WorldWideScience

Sample records for residues heavy metals

  1. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    Gil P, Edison

    1999-01-01

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  2. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  3. Assessment of heavy metal residues in water, fish tissue and human ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: Residual levels of lead, chromium, cadmium and zinc in water and fish tissue from. Ubeji River ... Key Words : Heavy metal residues , Fish tissue, Human blood, Ubeji River. ... is of critical concern because of their toxicity and.

  4. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Removal of heavy metals from aqueous solution by Carrot residues

    International Nuclear Information System (INIS)

    Eslamzadeh, T.; Nasernejad, B.; Bonakdar Pour, B.; Zamani, A.; Esmaail-Beygi, M.

    2004-01-01

    The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

  6. Heavy metal residues in tissues of marine turtles

    International Nuclear Information System (INIS)

    Storelli, M.M.; Marcotrigiano, G.O.

    2003-01-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour

  7. Heavy metal residues in tissues of marine turtles

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, M.M.; Marcotrigiano, G.O

    2003-04-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour.

  8. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content

    International Nuclear Information System (INIS)

    Prabpai, S.; Charerntanyarak, L.; Siri, B.; Moore, M.R.; Noller, Barry N.

    2009-01-01

    The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

  9. Impact of toxic heavy metals and pesticide residues in herbal products

    Directory of Open Access Journals (Sweden)

    Nema S. Shaban

    2016-03-01

    Full Text Available Medicinal plants have a long history of use in therapy throughout the world and still make an important part of traditional medicine. The World Health Organization (WHO estimates that 65%–80% of the world's populations depend on the herbal products as their primary form of health care. This review is conducted to provide a general idea about chemical contaminants such as heavy metals and pesticide residues as major common contaminants of the herbal medicine, which impose serious health risks to human health. Additionally, we aim to provide different analytical methods for analysis of heavy metals and pesticide residues in the herbal medicine.

  10. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng, E-mail: shends@zju.edu.cn

    2013-10-15

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T{sub Cd} = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  11. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng

    2013-01-01

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T Cd = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required

  12. Heavy metal residues in beef carcasses in Beni-Suef abattoir, Egypt

    Directory of Open Access Journals (Sweden)

    Fathy A. Khalafalla

    2011-09-01

    Full Text Available A total of 300 samples were collected from cattle slaughtered in the Beni-Suef abattoir in Egypt. Samples included muscle, liver and kidney. Animals were randomly selected from the slaughter line. The age of the slaughtered cattle was less than three years (18-30 months. Samples were packed separately in plastic bags, identified and stored at -18°C until analysis which was performed at the Max Rubner Institute in Kulmbach, Germany, for the following heavy metals residues: lead, cadmium, mercury, arsenic, chromium and nickel in beef muscle, liver and kidney samples. The results revealed that the overall mean residual levels of lead were 8.77 µg/kg, 42.70 µg/kg and 109.42 µg/kg fresh weight in muscle, liver and kidney samples, respectively, while the mean residual levels of cadmium were 1.40 µg/kg, 14.16 µg/kg and 62.56 µg/kg fresh weight, respectively, and the mean arsenic residual levels were 5.06 µg/kg, 4.64 µg/kg and 14.92 µg/kg fresh weight, respectively. The mean residual levels of mercury were 3.91 µg/kg, 5.81 µg/kg and 10.14 µg/kg fresh weight, respectively, and the residual levels of chromium were 11.20 µg/kg, 21.85 µg/kg and 25.49 µg/kg fresh weight, respectively. Finally, the mean residual levels of nickel were 21.17 µg/kg, 14.59 µg/kg and 34.95 µg/kg fresh weight, respectively. The mean values of all heavy metals examined were low and did not exceed the permissible limits adopted by different organisations. Most heavy metals accumulated in higher concentrations in the kidney in comparison to the liver and muscle.

  13. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    Science.gov (United States)

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  14. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.

    Science.gov (United States)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-10-15

    This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue.

    Science.gov (United States)

    Baek, Jin Woong; Mallampati, Srinivasa Reddy; Park, Hung Suck

    2016-03-01

    The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent

    International Nuclear Information System (INIS)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-01-01

    Graphical abstract: Schematic representation of possible mechanisms determining the heavy metals immobilization efficiencyof ASR dust/thermal residues after treatment with nanometallic Ca/CaO/PO 4 . - Highlights: • Nanometallic Ca/CaO/PO 4 for heavy metals immobilization in ASR residue. • Heavy metals immobilization in dry condition attained about 95–100%. • Remaining heavy metals were lower than the Korean standard regulatory limit. • The amounts of heavy metals detectable on the ASR dust surface decreased. • Nanometallic Ca/CaO/PO 4 has a promising potential for heavy metal remediation. - Abstract: This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO 4 dispersion mixture immobilized 95–100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO 4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO 4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO 4 − associated crystalline complexes, and that immobile Ca/PO 4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO 4 as a simple, suitable and highly efficient material for the gentle

  17. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu [Department of Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-15

    Graphical abstract: Schematic representation of possible mechanisms determining the heavy metals immobilization efficiencyof ASR dust/thermal residues after treatment with nanometallic Ca/CaO/PO{sub 4}. - Highlights: • Nanometallic Ca/CaO/PO{sub 4} for heavy metals immobilization in ASR residue. • Heavy metals immobilization in dry condition attained about 95–100%. • Remaining heavy metals were lower than the Korean standard regulatory limit. • The amounts of heavy metals detectable on the ASR dust surface decreased. • Nanometallic Ca/CaO/PO{sub 4} has a promising potential for heavy metal remediation. - Abstract: This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO{sub 4} dispersion mixture immobilized 95–100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO{sub 4} was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO{sub 4} mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO{sub 4}− associated crystalline complexes, and that immobile Ca/PO{sub 4} salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO{sub 4} as a simple, suitable and

  18. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transfer of heavy metals to biota after remediation of contaminated soils with calcareous residues.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, Maria Jose; Agudo, Ines; Gonzalez, Eva; Perez-Espinosa, Victor; Belen Martínez, Lucia; Hernández, Carmen; García-Fernandez, Antonio Juan; Bech, Jaime

    2013-04-01

    A study was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (broccoli, lettuce and leek), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). Five consecutive crops of each vegetable were obtained in greenhouse. In a second stage, experiments were carried out with rabbits fed with such vegetables. The plants were cultivated in four types of soil. The first one was contaminated by heavy metals (S1), the second was a uncontaminated soil (blank soil) (S2), the third was the material obtained by mixing S1 with residues coming from demolition and construction activities (S3); while the fourth was the result of remediating S1 with lime residues coming from quarries (S4). The total metal content (As, Pb, Cd and Zn) of the soil samples, rizosphere, leached water and vegetable samples, were measured, and both the translocation and bioconcentration factors (TF and BCF, respectively) were calculated. In the second stage, the effect caused in rabbits fed with the vegetables was monitorized using both external observation and the analysis of blood, urine, and the levels of metals in muscles, liver and kidney. The statistical analysis of the results obtained showed that there were no significant differences in the heavy metal levels for the vegetables cultivated in S2, S3 and S4. The results for soil sample S1 did not have a normal distribution since the growing of the vegetables were not homogeneous and also strongly dependent on the type of vegetal. As regards the effect caused in rabbits, significant differences were observed for the animals fed with plants cultivated in S1 compared with the others.

  20. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  1. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  2. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  3. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    Science.gov (United States)

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion.

    Science.gov (United States)

    Lee, Jongkeun; Park, Ki Young; Cho, Jinwoo; Kim, Jae Young

    2018-01-01

    In this study, lab-scale batch tests were conducted to investigate releasing characteristics of heavy metals according to degradation of heavy metal containing biomass. The fate of heavy metals after released from biomass was also determined through adsorption tests and Visual MINTEQ simulation. According to the anaerobic batch test results as well as volatile solids and carbon balance analyses, maximum of 60% by wt. of biomass was degraded. During the anaerobic biodegradation, among Cd, Cu, Ni, Pb, and Zn, only Cu and Zn were observed in soluble form (approximately 40% by wt. of input mass). The discrepancy between degradation ratio of biomass and ratio of released heavy metals mass from biomass was observed. It seems that this discordance was caused by the fate (i.e., precipitated with sulfur/hydroxide or adsorbed onto sorbents) of each heavy metal types in solution after being released from biomass. Thus, releasing characteristics and fate of heavy metal should be considered carefully to predict stability of anaerobic digestion process for heavy metal-containing biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Food Safety of Livestock Products (Meatball, Corned Beef, Beef Burger and Sausage Studied from Heavy Metal Residues Contamination

    Directory of Open Access Journals (Sweden)

    E Harlia

    2010-01-01

    Full Text Available The aims of animal husbandry improvements are to increase both the quality and the quantity of livestock production and to ensure the safety of the product. It is necessarry for consumers to pay attention to the food safety of livestock product because it is related to human's health. The research was conducted to determine the food safety of livestock product condition by detecting heavy metal residues on several food products from livestock like meatball, corned beef, burger’s beef, and sausages. This research was explored by using survey's method and purposive technique sampling, then the resulted data were descriptively analyzed. The observed variables were heavy metal contents such as Plumbum (Pb and Cadmium (Cd in which being measured by using AAS (Atomic Absorption Spectrophotometri . The result showed that in general, heavy metal residue of Pb from several livestock products (meatball, corned beef, beef burger, and sausages were smaller than Maximum Residue Limit (MRL, while the Cd’s residue was partly over the MRL concentration, therefore further action has to be taken as it affects the human's health. (Animal Production 12(1: 50-54 (2010 Key words : food safety, MRL, heavy metal Pb, Cd.

  6. Heavy Metal Pollution Potential of Zinc Leach Residues Discarded in çinkur Plant

    OpenAIRE

    ALTUNDOĞAN, H. Soner; ERDEM, Mehmet; ORHAN, Ramazan

    1998-01-01

    In this paper, results of the study on heavy metals solubility behaviour of filter cakes from leaching of clinkerized Waelz oxide and flue dust collected during clinkerization in çinkur plant are given. The release of heavy metals into water was investigated by subjecting the cakes to solubility tests systematically. The effect of contact time, pH, liquid/solid ratio and successive extractions on the releasing of heavy metals (Cd, Pb, Mn and Zn) into water was examined and their conc...

  7. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  8. The influence of baking fuel on residues of polycyclic aromatic hydrocarbons and heavy metals in bread.

    Science.gov (United States)

    Ahmed, M T; Abdel Hadi el-S; el-Samahy, S; Youssof, K

    2000-12-30

    The influence of fuel type used to bake bread on the spectrum and concentrations of some polycyclic aromatic hydrocarbons and heavy metals in baked bread was assessed. Bread samples were collected from different bakeries operated by either electricity, solar, mazot or solid waste and their residue content of PAHs and heavy metals was assessed. The total concentration of PAHs detected in mazot, solar, solid waste and electricity operated bakeries had an average of 320.6, 158.4, 317.3 and 25.5 microgkg(-1), respectively. Samples collected from mazot, solar and solid waste operated bakeries have had a wide spectrum of PAHs, in comparison to that detected in bread samples collected from electricity operated bakeries. Lead had the highest concentrations in the four groups of bread samples, followed by nickel, while the concentrations of zinc and cadmium were the least. The concentration of lead detected in bread samples produced from mazot, solar, solid waste and electricity fueled bakeries were 1375.5, 1114, 1234, and 257.3 microgkg(-1), respectively. Estimated daily intake of PAHs based on bread consumption were 48.2, 28.5, 80. 1, and 4.8 microg per person per day for bread produced in bakeries using mazot, solar, solid waste and electricity, respectively. Meanwhile, the estimated daily intake of benzo (a) pyrene were 3.69, 2.65, 8.1, and 0.81 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The daily intake of lead, based on bread consumption was 291, 200.5, 222, and 46.31 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The present work has indicated the comparatively high level of daily intake of benzo (a) pyrene and lead in comparison to levels reported from many other countries and those recommended by international regulatory bodies. It is probable that residues detected in bread samples are partially cereal-borne but there is strong

  9. Long-term performance of anaerobic digestion for crop residues containing heavy metals and response of microbial communities.

    Science.gov (United States)

    Lee, Jongkeun; Kim, Joonrae Roger; Jeong, Seulki; Cho, Jinwoo; Kim, Jae Young

    2017-01-01

    In order to investigate the long-term stability on the performance of the anaerobic digestion process, a laboratory-scale continuous stirred-tank reactor (CSTR) was operated for 1100 days with sunflower harvested in a heavy metal contaminated site. Changes of microbial communities during digestion were identified using pyrosequencing. According to the results, soluble heavy metal concentrations were lower than the reported inhibitory level and the reactor performance remained stable up to OLR of 2.0g-VS/L/day at HRT of 20days. Microbial communities commonly found in anaerobic digestion for cellulosic biomass were observed and stably established with respect to the substrate. Thus, the balance of microbial metabolism was maintained appropriately and anaerobic digestion seems to be feasible for disposal of heavy metal-containing crop residues from phytoremediation sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Uptake of Heavy Metal Residues from Sewerage Sludge in the Milk of Goat and Cattle during Summer Season

    Directory of Open Access Journals (Sweden)

    Bilal Aslam, Ijaz Javed*, Faqir Hussain Khan and Zia-ur-Rahman

    2011-01-01

    Full Text Available Uptake of different heavy metal residues including cadmium (Cd, chromium (Cr, nickel (Ni, led (Pb, arsenic (As, and mercury (Hg were determined in goat and cattle milk collected from two areas, each consisted of three sites. Area 1 was selected in the North-East and Area 2 in the North-West of Faisalabad city along the main sewerage drains. Levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than the most reported values in the literature. The levels of heavy metal residues in the milk of cattle from Area 1 were higher than those present in cattle milk from Area 2. However, in case of goat milk the residual values from Area 1 and Area 2 were non-significantly different. It was concluded that the levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than reported values in the literature.

  12. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  13. The long term release of heavy metals from combustion residues and slags

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, J.N.

    1996-12-31

    This treatise details methodology which may be used to construct a model of the geochemical evolution in a waste repository and the changes in leachate composition over time. The pH and Eh of the leachant, as well as major complexing anions control the leaching of heavy metals over very long times due to solubility constraints. The pH and the Eh of the leachate changes when the buffering capacity of the waste has been exhausted. It is possible that the altered pH and Eh conditions in the leachate at later times may allow leaching of heavy metals at considerably higher concentrations than those present earlier during the leaching process. The model developed requires data which may be obtained from simple laboratory experiments in order to describe the reactive properties of the waste. Because of the complexity of the real system, the model uses `generalised` minerals which react with the inflowing oxygen and acidity to buffer the pH and Eh of the leachant. In this way, the chemistry of the leachant may be modelled without the need for a detailed geochemical description of the waste material. The model is intended to be simple and flexible enough that it may be adapted to different waste types with reasonable ease. The results obtained indicate that the redox and the pH-buffering characteristics of the waste are very important in determining the leaching of trace metals. The results also illustrate the strong influence that diffusional transport of CO{sub 2} and O{sub 2} may have upon the long term leaching behaviour. The model predictions have not, as yet, been reconciled with field leachate measurements. This will form a major part of the continued work with this project 38 refs, 63 figs, 11 tabs

  14. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    Science.gov (United States)

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    Science.gov (United States)

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  16. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  17. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    Science.gov (United States)

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  19. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  20. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    Science.gov (United States)

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-10-01

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO 2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China.

    Science.gov (United States)

    Han, Wei; Gao, Guanghai; Geng, Jinyao; Li, Yao; Wang, Yingying

    2018-04-01

    Ziya Circular Economy Park is the biggest e-waste recycle park in North China before 2011, its function was then transformed in response to regulations and rules. In this paper, investigation was conducted to research the residual concentrations of 14 analytes (12 heavy metals and 2 non-metals) in the surface soil of Ziya Circular Economy Park and surrounding area. Both ecological and health assessments were evaluated using GI (geo-accumulation index) and NPI (Nemerow pollution index), and associated health risk was assessed by using USEPA model. According to the ecological risk assessment, Cu, Sb, Cd, Zn and Co were seriously enriched in the soil of the studied area. The health risk assessment proposed by USEPA indicated no significant health risks to the population. Soil properties, such as pH and organic matter, were found to correlate with the enrichment of heavy metals. Arsenic concentrations in the soil were found positively correlated to dead bacteria concentrations. Spatial distribution of heavy metals revealed that Ziya Circular Economy Park was the dominant pollution source in the studied area. Findings in this study suggest that enough attention should be payed to the heavy metal pollution in Ziya Circular Economy Park. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension - test of a new two compartment experimental cell

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Magro, Cátia; Guedes, Paula

    2015-01-01

    Municipal solid waste incineration (MSWI) residues such as fly ash and air pollution control (APC) residues are classified as hazardous waste and disposed of, although they contain potential resources. The most problematic elements in MSWI residues are leachable heavy metals and salts. For reuse...... of MSWI residues in for instance concrete, the aim of remediation should be reduction of the heavy metal leaching, while at the same time keeping the alkaline pH, so the residue can replace cement. In this study a MSWI residues were subjected to electrodialytic remediation under various experimental...... heavy metal leaching except when the pH was reduced to a level below 8 for the fly ash. On the other hand, Cr leaching increased by the electrodialytic treatment. Cl leaching from the MSWI residues was less dependent on experimental conditions and was reduced in all experiments compared to the initial...

  3. Heavy Metal Residues in Soil and Accumulation in Maize at Long-Term Wastewater Irrigation Area in Tongliao, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available Soil and plant samples were collected from Tongliao, China, during the maize growth cycle between May and October 2010. Heavy metals, such as Cr, Pb, Ni, and Zn, were analyzed. The concentrations of Cr, Pb, Ni, and Zn in the wastewater-irrigated area were higher than those in the topsoil from the groundwater-irrigated area. The concentrations of metals in the maize increased as follows: Pb < Ni < Zn < Cr. In addition, Cr, Pb, and Ni mainly accumulated in the maize roots, and Zn mainly accumulated in the maize fruit. The results of translocation factors (TF and bioconcentration factors (BCF of maize for heavy metals revealed that maize is an excluder plant and a potential accumulator plant and can serve as an ideal slope remediation plant. In addition, the increasing heavy metal contents in soils that have been polluted by wastewater irrigation must result in the accumulation of Cr, Pb, Ni, and Zn in maize. Thus, the pollution level can be decreased by harvesting and disposing of and recovering the plant material.

  4. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  5. Quantification of heavy metals from residual waste and ashes from the treatment plant of residual water Reciclagua and,effects for the health of those workers which manipulate those residuals

    International Nuclear Information System (INIS)

    Guerrero D, J.J.

    2004-01-01

    concentrations greater than 0.5% in weight, as long as the analysis of plasma emission spectroscopy very low concentrations are identified already that this method causes the destruction of the sample achieving the identification of all the present elements. With the obtained results we are able to compare the concentrations of the metals before and after the leaching and we calculate by this way the percentage of efficiency for each one of the variables that were managed in the development of the study, obtaining the extraction of those toxic, and valuable metals, present in the muds until of 100%. Based on the results we can mention that the workers are exposed to aerosols and powders of these toxic residuals which contain heavy metals. (Author)

  6. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    Science.gov (United States)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  7. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic

    International Nuclear Information System (INIS)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-01-01

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 deg. C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  8. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  9. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  10. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  11. A quantitative assessment of risks of heavy metal residues in laundered shop towels and their use by workers.

    Science.gov (United States)

    Connor, Kevin; Magee, Brian

    2014-10-01

    This paper presents a risk assessment of exposure to metal residues in laundered shop towels by workers. The concentrations of 27 metals measured in a synthetic sweat leachate were used to estimate the releasable quantity of metals which could be transferred to workers' skin. Worker exposure was evaluated quantitatively with an exposure model that focused on towel-to-hand transfer and subsequent hand-to-food or -mouth transfers. The exposure model was based on conservative, but reasonable assumptions regarding towel use and default exposure factor values from the published literature or regulatory guidance. Transfer coefficients were derived from studies representative of the exposures to towel users. Contact frequencies were based on assumed high-end use of shop towels, but constrained by a theoretical maximum dermal loading. The risk estimates for workers developed for all metals were below applicable regulatory risk benchmarks. The risk assessment for lead utilized the Adult Lead Model and concluded that predicted lead intakes do not constitute a significant health hazard based on potential worker exposures. Uncertainties are discussed in relation to the overall confidence in the exposure estimates developed for each exposure pathway and the likelihood that the exposure model is under- or overestimating worker exposures and risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Pesticide residues, heavy metals, and DNA damage in sentinel oysters Crassostrea gigas from Sinaloa and Sonora, Mexico.

    Science.gov (United States)

    Vázquez-Boucard, Celia; Anguiano-Vega, Gerardo; Mercier, Laurence; Rojas del Castillo, Emilio

    2014-01-01

    Pesticides and heavy metals were analyzed in sentinel Crassostrea gigas oysters placed in six aquaculture sites close to a contaminated agricultural region. Each site was sampled twice. Tests revealed the presence of organochlorine (OC) pesticides in the oysters at concentrations varying from 31.8 to 72.5 μg/kg for gamma-hexachlorocyclohexane (γ-HCH); from 1.2 to 3.1 μg/kg for dichlorodiphenyldichloroethylene (4,4-DDE); from 1.6 to 2.3 μg/kg for endosulfan I; and from 1.4 to 41.2 μg/kg for endosulfan II, as well as heavy metals in concentrations that exceeded Mexican tolerance levels (405.5 to 987.8 μg/g for zinc; 4.2 to 7.3 μg/g for cadmium; and 7.2 to 9.9 μg/g for lead). Significant levels of DNA damage in oyster hemocytes were also detected. There was a significant, positive correlation between genotoxic damage and concentration of nickel or the presence of endosulfan II. Cellular viability evaluated by cytotoxic analyses was found to be high at 80%. Marked inhibition in activity of acetylcholinesterase (AChE ) and induction of glutathione S-transferase (GST) activity was noted. Data demonstrated a significant relation between AChE activity inhibition and presence of endosulfan II, γ-HCH, copper, lead, and 4,4-DDE, as well as between AChE and GST activity at different sites.

  13. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - including ... the laboratory and kept in holding glass (a) Copper as CuSO,.5H,0 ... from 2 psu to 21 psu) depending on time of The choice of heavy metals for this s year. ... serving as substrate and food source for Salinity of test media.

  14. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  15. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues.

    Science.gov (United States)

    Tao, Xiao-Qing; Shen, Dong-Sheng; Shentu, Jia-Li; Long, Yu-Yang; Feng, Yi-Jian; Shen, Chen-Chao

    2015-03-01

    Ash from incinerated e-waste dismantling residues (EDR) may cause significant health risks to people through ingestion, inhalation, and dermal contact exposure pathways. Ashes of four classified e-waste types generated by an incineration plant in Zhejiang, China were collected. Total contents and the bioaccessibilities of Cd, Cu, Ni, Pb, and Zn in ashes were measured to provide crucial information to evaluate the health risks for incinerator workers and children living in vicinity. Compared to raw e-waste in mixture, ash was metal-enriched by category incinerated. However, the physiologically based extraction test (PBET) indicates the bioaccessibilities of Ni, Pb, and Zn were less than 50 %. Obviously, bioaccessibilities need to be considered in noncancer risk estimate. Total and PBET-extractable contents of metal, except for Pb, were significantly correlated with the pH of the ash. Noncancer risks of ash from different incinerator parts decreased in the order bag filter ash (BFA) > cyclone separator ash (CFA) > bottom ash (BA). The hazard quotient for exposure to ash were decreased as ingestion > dermal contact > inhalation. Pb in ingested ash dominated (>80 %) noncancer risks, and children had high chronic risks from Pb (hazard index >10). Carcinogenic risks from exposure to ash were under the acceptable level (incinerated ash are made.

  16. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  17. Quantification of heavy metals from residual waste and ashes from the treatment plant of residual water Reciclagua and,effects for the health of those workers which manipulate those residuals; Cuantificacion de metales pesados de lodo residual y cenizas de la planta tratadora de aguas residuales Reciclagua y efectos a la salud de los trabajadores que manipulan los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero D, J.J

    2004-07-01

    concentrations greater than 0.5% in weight, as long as the analysis of plasma emission spectroscopy very low concentrations are identified already that this method causes the destruction of the sample achieving the identification of all the present elements. With the obtained results we are able to compare the concentrations of the metals before and after the leaching and we calculate by this way the percentage of efficiency for each one of the variables that were managed in the development of the study, obtaining the extraction of those toxic, and valuable metals, present in the muds until of 100%. Based on the results we can mention that the workers are exposed to aerosols and powders of these toxic residuals which contain heavy metals. (Author)

  18. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit

  19. Determination of Leacheability of U, Th and Heavy Metals of Water Leached Purification (WLP) Residue and Soil from Bauxite Mining Area using Toxicity Characteristic Leaching Technique

    International Nuclear Information System (INIS)

    Siti Aminah Omar; Suhaimi Hamzah; Shamsiah Abdul Rahman

    2016-01-01

    The study was conducted to analyse the leachability of U, Th and heavy metals Cu, Cd, As, Pb, Mn, Zn, Ba, Se, Cr and Fe of water leached purification (WLP) residue gathered from Lynas Malaysia Sdn Bhd and soil from bauxite mining area, Kuantan. Their toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) developed by the United States Environmental Protection Agency. The concentration of the elements studied was analysed using inductively coupled plasma mass spectrometry (ICP-MS). Results from the analysis indicated that the concentrations for all the elements studied in this project are well below than the TCLP regulatory limit. The concentrations of U and Th in leached solution were between 0.01 - 0.20 Bq/ kg. The concentrations of the multi elements were mostly between 0.02 - 1471 μg/ l, but certain elements such as Fe had concentration as high as 4707 μg/ l. Hence, it can be concluded that the WLP residue from Lynas and soil from bauxite mining area are very stable in the environment and does not pose any environmental problem. (author)

  20. Stormwater induced input of Pb, Cd, As, Zn and other toxic heavy metals into the sewer system of a region characterized by mining residues. Final report

    International Nuclear Information System (INIS)

    Cichos, C.; Muehle, K.

    1993-06-01

    An estimation of heavy metal transport within the river Freiberger Mulde as well as detailed knowledge about pollutant concentration in sewage sludges, in surface soil and in various mining residues give rise to assume that stormwater induced input especially of As, Pb, Cd and Zn into the sewer system of the town of Freiberg has a significant share of contribution to the high pollution of the river. It is the aim of the project to determine the heavy metal input quantitatively where beside the entire transport above all the main transport ways are to be investigated. In the first period of research reported about a movable monitoring station with rainfall gauge, flow rate meter and automatic sampler had to be supplied. First results of stormwater effects at the main intercepting sewer were discussed on the basis of dry-wether flow. For precipitation intensities of 0.5-1 mm/10 min with 4 to 5fold discharge rates at the maximum the measurements showed about 2 to 6fold dry-wether diurnal loads during a rain wether flow of only one hour. Thus, for the case of flood flow up to 100fold diurnal loads may be expected within an hour. The pollutant transport depends on the intensity of rain and on the duration of dry wether before the rain. Further studies above all apply to the main ways of transport but simultaneously to the entire loads to be measured before the storm sewage overflow. Data to be expected in this way may contribute to a long-term simulation of the sewerage as an important aid for planning storage basins. (orig.) [de

  1. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...

  2. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  3. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  4. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  5. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  6. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  7. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  8. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  9. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  10. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  11. Salts, sodium and heavy metals, in residual waters not purified, used for the watering in the cultivation of the sugar cane

    International Nuclear Information System (INIS)

    Mendez Romero, Franky Jose; Gisbert-Banquert, Juan Manuel

    2003-01-01

    In a farm located in the Valencia Lake Basin at northeast of Guacara city (Venezuelan country) and cultivated with sugar cane crop was evaluated during the period of July of 1996 to June of 1997 the salinity, sodicity and heavy metals concentration In municipal wastewater using to gravity Irrigated the sugar cane crop. The salinity was determinate by EC direct measure In Irrigation water (standardized at 25 Celsius degrade, Sodium by flame photometer Calcium and Magnesium by titulation with EDTA Cd, Cu, Fe Mn, Ni and Zn, were determinate by AAS before water samples preserve with NO 3 H. The wastewater quality employ to Irrigated the sugar cane crop was evaluated by mean of the Venezuelan official water Laws (1995) and compare too with the directives mentioned by Pratt and Suarez (1990), Crook and Bastian (1992) and the Mexican official wastewater irrigation laws NOM-CAA-032-ECOL/93 (1993. The results showed than the wastewater using to Irrigated the sugar cane field crop could to bring light and strong problems by salinity and sodium so much the soil as the crop The concentration of Cd, Fe and Cu are outside Limits proposals the Venezuelan official water laws (1995) Also when comparing the results with the other directives all the heavy metal concentration are outside the proposed Limits In each one of them except the Zn. In any case, the continuous use of the wastewater treated in this research could generate potential contamination and toxicity problems by heavy metals, salts and sodium In the crop, soils, groundwater and the people

  12. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  13. HDHPLUS/SHP : heavy residue hydroconversion technology

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F. [Axens, Rueil Malmaison (France)

    2009-07-01

    This presentation described an integrated refinery process that achieves nearly full conversion of heavy and refractory residues into ultra high quality and ultra low sulphur transportation fuels with a yield great than 100 volume per cent. The Axens, IFP and Intevep/PDVSA Alliance combined the HDHPLUS vacuum residue slurry technology with Sequential Hydro Processing (SHP) of primary hydrocracked products. Both technologies have undergone extensive testing at a refinery in Puerto La Cruz (RPLC), Venezuela to begin production of 50,000 BPSD in 2012. The demonstration unit at Intevep has been used to investigate production of effluent for the downstream SHP processing. This paper also reviewed the SHP bench unit operations at IFP's Lyon research center in France and disclosed the final product yields and qualities. The test results have shown the expected RPLC deep conversion commercial unit performances and fully secure its design basis. tabs., figs.

  14. Micromycetes sensitiveness to heavy metals

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2011-07-01

    Full Text Available The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen G. A. de Vries and Fusarium solani (C. Mart. Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC in the growth medium. At the same time Trixoderma longibrachiatiim Rifai, Alternaria alternatа (Fr. Keissl and Penicillium sp. 4 demonstrated moderate growth under maximal concentration (50 MPC. It is determined that minimal content of the heavy metals in the initial stage of influence (up to 48 h promotes growth of only Fusarium oxysporum E. F. Sm. et Swingle, while retards growth of the other species.

  15. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  16. Micromycetes sensitiveness to heavy metals

    OpenAIRE

    O. N. Korinovskaya; V. N. Gryshko

    2011-01-01

    The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen) G. A. de Vries and Fusarium solani (C. Mart.) Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC)) in the growth medium. At the same time Trixoderm...

  17. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  18. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  19. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  20. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  2. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  3. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  4. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.

    Science.gov (United States)

    Azcón, Rosario; Medina, Almudena; Roldán, Antonio; Biró, Borbála; Vivas, Astrid

    2009-04-01

    In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB amended soil, increased plant growth similarly to PO4(3-) addition, and both treatments matched in P acquisition but bacterial biodiversity estimated by denaturing gradient gel electrophoresis of amplified 16S rDNA sequences, was more stimulated by the presence of the AM fungus than by PO4(3-) fertilization. The SB amendment plus AM inoculation increased the microbial diversity by 233% and also changed (by 215%) the structure of the bacterial community. The microbial inoculants and amendment used favoured plant growth and the phytoextraction process and concomitantly modified bacterial community in the rhizosphere; thus they can be used for remediation. Therefore, the understanding of such microbial ecological aspects is important for phytoremediation and the recovery of contaminated soils.

  5. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  6. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  7. Chemical Speciation and Mobility of Some Heavy Metals in Soils ...

    African Journals Online (AJOL)

    The mobility of some heavy metals (Fe, Co, Ni and Mn) in soils around automobile waste dumpsites in Northern part of Niger Delta was assessed using Tessier et al. five syteps sequential chemical extraction procedure. The results showed that majority of iron and manganese were associated with the residual fraction with ...

  8. Proficiency test for heavy metals in compound feed

    NARCIS (Netherlands)

    Pereboom, D.P.K.H.; Elbers, I.J.W.; Jong, de J.; Lee, van der M.K.; Nijs, de W.C.M.

    2016-01-01

    The here described proficiency test for heavy metals in compound feed was organised by RIKILT, Wageningen UR in accordance with ISO 17043. RIKILT Wageningen UR has an ISO/IEC 17043 accreditation for proficiency tests of residues in products of animal origin. However, this specific test is not part

  9. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  10. Heavy metals speciation in solid household waste incineration residues and contribution to the interpretation of volatilization processes; Speciation des metaux lourds dans les residus solides d'usines d'incineration d'ordures menageres et contribution a l'interpretation des processus de vaporisation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnepain, B.

    1998-07-01

    Different types of solid residues of incineration plants have at first been analyzed by complementary techniques. Relative tendencies to the heavy metals speciation have been established. On the one hand, the chemical trapping of heavy metals by ashes as well as their respective mobilities have been characterized by the sequential extraction method. On the other hand, morphology of ashes, localization, repartition and chemical environment of heavy metals have been studied by X-ray microanalysis. It has been shown that Cd and Zn are highly leachable, Cr, Ni and Cu are trapped in ashes and Pb, As have intermediary behaviours with a slow mobility. Concentration gradients of heavy metals in terms of the ashes granulometry have been deduced. An experimental device for studying the vaporization of heavy metals in a fluidized bed (simulation of the heavy metals release during the incineration of household wastes) has been perfected. Experiments have been carried out in conditions (temperature, gaseous atmosphere, residence time) near those of the real processes. A model, coupling the mass and heat transfers with a thermodynamic anticipation of the heavy metals behaviour has been developed and has allowed to exploit these obtained results. (O.M.)

  11. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  12. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  13. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for

  14. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  15. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  16. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  17. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  19. Children with health impairments by heavy metals in an e-waste recycling area

    NARCIS (Netherlands)

    Zeng, Xiang; Xu, Xijin; Boezen, H. Marike; Huo, Xia

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals

  20. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  1. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  2. Atmospheric Heavy Metal Pollution - Development of Chronological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  3. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    African Journals Online (AJOL)

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  4. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  5. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  6. Isotopic-tracer-aided studies on undesirable effects of heavy metals in the soil-plant system. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Oberlaender, H.E.

    1982-07-01

    Uptake of isotopically labelled mercury (Hg-203), cadmium (Cd-115m) and zinc (Zn-65) from a calcareous chernozem and a podzolized brown earth by spring and winter varieties of wheat, rye and barley was investigated in pot experiments carried out until maturity of the plants. The labelled heavy metals, applied at concentrations innocuous to plant growth (0.5 ppm Hg or Cd, 50 ppm Zn) were determined radiometrically in the straw and in the grains of the harvested plants, as well as in the milling products (bran, semolina and flour) obtained by standard procedures of grain processing. Uptake of mercury was several hundred times smaller than the uptake of cadmium, if both metals were applied to the soil in equal amounts. Whereas the uptake of mercury from the acid soil was insignificant or not detectable, cadmium was taken up from this soil at a much higher rate than from the alkaline soil. Thus, not mercury, but cadmium imposes the greatest hazard on the food chain. Winter varieties of cereals took up more mercury and cadmium than did spring varieties. The content of heavy metals in the plants decreased considerably when plants approached maturity. During translocation through the plants the metals were gradually retained when passing from the stalks (''straw'') into the grains, and from the seed-cover (''bran'') into the endosperm (''flour''). The heavy metal contents of the grain fractions decreased in the order: bran > semolina > flour. Concentrations of heavy metals in flour were 3-8 times smaller than in straw, showing that flour is least affected by heavy metal pollution of cereals via the soil. The metal content of the various flour types was correlated with their percentage of bran and with their ash content. By adding an ion-exchanger to the soil the pattern of relative distribution of heavy metals in mature plants was not changed, but the cadmium content of all cereal products was considerably lowered

  7. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  8. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  9. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  10. Heavy metals: teeth as environmental biomarkers

    OpenAIRE

    Lumbau, Aurea Maria Immacolata; Lugliè, Pietrina Francesca; Carboni, Donatella; Ginesu, Sergio; Falchi, Simonetta; Schinocca, Laura

    2012-01-01

    Aim of this study was to measure the concentration of heavy metals in tooth matrix and to determine the factors that affect their presence. During tooth development and mineralization several metals can be absorbed in the tooth matrix, thus allowing us to use them as biological markers.

  11. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza; Siam, Rania; Mohamed, Yasmine M.

    2014-01-01

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II

  12. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.

    Science.gov (United States)

    Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao

    2018-01-01

    The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  14. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  15. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  16. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  17. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  18. Different strategies for recovering metals from CARON process residue

    International Nuclear Information System (INIS)

    Cabrera, G.; Gomez, J.M.; Hernandez, I.; Coto, O.; Cantero, D.

    2011-01-01

    The capacity of Acidithiobacillus thiooxidans DMS 11478 to recover the heavy metals contained in the residue obtained from the CARON process has been evaluated. Different bioreactor configurations were studied: a two-stage batch system and two semi-continuous systems (stirred-tank reactor leaching and column leaching). In the two-stage system, 46.8% Co, 36.0% Mg, 26.3% Mn and 22.3% Ni were solubilised after 6 h of contact between the residue and the bacteria-free bioacid. The results obtained with the stirred-tank reactor and the column were similar: 50% of the Mg and Co and 40% of the Mn and Ni were solubilised after thirty one days. The operation in the column reactor allowed the solid-liquid ratio to be increased and the pH to be kept at low values (<1.0). Recirculation of the leachate in the column had a positive effect on metal removal; at sixty five days (optimum time) the solubilisation levels were as follows: 86% Co, 83% Mg, 72% Mn and Ni, 62% Fe and 23% Cr. The results corroborate the feasibility of the systems studied for the leaching of metals from CARON process residue and these methodologies can be considered viable for the recovery of valuable metals.

  19. AN ALTERNATIVE APPROACH TO THE USE OF HEAVY OIL RESIDUE

    Directory of Open Access Journals (Sweden)

    Eugene Dashut

    2013-01-01

    Full Text Available We consider an alternative approach to the existing oil refining, in which instead of a single priority that emerged in the traditional approach, we consider two: get the light component and a heavy residue used for the production of new construction materials.

  20. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  1. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  2. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  3. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  4. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  5. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  6. Heavy metals, salts and organic residues in solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their discharge areas: determinants for restoring their impact

    International Nuclear Information System (INIS)

    Hernandez, A. J.; Pastor, J.

    2009-01-01

    This report describes a continuous assessment of the impact of solid urban waste (SUW) landfills in the central Iberian Peninsula that were sealed with a layer of soil 20 years ago. cover soils and soils from discharge areas have been periodically analysed. Soil concentrations of salts and heavy metals affect the biotic components of these ecosystems. (Author)

  7. Heavy residues from very mass asymmetric heavy ion reactions

    International Nuclear Information System (INIS)

    Hanold, K.A.

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129 Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with that expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model

  8. Heavy metals distribution in the Dead Sea black mud, Jordan

    International Nuclear Information System (INIS)

    Momani, K.; El-Hasan, T.; Auaydeh, S.

    2009-01-01

    The concentrations of trace metals (Fe, Mn, Ni, Zn, Co, Cr, Cu and Pb) were investigated in the Dead Sea black mud and river sediments in the northern basin of the Dead Sea region, Jordan. The pH of the mud was slightly above 8 while it was around 6 for the seawater. All analyzed heavy metal content in the black mud, except Pb, was less than their contents in other types of mud. Tlis might be due to the effect of the mildly acideic pH of seawater, which would enhance the metal solubility or incorporation within salt mineral structure, rather than precipitation. The sequential extraction results showed that Ni and Co transferred into the carbonate fraction, Mn is found mostly as manganese-iron oxide, and the residual phase contained Cr, Cu, Fe,and Pb. This study illustrated that the black mud had low heavy metal contents, thus indicating low toxicity. additionally, it shows insignificance effect of the mixing of freshwater with seawater on the heavy metal contents in the black mud. (authors).

  9. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  10. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  12. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  13. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  14. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  15. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  16. Decontamination of soils polluted with heavy metals using plants as determined by nuclear technique

    International Nuclear Information System (INIS)

    Lotfy, S.M

    2010-01-01

    The objectives of this work were three folds. First, to study the mobility and fate of heavy metals in two polluted sites (Mostorud soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar soil, subjected to sewage effluent irrigation for more than 50 years) utilizing a modified tessier's sequential extraction procedure to evaluate the effect of total metal concentrations on metal partitioning into different fractions. Second, to evaluate the efficiency of some plant species (sunflower, cotton, penakium, Napier grass, and Squash) to extract heavy metals out of polluted soils. Third, to enhance the phyto-extraction of heavy metals by sunflower plant using some chemical chelators (citric acids, EDTA, and Ammonium nitrate) in order to improve the remediation of pollutants as well as to protect soil quality.It was observed that the distribution of heavy metals in various chemical fractions depends on the total heavy metals content. The distribution of heavy metals forms in the studied soils was in the following decreasing order: residual > Fe-Mn oxides > carbonates > organic > exchangeable > water soluble.Either higher metal accumulation in shoots or enhanced metal accumulation in roots was mainly due to improved phyto-extraction or rhizo-filtration efficiency, respectively. Heavy metals accumulation in shoots and roots of the investigated plant species was as follow: sunflower > cotton > penakium > Napier grass > Squash with a lower order of magnitude. Sunflower showed superiority for heavy metals extraction.Application of chemical chelators (soil amendments) enhanced the phyto-extraction efficiency of heavy metals by sunflower in both Mostorud and El-Gabal El-Asfar soils. Citric acid enhanced metals accumulation in shoots and roots more than EDTA and ammonium nitrate. Citric acid with rate of 20 m mole/kg soil was the best chelators to enhance phyto- extraction of heavy metals by sunflower.

  17. Process and catalysis for hydrocracking of heavy oil and residues

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Kressmann, S. [Centre d' Etudes et de developpement Indutriel ' Rene Navarre' , Vernaison (France); Harle, V.; Kasztelan, S. [Division Cinetique et Catalyse, Rueil-Malmaison (France)

    1997-07-01

    Atmospheric or vacuum residue can be converted into valuable distillates using reaction temperature, high hydrogen pressure and low contact time hydroprocessing units. Various residue hydrocracking processes are now commercially employed using fixed bed, moving bed or ebullated bed reactors. The choice of process type depends mainly on the amount of metals and asphaltenes in the feed and on the level of conversion required. Various improvements have been introduced in the last decade to increase run length, conversion level, products qualities and stability of the residual fuel. These improvements include on stream catalysts replacement systems, swing reactors, improved feed distribution, guard bed materials limiting pressure drop, coke resistant catalysts, complex association of catalysts using particle size, activity and pore size grading. Further improvement of the resistance of catalysts to deactivation by coke and metal deposits and of the hydrodenitrogenation activity are two major challenges for the development of new residue hydrocracking catalysts and processes. 29 refs.

  18. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  19. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  20. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  1. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  2. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  3. Heavy metal levels, physicochemical properties and microbial ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... out to assess the microbial, physicochemical and heavy metal characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using standard analytical and classical microbiological methods.

  4. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  5. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available on various substrates introduced the possibility for portable and on-site instant verification of heavy metal pollutants. In this work, the favorable properties of the mercury-sensitive fluorescent molecule, Rhodamine 6G hydrozone derivative (RS), were...

  6. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  7. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    emissions from automobile exhaust, waste incineration, land disposal of wastes, use of .... of total organic carbon increased from 2.0 ± 1.5 % in the top soil to 3.42 ± 0.83 ..... Thus, accumulation of heavy metals in the soil has potential to restrict.

  8. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  9. Occurrence of tributyltin compounds and characteristics of heavy metals

    International Nuclear Information System (INIS)

    Sheikh, M. A.; Oomori, T.; Noah, N. M.; Tsuha, K.

    2007-01-01

    Surface sediment samples were collected from Tanzanian major commercial ports and studied for the distribution and behavior of tributyltin compounds and heavy metals. The content of tributyltin in sediments ranged from ND-3670 ng (Sn) g 1 dry wt (1 780 ± 1720) (Mean ± SD) at Zanzibar and from ND-16700 ng (Sn)g 1 dry wt (4080 ± 7540) at Dar Es Salaam ports, respectively. Maximum tributyltin levels were detected inside the both ports. Metabolic degradation of butyltin compounds showed that MBT + DBT > TBT %, this may be attributed by the warm ambient water and intense sunlight in the tropical regions. A sequential extraction procedure was undertaken to provide detailed chemical characteristics of heavy metals in the sediments. The procedure revealed that about 50 % of Fe in the both ports is in immobile fraction (residual fraction) while other metals; Cd, Cu, Ni, Co, Zn, Pb. and Mn were mostly found in exchangeable or carbonate fractions and thus can be easily remobilized and enter the aquatic food chain. This paper provides basic information of tributyltin compounds contamination and chemical characteristics of heavy metals in the marine ecosystem in Tanzania. To our knowledge, this is the first documentation of Organotin compounds in marine environments in East Africa and suggests the importance of further detailed Organotin compounds studies in other sub-Saharan Africa regions

  10. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  11. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    accumulated heavy metals around North Mara Gold Mine were not known. To study such ... heavy metal hyperaccumulator plants for possible future remediation of the study area. ... mine is about 100 kilometers east of Lake. Victoria and 20 ...

  12. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  13. Determination of selected heavy metals in inland fresh water of ...

    African Journals Online (AJOL)

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  14. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    Concentration and Health Implication of Heavy Metals in Drinking Water from Urban ... water is not mentioned by WHO, but all the samples analyzed were found to ... Key words: Drinking water quality, Heavy metals, Maximum admissible limit, ...

  15. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  16. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  17. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  18. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  19. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  20. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  1. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  2. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  3. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  4. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  5. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  6. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  7. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  8. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  9. Heavy metals hazards from Nigerian spices.

    Science.gov (United States)

    Asomugha, Rose Ngozi; Udowelle, Nnaemeka Arinze; Offor, Samuel James; Njoku, Chinonso Judith; Ofoma, Ifeoma Victoria; Chukwuogor, Chiaku Chinwe; Orisakwe, Orish Ebere

    Natural spices are commonly used by the people in Nigeria. They may be easily contaminated with heavy metals when they are dried and then pose a health risk for the consumers. The aim of this study was to determine the levels of heavy metals in some commonly consumed natural spices namely Prosopis Africana, Xylopia aethiopica, Piper gineense, Monodora myristica, Monodora tenuifolia and Capsicum frutescens sold in the local markets of Awka, Anambra state, South East Nigeria to estimate the potential health risk. The range of heavy metal concentration was in the order: Zn (14.09 - 161.04) > Fe (28.15 - 134.59) > Pb (2.61 - 8.97) > Cr (0.001 - 3.81) > Co (0.28 - 3.07) > Ni (0.34 - 2.89). Pb, Fe and Zn exceeded the maximum allowable concentrations for spices. The Target Hazard Quotient (THQ) of the spices varied from 0.06-0.5. Estimated daily intakes (EDI) were all below the tolerable daily intake (TDI). The lead levels in Prosopis africana, Xylopia aethiopica, Piper gineense, Monodora myristica and Capsicum frutescens which are 8-30 times higher than the WHO/FAO permissible limit of 0.3 mg/kg. Lead contamination of spices sold in Awka (south east Nigeria) may add to the body burden of lead. A good quality control for herbal food is important in order to protect consumers from contamination. food products, spices, potential toxic metals, risk assessment, public health.

  10. Accumulation of Heavy Metals in Soil and Kiwifruit of Planting Base in Western Hunan Province, China

    Directory of Open Access Journals (Sweden)

    WANG Ren-cai

    2017-05-01

    Full Text Available The heavy metals accumulation in soil and kiwi fruit plant in Western Hunan Province main kiwifruit planting base were analyzed, such as As, Pb, Hg, Cd, Cr. The results showed that the accumulation of heavy metals in soil of 6 kiwifruit planting areas were not obvious. The contents of heavy metals in most of areas of Western Hunan Province were below the national standard, except one area where the soil contents of cadmium (4.900 mg·kg-1, mercury (0.634 mg·kg-1were exceeded. At the same time, the comprehensive pollution index of heavy metals was less than 0.7 in these areas. There were 5 bases with no pollution of heavy metal, all which the kiwifruit could be safely produced in line with the requirements of the green kiwifruit planting base soil standards. At these areas, the contents of various heavy metals(except cadmium and mercurywere small in the branches and leaves of kiwifruit; kiwifruit had a very well capacity to absorb the cadmium when the cadmium content of its branches reached 12.73%. The heavy metal contents of the kiwifruit in the 6 regions, which belonging to the pollutionfree green fruits, were below or far lower than the national standard. According to the comprehensive analysis, the soil condition of the main cultivated land in Western Hunan Province was good, and the fruit had no heavy metal residues.

  11. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    Science.gov (United States)

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  12. A novel process for heavy residue hydroconversion using a recoverable pseudo-homogenous catalyst PHC system

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.M.; Rhodey, W.G. [Mobis Energy Inc., Calgary, AB (Canada)

    2008-10-15

    This paper described a pseudo-homogenous catalyst (PHC) designed to refine heavy hydrocarbon residues containing sulfur, nitrogen, metals, and asphaltene impurities known to clog pores and deactivate traditional hydrocrackers. The heavy residue hydroconversion (HRH) process incorporated a single particle, chemically generated PHC uniformly distributed in the feed. Thermal decomposition within the reaction system of a water-in-oil emulsion containing ammonium paramolybdate was used to form molybdenum oxide, which was then sulfided within the feed in order to create an ultra-dispersed suspension of catalytically active molybdenum disulfide particles measuring between 2 and 9 nm. A proprietary online catalyst recovery and regeneration step was used to maintain high catalyst activity. The molybdenum was then recovered from a purge stream and then reintroduced to the catalyst preparation area as a catalyst precursor. After being conditioned, the feed was combined with hydrogen and a water-oil catalyst emulsion and introduced into a furnace. Heavy components were cracked, hydrogenated and converted to lighter products. The high performance catalyst system was able to convert 95 per cent of residues at pressures below 7.3 Mpa and at reaction temperatures ranging between 400 and 460 degrees C. The catalyst was tested at a pilot plant using Athabasca vacuum bottoms. It was concluded that the HRH process is now being successfully used to produce 200 barrels of heavy oil per day. Designs for commercial installations are now being prepared. 4 refs., 2 tabs., 2 figs.

  13. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  14. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    1993-01-01

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.) [de

  15. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  16. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  17. Heavy metals in the hydrological cycle

    International Nuclear Information System (INIS)

    Astruc, M.; Lester, J.N.

    1988-01-01

    An integrated approach to the problems associated with heavy metals in the hydrological cycle is presented. Research and practical experience from a broad spectrum of disciplines are drawn together concentrating on the following themes: water quality, domestic and industrial wastes, sludge and dredge materials, soil interactions, effects on aquatic ecosystems, organometallics (with particular reference to tin compounds), speciation, the marine environment and health effects. One paper is within INIS scope and is processed separately. (U.K.)

  18. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  19. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  20. Polution of the environment by heavy metals

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1980-01-01

    An overview is given of the problems caused by pollution of the environment by heavy metals and the important role played by nuclear examination methods such as activation analysis and particle induced X-ray emission. A number of examples taken from work initiated by the interuniversitair Reactor Instituut, demonstrate that this research should be continued and extended, particularly in relation to the expected increase in the use of coal for energy generation in electricity centres. (C.F.)

  1. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  2. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  3. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary

    International Nuclear Information System (INIS)

    Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, Y.S.

    2003-01-01

    Multivariate statistical analysis identified the heavy metal accumulation layers of sediment profiles and showed the various sources of metals in the estuary. - The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206 Pb/ 207 Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary

  4. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  5. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  6. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  7. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  8. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  9. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Science.gov (United States)

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  10. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  11. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  12. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  13. Heavy metals binding properties of esterified lemon

    Energy Technology Data Exchange (ETDEWEB)

    Arslanoglu, Hasan; Altundogan, Hamdi Soner [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Tumen, Fikret, E-mail: ftumen@firat.edu.tr [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)

    2009-05-30

    Sorption of Cd{sup 2+}, Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+} and Zn{sup 2+} onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni{sup 2+} > Cd{sup 2+} > Cu{sup 2+} > Pb{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+} > Cd{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol{sup -1} for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The {Delta}G{sup o} and {Delta}H{sup o} values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low {Delta}H{sup o} values revealed that physical adsorption significantly contributed to the mechanism.

  14. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  15. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  16. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  17. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  18. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  19. Heavy metals in atmospheric surrogate dry deposition

    Science.gov (United States)

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  20. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  2. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  3. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  4. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  5. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  6. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  7. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  8. Applicability of concentration factors for the heavy metals hazard identification

    International Nuclear Information System (INIS)

    Guzzi, Luigi

    2006-01-01

    The bioconcentration factor (BCF) and bioaccumulation factor (BAF) used as criteria for heavy metals hazards identification are inadequate. These considerations is based on the argument that the BCF-BAF model was developed and validated for xenobiotic synthetic organic substances and that does not recognize the complex internal metal dynamic of uptake, the internal sequestration, and the essentially of some heavy metals [it

  9. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  10. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  11. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  12. Heavy metal removal using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Lucia Gajdošová

    2009-12-01

    Full Text Available The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depending on the anions of usedheavy metal salts. The heavy metal concentration also has a significant influence on the membrane separation. There is alsoa significant difference in flux decline depending on the transmembrane pressure.

  13. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  14. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  15. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  16. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1996-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  17. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  18. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  19. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  20. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  1. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  2. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  3. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  5. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  6. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  7. Heavy metals hazard in agriculture in NWFP

    International Nuclear Information System (INIS)

    Bhatti, A.; Perveen, S.

    2005-01-01

    Metals contamination is a persistent problem at many contaminated sites. In the U.S., the most commonly occurring metals at Superfund sites are lead, chromium, arsenic, zinc, cadmium, copper and mercury. The presence of metals in surface and ground waters, and soils can pose a significant threat to human health and ecological systems. Surface water and groundwater many be contaminated with metals from wastewater discharges or by direct contact with metals contaminated soils, sludges, mining wastes and debris. Due to use of sewage water and industrial effluents for agriculture in NWFP, there is a great threat to the human and animal health. In a survey of sewage water from three channels, it was found that 10 out of 18 samples ha lead content above the safe limits, while two in cadmium and 8 in chromium. While in soils irrigated with these channels, all the 18 samples were high in Cu and Pb, and 6 in Mn. As regards plants growing on these soils, samples of garlic, 4 of wheat and 3 of berseem were high in Pb. Cd content was high in 5 garlic samples, 5 wheat and 3 berseem. Effluents from two industries were high in Pb and four in Ni. In another study, all the nine water samples were high in Cu, 3 in Cd, and 6 in Pb. A survey of 20 Industries in Industrial Estate Hattar showed that all the effluent samples collected from these Industries were above the safe limits in Ni, Pb, Cd and Cr. From these studies, it seems that use of sewage water and industrial effluents for longer period can create heavy metals hazard in agriculture in NWFP. (author)

  8. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  9. Heavy metals in the cell nucleus - role in pathogenesis.

    Science.gov (United States)

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  10. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  11. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    OpenAIRE

    Marek Slávik,Tomáš Tóth; Július Árvay; Miriama Kopernická; Luboš Harangozo; Radovan Stanovič; Pavol Trebichalský; Petra Kavalcová

    2014-01-01

    In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86...

  12. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  13. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The main mechanisms of flotation extraction of heavy metal ions out of water solutions

    International Nuclear Information System (INIS)

    Zubareva, G.I.

    2002-01-01

    Flotation extraction of heavy metal ions out of water solutions using reagent EMKO (sodium soaps of vat residues of C grade) is presented. It is established that it is related to hydration energy and stability of sublates being formed. These two parameters affect contrariwise. A difference of molar ratios [EMKO]:[Me] in the course of extracting metals into froth can be explained by their different aggregative state, and a proportion of ionic form of metals and hydroxides being formed. Metal flotation rate is different for each of metal cations to be floated and is dependant on hydrogen ion concentrations [ru

  15. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  16. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  17. Assessment of Heavy Metals Level of River Kaduna at Kaduna ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... status and the implications of the heavy metal pollution on human health and the environment. ... metals discharged into the river especially from the industries and municipal ...

  18. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION ... Moreover, the metals cannot be degraded to harmless products and ... a sterile plastic container and taken immediately to the laboratory.

  19. Waste printing paper as analogous adsorbents for heavy metals in ...

    African Journals Online (AJOL)

    user

    heavy metals uptake from aqueous solutions but the recovery efficacy as economic and environmental ... system. 1 . Wastes containing metals are directly or indirectly discharge into the environment ... According to World health Organization. 5.

  20. Analysis of Heavy Metals Concentration in Kano Herbal ...

    African Journals Online (AJOL)

    2017-09-23

    Sep 23, 2017 ... toxic metals in the body system of the consumers of these herbal preparations in order to attain to safe and effective ..... heavy metal availability and vegetation recovery at a grown ... World Health Organization (WHO,. 2007).

  1. urban dietary heavy metal intake from protein foods and vegetables

    African Journals Online (AJOL)

    Mgina

    Contamination of food and food products by heavy metals has made dietary intake as one of the ... metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green ..... on food additives Technical report series. No.

  2. Rhizofiltration of heavy metals from the tannery sludge by the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... The accumulation of toxic metals in the plants was significantly increased, with increasing exposure time ..... in the conversion of organic carbon into carbon dioxide. It ... Once absorbed by the plants, toxic or heavy metals can.

  3. Accumulation of Proline under Salinity and Heavy metal stress in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Seed germination and growth parameters of seedlings of cauliflower were observed after 5, 10 and 15 ... Keywords: Abiotic stress, salinity, proline and heavy metals. The responses of ..... induced accumulation of free proline in a metal-tolerant.

  4. Heavy Metal Analyses and Nutritional Composition of Raw and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Nutritional composition, heavy metals, fresh water fishes, marine water fishes, lagoons. Introduction. Fish is an .... the flame and 90% passed out as waste. The flame ..... metals in surface water, sediments, fish and periwinkles of ...

  5. Trend of Heavy Metal Concentrations in Lagos Lagoon Ecosystem

    African Journals Online (AJOL)

    komla

    The distribution and occurrence of heavy metals in the sediment, water and benthic animals of the Lagos lagoon ... The concentrations of the metals detected in the lagoon sediment and water ..... waste products contaminating water sources.

  6. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  7. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.

    Science.gov (United States)

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-04-01

    Automobile shredder residue (ASR) is considered as hazardous waste in Japan and European countries due to presence of heavy metals. This study was carried on the extraction characteristics of heavy metals (Mn, Fe, Ni, and Cr) from automobile shredder residue (ASR). The effects of pH, temperature, particle size, and liquid/solid ratio (L/S) on the extraction of heavy metals were investigated. The recovery rate of Mn, Fe, Ni, and Cr increased with increasing extraction temperature and L/S ratio. The lowest pH 2, the highest L/S ratio, and the smallest particle size showed the highest recovery of heavy metals from ASR. The highest recovery rates were in the following order: Mn > Ni > Cr > Fe. Reduction of mobility factor for the heavy metals was observed in all the size fractions after the recovery. The results of the kinetic analysis for various experimental conditions supported that the reaction rate of the recovery process followed a second order reaction model (R(2) ⩾ 0.95). The high availability of water-soluble fractions of Mn, Fe, Ni, and Cr from the low grade ASR could be potential hazards to the environment. Bioavailability and toxicity risk of heavy metals reduced significantly with pH 2 of distilled water. However, water is a cost-effective extracting agent for the recovery of heavy metals and it could be useful for reducing the toxicity of ASR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  9. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  10. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  12. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  13. Toxic heavy metal contamination assessment and speciation in sugarcane soil

    Science.gov (United States)

    Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang

    2018-01-01

    The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.

  14. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  15. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  16. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    Science.gov (United States)

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  17. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    Directory of Open Access Journals (Sweden)

    Soraia El Baz

    2015-01-01

    Full Text Available Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3.

  18. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    Science.gov (United States)

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  19. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  20. Hydrolytic stability of heavy metal compounds in fly ash of a heat power plant

    International Nuclear Information System (INIS)

    Suslova, E.P.; Pertsikov, I.Z.

    1991-01-01

    Ash and slag from solid fuels are utilized widely in building materials and road surfaces, and in agriculture for soil acidulation. For all these uses it is important to know the amount and form of heavy metal compounds contained in ash and their likely behavior when ash and slag wastes are utilized. Studying the behavior of heavy metals in ash residues at contact with water media is important also because, for most trace elements, the authors lack experimental data that would enable us to predict their behavior after prolonged storage and industrial utilization. The present paper describes a study of lixiviation (at various pH in static conditions) of heavy metals form fly ash obtained by burning Azeisk coal. Homogenized ash selected from electric filter sections 1-4 was used, which has the following composition (%): SiO 2 59.8; Al 2 O 3 ; Fe 23 O 3 7.1; CaO 4.1; MgO 1.3; other 2.8. In a neutral medium, Ni, Cu, Zn, Pb, and Mn lixiviation was slight, amounting to 0.01-0.4%. During coal combustion, these elements apparently form compounds that are slightly soluble in water, although it is also possible that ash retains high adsorptivity for heavy metals. As a result, in these conditions the reverse process of sorption of heavy metals from the solution by fly ash is also possible, which would reduce the heavy metal concentration in the solution

  1. Contents of heavy metals in urban parks and university campuses

    Science.gov (United States)

    Zhang, Yong; Chen, Qian

    2018-01-01

    Because the city park has become an important place for people's daily leisure, and the university campus is one of the most densely populated areas of the city, their environmental pollution is critical for the health and safety of the residents. In this paper, two kinds of evaluation methods were used to evaluate the content of Cu, Zn, As and Pb in soils of city parks and university campus in Xiangtan. The results showed that only Juhuatang Park was a non-polluted area, and the other 7 sampling sites were lightly polluted; Analysis shows the heavy metal contents of soil in city parks are closely related to vehicle emissions, agriculture and irrigation, combustion of household waste, living area and commercial shops, the use of fossil fuels, industrial waste gas and waste residue and other human activities.

  2. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  3. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  4. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  5. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  6. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  7. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  8. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  9. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Unknown

    Pb in the dead vultures were generally above values characteristic of heavy metal poisoning. ... of the food chain), may accumulate and concentrate heavy metals in their ..... µg/g wet weight) (Honda et al., 1990), which validates the order of ...

  10. Heavy metals concentration in various tissues of two freshwater ...

    African Journals Online (AJOL)

    Heavy metals like cadmium, zinc, copper, chromium, lead and mercury were measured in the various tissues of Labeo rohita and Channa striatus and in the water samples collected from ... The values of heavy metals concentration in the present study are within the maximum permissible levels for drinking water and fish.

  11. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. ... Journal of Applied Sciences and Environmental Management ... Polycyclic aromatic hydrocarbons (PAHs) and heavy metals contribute to pollutants in aquaculture facilities and thus need to be further investigated.

  12. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  13. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  14. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  15. Occurrence and distribution of heavy metals in indoor settled ...

    African Journals Online (AJOL)

    The results showed widespread heavy metals contamination especially Fe and Zn, which were present as the highest concentration while Cd was the lowest in the settled particles (dust). The order of occurrence of heavy metals in settled particles (dust) collected indoor in 2007 and 2008 respectively were as follows, ...

  16. Determination of Some Heavy Metals in Selected Beauty and ...

    African Journals Online (AJOL)

    Several epidemiologic studies have investigated the potential carcinogenicity of human exposure to heavy metals from diverse sources but few or none was on African black and beauty soaps. Hence, this study examines the presence of some heavy metals in selected African black and beauty soaps commonly used in ...

  17. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  18. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  19. Evaluation of heavy metal uptake and translocation by Acacia ...

    African Journals Online (AJOL)

    Many organic and inorganic pollutants, including heavy metals are being transported and mixed with the cultivated soils and water. Heavy metals are the most dangerous pollutants as they are nondegradable and accumulate and become toxic to plants and animals. An experiment was conducted in the glasshouse to ...

  20. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  1. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  2. Uptake and elimination kinetics of heavy metals by earthworm ...

    African Journals Online (AJOL)

    Earthworm inoculation of petroleum hydrocarbon contaminated soil is thought to catalyze the bioremediation. Most bioremediation studies focus on the petroleum hydrocarbon content and not on the heavy metals. Here, the uptake kinetics of heavy metals by earthworm in used engine oil contaminated soil was investigated.

  3. Bioaccumulation of eight heavy metals in cave animals from Dashui ...

    African Journals Online (AJOL)

    ajl2

    karst caves and water systems in the caves are well developed. So, heavy metals can contaminate cave envi- ronment and affect cave animals. Karst topography is widely distributed in Guizhou province, China, accounting for 73.8% of the total land area. So, the examination of heavy metal pollution in cave soil and water ...

  4. Heavy metal accumulation in under crown Olea europaea L forest ...

    African Journals Online (AJOL)

    Heavy metal concentration in plants increased in site irrigation with wastewater. Zn, Pb and Ni exceeded their permitted limits in soils and Pb, Cr and Ni exceeded their permitted limits in roots of plants irrigated with wastewater. It was concluded that the use of wastewater in urban forest enriched the soils with heavy metals ...

  5. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  6. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  7. Heavy metal contamination of some vegetables from pesticides and ...

    African Journals Online (AJOL)

    Vegetable farming in developing countries is characterized by the indiscriminate application of pesticides and the resultant pollution of agricultural soil with heavy metals that form constituents of these pesticides. These heavy metals have long term toxicity to human and other biota in the ecosystem. This problem is ...

  8. Comparative Studies on Mosses for Heavy Metals Pollution ...

    African Journals Online (AJOL)

    The sources of these heavy metals were discovered to include: vehicular emission and incineration of domestic wastes and the heavy metals from these sources were discovered to pose severe toxicological risks to the environment and human health. Samples of mosses were collected at eight different locations in each ...

  9. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  10. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  11. Heavy metals – a silent threat to health

    Directory of Open Access Journals (Sweden)

    Karolina Kosek-Hoehne

    2017-01-01

    Environmental pollution makes it impossible to produce goods and food from products completely free from heavy metals contamination. That is why we should focus on reducing the amount of heavy metals to the minimum when it comes to the world around us.

  12. selected heavy metals in some vegetables produced through ...

    African Journals Online (AJOL)

    toshiib

    Haramaya University; P. O. Box 138, Dire Dawa, Ethiopia. 10013 ... and trace elements that have potential health benefits [1]. ... leads to a build-up of heavy metals in soils and foods [3]. Exposure of ... Based on the effect of heavy metals on ... (Buck Scientific Model 210VGP AAS, East Norwalk, USA) with air-acetylene flame.

  13. Heavy Metal Pollution of Vegetable Crops Irrigated with Wastewater ...

    African Journals Online (AJOL)

    User

    Cr (< 0.006), Cd (< 0.002) and Co (< 0.005), soil Fe (164.38; 162.92), Mn (39.39; 20.09), Cu (7.21; ... extent of heavy metal contamination, steps must be taken to reduce human activities at the sites. ...... The degree of toxicity of heavy metals to.

  14. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  15. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation

    International Nuclear Information System (INIS)

    Boucher, Uriel; Balabane, May; Lamy, Isabelle; Cambier, Philippe

    2005-01-01

    More knowledge is needed concerning the disturbance of soil organic matter cycling due to heavy metal pollution. The present study deals with the impact of heavy metal pollution on litter breakdown. Our aim was to assess whether heavy metals initially present in the leaves of the metallophyte Arabidopsis halleri: (i) slow down the rate of C mineralization, in relation to metal toxicity towards microflora, and/or (ii) increase the amount of organic C resistant to biodegradation, in relation to an intrinsic resistance of metallophyte residues to biodegradation. We incubated uncontaminated soil samples with either metal-free or metal-rich plant material. Metal-free material was grown in a greenhouse, and metal-rich material was collected in situ. During the 2-month period of incubation, we measured evolved CO 2 -C and residual plant C in the coarse organic fraction. Our results of CO 2 -C evolution showed a similar mineralization from the microcosms amended with highly metal-rich leaves of A. halleri and the microcosms amended with the metal-free but otherwise similar plant material. Measuring residual plant C in its input size-fraction gave a more precise insight. Our results suggest that only the large pool of easily decomposable C mineralized similarly from metal-free and from metal-rich plant residues. The pool of less decomposable C seemed on the contrary to be preferentially preserved in the case of metal-rich material. These results support the hypothesis of an annual extra-accumulation in situ of such a slowly decomposable fraction of plant residues which could account to some extent for the observed accumulation of metallophyte litter on the surface of highly metal-polluted soils. - Decomposition of slowly decomposable fractions of metal-rich plant residues is slowed by the metals

  16. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  17. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  18. Heavy metal content of tinned soup as a function of storage time

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    1983-01-01

    Samples were taken from soups prior to their preservation in tins. None of the samples showed an increased content of the investigated heavy metals lead and mercury exceeding the amounts normally found in food. Thus it may be considered as certain that the heavy metal content of soups is not adversely affected by technical processes during their preparation. Increase in heavy metal content by metallic residues from tin manufacture is slight and mainly due to tin, whose content is on average increased in the soup by 0.4 mg/kg. For lead the influence is smaller and for mercury it is not significantly demonstrable. The metallic residues from tin manufacture are an irrelevant quantity in terms of nutrition physiology. Within the investigated 4-year storage-period the lead content shows a tendency to increase towards saturation. Cadmium remains essentially constant, the content of mercury has a downward tendency and reaches zero after 2 to 4 years. Consumers' exposure is in a range known for the consumption of other foodstuffs as well. The use of varnished tins to package industrial soups involves no exposure of consumers to heavy metals justifying any apprehension even after prolonged storage.

  19. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    Abdel Sabour, M.F.; Aly, R.O.; Khalil, M.T.; Attwa, A.H.A.

    1999-01-01

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  20. Heavy metal pollution in soils of abandoned mining areas (SE, Spain)

    Science.gov (United States)

    Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.; Tudela, M. L.; Navarro, M. C.; García-Lorenzo, M. L.

    2009-04-01

    Elevated levels of heavy metals can be found in and around disused metalliferous mines due to discharge and dispersion of mine wastes into nearby agricultural soils, food crops and stream systems. Heavy metals contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by wind and water runoff in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. The present study was carried out in the Cabezo Rajao (La Uni

  1. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  2. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  3. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  4. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  5. Light-particle emission and heavy residues from nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Caplar, R.; Hoelbling, S.; Gentner, R.; Lassen, L.; Oberstedt, A.

    1991-01-01

    We have investigated the interrelation between light-particle multiplicities and mass resp. charge distributions of heavy residues from complete and incomplete fusion of heavy ions. We have shown that a simple statistical model provides the possibility of quantitatively correlating heavy-residue distributions and corresponding light-particle multiplicities both at the Coulomb barrier and at higher energies where preequilibrium emission occurs. (author). 8 refs, 4 figs, 1 tab

  6. Mercury and other heavy metal toxicity and mitocheondral dysfunction. Part of a coordinated programme of isotopic tracer-aided studies of the biological side-effects of foreign chemical residues in food and agriculture

    International Nuclear Information System (INIS)

    Nitisewojo, P.

    1977-12-01

    Mercury and other heavy metal toxicity and mitochondrial dysfunction: kidney mitochondria isolated from Hg-poisoned rats (4mgHg ++ /kgb.wt.,i.v.) exhibited a considerable loss of capacity for oxidative phosphorylation, apparently related to Mg ++ depletion and inhibition of ATP synthesis. Liver mitochondria remained unaffected. It is maintained that acute Hg poisoning is related to kidney failure. Selenium was found to provide protection as ascertained by partial restoration of the kidney mitochondrial oxidative phosphorylation and prolongation of time of death of the poisoned animals. In contrast to Hg, acute Cd-poisoning in rats (4mgCd ++ /kg,b.wt.,i.v.) is probably related to liver failure, where hepatic mitochondria loses its capacity for oxidative phosphorylation, through the same mechanism postulated for kiney mitochondria isolated from Hg-poisoned rats. Again, selenium provided a similar protective effect. That Hg and Cd have two different target organs may be ascribed to the relative distribution of both elements in the animal body. Preliminary data in the rabbit showed that Cd caused an increase of heart beat as well as an increased difference between systolic and diastolic pressures. Studies on Pb-poisoned rats, using 2,4-Dinitrophenol as uncoupling agent in mitochondria, suggested inhibition of the electron transport chain

  7. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  8. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  9. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  10. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  11. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Regulation of the heavy metal pump AtHMA4 by a metal-binding autoinhibitory domain

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Roed, Maria Dalgaard; Zhang, Yang

    Heavy metal pumps, or P1B ATPases, are important for heavy metal homeostasis in most cells. In general, these pumps contain extended N- and/or C-termini with one or more metal-binding domains (MBDs), but the role of the extended termini is still not clear. The Arabidopsis thaliana Zn2+-ATPase At......HMA4 contains a very long C-terminus with 13 cysteine pairs and an 11 amino acid residue long histidine stretch at the end. To ascertain the role of the potentially metal-binding domains in the C-terminus of AtHMA4, the C-terminal region alone was expressed in yeast. This resulted in increased Zn...

  13. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  14. BOTANICAL DIVERSITY AND HEAVY METAL CONTENT IN THE RESIDUE MATRIX AND PLANTS AT THE MORAVIA DUMP IN MEDELLÍN, COLOMBIA DIVERSIDAD BOTÁNICA Y CONTENIDO DE METALES PESADOS EN LA MATRIZ DE RESIDUOS Y LAS PLANTAS EN EL BASURERO DE MORAVIA EN MEDELLÍN, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Maria Solange Sanchez Pinzón

    2010-06-01

    Full Text Available . Floristic characterization, plant tissue and residue matrix (RM analysis were conducted to establish the extent of heavy metal (HM pollution of the Moravia dump at Medellín, Colombia, a site that was inhabited by more than 17000 people since 1984. More than 65 plant species (28 families were identified, most of which were herbaceous. Content of HM in the (RM was determined in 14 different RM samples varied greatly among them, reaching 121 and 9600 mg/kg of Hg and Pb respectively. Mean content of HM (mg/kg in the RM had the following pattern: Pb > Ni > Cr > Hg > Cd. Uptake of HM from the RM to plants was evident in most sampled species, with concentrations of Pb, Cr, and Hg reaching maximum values of 1.0, 123.7, 263.7 mg/kg of Hg, Pb and Cr respectively. However, Lepidium virginicum excluded, estimated bioconcentration factors were not greater than 1.0. Given their adaptation, Bidens pilosa, Urochloa maxima and L. virginicum, appear to be suitable for the revegetation of Moravia. Twenty-four years after its closure, HM content in Moravia continue to be high and the local flora actively takes up HM. Since other studies have shown that in Moravia there is still production of lixiviates and that there is an active heavy metal transference to the local Moravia fauna, it is imperative to implement adequate control measures in order to control HM contamination at this site.Con el fin de establecer el nivel de contaminación por metales pesados (MP, se llevó a cabo una caracterización florística y análisis de la matriz de residuos (MR y muestras de tejidos vegetales en el morro de basuras de Moravia en Medellín, un antiguo botadero de basuras habitado desde 1984 por más de 17.000 personas. Se identificaron más de 65 especies vegetales, la mayoría de ellas herbáceas, agrupadas en 28 familias. El contenido de MP en 14 diferentes muestras de MR varió considerablemente, yendo de 121 y 9.600 mg/kg de Hg y Pb, respectivamente. El contenido

  15. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Rong [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China); School of Nature Conservation, Beijing Forestry University, Beijing 100083 (China); Bai, Junhong, E-mail: junhongbai@163.com [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Lu, Qiongqiong; Zhao, Qingqing; Gao, Zhaoqin; Wen, Xiaojun; Liu, Xinhui [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2015-06-01

    The effect of reclamation on heavy metal concentrations and the ecological risks in ditch wetlands (DWs) and riparian wetlands (RWs) across a 100-year chronosequence in the Pearl River Estuary of China was investigated. Concentrations of 4 heavy metals (Cd, Cu, Pb, and Zn) in soil and plant samples, and sequential extracts of soil samples were determined, using inductively coupled plasma atomic absorption spectrometry. Results showed that heavy metal concentrations were higher in older DW soils than in the younger ones, and that the younger RW soils contained higher heavy metal concentrations compared to the older ones. Although the increasing tendency of heavy metal concentrations in soil was obvious after wetland reclamation, the metals Cu, Pb, and Zn exhibited low or no risks to the environment based on the risk assessment code (RAC). Cd, on the other hand, posed a medium or high risk. Cd, Pb, and Zn were mainly bound to Fe–Mn oxide, whereas most of Cu remained in the residual phase in both ditch and riparian wetland soils, and the residual proportions generally increased with depth. Bioconcentration and translocation factors for most of these four heavy metals significantly decreased in the DWs with older age (p < 0.05), whereas they increased in the RWs with younger age (p < 0.05). The DW soils contained higher concentrations of heavy metals in the organic fractions, whereas there were more carbonate and residual fractions in the RW soils. The non-bioavailable fractions of Cu and Zn, and the organic-bound Cd and Pb significantly inhibited plant growth. - Highlights: • Heavy metals in ditch wetland accumulated with increasing reclamation history. • Heavy metals exist in the Fe–Mn oxides and residual fractions in both wetlands. • Cd posed a medium to high environmental risk while low risk for other metals. • Long reclamation history caused lower BCFs and TFs in DWs and higher levels in RWs. • RW soils contained more heavy metals in the carbonate

  16. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China

    International Nuclear Information System (INIS)

    Xiao, Rong; Bai, Junhong; Lu, Qiongqiong; Zhao, Qingqing; Gao, Zhaoqin; Wen, Xiaojun; Liu, Xinhui

    2015-01-01

    The effect of reclamation on heavy metal concentrations and the ecological risks in ditch wetlands (DWs) and riparian wetlands (RWs) across a 100-year chronosequence in the Pearl River Estuary of China was investigated. Concentrations of 4 heavy metals (Cd, Cu, Pb, and Zn) in soil and plant samples, and sequential extracts of soil samples were determined, using inductively coupled plasma atomic absorption spectrometry. Results showed that heavy metal concentrations were higher in older DW soils than in the younger ones, and that the younger RW soils contained higher heavy metal concentrations compared to the older ones. Although the increasing tendency of heavy metal concentrations in soil was obvious after wetland reclamation, the metals Cu, Pb, and Zn exhibited low or no risks to the environment based on the risk assessment code (RAC). Cd, on the other hand, posed a medium or high risk. Cd, Pb, and Zn were mainly bound to Fe–Mn oxide, whereas most of Cu remained in the residual phase in both ditch and riparian wetland soils, and the residual proportions generally increased with depth. Bioconcentration and translocation factors for most of these four heavy metals significantly decreased in the DWs with older age (p < 0.05), whereas they increased in the RWs with younger age (p < 0.05). The DW soils contained higher concentrations of heavy metals in the organic fractions, whereas there were more carbonate and residual fractions in the RW soils. The non-bioavailable fractions of Cu and Zn, and the organic-bound Cd and Pb significantly inhibited plant growth. - Highlights: • Heavy metals in ditch wetland accumulated with increasing reclamation history. • Heavy metals exist in the Fe–Mn oxides and residual fractions in both wetlands. • Cd posed a medium to high environmental risk while low risk for other metals. • Long reclamation history caused lower BCFs and TFs in DWs and higher levels in RWs. • RW soils contained more heavy metals in the carbonate

  17. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    Science.gov (United States)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  18. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Heavy metals in vegetables and potential risk for human health

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2012-02-01

    Full Text Available Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the São Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the São Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the São Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

  20. A Drinking Water Sensor for Lead and Other Heavy Metals.

    Science.gov (United States)

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  1. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  2. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  4. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  5. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  6. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  7. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  8. Children with health impairments by heavy metals in an e-waste recycling area.

    Science.gov (United States)

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gill ATPase activity in Procambarus clarkii as an indicator of heavy metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. (Univ. of Valencia (Spain))

    1989-06-01

    Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues, including heavy metals, from the many urban and waste waters of this area. The American red crayfish, Procambarus clarkii have a high resistance to toxic effects of heavy metals. The sublethal effects of heavy metals on gills of fish and aquatic invertebrates have been extensively studied. Some metabolic disturbances and histologic damages have been reported, as well as osmoregulation alterations. However, little work has been done about the effect of heavy metals on Na,K and Mg-ATPases of freshwater invertebrate gills. Na,K-ATPase is the prime mediator of ion transport across cellular membranes and plays a central role in whole body ion regulation in marine and estuarine animals. Na,K-ATPase has been reviewed and assessed as a potentially useful indicator of pollution stress in aquatic animals. The purpose of this study is look for the relation, if any, between crayfish gill ATP-ase activity changes and metal exposure in laboratory. This find would allow the authors to assay this potential indicator in the field.

  10. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  11. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  12. Device for removing alkali metal residues from heat exchanger

    International Nuclear Information System (INIS)

    Matal, O.

    1987-01-01

    The main parts of the facility consists of a condensing vessel and a vacuum pump unit interconnected via a vacuum pipe. The heat exchanger is heated to a temperature at which the alkali metal residues evaporate. Metal vapors are collected in the condensing vessel where they condense. The removal of the alkali metal residues from the heat exchanger pipes allows thorough inspection of the pipe inside during scheduled nuclear power plant shutdowns. The facility can be used especially with reverse steam generators. (E.S.). 1 fig

  13. Melting of Uranium Metal Powders with Residual Salts

    International Nuclear Information System (INIS)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing ∼ 30 wt% residual LiCl-Li 2 O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li 2 O residual salt. (authors)

  14. Neutron activation analysis for noble metals in matte leach residues

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The development of the neutron activation analysis technique as a method for rapid and precise determinations of platinum group metals in matte leach residues depends on obtaining a method for effecting complete and homogeneous sample dilution. A simple method for solid dilution of metal samples is outlined in this study, which provided a basis for the accurate determination of all the noble metals by the Neutron Activation Analysis technique

  15. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  16. Heavy metals in the snow pack of Semey town

    International Nuclear Information System (INIS)

    Panin, M.S.; Esenzholova, A.Zh.; Toropov, A.S.

    2008-01-01

    The data about the maintenance of heavy metals in the snow pack in various zones of Semey and biogeochemical operation factors of snow pack in Semey are presented in this work. Also the correlation connection between elements is calculated.

  17. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    Toxic effect of heavy metals on aquatic environment. ... International Journal of Biological and Chemical Sciences ... The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and ...

  18. Assessment of heavy metals in chicken feeds available in Sokoto ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-12-08

    Dec 8, 2014 ... through eggs and meats. Supplementation of some ... heavy metal contaminations of chicken meat, eggs and other products .... processing and mixing of ingredients to the feed. ... Additives and Contaminants, 22(2): 141-. 149.

  19. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  20. Determination of heavy metals and genotoxicity of water from an ...

    African Journals Online (AJOL)

    Determination of heavy metals and genotoxicity of water from an artesian well ... do Amaral, Vanessa Marques de Oliveira Moraes, Luciana Pereira Silva ... environmental interest because it is the most important zinc producer district of Brazil.

  1. Heavy Metals Levels in Fish Samples from North Central Nigerian ...

    African Journals Online (AJOL)

    MBI

    2014-12-24

    Dec 24, 2014 ... Most aquatic organisms are capable of accumulating heavy metals to concentrations ... This indicates that the fish samples could be used to monitor Mn and Cr pollution levels .... was carried out to remove any organic plastic.

  2. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Jen

    Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B. 3011, Kano, Nigeria ... contamination (e.g. lead pipes), high ambient air concentrations near emission ... Thus heavy metals acquired through the food chain as a.

  3. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... assess their heavy metal ions adsorption potential. The results show that the .... De-ionised water obtained from the Mineral. Engineering Laboratory of ... Batch adsorption experiment for each of the derived activated carbons ...

  4. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Erah

    analyzed using a flame atomic absorption spectrometer. Results: Most of the products exceeded the permissible limits for lead (100 %), cadmium (68 %), .... absorption spectrometry. M e ta l n a m ..... Determination of Heavy Metals in Medicinal.

  5. 92 Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Choice-Academy

    Speciation and distribution of heavy metals in soil controls the degree to which ... observed that the groundwater is vulnerable to contamination as no treated ... toxic materials such as lead, cadmium, .... designing remediation programme for.

  6. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    LG

    2013-07-03

    Jul 3, 2013 ... The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. ... such as mercury, lead, cadmium, selenium, copper, chromium and ... considered as an alternative remediation for heavy.

  7. Effect of depuration on heavy metal concentrations in periwinkle ...

    African Journals Online (AJOL)

    Tympanatonus fuscastus) was evaluated in this study. Periwinkle in depuration tanks were taken at intervals of 24, 48, 72 and 96 hours of depuration and analyzed for these heavy metals: Lead (Pb), Zinc (Zn), Chromium (Cr) and Cadmium (Cd).

  8. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  9. The effects of heavy metals concentration on some commercial fish ...

    African Journals Online (AJOL)

    Badmus B S

    heavy metals (lead, cadmium, copper and zinc) were analyzed and only copper and zinc were found to be present in the ... contents of essential minerals, vitamins and unsaturated fatty acids .... that the interaction effect is significant. This effect ...

  10. Heavy Metal Contents in Some Commonly Consumed Vegetables

    African Journals Online (AJOL)

    dell

    This work reports on the levels of cadmium, lead, copper, manganese and ... source of both heavy metals and essential trace elements due to their ... content, clay mineral and other soil chemical ... addition, the interactions of soil-plant root-.

  11. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ahmadi, David, E-mail: david.ahmadi@web.de [Department of Psychiatry, University of Mainz (Germany); Engel, Alice; Weidemann, Joerg [Department of Psychiatry, University of Mainz (Germany); Budnik, Lygia Therese; Baur, Xaver [Institute for Occupational Medicine and Maritime Medicine (ZfAM), University of Hamburg (Germany); Frick, Ulrich [Department of Psychiatry, University of Regensburg (Germany); Department of Healthcare Management, Carinthia University of Applied Sciences (Austria); Hauser, Simone [Department of Psychiatry, University of Regensburg (Germany); Dahmen, Norbert [Department of Psychiatry, University of Mainz (Germany)

    2010-01-15

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  12. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  13. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  14. Potential Human Health Risk Assessment of Heavy Metals Intake via ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Gyawali et al., 2011). The concentrations of natural and synthetic ... traditional nutrients, heavy metals, pesticides and various other ... fertilizers and pesticides to soils, with a number of ..... selected brands of canned fish in Nigeria: Estimation of ...

  15. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  16. Heavy metal accumulation in a flow restricted, tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P.

    Levels of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the surficial sediments of Cochin estuary (SW coast of India) and adjacent coast are presented. Anthropogenic inputs from...

  17. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  18. incidence of heavy metals in kano metropolis drinking water sources

    African Journals Online (AJOL)

    userpc

    corrosion of brass fittings of certain submersible pumps and pipes used in borehole and taps specifically. The contamination of well with heavy metals might be due to seepage of sewage ... Chloride determination (Agumetric method):.

  19. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  20. Assessment of Heavy Metals in Waterleaf from Various Sources in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Standard method was followed for sample treatment, digestion, and analysis of selected heavy metals: lead .... research laboratory, University of Ibadan. Each ... Survey of consumption of waterleaf in Ota: Over 500 ..... In Encyclopedia of.

  1. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  2. Biomonitoring of heavy metals: Definitions, possibilities and limitations

    International Nuclear Information System (INIS)

    Markert, B.; Oehlmann, J.; Roth, M.

    2000-01-01

    Increasing attention given to heavy metals as components of the pollutant load in ecosystems makes it necessary to find reliable biological indicators. Fundamental investigations into the effect of heavy metals on organisms are therefore required. Different organisms (mosses, snails, etc.) were chosen as indicator organisms to optimize the indication of heavy metal loads at the physiological and biochemical level. All current programmes are designed to observe and measure pollutant inputs on a short or long-term basis. However, the changes in the environment of a phenological, physiological, sociological, genetic and physiological/biochemical nature have been investigated by biologists since the beginning of biological scientific research. So far excellent scientific results have been produced by qualification of the heavy metal status in ecosystems. Until now, the quantification of the results with regard to pollutant inputs in ecosystems (mass balances) and their action in these ecosystems have been investigated inadequately. (author)

  3. Estimation of Heavy Metals in Neem Tree Leaves along Katsina ...

    African Journals Online (AJOL)

    Michael Horsfall

    Key Words: Neem tree, Heavy metals, Pollution. Determination ... concentrations of pollutants in the tree bark correlate with those of ... hence are not readily detoxified and removed by .... levels can severely damage the brain and kidneys and.

  4. Distribution of Heavy Metals in Organs of Freshwater Fishes from ...

    African Journals Online (AJOL)

    MBI

    2015-12-24

    Dec 24, 2015 ... indicate that the concentrations of the heavy metals in the samples are generally well above the respective recommended ... weathering processes on rocks and soils (Babel and. Opiso ..... Source apportionment of suspended.

  5. Natural occurrence of heavy metal, fungi and mycotoxins in soybean ...

    African Journals Online (AJOL)

    Yomi

    2011-12-16

    Dec 16, 2011 ... Heavy metals are a definite human health hazard be- cause of their .... The mean values of nutrient composition of the soybean meal samples ..... A food borne disease outbreak due to the consumption of moldy sorghum and.

  6. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    International Nuclear Information System (INIS)

    Ghezel-Ahmadi, David; Engel, Alice; Weidemann, Joerg; Budnik, Lygia Therese; Baur, Xaver; Frick, Ulrich; Hauser, Simone; Dahmen, Norbert

    2010-01-01

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  7. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium ... concentrations of heavy metals in these CPA samples mean they are safe for human consumption. ... poisoning, including Pb, Cd, As, Hg, Sn, and Sb.

  8. Preliminary Assessment of Heavy Metal Pollution of Opa Reservoir, Ile

    African Journals Online (AJOL)

    big timmy

    Awolowo University (OAU), Ile-Ife, Nigeria, with a view to assessing its pollution level. ... Heavy metals are not biodegradable, but are assimilated .... samples were filtered (with Whatman filter paper. No 42) and ..... acidity,Water, Air Soil Pollut.

  9. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  10. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  11. Baby Teeth Link Autism and Heavy Metals, NIH Study Suggests

    Science.gov (United States)

    ... Release Thursday, June 1, 2017 Baby teeth link autism and heavy metals, NIH study suggests Cross-section ... Sinai Health System Baby teeth from children with autism contain more toxic lead and less of the ...

  12. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  13. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  14. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    UFUOMA

    African Journal of Environmental Science and Technology Vol. 5(4), pp. 280-298, April ..... present study gave higher values due to the effect of increasing ...... on The Heavy Metal. Pollution of Guanabara Bay Sediments and Evaluation of The.

  15. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  16. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy...

  17. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  18. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  19. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    OpenAIRE

    Tee, L.W.; Najiah, M.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) an...

  20. Study of heavy metals in urban runoff

    International Nuclear Information System (INIS)

    Nabizadeh, R.; Mahvi, A.; Mardani, G.; Yunesian, M.

    2005-01-01

    A cross-sectional survey was conducted through Tehran city and a field study was conducted to prepare main and accessory drainage channels map. Three main drainage channels were identified for this research and some sampling stations were chosen. Three stations selected in south of Tehran. The reason for selecting these stations is that all urban surface run off completely pass through these points and samples taken from these points are representative of all kinds of pollutants that transit from city surface. Another three stations were selected in center and further three stations were selected at north of Tehran. Surface runoff flow in three main channels, from north of south of Tehran, converge at south of Rey city and finally end up to Ghom Salt lake. The stations were chosen at three trajectories Sorkhe Hesar, Emad Avard, Kan. At each month two samples were from nine different stations. After collection of samples with respect to standard methods, they were dissolved in nitric acid and then analyzed by atomic absorption device. The results show that the concentrations of pollutants increased from north to south. For instance, Zinc had most concentration with monthly average of 0.98 mg/l and Nickel had the lowest amount with 0.02 mg/l in southern stations. Average concentration of Zn, Pb, Cd, Cu and Ni were: 0.638, 0.97, 0.04 and 0.035 mg/l respectively. Total average concentrations of heavy metals at three main channels were of 0.177, 0.176 and 0.145 mg/l. Emad Avard was the most polluted channel

  1. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  2. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  3. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  4. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  5. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  6. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  7. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  8. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  9. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  10. New statistical function for the angular distribution of evaporation residues produced by heavy ions

    International Nuclear Information System (INIS)

    Rigol, J.

    1994-01-01

    A new statistical function has been found for modelling the angular distribution of evaporation residues produced by heavy ions. Experimental results are compared with the calculated ones. 11 refs.; 4 figs. (author)

  11. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  12. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  13. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  14. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  15. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  16. Immunotoxicology in wood mice along a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Tersago, Katrien; De Coen, Wim; Scheirs, Jan; Vermeulen, Katrien; Blust, Ronny; Bockstaele, Dirk van; Verhagen, Ron

    2004-01-01

    We carried out an immunotoxicological field study of wood mice in three populations along a heavy metal pollution gradient. Heavy metal concentrations in liver tissue indicated that exposure to silver, arsenic, cadmium, cobalt and lead decreased with increasing distance from a non-ferrous smelter. Host resistance to the endoparasite Heligmosomoides polygyrus decreased with increasing exposure, while the abundance of tick larvae and the nematode Syphacia stroma was unrelated to heavy metal exposure. Spleen mass was increased at the intermediate and the most polluted sites and was positively correlated with the number of H. polygyrus and tick larvae. Proportion of early apoptotic leukocytes increased towards the smelter and was positively related to cadmium exposure. Red and white blood cell counts and lysozyme activity showed no relationship with metal exposure. All together, our observations suggest negative effects of heavy metal exposure on the immune function of wood mice under field conditions. - Capsule: Complex interactions among metal burden, immune response and parasite burden suggest negative effects of heavy metal exposure on the immune system of wood mice

  17. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  18. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  19. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  20. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers

    Science.gov (United States)

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

  1. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    Aery, N.C.; Panchal, Jayesh

    2007-01-01

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  2. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  3. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  4. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  5. Variation of heavy metal levels in the tissues of Periophthalmus ...

    African Journals Online (AJOL)

    Variation of heavy metal levels in the tissues of Periophthalmus papillio from the mangrove swamps of the Bukuma oilfield, Rivers State. ... Generally elevated metal levels in both tissues were recorded at the stations with wellheads, implicating oil-related activities as the main source of contamination. However, the levels in ...

  6. Evaluation of Heavy and Trace Metals in Fingernails of Young ...

    African Journals Online (AJOL)

    WAHAB

    These elements have been produced by alteration and distribution via wind blow. The result indicates that soil or road dust plays an important role in the concentration buildup of the road side dust near automobile workshops. Table 2: Concentration of heavy metals in the soil samples in the automobile workshop. Metals.

  7. Heavy metal concentrations in, and human health risk assessment ...

    African Journals Online (AJOL)

    Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l−1 and 61.60 mg kg−1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water ...

  8. Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Speciation and distribution of heavy metals in soil controls the degree to which metals and their compounds are mobile, extractable, and plant available. Eight strategically located dumpsites in Ilorin metropolis (an averagely growing city and a state capital) were chosen for dumpsites-soil characteristics study. Both the ...

  9. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  10. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    Several sediment samples in Lake Burullus have been affected by the discharges of heavy metals through different drains. The study aimed to analyze the chemical speciation of these metals. In particular, the chemical forms of Cd, Cu, Fe, Mn, Pb and Zn in sediments collected in spring season were studied using a ...

  11. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  12. levels of heavy metals in gubi dam water bauchi, nigeria

    African Journals Online (AJOL)

    Ada

    copper and lead were always highest in the suspended materials which indicate the dominant role played by ... essential. However, at high concentrations, these trace metals become toxic (Nurnberg, 1982). Heavy metals in .... mobilization of cobalt minerals into the dam. .... Interaction between sediments and fresh water ...

  13. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  14. Heavy metal removal from aqueous solutions by sorption using ...

    African Journals Online (AJOL)

    Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. ... The high alkaline pH in one of the samples is attributable to the presence of ... The point of zero charge (pHpzc) values of the clays, as determined by ... significant contributions to the removal of metal ions in aqueous systems.

  15. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on ... this elements in 14 days) exposure, the metal accumulation was measured using atomic absorption spectroscopy. ... sed to the point that it endangers human life in some areas, and the ...

  16. Physicochemical Characteristics and Levels of Some Heavy Metals ...

    African Journals Online (AJOL)

    Michael Horsfall

    indicated a significant degree of soil contamination for Pd, Cd, Co, Cu and Zn in the soils studied showing a higher ... disposed waste. These metals which are not biodegradable are accumulated in living organisms when released into the environment. Although trace ... heavy metals in Nigerian soils if such solid waste.

  17. Evaluation of heavy metals pollution of Nokoue Lake

    African Journals Online (AJOL)

    use

    African Journal of Environmental Science and Technology Vol. 5(3), pp. 255-261, March ... Key words: Nokoue Lake, pollution, heavy metal, texture. INTRODUCTION ... certain anthropogenic trace metals released by industries and domestic .... storage on ice, complete filling containers, use of plastic materials for storage ...

  18. Modelling heavy metal and phosphorus balances for farming systems

    NARCIS (Netherlands)

    Keller, A.N.; Schulin, R.

    2003-01-01

    Accounting for agricultural activities such as P fertilization in regional models of heavy metal accumulation provides suitable sustainable management strategies to reduce nutrient surpluses and metal inputs in agricultural soils. Using the balance model PROTERRA-S, we assessed the phosphorus ( P),

  19. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  20. Heavy metals burden in Kidney and heart tissues of Scarus ...

    African Journals Online (AJOL)

    Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd) in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney ...

  1. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    and they probably reduced the effect of high concentrations of these metals on the lake ... 31° 07' E. It's a shallow brackish lake connected with the sea by a ... The concentration of heavy metals in water (µg/l) at 15 stations at Lake Burullus.

  2. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  3. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  4. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  5. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.

    Science.gov (United States)

    Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko

    2007-11-01

    reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.

  6. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  7. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    Index of geo-accumulation (Igeo), revealed no contamination of the trace metals. ... (Hg), arsenic (As) and cadmium (Cd). ... standards, and to suggest the best remedial methods ..... metal concentrations in urban soil of Ibadan metropolis,.

  8. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  10. Changes in the Concentration of Heavy Metals (Cr, Cd, Ni During the Vermicomposting Process of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Aušra Zigmontienė

    2014-10-01

    Full Text Available Sewage sludge treatment and utilization is an important issue for a biodegradable waste management strategy. Heavy metals in sewage sludge complicate its use. Vermicomposting is one of the ways to improve the characteristics of sewage sludge and to reduce the residual concentrations of heavy metals. Study on changes in the concentration of heavy metals (Chromium, Nickel and Cadmium, when vermicomposting sewage sludge, was performed using Californian earthworms (Eisenia fetida. For that purpose, 60 kg of sewage sludge from Vilnius Waste Water Treatment Plant were taken thus inserting 1.5 kg of Californian earthworms into it. Optimal conditions for work (optimum temperature, moisture, pH for earthworms to survive were maintained in the course of the study that lasted 120 days and was conducted in June – August. The samples of sewage sludge and earthworms were taken every 10 days. The concentrations of heavy metals in sewage sludge were measured using atomic absorption spectroscopy.

  11. ASSESSMENT OF HEAVY METALS POLLUTION OF SEDIMENTS ...

    African Journals Online (AJOL)

    Preferred Customer

    2011 Chemical Society of Ethiopia. ______ ... 2Department of Laboratory Technology, University of Cape Coast, Ghana. (Received June 23 ... industrial and urban wastes are inevitably discharged into water bodies and consequently, heavy.

  12. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  13. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...... that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (

  15. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  16. Novel polymer-based nanocomposites for application in heavy metal pollution remediation

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2012-10-10

    Full Text Available and kidney damage and also cancer ? Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants ? CSIR 2012 Slide 3 Removal of heavy metals ? Small volume applications: ion exchange ? Larger volumes eg. acid mine... pollution, treatment shortfalls at municipalities and contaminated surface water discharges ? Accumulation of heavy metals and endocrine disrupters ? CSIR 2012 Slide 2 Introduction: Heavy metals ? Cr, Ni, Cu, Pb, As etc. ? Exposure can cause liver...

  17. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  18. Predatory insects as bioindicators of heavy metal pollution

    International Nuclear Information System (INIS)

    Nummelin, Matti; Lodenius, Martin; Tulisalo, Esa; Hirvonen, Heikki; Alanko, Timo

    2007-01-01

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators

  19. Heavy metal absorption by vegetables grown in different soils

    International Nuclear Information System (INIS)

    Canova, F.; Riolfatti, M.; Ravazzolo, E.; Da Ros, D.; Brigato, L.

    1995-01-01

    The authors study the bibliographic and experimental data on absorption by vegetables of several heavy metals present in the soil or brought to it via fertilizations, especially with the use of compost coming from waste treatment plants. The presence of heavy metals in the soil causes increased levels of these toxic substances in the edible parts of the vegetables grown in that soil. Not to be neglected is also the absorption by the leaf apparatus of airborne particulate containing heavy metals which deposit on the parts of the vegetable exposed to the air. The available data lack homogeneity of investigation as they have been draw from studies which followed different methodologies. Therefore further studies are required in order to: eliminate some of the variables that might affect the absorption of metals from the soil and supply comparable data. Moreover, a greater number of vegetable species and their different edible parts will have to be taken into consideration

  20. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  1. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  2. Accumulation of Heavy Metals by Wild Mushrooms in Ibadan, Nigeria

    OpenAIRE

    Chinatu Charity Ndimele; Prince Emeka Ndimele; Kanayo Stephen Chukwuka

    2017-01-01

    Background. Many companies in Nigeria generate industrial effluents, including heavy metals. These metals can be accumulated by biota such as mushrooms, which are then eaten by the populace. Objectives. The present study investigates the metal content of wild mushrooms in order to educate the local population on the safety of their consumption. Methods. Seven different species of wild mushrooms (Cortinarius melliolens, Chlorophyllum brunneum, Pleurotus florida, Volvariella speciosa, Can...

  3. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  4. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  5. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  6. HEAVY METAL ASPECTS OF COMPOST USE

    Science.gov (United States)

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  7. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  8. Heavy metal immobilization in mineral phases

    International Nuclear Information System (INIS)

    Apblett, A.

    1993-01-01

    A successful waste form for toxic or radioactive metals must not only have the ability to chemically incorporate the elements but it must also be extremely stable in the geological environment. Thus, ceramic wasteforms are sought which mimic those minerals that have sequestered the hazardous metals for billions of years. One method for producing ceramics, metal organic deposition (MOD) is outstanding in its simplicity, versatility, and inexpensiveness. The major contribution that the MOD process can make to ceramic waste forms is the ability to mix the toxic metals at a molecular level with the elements which form the ceramic matrix. With proper choice of organic ligands, the inclusion of significant amounts of alkali metals in the ceramic and, hence, their detrimental effect on durability may be avoided. In the first stage of our research we identified thermally-unstable ligands which could fulfill the role of complexing toxic metal species and allowing their precipitation or extraction into nonaqueous solvents

  9. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  10. Elimination of radionuclides and heavy metals from soils

    International Nuclear Information System (INIS)

    Navarcik, I.; Cipakova, A.; Palagyl, S.

    1994-01-01

    Sorption and desorption of radionuclides and heavy metals, their vertical migration and gradual extraction from soils were studied. Tessier sequential extraction method was used for determination the physicochemical forms of radionuclides and heavy metals absorbed by root system of plants and leached into ground water. Fixed forms of heavy metals and radionuclides are prevailing in soils. As to artificial ( 90 Sr, 137 Cs) isotope ratio of fixed forms bound with soil components, it is higher for 137 Cs (black earth - 95%, sandy soil - 62%) as compared to 90 Sr. Mobilization procedures for elimination of unfavourable influence of these pollutants in soils were used. The bacteria Pseudomonas sp. and Micrococcus l. are applied for this purpose. At the same time the growing of technical plants (Linum usitatissimum L. and Brassica napus L. var.) was studied as a method for mobilizing the heavy metals and radionuclides from soils. Retardation influence of bacteria on 85 Sr was noticed after as much as 3 months. The sum of water-soluble and exchangeable fractions reached 60%. Values of Cs distribution proved that microorganisms or plants used had no appreciable influence on Cs-mobility. After 3 months the relative ratio of accessible fraction increased with about 5%. As to heavy metals, both bacteria and plant growing influenced their retardation. In the case of Cd, one month operation of microorganisms resulted in important increase of easily available Cd-ratio (about 25%) in soils. (author)

  11. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  12. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  13. Stabilization of heavy metals in Tehran agricultural land

    International Nuclear Information System (INIS)

    Torabian, A.; Sadeghi, Sh.

    2001-01-01

    In order to prevent contamination of heavy metals accumulation in soil, plant, and ground water, several methods of prevention are studied, and tested worldwide. One of the method which has not been studied and applied in Iran is stabilization of heavy metals in soil by using clay minerals. Clay minerals due to hydration properties can adsorb organic and inorganic substances. Two clay minerals were used in this research: Bentonite with chemical structure of 2 to 1 (Two layers of silica and one layer of Aluminium) with CEC equal to 85 m eq/100 grams and Kao line with chemical structure of one to one (one layer silica and one layer Aluminum) and CEC=3 m eq/100 grams of soil. The physical and chemical properties of these two kinds of clays were different. Stabilization of heavy metals with different percentages of these two clays (7%, 15%, 22%) with different p H (4,7,8,11.5) were studied. The results indicate that with increasing of stabilizing agent at p H=7.8 and greater, stabilization of heavy metals increased significantly. The results also indicate the stabilization of heavy metals decreased rapidly at p H 4 and lower. The results of this study agree with the work of pervious researchers

  14. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Ashley E. Franks; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  15. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts.

    Science.gov (United States)

    Liu, Ling; Guo, Xiaoping; Wang, Shuqi; Li, Lei; Zeng, Yang; Liu, Guanhong

    2018-04-15

    In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg -1 ) > Cu (38.6mgg -1 ) > Zn (34.9mgg -1 ) > Ni (28.7mgg -1 ) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Heavy metals in soils: a possible rule of Fungi

    International Nuclear Information System (INIS)

    Bedini, S.; Argese, E.; Giovannetti, M.; Gobbo, L.; Pietrangeli, B.

    2009-01-01

    The development of effective bio technologies is a mail goal in reclaiming polluted soils. Plants may represent a very useful tool, since they are able to reduce pollution by means of the synergic action of rhizospheric microorganisms. Arbuscular mycorrhizal (A M) fungi, root symbionts of most land plants, produce a proteinaceous substance named glomalin-related soil protein (GRSP) that has been demonstrated to interact with metallic ions. In this study we investigated the role of GRSP in the immobilization of potentially toxic heavy metals both in an agricultural and in a highly polluted soil. The results show that in heavy metal contaminated soils, GRSP can ease soil pollution by sequestering toxic metallic ions. On the other hand, in agricultural soils, where metallic elements are present in low concentrations, GRSP may be important also as a nutrient slow-releasing fraction of the soil organic matter.

  17. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  18. Analysis of heavy metals in corn

    International Nuclear Information System (INIS)

    Enger, B.; Dirdal, B.; Paus, P.E.

    1979-03-01

    Methods for the analysis of metals in Norwegian corn types have been tested. The main emphasis is on atomic absorption spectroscopy, with both wet and dry ashing, but the results are compared with emission spectroscopy and neutron activation analysis. In the latter only instrumental analysis has been carried out, restricting the number of metals which could be analysed. (JIW)

  19. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the

  20. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge.

    Science.gov (United States)

    Zhu, Yi; Zeng, Guangming; Zhang, Panyue; Zhang, Chang; Ren, Miaomiao; Zhang, Jiachao; Chen, Ming

    2013-08-01

    Feasibility of bioleaching combining with Fenton-like reaction to remove heavy metals from sewage sludge was investigated. After 5-day bioleaching, the sludge pH decreased from 6.95 to 2.50, which satisfied the acidic conditions for Fenton-like reaction. Meanwhile, more than 50% of sludge-borne heavy metals were dissolved except for Pb. The bioleached sludge was further oxidized with Fenton-like reaction, with an optimal H2O2 dosage of 5 g/L, the Cu, Zn, Pb and Cd removal reached up to 75.3%, 72.6%, 34.5% and 65.4%, respectively, and the residual content of heavy metals in treated sludge meets the requirement of Disposal of Sludge from Municipal Wastewater Treatment Plant - Control Standards for Agricultural Use (CJ/T 309-2009) of China for A grade sludge. Bioleaching combined with Fenton-like reaction was the most effective method for heavy metal removal, compared with 15-day bioleaching and inorganic acid leaching with 10% H2SO4, 10% HCl and 10% HNO3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  2. Magnetism in heavy-electron metals

    International Nuclear Information System (INIS)

    Ott, H.R.

    1997-01-01

    Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)

  3. Behaviour of heavy metals during the thermal conversion of sawdust in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klensch, S.; Reimert, R. [Engler-Bunte-Inst., Bereich Gas, Erdoel und Kohle, Univ. Karlsruhe, Karlsruhe (Germany)

    1999-07-01

    Since its utilization is nearly CO{sub 2}-neutral, biomass represents a major alternative energy carrier in comparison with fossil fuels in CO{sub 2} reduction scenarios frequently discussed. Decentral generation of power and heat in medium sized plants could develop as a preferred application in future. During thermal conversion (gasification and combustion) of biomass the inorganic matter including the heavy metals will be found in the solid residues, i. e. slags and ashes, and in very low concentrations in the product gas (fuel or flue gas). The ashes should be returned to the forests and the agricultural areas respectively to avoid the use of industrial fertilizers. However, for this purpose the heavy metal concentrations of ashes may not exceed specific limit values, otherwise the returned ashes can lead to harmful effects on the ecological system. In awareness of this problem, in Austria some limit values for the concentrations of Cd, Cr, Cu, Ni, Pb and Zn in returned ashes are valid since 1997. No danger for the environment can be expected by slags containing heavy metals. The heavy metals are fixed environmentally neutral in the glass matrix as has been proven for coal and for residue gasification many times. Dividing the total of the residues into such two streams (returned ash and slag) avoids the disposal of the ashes. The heavy metal behaviour during the thermal conversion of sawdust was investigated in a bench scale plant. In essence, the plant consists of an entrained flow reactor (length of reaction zone: 2,500 mm; inner diameter: 70 mm) and a candle barrier filter with 6 rigid ceramic filter elements (DIA-Schumalith 10-20). The biomass flow rate is as high as 6 kg/h and the operating pressure is about 0.12 MPa. Experimental results show the influences of the conversion temperature (1100 - 1300 C), of the dedusting temperature (350 - 800 C), and of the gas atmosphere (reducing, oxidising) on the heavy metal concentrations of the slag and of the fly

  4. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  5. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  6. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  7. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  8. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  9. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  10. Accumulation of heavy metals in a tropical soil type Oxisol

    International Nuclear Information System (INIS)

    Reynaldo, I.M.; Escudey, M.; Utria, E.; Garcia, D.; Cartaya, O.; Morua, A.

    2003-01-01

    In this investigation sewage sludges from Quibu plant, located in City of the Havana, with the objective of evaluating the capacity of accumulation of heavy metals in a tropical soil type Oxisol when in the wheat plants are cultivated (Triticum aestivum L.) , as well as the potential damages in this plants. Rates of 0, 60, 180 and 300 sludges tons/ soil hectare was applied and the plants were growth in recipient of 5 L of capacity. The levels of heavy metals were evaluated before the and after the crop. The extraction one carries out with the mixture HCl:HNO3 and they were determined by spectroscopy inductively coupled to plasma. Presence of Zn, Cu and Pb were detected in sludges and a tendency decrease is observed to heavy metals retention is observed in soil with the increase of the disposition rate together to a differential behavior of the different chemical species

  11. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  12. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  13. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  14. Heavy metal pollution in coastal areas of South China: a review.

    Science.gov (United States)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    Science.gov (United States)

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Heavy metal pollution in coastal areas of South China: A review

    International Nuclear Information System (INIS)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-01-01

    Highlights: • Heavy metal contamination in coastal areas of South China has been reviewed. • Heavy metal levels were closely related to economic development in past decades. • Heavy metal levels from Hong Kong continually decreased from the early 1990s. • Higher concentrations of heavy metals were found in mollusk. • Levels of heavy metals in part of seafood exceeded the safety limit. -- Abstract: Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit

  18. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  19. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  20. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  1. IMPACT OF BIOSLUDGE APPLICATION ON HEAVY METALS CONTENT IN SUNFLOWER

    Directory of Open Access Journals (Sweden)

    Marek Slávik

    2012-02-01

    Full Text Available The application of decomposed substrate after continual biogas production is one of the possible ways how to use alternative energy sources with following monitoring of its complex influence on the hygienic state of soil with the emphasis on heavy metal input. The substances from bilge and drain sediments from water panels, also biosludge gained by continual co-fermentation of animal excrements belong to these compounds. The biosludge application is connected with possible risk of cadmium and lead, also other risky elements input into the soil. The analyses of applicated sludge prove that the determined heavy metals contents are compared with limitary value. These facts - hygienic state of soil, pH influence this limitary value and biosludge is suitable for soil application. The total heavy metals content in soil is related to the increased cadmium, nickel, chromium and cobalt contents. The analyses of heavy metals contents in sunflower seeds show that the grown yield does not comply with the legislative norms from the stand point of heavy metals content due to high zinc and nickel contents. Copper, cadmium, lead, chromium contents fulfil limitary values, for cobalt content the value is not mentioned in Codex Alimentarius. The nickel value in the control variant seeds is 2.2 times higher than the highest acceptable amount, then in variant where the sludge was applicated the nickel content was increased by 1.6 times. In the case of zinc there was increasing content in individual variants 4.7, or 4.8 times. The direct connection with the higher accumulation of zinc and nickel in soil by the influence of biosludge application is not definitely surveyed, the increased heavy metals contents in sunflower were primarily caused by their increased contents in soils.

  2. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    Science.gov (United States)

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  3. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  4. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  5. Heavy metals and terrestrial cryptograms. A bibliographic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Margot, J.; Romain, M.T.

    1976-01-01

    Heavy metals pollution is a present-day problem as it concerns the entire continent. Terrestrial cryptograms are not of long-standing use as bioindicators in this respect and require a synthesis of the recent publications. Characteristics of heavy metals in the atmosphere, especially mosses and lichens, utilizable as bioindicators are briefly reported. They are followed by more accurate descriptions of phenomena on the level with the plant itself: absorption, accumulation, translocation, tolerance and other physico-chemical processes. The statement of deleterious effects on these organisms is then given: external symptoms, cytological localization, metabolic disturbances and ecological aspects. Further research propositions are presented. 128 references.

  6. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  7. [Heavy metal poisoning and renal injury in children].

    Science.gov (United States)

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  8. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  9. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialy......Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...

  10. Heavy metal removal and recovery using microorganisms. Volume 1, State-of-the-art and potential applications at the SRS

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States)

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  11. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    Science.gov (United States)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  12. Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh.

    Science.gov (United States)

    Aldjain, Ibrahim M; Al-Whaibi, Mohamed H; Al-Showiman, Salim S; Siddiqui, Manzer H

    2011-04-01

    Exposure of heavy metals to human beings has risen dramatically in the last 50 years. In today's urban and industrial society, there is no escaping from exposure to toxic chemicals and heavy metals. Humans are more likely to be exposed to heavy metal contamination from the dust that adheres to edible plants than from bioaccumulation. This is because it is very difficult to wash off all the dust particles from the plant material before ingesting them. The objectives of this experiment were to determine the concentrations of lead (Pb) and cadmium (Cd) in washing residues and in the tissues of fruits of date palm growing in 14 sites of Riyadh and also to assess whether the fruits were safe for human consumption. The washing residues and tissue of date palm fruits collected from different sites showed the presence of significant amounts of the Pb and Cd. The concentration of Pb in the dust and fruit tissue increased with increasing anthropogenic sources. Therefore, fruits of date palm might be used as a pollution indicator; it might be recommend that fruits of date palm could be safe for human consumption after washing. The mean concentration of Pb and Cd in all the samples collected from different sites is within the safe limits recommended by FAO/WHO.

  13. Normal concentrations of heavy metals in autistic spectrum disorders.

    Science.gov (United States)

    Albizzati, A; Morè, L; Di Candia, D; Saccani, M; Lenti, C

    2012-02-01

    Autism is a neurological-psychiatric disease. In the last 20 years we witnessed a strong increase of autism diagnoses. To explain this increase, some scientists put forward the hypothesis that heavy metal intoxication may be one of the causes of autism. The origin of such an intoxication was hypothesised to be vaccines containing thimerosal as antimicrobic preservative. This preservative is mainly made up of mercury. The aim of our research was to investigate the correlation between autism and high biological concentrations of heavy metals. Seventeen autistic patients, between 6 and 16 years old (average: 11.52 DS: 3.20) (15 males and 2 females), were investigated, as well as 20 non autistic subjects from neuropsychiatric service between 6 and 16 years (average: 10.41 DS: 3.20) (15 males and 2 females). In both groups blood, urine and hair samples were analysed trough means of a semiquantitative analysis of heavy metal dosing. The metals analysed were Lead, mercury, cadmium and aluminium, since their build-up may give both neurological and psychiatric symptoms. The comparison of the mean values of the concentrations between the groups, performed with ANOVA test, has shown no statistically relevant differences. There wasn't correlation between autism and heavy metal concentration.

  14. Effect of heavy metal on survival of certain groups of indigenous soil ...

    African Journals Online (AJOL)

    Heavy metal pollution of soil is known to adversely effect microbial activities at elevated concentration. However, response of indigenous soil bacterial population to added heavy metal and metal combinations is poorly understood. In the present study salts of heavy metals like Cu, Cd, Cr, Hg, Mn, Ni, Pb and Zn were added ...

  15. 620 ASSESSMENT OF HEAVY METALS, pH AND EC IN EFFLUENT ...

    African Journals Online (AJOL)

    Osondu

    evaluated metals were Cu, Fe, Ni, Mn, Cr, Zn, Cd, Co, and Ag. The pH, EC, TDS, DO ... heavy metals, but the high heavy metal concentrations in the soil could seriously ... Key words: Heavy metals, AAS, contamination, floriculture and effluents.

  16. Migration of heavy metals in soils in a uranium mining area

    International Nuclear Information System (INIS)

    Hu Ruixia; Gao Bai; Hu Baoqun; Feng Jiguang

    2009-01-01

    Contents of several heavy metals (Zn,Ni,Cu,Cd,Pb) in soil samples collected from different depths of the soil sections in a uranium mining area were analyzed, and vertical migration dis-ciplines of heavy metals were obtained. The results show that the concents of heavy metals in vertical direction decrease as the soil increases in thickness and there is a trend of facies-cumulation for the heavy metals. The accumulation status of each heavy metal in soils differs, which is dependent on the content and migration velocity of the heavy metal itself, the local natural environment about the soil, etc. (authors)

  17. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  18. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  19. Heavy metal removal from waste waters by ion flotation

    OpenAIRE

    Polat, Hürriyet; Erdoğan, D.

    2007-01-01

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under o...

  20. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr