+ e^-$channel, or at least a precise upper limit, will bound the indirect CP violating term in the decay $ K_{\\rm L} \\rightarrow \\pi^0 e^+ e^-$. The branching ratio for the $K_{\\rm S}$ mode the cannot be accurately predicted and therefore a measurement for this decay is...

  6. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-07-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet, in real structural applications, laminated composites can exhibit plasticity and progressive damage initiated mainly by shear loading. We investigated the damage and plasticity induced by the addition of carbon nanotubes to the matrix of a glass fiber/epoxy composite system. We characterized both the modified epoxy resin and the associated modified laminates using classical mesoscale analysis. We used dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy and classical mechanical testing to characterize samples with different concentrations of nanofillers. Since the samples were prepared using the solvent evaporation technique, we also studied the influence of this process. We found that in addition to the global increase in elastic regime properties, the addition of carbon nanotubes also accelerates the damage process in both the bulk resin and its associated glass-fiber composite. © 2013 Elsevier Ltd.

  7. Effect of Luting Cements On the Bond Strength to Turkom-Cera All-Ceramic Material

    Science.gov (United States)

    Al–Makramani, Bandar M. A.; Razak, Abdul A. A.; Abu–Hassan, Mohamed I.; Al–Sanabani, Fuad A.; Albakri, Fahad M.

    2018-01-01

    BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations. AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material. MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test. RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05). CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested. PMID:29610618

  8. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  9. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  10. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  11. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ... Objective: The aim of this study was to evaluate the antibacterial surface .... glass ionomer cement. ..... resin containing antibacterial monomer MDPB.

  12. The Effect of a Glass Ceramic Insert in Sandwich Technique on Microleakage in Class II Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Hila Hajizadeh

    2015-06-01

    Full Text Available Introduction: The aim of the present study was to evaluate the effect of glass ceramic insert in the sandwich technique to reduce microleakage in class II composite resin restorations. Methods: Sixty sound human upper second premolars were selected and randomly divided into six groups (n=10. Class II box-only cavities were prepared in distal aspects of each tooth with gingival margin located approximately 0.5 mm below the CEJ. Group A (Control was restored incrementally with Tetric Ceram and a total-etch bonding technique. Group B and C were restored with sandwich technique using a compomer (Compoglass F or flowable composite resin (Tetric Flow as the lining material at gingival floor, respectively. Group D, E and F were represented in the same way as group A, B and C and a glass ceramic insert was added to the composite bulk. The specimens were thermo-mechanically cycled, and then immersed in 0.5 % basic fuschin for 24 hours. Dye penetration was detected using a sectioning technique. Results: No significant difference was found between total-etch bonding and sandwich techniques. The placement of an insert caused an increase in   microleakage in all groups significantly (P < 0.05. Group D (no liner/ with glass insert showed the highest amount of microleakage and Group A (no liner/ without glass insert resulted in the lowest amount of total microleakage. Conclusion: Placement of glass ceramic insert could not decrease gingival leakage. According to the limitation of this study a composite resin restorations with incremental technique is recommended

  13. Effect of Deproteinization Before and after Acid Etching on the ...

    African Journals Online (AJOL)

    2018-05-22

    May 22, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Objective: .... resin in artificial enamel carious lesions was evaluated after using ... glass ionomer cement concluded that 10% papain gel.

  14. Assessment of micro-leakage for light-cure glass ionomer and pro-root mineral trioxide aggregate as coronal barriers in intracoronal bleaching of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Maryam Zare Jahromi

    2017-03-01

    Full Text Available Introduction: Cervical root resorption is one of the most important complications of intra coronal bleaching. A way of preventing this type of resorption is using a coronal barrier under the bleaching materials. The aim of this study was to compare the sealing ability of glass ionomer cement and Pro Root Mineral Trioxide Aggregate (MTA as a coronal barrier in intra coronal bleaching. Materials &Methods: In this study, 40 single-root maxillary anterior teeth were endodontically prepared and divided into two experimental groups (n= 15 and two positive and negative control groups (n=5. In the experimental groups, gutta percha was removed up to 3 mm below the cemento enamel junction (CEJ.RMGI and MTA were placed over gutta percha up to the level of CEJ. After a 24-hour incubation period, the bleaching agent (a mixture of sodium perborate and 30% hydrogen peroxide was placed in the access cavities. The bleaching agents were replaced every 3 days over 9 days. Then, the access cavity was filled with 2% methylene blue for 48 hours. All samples were longitudinally sectioned and the dye penetration range was evaluated using a stereomicroscope. Data were statistically analyzed using Kruskal-Wallis and Mann–Whitney tests (α=0.05. Results: Leakage mean indicated that there was a significant difference between these two groups and leakage was less in ProRoot than glass ionomer. Conclusion: It seems that the MTA can provide a better coronal seal during the bleaching.

  15. Investigation of GICs Associated with Large dB/dt Variations in Space

    Science.gov (United States)

    Dimitrakoudis, S.; Mann, I. R.; Murphy, K. R.; Rae, J.; Denton, M.; Milling, D. K.

    2016-12-01

    Geomagnetically induced currents (GICs) can be driven in terrestrial electrical power grids as a result of the induced electric fields arising from magnetic field changes driven in the coupled magnetosphere-ionosphere-ground system. Substorms are often hypothesised to be associated with the largest GIC effects on the ground, especially at higher latitudes. However, recent studies have suggested that other dayside phenomena such as sudden impulses and even ULF wave trains might also drive significant GICs. Using data from the CARISMA ground-based magnetometer network we examine the GIC response driven from a variety of magnetospheric processes. In particular we focus on events where large dB/dt is observed in-situ on GOES East and West satellites. Auroras, resulting from magnetospheric substorms, give us a dynamical view of sudden destabilizations in the nightside magnetosphere, of large spatial and temporal extent, that can drive large and potentially damaging geomagnetically induced currents (GICs) in terrestrial power grids. Since ground dB/dt can be used as a GIC proxy, we have surveyed GOES data since 2011 for the largest dB/dT events, and found some to be of the order of hundreds of nT in the span of a few seconds. These are observed in both the nightside and dayside, and, as such, we seek to establish connections to drivers affecting both sides of the terminator; tail activations and substorms on the nightside, large amplitude ULF waves, solar wind sudden impulses, and rapid changes in MIC current systems on the dayside. The short duration of these events, coupled with the use of conjugate satellite measurements and ground magnetometer arrays when possible, allows us to investigate their localization and the latitudinal extent of their effects and to further examine the potential role of non-substorm phenomena in generating GICs which may have adverse impacts in electrical power grids.

  16. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  17. Evaluation of Two Different Rapid Maxillary Expansion Surgical ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow ..... incisors were covered with acrylic resin [Figure 1]. The occlusal surfaces ... Multi-Cure Glass Ionomer Orthodontic Band Cement; 3M.

  18. Oxygen index tests of thermosetting resins

    Science.gov (United States)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  19. Development of high radiation-resistant glass fiber reinforced plastics with cyanate-based resin for superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Idesaki, Akira, E-mail: idesaki.akira@qst.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Nakamoto, Tatsushi [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yoshida, Makoto [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimada, Akihiko [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Iio, Masami; Sasaki, Kenichi; Sugano, Michinaka [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Makida, Yasuhiro [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ogitsu, Toru [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-11-15

    Highlights: • GFRPs for superconducting magnet systems were developed. • Cyanate-based resins were used for GFRPs as matrices. • Radiation resistance was evaluated based on gas evolution and mechanical properties. • GFRP with bismaleimide-triazine resin exhibited excellent radiation resistance. - Abstract: Glass fiber reinforced plastics (GFRPs) with cyanate ester resin/epoxy resin, bismaleimide resin/epoxy resin, and bismaleimide-triazine resin as matrices were developed for the superconducting magnet systems used in high intensity accelerators. The radiation resistance of these GFRPs was evaluated based on their gas evolution and changes in their mechanical properties after gamma-ray irradiation with dose of 100 MGy in vacuum at ambient temperature. After irradiation, a small amount of gas was evolved from all of the GFRPs, and a slight decrease in mechanical properties was observed compared with the conventional epoxy resin-GFRP, G10. Among the GFRPs, the smallest amount of gas (6 × 10{sup −5} mol/g) was evolved from the GFRP with the bismaleimide-triazine resin, which also retained more than 88% of its flexural strength after 100 MGy irradiation; this GFRP is thus considered the most promising material for superconducting magnet systems.

  20. EFFECTS OF POLISHING TIME AND THERMALCYCLINGON THE MICROLEAKAGE OF FOUR TOOTH –COLOURED DIRECT RESTORATIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    V MORTAZAVI

    2002-09-01

    Full Text Available Introdaction. Microleakage has been recognized as a major clinical problem with direct filled dental restorations.The purpose of this study was to investigate and to compare the microleakage of four direct filled tooth-coloured materials, evaluation the effects of polishing time and thermocycling on the microleakage of these materials. Methods. Wedge-shaped class V cavities were prepared on buccal and lingual surfaces of 96 intact extracted human molar teeth. The teeth were randomly divided into three treatment groups and four subgroups. The cavities of each subgroup were filled using one of these materials: a conventional glass ionomer; a resin modified glass ionomer; a composite resin and a compomer. Polishing in the teeth of group 1 was done immediately after placement of restorations and in group 2 one week later. In group 3 delayed polishing and thermocycling (X100 was done. All of the teeth were stored in distilled water for one week and then stained with dye, sectioned, and scored for microleakage on occlusal and cervical edges. Results were statistically analyzed by Kruskal wallis and Mann whitney tests. Results. There was a statistically difference between the microleakage scores of four materials (P < 0.001. Immediately polished glass ionomer and compomer groups have significantly more microleakage than delayed polished groups (P < 0.001. Thermocycting could infulence the microleakage of composite on cervical edges (P < 0.05. Discussion. The precense of differences between the nature of materials and also the surface treatment such as primer or etchant application could influence the microleakage. The prescence of differences in reaction rate between the materials and the time that they reach to their adequate mechanical strength and adhesive bond strength lead to presence of differences between the effect of polishing time on the microleakage scores of materials.

  1. Nanoscale Mobility of Aqueous Polyacrylic Acid in Dental Restorative Cements.

    Science.gov (United States)

    Berg, Marcella C; Benetti, Ana R; Telling, Mark T F; Seydel, Tilo; Yu, Dehong; Daemen, Luke L; Bordallo, Heloisa N

    2018-03-28

    Hydrogen dynamics in a time range from hundreds of femtoseconds to nanoseconds can be directly analyzed using neutron spectroscopy, where information on the inelastic and quasi-elastic scattering, hereafter INS and QENS, can be obtained. In this study, we applied these techniques to understand how the nanoscale mobility of the aqueous solution of polyacrylic acid (PAA) used in conventional glass ionomer cements (GICs) changes under confinement. Combining the spectroscopic analysis with calorimetric results, we were able to separate distinct motions within both the liquid and the GICs. The QENS analysis revealed that the self-diffusion translational motion identified in the liquid is also visible in the GIC. However, as a result of the formation of the cement matrix and its setting, both translational diffusion and residence time differed from the PAA solution. When comparing the local diffusion obtained for the selected GIC, the only noticeable difference was observed for the slow dynamics associated with the polymer chain. Additionally, over short-term aging, progressive water binding to the polymer chain occurred in one of the investigated GICs. Finally, a considerable change in the density of the GIC without progressive water binding indicates an increased polymer cross-linking. Taken together, our results suggest that accurate and deep understanding of polymer-water binding, polymer cross-linking, as well as material density changes occurring during the maturation process of GIC are necessary for the development of advanced dental restorative materials.

  2. Microleakage comparison of glass-ionomer and white mineral trioxide aggregate used as a coronal barrier in nonvital bleaching.

    Science.gov (United States)

    Vosoughhosseini, Sepideh; Lotfi, Mehrdad; Shahmoradi, Kaveh; Saghiri, Mohammad-Ali; Zand, Vahid; Mehdipour, Masoumeh; Ranjkesh, Bahram; Mokhtari, Hadi; Salemmilani, Amin; Doosti, Sirvan

    2011-11-01

    There is some evidence that the pH at the root surface is reduced by intracoronal placement of bleaching pastes, which is known to enhance osteoclastic activity. Therefore, it is recommended that a protective barrier be used over the canal filling to prevent leakage of bleaching agents. Glass-ionomer (GI) is commonly used as a coronal barrier before nonvital bleaching. Because mineral trioxide aggregate (MTA) creates high alkalinity after mixing with water, using MTA as a protective barrier over the canal filling may not only prevent leakage of bleaching agents and microorganisms, but may prevent cervical resorption. The aim of this study was to evaluate sealing ability of white mineral trioxide aggregate (WMTA) as a coronal barrier before nonvital bleaching. Root canals of one hundred thirty human maxillary incisors were instrumented and filled with gutta-percha without sealer. Gutta-percha was removed up to 3 mm below the cementoenamel junction (CEJ). The teeth were randomly divided into six experimental groups of 20 teeth each and two control groups of 5. In three experimental groups, WMTA was packed into the canal to the level of CEJ. In the remaining experimental groups, glass-ionomer (GI) was used as a coronal barrier. After a 24-hour incubation period, one of the following three bleaching agents was placed in the access cavity of each of the WMTA or GI groups. These three bleaching agents were 30% hydrogen peroxide, sodium perborate mixed with 30% hydrogen peroxide, and sodium perborate mixed with distilled water. The bleaching agents were replaced every 3 days for three times. In the positive controls, no coronal barrier was used. In the negative controls, all the tooth surfaces were covered by two layers of nail varnish. Microleakage was evaluated using protein leakage test. Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney tests. The experimental groups showed minimum leakage which was not significantly more than tha in the

  3. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......The interaction between perfluorosulfonic acid ionomer and supported platinum catalyst is essential. It directly influences platinum accessibility, stability of carbon support and platinum, proton conductivity and electron conductivity in an electrode. In this study, we compare the adsorption...... that the platinization step modifies the surface nature of the carbon supports in terms of specific surface area, crystallinity and especially porosity; therefore, ionomer adsorption over carbon is not always representative for the ionomer adsorption over carbon supported catalyst, though indicative. Moreover...

  4. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  5. Suppression of Adverse Effects of GIC Using Controlled Variable Grounding Resistor

    Science.gov (United States)

    Abuhussein, A.; Ali, M. H.

    2016-12-01

    Geomagnetically induced current (GIC) has a harmful impact on power systems, with a large footprint. Mitigation strategies for the GIC are required to protect the integrity of the power system. To date, the adverse effects of GIC are being mitigated by either operational procedures or grounding fixed capacitors (GFCs). The operational procedures are uncertain, reduce systems' reliability, and increase energy losses. On the other hand, GFCs, incur voltage spikes, increase the transformer cost substantially, and require protection circuitry. This study investigates new possible approaches to cope with GIC, by using a controlled variable grounding resistor (CVGR), without interfering with the system's normal operation. In addition, the new techniques help suppress unsymmetrical faults in the power network. The controllability of the grounding resistor is applied using three different techniques: (1) a Parallel switch that is controlled by PI regulated duty cycle, (2) a Parallel switch that is triggered by a preset values in a look-up-table (LUT), and (3) a Mechanical resistor varied by a Fuzzy logic controller (FLC). The experimental results were obtained and validated using the MATLAB/SIMULINK software. A hypothetical power system that consists of a generator, a 765kv, 500 km long transmission lines connecting between a step-up, Δ-Yn, transformer, and a step-down, Yn-Δ, transformer, is considered. The performance of the CVGR is compared with that of the GFC under the cases of GIC event and unsymmetrical faults. From the simulation results, the following points are concluded: The CVGR effectively suppresses the GIC flowing in the system. Consequently, it protects the transformers from saturation and the rest of the system from collapsing. The CVGR also reduces the voltage and power swings associated with unsymmetrical faults and blocks the zero sequence current flowing through the neutral of the transformer. The performance of the CVGR surpasses that of the GFC in

  6. Mechanical and fracture properties of R-glass reinforced composites with pyrolysed polysiloxane resin as a matrix

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Bednářová, D.; Glogar, Petr; Dusza, J.; Rudnayová, E.

    2005-01-01

    Roč. 290, - (2005), s. 344-347 ISSN 1013-9826. [International conference on fractography of advanced ceramics /2./. Stará Lesná, 03.10.2005-06.10.2005] R&D Projects: GA AV ČR(CZ) KSK2067107; GA ČR GA106/02/0177 Institutional research plan: CEZ:AV0Z30460519 Keywords : unidirectional composite * glass fiber reinforcement * pyrolysed polysiloxane resins Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.224, year: 2005

  7. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... resin composite, the fifth group – two‑stage SE adhesive applied and cavities filled with ... KEYWORDS: Adhesives, composite, evaluation, leakage ... the glass ionomers. ... systems are realized in one or two clinical step(s).[5].

  8. The force required to fracture endodontically roots restored with ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice ... Objective: To evaluate the effect of various materials as intra‑orifice barriers on the force required fracture roots. ... prepared, but not filled), filling using glass ionomer cement, nano‑hybrid composite resin, ...

  9. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  10. Analysis of the efficiency of different materials used as cervical barrier in endogenous bleaching

    Directory of Open Access Journals (Sweden)

    Joel de Brito Gonçalves

    2008-01-01

    Full Text Available Objective: Evaluate the efficiency of three materials used for making the cervical buffer on the bleaching procedure. Methods: Thirty-six, recently extracted human canines were used, and divided into four experimental groups of nine replicas in each group. Group I was the control group, in which no sealing was done in the cervical region; Group II corresponded to the cervical buffer made by chemically activated glass ionomer cement (Vidrion R; in Group III resin-modified glass ionomer cement (Vitremer, 3M, Sumaré, Brazil was used as the cervical buffer; and in Group IV Coltosol temporary restorative cement was used. A paste of sodium perborateand 30% hydrogen peroxide was placed in the pulp chamber for seven days, followed by placement of a dye to evaluate microleakageafterwards. Results: The results obtained among the experimental groups were statistically significant. Conclusion: That Coltosol was the most effective material against leakage in the apical direction. Vitremer (3M, Sumaré, Brazil occupied the intermediate position among the groups, and Vidrion behave better than the control group only, therefore, with precarious sealing properties.

  11. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  12. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents.

    Science.gov (United States)

    Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús

    2012-07-01

    This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.

  13. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    International Nuclear Information System (INIS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-01-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  15. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  16. [Effect of saliva contamination on microleakage around class-5 cavities restored with three different types of adhesive materials].

    Science.gov (United States)

    Iovan, Gianina; Stoleriu, Simona; Andrian, S; Dia, V; Căruntu, Irina Draga

    2004-01-01

    The recent improvement of adhesive materials should decrease the risk related to saliva contamination. The aim of this study was to evaluate the effect of saliva contamination on the microleakage within class V cavities restored with three different types of materials: conventional glass ionomer cement, composite resin and compomer. 30 human extracted teeth were randomly divided in 3 equal groups. In each group, class V cavities were prepared on both facial and lingual surfaces (but joint for glass ionomer cement and bevelled incisal margin for composite resin and compomer). The lingual cavities were contaminated with saliva prior to restoration, while the facial cavities were not contaminated, serving as control. After water storage for 24 hours, teeth were immersed in 1% methylene blue solution for 24 hours. The axial sections were viewed under an optical microscope and the extent of dye penetration along cervical, axial and incisal margins was measured in millimetres. Statistic analysis showed that under salivary contamination, microleakage increased along the cervical margin of restoration for all three tested materials. Saliva contamination resulted in microleakage within the axial wall of the cavity only for the conventional glass ionomer cement. These data indicate that composite resin and compomer used together with new adhesives seem to be less sensitive to saliva contamination compared to conventional materials. However, under saliva contamination, cervical microleakage cannot be completely prevented and proper isolation should still be mandatory.

  17. YAG Laser or bur

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... for the clinical durability of resin-based dental restorations.[1]. Microleakage ... studies evaluating the use of laser systems in primary teeth for cavity ... sealed with glass ionomer restorative material (Fuji. II LC, GC Corporation ...

  18. Download this PDF file

    African Journals Online (AJOL)

    mwakagugu

    This clinical report describes the management of anterior mandibular continuity defect due to road traffic ... oral examination 42,41,31,32,33,34, and 35 were ... clearauto polymerizing resin. ... Glass ionomer cement (7) [GC Fuji – I, Japan].

  19. Clinical Assessment of Mineral Trioxide Aggregate in the Treatment ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... (OH)2 (n = 49) or MTA (n = 51) and restored with composite resin in 73 patients. Periapical ... Clinical Assessment of Mineral Trioxide Aggregate in the Treatment of .... materials, light-cured glass ionomer cement base (Riva.

  20. Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Osama M. [Reactors Department, Nuclear Research Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt); Centre of Nuclear Engineering (CNE), Department of Materials, Imperial College London, London, SW7 2BP (United Kingdom); Abdel Rahman, R.O., E-mail: alaarehab@yahoo.com [Hot Laboratory Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt)

    2017-01-15

    The feasibility of using modified alkali borosilicate glasses for ruthenium and chromium immobilization is preliminary assessed by investigating the immobilization system structure under normal conditions. Within this context, reference alkali borosilicate, and simulated Magnox-modified glasses were prepared and studied. The results indicate that ruthenium is immobilized in the vitreous structure as encapsulated RuO{sub 2} crystallites that act as seeds for heterogeneous nucleation of other crystalline phases. The presence of Zn, as modifier, has contributed to chromium immobilization in zincochromite spinel structure, whereas Ca is accommodated in the vitreous structure. Immobilization performance was evaluated by conducting conservative static leach test and studying the leached glass. Leached glass morphology was altered, where near surface reference glass is leached over 400 nm and simulated Magnox-modified sample is altered over 300 nm. Normalized release rates are within normal range for borosilicate material. For simulated Magnox-modified sample, Ca and alkali structural element, i.e. Na and Li, are leached via ion-exchange reaction. The ion-exchanged fraction equals 1.06 × 10{sup −8} mol/m{sup 2} s and chromium has slightly lower normalized release rate value than ruthenium. - Highlights: • The presence of modifiers and waste oxides led to localized de-vitrification. • Ruthenium is encapsulated within the vitreous glass network as RuO{sub 2} crystals. • Chromium is immobilized within the zincochromite spinel structure. • Pitting and cracks induced by leaching did not affect the immobilization performance.

  1. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  2. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Alireza Khavandi

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  3. ATR technique, an appropriate method for determining the degree of conversion in dental giomers

    International Nuclear Information System (INIS)

    Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana

    2016-01-01

    Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the

  4. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  5. Modeling of GIC Impacts in Different Time Scales, and Validation with Measurement Data

    Science.gov (United States)

    Shetye, K.; Birchfield, A.; Overbye, T. J.; Gannon, J. L.

    2016-12-01

    Geomagnetically induced currents (GICs) have mostly been associated with geomagnetic disturbances (GMDs) originating from natural events such as solar coronal mass ejections. There is another, man-made, phenomenon that can induce GICs in the bulk power grid. Detonation of nuclear devices at high altitudes can give rise to electromagnetic pulses (EMPs) that induce electric fields at the earth's surface. EMPs cause three types of waves on different time scales, the slowest of which, E3, can induce GICs similar to the way GMDs do. The key difference between GMDs and EMPs is the rise time of the associated electric field. E3 electric fields are in the msec. to sec. range, whereas GMD electric fields are slower (sec. to min.). Similarly, the power grid and its components also operate and respond to disturbances in various time frames, right from electromagnetic transients (eg. lightning propagation) in the micro second range to steady state power flow ( hours). Hence, different power system component models need to be used to analyze the impacts of GICs caused by GMDs, and EMPs. For instance, for the slower GMD based GICs, a steady-state (static) analysis of the system is sufficient. That is, one does not need to model the dynamic components of a power system, such as the rotating machine of a generator, or generator controls such as exciters, etc. The latter become important in the case of an E3 EMP wave, which falls in the power system transient stability time frame of msec. to sec. This talk will first give an overview of the different time scales and models associated with power system operations, and where GMD and EMPs fit in. This is helpful to develop appropriate system models and test systems for analyzing impacts of GICs from various sources, and developing mitigation measures. Example test systems developed for GMD and EMP analysis, and their key modeling and analysis differences will be presented. After the modeling is discussed, results of validating

  6. A Prospective, Randomized, Double-blind Clinical Trial of One Nano ...

    African Journals Online (AJOL)

    2015-12-16

    Dec 16, 2015 ... prospective randomized clinical trial that evaluated the clinical performance of one high‑viscosity bulk‑fill composite resin in Class II cavities of posterior teeth. .... amount of glass ionomer needed was used to cover the calcium ...

  7. Quantitative Evaluation of the Enamel Caries Which Were Treated ...

    African Journals Online (AJOL)

    2016-01-18

    Jan 18, 2016 ... 2017 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. INTRODUCTION ..... in relation to brackets bonded with glass ionomer cement or a resin adhesive. Angle Orthod 1999;69:65‑70. 6. Derks A ...

  8. Relationship Between the Process Parameters and Resin Content of a Glass/Epoxy Prepreg Produced by Dipping Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khalafi

    2015-02-01

    Full Text Available The properties of prepregs are characterized in terms of their volatile content, resin content, the degree of pre-cure, void content, tack and flow ability. Resin content is one of the most important properties of prepregs so that its changing will result in altered properties such as, tack and resin flow. In order to monitor the resin content, a quantitative relation to the processing parameters such as line speed, viscosity and distance between the resin up taking rollers have to be determined. In this study, a tri-axial E-glass fabric with the areal weight of 1025 g/m2 and an epoxy resin (Epon 828 were used to produce the prepreg by the dipping method. In the theoretical part of this work, the free coating is studied and as a result the thickness layer of the coating resin through the resin bath is calculated by Landau-Levich model. In continuation, the achieved thickness was considered as a feed for the calendering process. Using the momentum equation for the passing impregnated fibres through the extra resin uptake rollers, the relation between the internal resin layer thickness and final coating resin layer thickness was achieved in an integral equation form. In order to solve this integral equation, MAPLE software was applied. The theoretical results were in good agreement with the experimental data and showed that the resin content increased linearly with increasing the distance between rollers, the radius and roller angular velocity. In contrast, the resin content decreased with increasing the line speed. According to our calculations, the effect of the resin viscosity variation on the resin content was negligibly small.

  9. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Energy Technology Data Exchange (ETDEWEB)

    Milly, Hussam [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Andiappan, Manoharan [Unit of Dental Public Health, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Thompson, Ian [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Banerjee, Avijit, E-mail: avijit.banerjee@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Unit of Conservative Dentistry, King' s College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom)

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  10. Clinical attachment level gain and bone regeneration around a glass ionomer restoration on root surface wall of periodontal pocket

    Science.gov (United States)

    Biniraj, K. R.; Sagir, Mohammed; Sunil, M. M.; Janardhanan, Mahija

    2012-01-01

    A case describing perio-restorative management of an accidental trauma in the mid portion of root on an upper left canine tooth following an ostectomy surgery is presented here. The traumatized root area was undergoing fast resorption and a chronic periodontal abscess had developed in relation to the lesion. The article illustrates the clinical and radiographic photo series of a periodontal flap surgery done to gain access into a subgingival region for the placement of Glass ionomer restoration on the root and its periodic follow up. The clinical condition of the area suggests 8 mm clinical attachment gain over the restoration and the review radiographs at definite intervals up to 18 months revealed evidence of consistent bone regeneration around the restoration. The article also highlights the various other possibilities, where this restorative material can be effectively used in conjunction with periodontal surgical procedures. PMID:23162344

  11. Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: A fracture mechanics analysis and interpretation.

    Science.gov (United States)

    Swain, M V; Gee, C; Li, K C

    2018-04-26

    Adhesion plays a major role in the bonding of dental materials. In this study the adhesion of two glass-ceramic systems (IPS e.max and VITABLOCS) to a zirconia sintered substrate using a glass (for IPS e.max) and resin (VITABLOCS) before and after exposure to ageing for 14 days in distilled water at 37 °C are compared using two interfacial fracture mechanics tests, the 3 point bend Schwickerath (Kosyfaki and Swain, 2014; Schneider and Swain, 2015) and 4 point bend (Charalambides et al., 1989) approaches. Both tests result in stable crack extension from which the strain energy release rate (G, N/m or J/m 2 ) can be determined. In the case of the 3 PB test the Work of Fracture was also determined. In addition, the Schwickerath test enables determination of the critical stress for the onset of cracking to occur, which forms the basis of the ISO (ISO9693-2:2016) adhesion test for porcelain ceramic adhesion to zirconia. For the aged samples there was a significant reduction in the resin-bonded strengths (Schwickerath) and strain energy release rate (both 3 and 4 PB tests), which was not evident for the glass bonded specimens. Critical examination of the force-displacement curves showed that ageing of the resin resulted in a major change in the form of the curves, which may be interpreted in terms of a reduction in the critical stress to initiate cracking and also in the development of an R-curve. The extent of the reduction in strain energy release rate following ageing was greater for the Schwickerath test than the Charalambides test. The results are discussed in terms of; the basic mechanics of these two tests, the deterioration of the resin bonding following moisture exposure and the different dimensions of the specimens. These in-vitro results raise concerns regarding resin bonding to zirconia. The present study uses a novel approach to investigate the role of ageing or environmental degradation on the adhesive bonding of two dental ceramics to zirconia

  12. Resistance of Bonded Composite Restorations on Fractures of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2005-01-01

    Full Text Available Introduction: This study was performed to evaluate the effect of dentine bonding agents and Glass Ionomer cement beneath composite restorations and its resistance on fractures of endodontically treated teeth. Material and Methods: Forty sound maxillary teeth were selected; ten of them for positive control, and on the rest, RCT and MOD cavity preparations were done with standard methods. Then, the teeth were divided to four groups: 1-Sound teeth for positive control. 2-Prepared without any restoration for negative control. 3-Prepared and restored with Vitrabond(3M, USA, Single bond(3M, USA and Z100(3M, USA resin composite. 4-Prepared and restored by Single bond and Z100 resin composite. Specimens were subjected to compressive load by Instron 8502 until fracture occurred. Results: Group 1 showed the highest resistance to compressive forces followed by group 4,3&2 respectively. ANOVA, t test and Chi-square tests indicated significant difference between all the groups. Conclusion: Use of dentine bonding agents and resin composite increases resistance of endodontically treated teeth to fractures more than teeth restored with sandwich of glass ionomer cements, dentine bonding agents and resin composite.

  13. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study.

    Science.gov (United States)

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-03-01

    Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Transverse strength values for all repaired groups were significantly lower than those for the control group (P transverse strength; hence, it can be advocated for repair of denture base resins.

  14. Vitrification process for the volume reduction and stabilization of organic resins

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1982-10-01

    Pacific Northwest Laboratory has completed a series of experimental tests sponsored by the US Department of Energy (DOE) to determine the feasibility of incinerating and vitrifying organic ion-exchange resins in a single-step process. The resins used in this study were identical to those used for decontaminating auxiliary building water at the Three Mile Island (TMI) Unit 2 reactor. The primarily organic resins were loaded with nonradioactive isotopes of cesium and strontium for processing in a pilot-scale, joule-heated glass melter modified to support resin combustion. The feasibility tests demonstrated an average process rate of 3.0 kg/h. Based on this rate, if 50 organic resin liners were vitrified in a six-month campaign, a melter 2.5 times the size of the pilot scale unit would be adequate. A maximum achievable volume reduction of 91% was demonstrated in these tests

  15. Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Kawaguchi, Kyotaro; Toshima, Hirokazu; Muguruma, Takeshi; Endo, Kazuhiko; Mizoguchi, Itaru

    2015-06-01

    We investigated the enamel demineralization-prevention ability and shear bond strength (SBS) properties of 4-methacryloxyethyl trimellitic anhydride/methyl methacrylate-tri-n-butyl borane (4-META/MMA-TBB)-based resin containing various amounts (0-50%) of bioactive glass (BG). Disk-shaped specimens were immersed in distilled water and ions released were analysed by inductively coupled plasma atomic-emission spectroscopy. Samples were also immersed in lactic acid solution (pH 4.6) to estimate acid-neutralizing ability. Brackets were bonded to human premolars with BG-containing resins and the bonded teeth were alternately immersed in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 d. The enamel hardness was determined by nanoindentation testing at twenty equidistant distances from the external surface. The SBS for each sample was examined. The amounts of ions released [calcium (Ca), sodium (Na), silicon (Si), and boron (B)] and the acid-neutralizing ability increased with increasing BG content. After alternating immersion, the specimens bonded with the BG-containing resin with high BG content were harder than those in the other groups in some locations 1-18.5 μm from the enamel surface. Bioactive glass-containing (10-40%) resin had bond strength equivalent to the control specimen. Thus, the SBS obtained for BG-containing resin (6.5-9.2 MPa) was clinically acceptable, suggesting that this material has the ability to prevent enamel demineralization. © 2015 Eur J Oral Sci.

  16. Comparative evaluation of the fracture resistances of endodontically ...

    African Journals Online (AJOL)

    2014-03-30

    Mar 30, 2014 ... Nigerian Journal of Clinical Practice • Nov-Dec 2014 • Vol 17 • Issue 6. Abstract .... on chemical bonding between the resin coated Gutta‑percha ..... Weiger R, Heuchert T, Hahn R, Löst C. Adhesion of a glass ionomer cement.

  17. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    Directory of Open Access Journals (Sweden)

    Surbhi Sawhney

    2015-10-01

    Conclusions: Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies.

  18. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study.

    Science.gov (United States)

    Rekha, C Vishnu; Varma, Balagopal; Jayanthi

    2012-07-01

    The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  19. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study

    Directory of Open Access Journals (Sweden)

    C Vishnu Rekha

    2012-01-01

    Full Text Available Aim: The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Materials and Methods: Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Results: Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Conclusion: Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  20. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  1. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  2. A Comparative Study of the Retentive Strengths of Commercial and Indigenously Developed Luting Cements using Both Lathe-cut and Clinically Simulated Specimens.

    Science.gov (United States)

    Mathew, Joe; Kurian, Byju P; Philip, Biju; Mohammed, Sunil; Menon, Preetha; Raj, Rajan S

    2016-08-01

    Superior adhesive strength in luting agents is of paramount significance in fixed partial denture success. In this in vitro study five cements were tested for retentive qualities, using both lathe-cut and hand-prepared specimens. A total of 104 freshly extracted tooth specimens were prepared. Seventy of them were lathe-cut and 30 specimens were hand-prepared to simulate clinical conditions. Five different cements were tested, which included a compomer, a composite, a zinc phosphate, and 2 glass-ionomer luting cements. Of the 5, 2 trial cements were indigenously developed by Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, India - a glass-ionomer cement (Chitra GIC) and a chemical-cure composite (Chitra CCC). All cements were compared within each group and between groups (lathe-prepared and hand-prepared). GC Fuji 1 (GC America) exhibited superior retentive strengths in both lathe-cut and hand-prepared specimens, whereas the compomer cement displayed the lowest values when tested. In lathe-cut specimens, statistical analysis showed no significant difference between GC Fuji 1 and indigenously developed Chitra CCC. Both Chitra CCC and GC Fuji 1 have comparable strengths in lathe-cut samples, making Chitra CCC a potential luting agent. Statistical analysis reveals that all cements, except GC Fuji 1, exhibited a significant decrease in strength due to the change in design uniformity. The chemical bonding of GC Fuji 1 proves to be quite strong irrespective of shape and precision of the tooth crown. The indigenously developed Chitra GIC and Chitra CCC showed promising results to be used as a potential luting agent.

  3. Evaluation of the cytotoxicity of selected conventional glass ionomer cements on human gingival fibroblasts.

    Science.gov (United States)

    Marczuk-Kolada, Grażyna; Łuczaj-Cepowicz, Elżbieta; Pawińska, Małgorzata; Hołownia, Adam

    2017-10-01

    Dentistry materials are the most frequently used substitutes of human tissues. Therefore, an assessment of dental filling materials should cover not only their chemical, physical, and mechanical characteristics, but also their cytotoxicity. To compare the cytotoxic effects of 13 conventional glass ionomer cements on human gingival fibroblasts. The assessment was conducted using the MTT test. Six samples were prepared for each material. Culture plates with cells and inserts with the materials were incubated at 37°C, 5% CO2, and 95% humidity for 24 h. Then the inserts were removed, 1 mL of MTT was added in the amount of 0.5 mg/1 mL of the medium, and the samples were incubated in the described conditions without light for 2 h. The optical density was measured with an absorption spectrophotometer at a wavelength of 560 nm. The cytotoxic effects of the Argion Molar was significantly stronger than the Fuji Triage (p = 0.007), Chemfil Molar (p cements from the low cytotoxicity group were significantly more toxic vs materials whose presence resulted in fibroblast growth (p < 0.001). The research conducted indicates that, although the materials studied may belong to the same group, they are characterized by low, yet not uniform, cytotoxicity on human gingival fibroblasts. The toxic effects should not be assigned to a relevant group of materials, but each dentistry product should be evaluated individually.

  4. A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-04-26

    Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electron microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.

  5. Retentive [correction of Preventive] efficacy of glass ionomer, zinc phosphate and zinc polycarboxylate luting cements in preformed stainless steel crowns: a comparative clinical study.

    Science.gov (United States)

    Khinda, V I S; Grewal, N

    2002-06-01

    This study was undertaken to assess the efficacy of three luting cements, namely, glass ionomer, zinc phosphate and zinc polycarboxylate in retainng the preformed stainless steel crowns in-vivo. Twenty subjects, with an indication for restoration of three primary molars with stainless steel crowns, were selected. Sixty teeth were taken up for the study, and twenty crowns were cemented with each of the three luting cements. After an eight month follow up the crowns were assessed for their presence/ absence or "rocking". Statistical analysis was done using Chi-square test. The results have shown no significant difference in retentivity of stainless steel crowns with the use of either of the three luting agents.

  6. Compressive and diametral tensile strength of glass ionomer cements Resistência à compressão e à tração diametral de cimentos de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Eduardo Bresciani

    2004-12-01

    Full Text Available The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation, with two new Brazilian GIC's: Vitro-Molar (DFL and Bioglass R (Biodinamica, all indicated for the Atraumatic Restorative Treatment (ART technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height for the diametral tensile strength (DTS test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height for the compressive strength (CS test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05. The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.Comparou-se a Resistência à Compressão (RC e à Tração Diametral (TD de um cimento de ionômero de vidro de alta viscosidade [Fuji IX (GC Corporation] e de dois novos cimentos

  7. Longevity of posterior composite restorations: A systematic review and meta-analysis

    DEFF Research Database (Denmark)

    Opdam, Niek; van de Sande, Francoise; Bronkhorst, Ewald

    2014-01-01

    including all restorations was constructed and a Multivariate Cox’s regression method was used to analyze variables of interest [patient (age; gender; caries-risk-status), jaw (upper; lower), number of restored surfaces, resin composite and adhesive materials and use of glass-ionomer cement as base...

  8. Study and application of a new filling-masterbatch modified with the power fly-ash glass-microballoon

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuying; Lin Jian; Li Longmei [Fuzhou University, Fujian (China). Dept. of Chemical Engineering

    1997-12-31

    Methods of using glass spheres present in coal-fired power station fly ash as a filler in plastics is described. Additives such as carrier resins also need to be used. Polyolefm plastics using the glass spheres as a filler were investigated by SEM. The filler composite system proved to have excellent physical, mechanical, and processing properties. 2 refs., 4 figs., 10 tabs.

  9. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    OpenAIRE

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  10. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  11. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  12. Maxillary first molar with an O-shaped root morphology:report of a case

    Institute of Scientific and Technical Information of China (English)

    Yooseok Shin; Yemi Kim; Byoung-Duck Roh

    2013-01-01

    This case report is to present a maxillary first molar with one O-shaped root, which is an extended C-shaped canal system. Patient with chronic apical periodontitis in maxillary left first molar underwent replantation because of difficulty in negotiating all canals. Periapical radiographs and cone-beam computed tomography (CBCT) were taken. All roots were connected and fused to one root, and all canals seemed to be connected to form an O-shape. The apical 3 mm of the root were resected and retrograde filled with resin-modified glass ionomer. Intentional replantation as an alternative treatment could be considered in a maxillary first molar having an unusual O-shaped root.

  13. Maxillary first molar with an O-shaped root morphology: report of a case.

    Science.gov (United States)

    Shin, Yooseok; Kim, Yemi; Roh, Byoung-Duck

    2013-12-01

    This case report is to present a maxillary first molar with one O-shaped root, which is an extended C-shaped canal system. Patient with chronic apical periodontitis in maxillary left first molar underwent replantation because of difficulty in negotiating all canals. Periapical radiographs and cone-beam computed tomography (CBCT) were taken. All roots were connected and fused to one root, and all canals seemed to be connected to form an O-shape. The apical 3 mm of the root were resected and retrograde filled with resin-modified glass ionomer. Intentional replantation as an alternative treatment could be considered in a maxillary first molar having an unusual O-shaped root.

  14. A survey of pediatric dentists' caries-related treatment decisions and restorative modalities – A web-based survey

    Directory of Open Access Journals (Sweden)

    Hassan S. Halawany

    2017-04-01

    Conclusion: The prevalence of use of composite resin to restore primary teeth was higher compared to glass ionomer cements and amalgam whereas a limited use of esthetic pediatric crowns was found among the sample surveyed. Esthetic pediatric crowns were more utilized by male compared to female participants.

  15. Stepwise excavation in a permanent molar

    DEFF Research Database (Denmark)

    Lima, Fernanda Ferruzzi; Pascotto, Renata Corrêa; Benetti, Ana Raquel

    2010-01-01

    with zinc oxide cement were performed to minimize the risk of pulp exposure during excavation. After 45 days, the remaining carious tissue was removed and a restoration with glass-ionomer lining (Vitrebond) and resin composite (P-50) was performed. Satisfactory morphology and function of the restoration...

  16. The Force Required to Fracture Endodontically Roots Restored with ...

    African Journals Online (AJOL)

    2016-03-12

    Mar 12, 2016 ... 2017 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Objective: To evaluate the effect of various materials as intra-orifice barriers ... resin, short fiber-reinforced composite, bulk-fill flowable composite, MTA ... composite, and glass ionomer cement increased the force required ...

  17. A Deep Morphological Characterization and Comparison of Different Dental Restorative Materials

    Directory of Open Access Journals (Sweden)

    R. Condò

    2017-01-01

    Full Text Available Giomer is a relatively new class of restorative material with aesthetics, handling and physical properties of composite resins, and benefits of glass ionomers: high radiopacity, antiplaque effect, fluoride release, and recharge. To verify the superior properties of Giomers, in this study, a deep morphological characterization has been performed with an in vitro comparative study among a Giomer (Beautifil® II by Shofu Dental Corporation, Osaka, Japan, a Compomer (Dyract Extra by Dentsply, Caulk, Germany, glass ionomer cement (Ketac fil plus by 3M ESPE, and a composite resin (Tetric Evoceram by Ivoclar. In particular, mechanical and optical properties and ageing effects have been compared to investigate materials similarities and differences. Indentation tests, UV-Visible spectroscopy, Raman spectroscopy, and weight loss after storage in saliva or sugary drink have been carried out to analyze materials behavior in real conditions. The results confirm the high quality of Giomer material and indicate possible improvements in their usage.

  18. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  19. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  20. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  1. Magnetic properties of magnetic glass-like carbon prepared from furan resin alloyed with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazumasa, E-mail: naka@sss.fukushima-u.ac.jp [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Okuyama, Kyoko [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Takase, Tsugiko [Institute of Environmental Radioactivity (IER), Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2017-03-01

    Magnetic glass-like carbons that were heat-treated at different temperatures or were filled with different magnetic nanoparticle contents were prepared from furan resin alloyed with magnetic fluid (MF) or Fe{sub 3}O{sub 4} powder in their liquid-phase states during mixing. Compared to the Fe{sub 3}O{sub 4} powder-alloyed carbon, the MF-alloyed carbon has highly dispersed the nanoparticles, and has the excellent saturation magnetization and coercivity. It is implied that saturation magnetizations are related to changes in the types of phases for the nanoparticles and the relative intensities of X-ray diffraction peaks for iron and iron-containing compounds in the carbons. Additionally, the coercivities are possibly affected by the size and crystallinity of the nanoparticles, the relative amounts of iron, and the existence of amorphous compounds on the carbon surfaces. - Highlights: • Magnetic glass-like carbons were prepared from furan resin alloyed with magnetic fluid. • The nanoparticles of MF-alloyed GLCs were highly dispersed. • MF-alloyed GLCs had excellent magnetic properties compared to powder-alloyed ones. • The magnetic properties changed with treatment temperature and nanoparticle content. • The changes in magnetic properties were investigated with XRD and FE-SEM.

  2. Reattachment of dehydrated tooth fragments: Two case reports

    African Journals Online (AJOL)

    2014-07-14

    Jul 14, 2014 ... Nigerian Journal of Clinical Practice • Jan-Feb 2015 • Vol 18 • Issue ... fragments as quickly as possible following intraoral and radiographic examination, but sometimes delayed treatment ... Although newer formulations of composite resins offer us ... sensitivity and protect the pulp, light‑cured glass ionomer.

  3. In vitro and in vivo Comparison of Orthodontic Indirect Bonding ...

    African Journals Online (AJOL)

    2018-05-22

    May 22, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Objective: The aim of this study was to evaluate in vitro shear bond strength ... with indirect bonding resins that were either chemically or light-cured. ...... strength of composite, glass ionomer, and acidic primer adhesive.

  4. Measuring the resistance of different substructure materials by ...

    African Journals Online (AJOL)

    2015-05-26

    May 26, 2015 ... 2016 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer - Medknow. Abstract ... materials by sticking them to dentine with two different resin cements in vitro. Niger J Clin .... In an evaluation after the statistical results were obtained, the .... Panavia, and glass ionomer cement in their study.

  5. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  6. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  7. Study on Modified Water Glass Used in High Temperature Protective Glass Coating for Ti-6Al-4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Shuang Yang

    2018-04-01

    Full Text Available Sodium silicate water glass was modified with sodium polyacrylate as the binder, the composite slurry used for high-temperature oxidation-resistant coating was prepared by mixing glass powder with good lubrication properties in the binder. The properties of the modified binder and high-temperature oxidation resistance of Ti-6Al-4V titanium alloy coated with composite glass coating were studied by XRD, SEM, EDS, TG-DSC and so on. Results showed that sodium polyacrylate modified water glass could obviously improve the suspension stability of the binder, the pyrolytic carbon in the binder at high temperature could increase the surface tension in the molten glass system, and the composite glass coating could be smooth and dense after heating. Pyrolytic carbon diffused and combined with oxygen in the coating under the heating process to protect the titanium alloy from oxidation. The thickness of the oxide layer was reduced 51% after applying the high-temperature oxidation-resistant coating. The coating also showed a nearly 30% reduction in friction coefficient due to the boundary lubricant regime. During cooling, the coating could be peeled off easily because of the mismatched CTE between the coating and substrate.

  8. Nature and properties of ionomer assemblies. II.

    Science.gov (United States)

    Capek, Ignác

    2005-12-30

    The principle subject in the current paper is to summarize and characterize the ionomers based on polymers and copolymers such as polystyrene (PSt), polyisoprene (PIP), polybutadiene (PB), poly(styrene-b-isobutylene-b-styrene) (PSt-PIB-PSt), poly(butadiene-styrene) (PB-PSt), poly(ethylene terephthalate) (PET), poly(butylene adipate) (PBA), poly(butylene succinate) (PBSi), poly(dimethylcarbosiloxanes), polyurethane, etc. The self-assembly of ionomers, models concerning ionomer morphologies, physical and rheological properties of ionomer phase and percolation behavior of ionomers were discussed. The ionomer phase materials and dispersions have been characterized by differential scanning calorimetry (DSC), small-angle X-ray catering (SAXS), small-angle neutron scattering (SANS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), etc. The wide range of compositions, molecular architectures, and morphologies present in ionomeric disperse systems are of great interest. The research is particularly devoted to the potential application of these materials and an understanding of the fundamental principles of the ionomers. They are extremely complex systems, sensitive to changes in structure and composition, and therefore not easily amenable to modeling and to the derivation of general patterns of behavior. The reviewed data indicate that a large number of parameters are important in influencing multiplet formation and clustering in random ionomers. Among these are the ion content, size of the polyion and counterion, dielectric constant of the host, T(g) of the polymer, rigidity or persistence length of the backbone, position of the ion pair relative to the backbone, steric constraints, amount and nature of added additive (plasticizer), thermal history, etc.

  9. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  10. Retreatability of Root Canals Obturated using Mineral Trioxide ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Background: ... remaining RCFM was evaluated using digital camera. The images ... trioxide aggregate-based and two resin-based sealers. Niger J Clin ... glass ionomer cement and the specimens were stored at. 37°C in ...

  11. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    International Nuclear Information System (INIS)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-01-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  12. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  13. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, Vladimír; Černohorský, T.; Zvolská, M.

    2013-01-01

    Roč. 88, OCT (2013), s. 26-31 ISSN 0584-8547 Grant - others:GA ČR(CZ) GAP207/11/0555 Institutional support: RVO:61389005 Keywords : Fluorine * GIC * Laser-induced breakdown spectroscopy * Quantitative analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.150, year: 2013 http://www.sciencedirect.com/science/article/pii/S0584854713002243#

  14. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    Science.gov (United States)

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride

  15. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  16. In vitro Comparative Evaluation of Various Restorative Materials used for restoring Class III Cavities in Deciduous Anterior Teeth: A Clinical Study.

    Science.gov (United States)

    Priyank, Harsh; Verma, Ankita; Gupta, Komal; Chaudhary, Esha; Khandelwal, Deepak; Nihalani, Shweta

    2016-12-01

    Beauty standards in today's modernized world scenario are formed by well-aligned and well-designed bright white teeth. One of the major reasons behind patients reporting to dental clinics is pain. Caries in the anterior primary teeth forms one of the major concerns from a restorative point of view. Very few studies are quoted in literature which stresses on the follow-up of anterior restorations in primary teeth. Hence, we evaluated and compared the efficacy of composite resin and resin-modified glass ionomer cement (RGIC) for class III restorations in primary anterior teeth. The present study was conducted in the pediatric dental wing and included a total of 80 patients aged 3 to 5½ years who reported with the chief complaint of carious lesions in the primary anterior teeth. Patients having minimal of a pair of similar appearing small carious lesions on the same proximal surfaces of the deciduous maxillary incisors were included for the study. All the patients were randomly divided into two groups: One in which RGIC restoration was done and other in which composite restoration was done. Cavity preparation was done and filling of the cavity with the restorative materials was carried out. Assessment of the restorations was done at 4, 8, and 12 months time following criteria given by Ryge et al. All the results were analyzed by Statistical Package for the Social Sciences (SPSS) software. Mann-Whitney test and one-way analysis of variance (ANOVA) were used to evaluate the level of significance; p value less than 0.05 was considered as significant. For composite and RGIC restorations, the mean score for anatomic shape was 1.21 and 1.10 respectively. While comparing the clinical parameters, nonsignificant results were obtained between composite and RGIC restorative materials at 4-, 8-, and 12-month interval. On comparing the clinical parameters for individual restorative materials at different time intervals, statistically significant results were obtained only for

  17. Modified resins for solid-phase extraction

    Science.gov (United States)

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  18. Biosorption of Pb(II) ions by modified quebracho tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Yurtsever, Meral [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)], E-mail: mevci@sakarya.edu.tr; Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)

    2009-04-15

    In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol{sup -1} (at 296 {+-} 2 K), 31.84 kJ mol{sup -1} and 0.127 J mmol{sup -1} K{sup -1}, respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb{sup 2+} adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R{sup 2} > 0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g{sup -1}) of Pb(II) was obtained at pH 5 and 296 K.

  19. Chemoviscosity modeling for thermosetting resins - I

    Science.gov (United States)

    Hou, T. H.

    1984-01-01

    A new analytical model for chemoviscosity variation during cure of thermosetting resins was developed. This model is derived by modifying the widely used WLF (Williams-Landel-Ferry) Theory in polymer rheology. Major assumptions involved are that the rate of reaction is diffusion controlled and is linearly inversely proportional to the viscosity of the medium over the entire cure cycle. The resultant first order nonlinear differential equation is solved numerically, and the model predictions compare favorably with experimental data of EPON 828/Agent U obtained on a Rheometrics System 4 Rheometer. The model describes chemoviscosity up to a range of six orders of magnitude under isothermal curing conditions. The extremely non-linear chemoviscosity profile for a dynamic heating cure cycle is predicted as well. The model is also shown to predict changes of glass transition temperature for the thermosetting resin during cure. The physical significance of this prediction is unclear at the present time, however, and further research is required. From the chemoviscosity simulation point of view, the technique of establishing an analytical model as described here is easily applied to any thermosetting resin. The model thus obtained is used in real-time process controls for fabricating composite materials.

  20. Effect of Different Modes of Erbium:yttrium Aluminum Garnet Laser ...

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... 2017 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Objectives: The aim of this study was to evaluate the effect of different surface treatments on the shear bond strength (SBS) of resin composites to dentin using total etch ..... adhesion of a glass ionomer cement to dentin.

  1. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  2. Retentive force and microleakage of stainless steel crowns cemented with three different luting agents.

    Science.gov (United States)

    Yilmaz, Yucel; Dalmis, Anya; Gurbuz, Taskin; Simsek, Sera

    2004-12-01

    The aim of this investigation was to compare the tensile strength, microleakage, and Scanning Electron Microscope (SEM) evaluations of SSCs cemented using different adhesive cements on primary molars. Sixty-three extracted primary first molars were used. Tooth preparations were done. Crowns were altered and adapted for investigation purpose, and then cemented using glass ionomer cement (Aqua Meron), resin modified cement (RelyX Luting), and resin cement (Panavia F) on the prepared teeth. Samples were divided into two groups of 30 samples each for tensile strength and microleakage tests. The remaining three samples were used for SEM evaluation. Data were analyzed with one-way ANOVA and Tukey test. The statistical analysis of ANOVA revealed significant differences among the groups for both tensile strength and microleakage tests (p 0.05). This study showed that the higher the retentive force a crown possessed, the lower would be the possibility of microleakage.

  3. Effect of type of cavity preparation (bur,Er:YAG laser and restorative materials on prevention of caries lesion

    Directory of Open Access Journals (Sweden)

    Masumeh Hasani Tabatabaei

    2017-03-01

    Full Text Available Background and Aims: Despite the reduction of incidence of dental caries in recent years, this disease is common and many efforts were conducted to decrease the prevalence of dental caries. On the other hand secondary caries lesions are the main reason for replacement of direct restorations. Therefore, the aim of the current study was to evaluate suitable methods of preparation and restorative materials to reduce caries recurrence. Materials and Methods: In this experimental study, eighty human teeth were collected and stored in normal saline. The teeth were soft-tissue debrided and cleaned with water/pumice slurry and rubber cups in a low-speed handpiece. Speciments were randomly divided in two main groups. Cavities were prepared with diamond burs or Er:YAG laser (10 Hz, 300 mJ, 3W. Each group was divided into 4 sub-groups, and restored with a glass-ionomer cement (Fuji IX, resin modified glass-ionomer (Fuji II LC, total etch bonding + composite resin or self-etch bonding + composite resin. The specimens were submitted to pH cycling. Speciments were then sectioned, polished and Vickers microhardness measurements were performed on each specimen. Differences among the medians were analyzed using two way ANOVA test at a 95% confidence level and Tukey test. Results: Statistical analysis showed significant difference in the type of substrate (enamel, dentin in both main groups (P<0.0001 but no differences in the caries lesion development between the cavities restored with the same material and prepared with diamond burs or Er:YAG laser. Conclusion: The Er:YAG laser used for cavity preparation and different types of restorative materials used did not show the ability to guarantee significantly more acid-resistance tooth structure against demineralization.

  4. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  5. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  6. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists.

    Science.gov (United States)

    Stawarczyk, Bogna; Özcan, Mutlu; Trottmann, Albert; Schmutz, Felix; Roos, Malgorzata; Hämmerle, Christoph

    2013-05-01

    Computer-aided design and computer-aided manufacturing (CAD/CAM) resins exhibit good mechanical properties and can be used as long-term restorations. The wear rate of such resins and their enamel antagonists is unknown. The purpose of this study was to test and compare the 2-body wear rate of CAD/CAM resin blocks. Wear specimens (N=42, n=6) were made from 5 CAD/CAM resins: ZENO PMMA (ZP), artBloc Temp (AT), Telio CAD (TC), Blanc High-class (HC), CAD-Temp (CT); 1 manually polymerized resin: Integral esthetic press (negative control group, IEP); and 1 glass-ceramic: VITA Mark II (positive control group, VM2). The specimens for the wear resistance were aged in a thermomechanical loading machine (49 N, 1.67 Hz, 5/50°C) with human enamel antagonists. The material loss of all specimens before, during, and after aging was evaluated with a 3DS profilometer. The measured material loss data of all tested groups were statistically evaluated with linear mixed model analysis (a=.05). Manually polymerized resin showed significantly higher material wear (P<.001) than all other tested groups. Glass-ceramic showed significantly lower wear values (P<.001) than CAD/CAM resins ZP, AT, HC, CT, and IES. CAD/CAM resin TC was not significantly different from the positive control group. Glass-ceramic showed the highest enamel wear values (P<.001) of all tested resins. No differences were found in the enamel wear among all resins. The glass-ceramic group showed damage in the form of cracks on the worn enamel surface in 50% of specimens. CAD/CAM resins showed lower wear rates than those conventionally polymerized. Only one CAD/CAM resin, TC, presented material wear values comparable with glass-ceramic. The tested glass-ceramic developed cracks in the enamel antagonist and showed the highest enamel wear values of all other tested groups. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  7. R/M Analysis of Electromechanical Equipments.

    Science.gov (United States)

    1982-05-01

    modifying existing R/M prediction and demonstration techniques to account for considerations of R/M performance of E/M equipments in the C31 systems...00 a’a - CC C a a a a’ a a ~ a’ a a’ a 000 CeCa’ 0Ca’Ca’ OCOtOaC CC a’ a-, C’.a’ CC a’a’ a S -C a’ a’ -~ a~g a’a a’ C C C~ CC fla’C - acCa ’ CCOCa~. 00...any of the other systems studied. The data are also higher quality because of the command interest in this high cost system and because of the safety

  8. Thermal and structural properties of zinc modified tellurite based glasses

    Science.gov (United States)

    Kundu, R. S.; Dhankhar, Sunil; Punia, R.; Dult, Meenakshi; Kishore, N.

    2016-05-01

    Glass system 60 TeO2 - 10 B2O3-(30-x) Bi2O3-x ZnO with mole fraction x = 10, 15, 20, 25 and 30 were synthesized by conventional melt quenching technique under controlled atmospheric conditions. The glass transition temperature (Tg) has been determined using differential scanning Calorimetry (DSC) and its value is observed to increase with increase in ZnO content. This increase may be due to the increase in the concentration of the bridging oxygen (BO) atoms. IR and Raman spectra of the present glass system indicate that ZnO acts as network modifier and exists in ZnO4 units. TeO2 exists as TeO3, TeO4, and TeO3+1 structural units. Bismuth plays the role of network modifier with BiO6 octahedral structural units whereas B2O3 exists in the form of BO3 trigonal and BO4 tetrahedral structural units.

  9. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts.

    Science.gov (United States)

    Albashaireh, Zakereyya S; Ghazal, Muhamad; Kern, Matthias

    2010-01-01

    Several post surface treatments with or without the application of a bonding agent have been recommended to improve the bond strength of resin cements to posts. A regimen that produces the maximum bond strength of glass fiber-reinforced composite resin posts has not been verified. The purpose of this study was to evaluate the influence of post surface conditioning methods and artificial aging on the retention and microleakage of adhesively luted glass fiber-reinforced composite resin posts. Seventy-two endodontically treated single-rooted teeth were prepared for glass fiber-reinforced composite resin posts. The posts were submitted to 3 different surface treatments (n=24), including no treatment, etching with phosphoric acid, and airborne-particle abrasion. Subgroups of the posts (n=8) were then allocated for 3 different experimental conditions: no artificial aging, no bonding agent; no artificial aging, bonding agent; or artificial aging, bonding agent. The posts were luted with resin cement (Calibra). Post retention was measured in tension at a crosshead speed of 2 mm/min. The posts assigned for microleakage investigation were placed in fuchsin dye for 72 hours. The dislodged posts and the post spaces were examined microscopically to evaluate the mode of failure and explore the microleakage. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). The mean (SD) retention values for test groups ranged from 269 (63.8) to 349 (52.2) N. The retention values of the airborne-particle-abrasion group were significantly higher than those of the acidic-treatment and no-treatment groups. The application of bonding agent on the post surface produced no significant influence on retention. The mean retention values after artificial aging were significantly higher than without artificial aging. Microscopic evaluation demonstrated that the failure mode was primarily mixed. Treating the surface of the posts with phosphoric acid for 15 seconds before cementation

  10. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    Science.gov (United States)

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  11. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study.

    Science.gov (United States)

    Keulemans, Filip; De Jager, Niek; Kleverlaan, Cornelis J; Feilzer, Albert J

    2008-10-01

    The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Four retainer designs were tested: a proximal box, a step-box, a dual wing, and a step-box-wing. Of each design on 8 human mandibular molars, FRC-FDPs of a premolar size were produced. The FRC framework was made of resin impregnated unidirectional glass fibers (Estenia C&B EG Fiber, Kuraray) and veneered with hybrid resin composite (Estenia C&B, Kuraray). Panavia F 2.0 (Kuraray) was used as resin luting cement. FRC-FDPs were loaded to failure in a universal testing machine. One-way ANOVA and Tukey's post-hoc test were used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FDPs (proximal box: 300 +/- 65 N; step-box: 309 +/- 37 N) compared to wing-retained FDPs (p optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FDPs.

  12. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2011-01-01

    Research highlights: → BFRP degradation process in seawater environment was first investigated. → The mass gain change includes two effects: absorption and extraction. → The interfacial adhesion of BFRP is bigger than GFRP. → After treated, the bending strength of BFRP is lower than GFRP. → Reducing the Fe 2+ in the basalt fibre could lead to a higher stability of BFRP. - Abstract: Epoxy resins reinforced, respectively, by basalt fibres and glass fibres were treated with a seawater solution for different periods of time. Both the mass gain ratio and the strength maintenance ratio of the composites were examined after the treatment. The fracture surfaces were characterized using scanning electron microscopy. The tensile and bending strengths of the seawater treated samples showed a decreasing trend with treating time. In general, the anti-seawater corrosion property of the basalt fibre reinforced composites was almost the same as that of the glass fibre reinforced ones. Based on the experimental results, possible corrosion mechanisms were explored, indicating that an effective lowering of the Fe 2+ content in the basalt fibre could lead to a higher stability for the basalt fibre reinforced composites in a seawater environment.

  13. Aportació al coneixement micològic de les Illes Balears. Menorca. I

    OpenAIRE

    Mir, Guillem; Melis, Josep Lluis

    2008-01-01

    Aportació al coneixement micològic de les Illes Balears. Menorca. I. Es citen 56 taxons, 8 ascomicets i 48 basidiomicets trobats a l'illa de Menorca. Segons les dades que tenim, 52 dels tàxons són novetat al catàleg micològic de l'illa, i les 9 següents són noves citacions a les Illes Balears: Conocybe apala (Fr.) Arnolds, Hygrocybe russocoriacea (Berk. & Jos. K. MilI.) P.O. Orton & Watling, Macrolepiota rickenii (Velen.) Bellu & Lanzoni, Panaeolus antillarum (Fr.) Dennis, Tri...

  14. Magnetic ordering of CoCl2-GIC, a spin ceramic: hierarchical successive transitions and the intermediate glassy phase

    International Nuclear Information System (INIS)

    Suzuki, Masatsugu; Suzuki, Itsuko S; Matsuura, Motohiro

    2007-01-01

    Stage-2 CoCl 2 -graphite intercalation compound (GIC) is a spin ceramic which shows hierarchical successive transitions at T cu (= 8.9 K) and T cl (= 7.0 K) from the paramagnetic phase into an intra-cluster (two-dimensional ferromagnetic) order with inter-cluster disorder and then to an inter-cluster (three-dimensional antiferromagnetic like) order over the whole system. The nature of the inter-cluster disorder was suggested to be of spin glass by nonlinear magnetic response analyses around T cu and by studies on dynamical aspects of ordering between T cu and T cl . Here, we present a further extensive examination of a series of time dependence of zero-field cooled magnetization M ZFC after the ageing protocol below T cu . The time dependence of the relaxation rates S ZFC (t) = (1/H) dM ZFC (t)/dlnt dramatically changes from the curves of simple spin glass ageing effect below T cl to those of two peaks above T cl . The characteristic relaxation behaviour apparently indicates that there coexist two different kinds of glassy correlated region below T cu

  15. Marginal Gaps between 2 Calcium Silicate and Glass Ionomer Cements and Apical Root Dentin.

    Science.gov (United States)

    Biočanin, Vladimir; Antonijević, Đorđe; Poštić, Srđan; Ilić, Dragan; Vuković, Zorica; Milić, Marija; Fan, Yifang; Li, Zhiyu; Brković, Božidar; Đurić, Marija

    2018-01-12

    The outcome of periapical surgery has been directly improved with the introduction of novel material formulations. The aim of the study was to compare the retrograde obturation quality of the following materials: calcium silicate (Biodentine; Septodont, Saint-Maur-des-Fosses, France), mineral trioxide aggregate (MTA+; Cerkamed Company, Stalowa Wola, Poland), and glass ionomer cement (Fuji IX; GC Corporation, Tokyo, Japan). Materials' wettability was calculated concerning the contact angles of the cements measured using a glycerol drop. Cements' porosity was determined using mercury intrusion porosimetry and micro-computed tomographic (μCT) imaging. Extracted upper human incisors were retrofilled, and μCT analysis was applied to calculate the volume of the gap between the retrograde filling material and root canal dentin. Experiments were performed before and after soaking the materials in simulated body fluid (SBF). No statistically significant differences were found among the contact angles of the studied materials after being soaked in SBF. The material with the lowest nanoporosity (Fuji IX: 2.99% and 4.17% before and after SBF, respectively) showed the highest values of microporosity (4.2% and 3.1% before and after SBF, respectively). Biodentine had the lowest value of microporosity (1.2% and 0.8% before and after SBF, respectively) and the lowest value of microgap to the root canal wall ([10 ± 30] × 10 -3  mm 3 ). Biodentine and MTA possess certain advantages over Fuji IX for hermetic obturation of retrograde root canals. Biodentine shows a tendency toward the lowest marginal gap at the cement-to-dentin interface. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Osteo-odonto-keratoprosthesis (OOKP) and the testing of three different adhesives for bonding bovine teeth with optical poly-(methyl methacrylate) (PMMA) cylinder.

    Science.gov (United States)

    Weisshuhn, K; Berg, I; Tinner, D; Kunz, C; Bornstein, M M; Steineck, M; Hille, K; Goldblum, D

    2014-07-01

    Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Shear strength of orthodontic bracket bonding with GIC bonding agent after the application of CPP-ACPF paste

    Directory of Open Access Journals (Sweden)

    Melisa Budipramana

    2013-03-01

    Full Text Available Background: White spot lesion is a major problem during fixed orthodontic treatment. This problem can be solved by minimizing white spot lesion before the treatment and using a fluoride-releasing bonding agent. The application of casein phosphopeptidesamorphous calcium phospate fluoride (CPP-ACPF paste as remineralization agent before treatment and GIC as orthodontic bonding agent is expected to overcome this problem as well as to strengthen GIC bonding. Purpose: To measure the shear strength of fix orthodontic appliance using GIC bonding with CPP-ACPF application prior treatment. Methods: In this study, 50 extracted premolars were randomly divided into 2 groups: group 1 as treatment group and group II as control group that was not given CPPACPF pretreatment. After having been cut and put into acrylic device, the samples in group I were given pretreatment with CPP-ACPF paste on enamel surface for 2 minutes twice a day as instructed in product label for 14 days. Orthodontic brackets were bonded with GIC bonding agent on all samples in both groups as instructed in product label. Then, the shear strength was measured by Autograph Shimatzu with crosshead speed 0.5 mm/minute. The data was analyzed with Independent t-test. Results: The mean shear bond strength in treatment group was 19.22 ± 4.04 MPa and in control group was 12.97 ± 3.97 MPa. Independent t-test analysis showed that there was a significant difference between treatment and control group (p<0.05. Conclusion: CPP-ACPF pretreatment could increase GIC orthodontic bonding shear strength.Latar belakang: Lesi putih karies merupakan masalah utama selama perawatan dengan peranti cekat ortodonti. Hal ini dapat diatasi dengan cara mengurangi lesi putih sebelum perawatan dengan menggunakan bahan bonding yang mengandung fluorida. Aplikasi pasta casein phosphopeptides-amorphous calcium phospate fluoride (CPP-ACPF sebagai bahan remineralisasi sebelum perawatan dan bahan bonding GIC diharapkan dapat

  18. Design and realization experience of Advanced Control Rod Group and Individual Control System (GIC) for VVER-1000 reactors

    International Nuclear Information System (INIS)

    Cerny, V.; Novy, L.; Janour, J.; Ris, M.; Zidek, P.

    1997-01-01

    During the reactor refueling outage of unit 1 of the South Ukrainian nuclear power plant in mid-1996, full replacement of the reactor's group and individual control (GIC) system was performed. The main functions of the GIC system are briefly characterized. The structure of the advanced GIC system is described and shown by means of a diagram. The criteria used in deciding on the upgrading strategy are discussed in some detail. The implementation of the replacement is also dealt with, as is the testing and commissioning of the system. (A.K.)

  19. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  20. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.