WorldWideScience

Sample records for residues compost fertilizers

  1. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    Science.gov (United States)

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of turning frequency on co-composting pig manure and fungus residue.

    Science.gov (United States)

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  3. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  4. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    Science.gov (United States)

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Effect of composting organic fertilizer supplies on hexachlorobenzene dechlorination in paddy soils].

    Science.gov (United States)

    Liu, Cui-Ying; Jiang, Xin

    2013-04-01

    A rice pot experiment was conducted in two soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). Three treatments including control and additions of 1% or 2% composting organic fertilizer were designed for each soil. The objective of this research was to evaluate the reductive dechlorination of hexachlorobenzene (HCB) as affected by organic fertilizer supplies in planted paddy soils, and to analyze the relationship between methane production and HCB dechlorination. The results showed that the HCB residues were decreased by 28.6%-30.1% of the initial amounts in Ac, and 47.3% -61.0% in An after 18 weeks of experiment. The amount of HCB and its metabolite uptake by rice plants was only a few thousandths of the initial HCB amount in soils. The main product of HCB dechlorination was pentachlorobenzene (PeCB). The rates of HCB dechlorination in An were higher than those in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. The applications of both 1% and 2% composting organic fertilizer showed significant inhibition on PeCB production after the 6th and 10th week in Ac and An, respectively. In both tested soils, no significant difference of PeCB production rates was observed between the applications of 1% and 2% composting organic fertilizer. The role of methanogenic bacteria in HCB dechlorination was condition-dependent.

  6. Yield of Peas Treated with Compost and Chemical Fertilizer Using 15N Technique

    International Nuclear Information System (INIS)

    El-Degwy, S.M.A.

    2011-01-01

    A field experiment was carried out to evaluate the yield of peas treated with organic compost and mineral N fertilizer under sandy soil conditions. The obtained results showed that all the tested vegetative growth parameters, i.e. fresh and dry weight of leaves, root and pods of pea plants, were significantly increased with increasing the levels of mineral N fertilizer from 20 up to 50 kg N ha-1 either solely or in combination with compost. Nitrogen, phosphorus and potassium uptake by pea plants were ranked as follow: chemical N fertilize > compost + chemical N fertilize > compost. Organic additives either alone or in combination with chemical fertilizer had enhanced Ndff uptake by pods over aerial parts and roots while reversible trend was noticed with sole application of chemical fertilizer. Nitrogen derived from compost (Ndfc) and uptake by aerial parts followed by pods were enhanced by addition of organic plus chemical fertilizers comparable to sole addition of organic compost. In other term, chemical fertilizer had enhanced the portion of N derived from organic compost

  7. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  8. Management of Biogas spent slurry for hastening the composting of agro residues

    Directory of Open Access Journals (Sweden)

    G. S. Geeta

    2015-04-01

    Full Text Available The demand for energy and the fertilizers are ever increasing. Organic farming has many advantages looking to the environment pollution, unproductive soil, less yields etc. By installation of a biogas plant serves both the purposes of meeting the fuel as well as obtaining manures. The organic manures need to be added in bulk to meet the nutrient demands of the crop as it is not in concentrated form like chemical fertilizers. Hence, biogas spent slurry is the best alternate for hastening the compost preparation of abundantly available crop residues as well as obtaining enriched compost as conventional method takes long time. Moreover, slurry is composed of major nutrients besides enzymes and a rich microflora. Based on the preliminary results, the present study was conducted at farmer’s field to know whether slurry could be used for degradation of agro residues. One ton of crop residues that included banana waste, sunflower and maize waste, leaf litter of horticultural crops were inoculated individually with 60 L of spent slurry along with consortia of degrading fungi and P-solubilising bacteria. After a retention period of 60 days, nutrients were analysed. The cultures along with slurry indicated 1.5 - 1.96% N with reduction in C:N ratio between 1.6 - 1.82. The micronutrients also increased. Thus, it was concluded that efficient use of spent slurry can be made besides utilising the crop residues and the product for organic cultivation.

  9. Degradation of ¹³C-labeled pyrene in soil-compost mixtures and fertilized soil.

    Science.gov (United States)

    Adam, Iris K U; Miltner, Anja; Kästner, Matthias

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) are toxic pollutants widely distributed in the environment due to natural and anthropogenic processes. In order to mitigate tar oil contaminations with PAH, research on improving bioremediation approaches, which are sometimes inefficient, is needed. However, the knowledge on the fate of PAH-derived carbon and the microbial degraders in particular in compost-supplemented soils is still limited. Here we show the PAH carbon turnover mass balance in microcosms with soil-compost mixtures or in farmyard fertilized soil using [(13)C6]-pyrene as a model PAH. Complete pyrene degradation of 100 mg/kg of soil was observed in all supplemented microcosms within 3 to 5 months, and the residual (13)C was mainly found as carbon converted to microbial biomass. Long-term fertilization of soil with farmyard manure resulted in pyrene removal efficiency similar to compost addition, although with a much longer lag phase, higher mineralization, and lower carbon incorporation into the biomass. Organic amendments either as long-term manure fertilization or as compost amendment thus play a key role in increasing the PAH-degrading potential of the soil microbial community. Phospholipid fatty acid stable isotope probing (PLFA-SIP) was used to trace the carbon within the microbial population and the amount of biomass formed from pyrene degradation. The results demonstrate that complex microbial degrader consortia rather than the expected single key players are responsible for PAH degradation in organic-amended soil.

  10. Effect of organic waste compost on the crop productivity and soil quality

    Science.gov (United States)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; pstatistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In

  11. Effects of Chemical Fertilizer, Algea Compost and Zeolite on Green Bean Yield

    Directory of Open Access Journals (Sweden)

    Aysun Türkmen

    2017-03-01

    Full Text Available The present study used chemical fertilizer, brown algae compost and zeolite carried out in the field of Giresun Hazelnut Research Center between May-November 2014 in pots according to randomized blog design as three replicate each. Treatment groups were consist of eight different combinations as follow; G1-Control, G2-Zeolite, G3-Compost, G4-Chemical Fertilizer, G5-Zeolite+Compost, G6-Zeolite+Chemical Fertilizer, G7-Compost+ Chemical Fertilizer, G8-Compost+Zeolite+ Chemical Fertilizer. The brown algae (Cystoseira sp. were used as compost material. These combinations were applied to green beans (Phaseolus vulgaris. The green beans were seeded by hand to arrange planting depth of 5-6 cm and 20 seeds/m2. Except control group, each treatment was added fertilizers as 50 g zeolite, 50 g compost, and 25 g chemical according to treatment design. Half of the chemical fertilizers were added at seeding time and the rest after two weeks. Collected soil samples were analyzed right after harvest, the greatest values of treatment groups were determined as; Carbon% G1: 5.08, nitrogen G3: 0.09 ppm, sodium G5: 139 ppm, potassium G6 and G8: 5 ppm, magnesium G2: 1865 ppm, calcium G6: 8.33 ppm, manganese G2: 359 ppm, iron G6 : 16070 ppm, cobalt G6 and G7: 7.91 ppm, copper G2: 17.5 ppm, zinc G8: 28.0 ppm, selenium G7: 4.17 ppm, cadmium G5: 0.08 ppm, lead G4: 5.31 ppm. The greatest harvest value as g/m2 was obtained from zeolite only group G2 with 273 while the lowest was obtained from Compost only group G3 with 113 g/m2, obviously showing the effectiveness of zeolite only application moreover, also thinking that better results may get if the present study run for longer period.

  12. Quality of compost from composting plant in Puerto Real (Cadiz, Spain); Calidad del compost procedente de la planta de compostaje de Puerto Real (Cadiz)

    Energy Technology Data Exchange (ETDEWEB)

    Godillo Romero, M. D.; Quiroga Alonso, J. M.; Garrido Perez, C.; Rodriguez Barros, R.; Sales Marquez, D. [Universidad de Cadiz (Spain)

    2000-07-01

    The compost taken from the Compost Plant, treating urban solid residues from the Consorcio Bahia de Cadiz in the municipal district of Puerto Real, Cadiz, has been analysed for its particular qualities over the years 1990-1996. With this in mind we have determined the most important of parameters with a view to defining the quality of this organic fertilizer extracted from urban solid residues (USR): pH, conductivity, rejection through net meshing, humidity, organic matter, carbon, nitrogen, C/N relationship, cadmium, copper, nickel, lead, tin, zinc and mercury. The compost gathered complies with the established legal requisites concerning fertilizers and their related substances. The quality in the first years of this study is better due possibly to the construction of the bio-recycling plant leaving the latter as a holding plant. (Author)

  13. CHARACTERISTICS OF COMPOSTED BIO-TOILET RESIDUE AND ITS POTENTIAL USE AS A SOIL CONDITIONER

    Directory of Open Access Journals (Sweden)

    Jovita Triastuti

    2016-10-01

    Full Text Available Bio-toilet is a dry toilet where human excreta is trapped in a lignocelluloses soil matrix such as wood sawdust, then it is decomposed by aerobic  bacteria to organic compost rich in minerals such as N, P, and K. The study aimed to characterize the bio-toilet residue and its potential use as a soil conditioner for Jatropha curcas. The study was conducted in a private school of Daarut Tauhid in Bandung West Java. A bio-toilet S-50 type of Japan was constructed consisting of a composting chamber, mixer, heater, exhaust fan, and closet. The composting chamber was filled with 63 kg of Albizzia sawdust. Feces and urine was loaded daily by 54 students for 122-day observation. At the end of observation, the decomposed bio-toilet residue was evaluated for its physical properties such as bulk density (rb, porosity (%, and water retention (WR. Chemical properties such as pH, C/N ratio, N, P, and K, as well as microbiological properties such as numbers of bacteria, fungi, and worm eggs were evaluated at 14 and 122 days of decomposition process. Effect of the composted bio-toilet residue as plant growth media was evaluated using J. curcass as a plant indicator. Before it was used as a growth media, the composted bio-toilet residue was dried in a room temperature for 30 days. The experiment was designed in a completely randomized design 2 x 4 factorial with three replications. The first factor was the rate of composted biotoilet residue, i.e., 0, 20, 40, and 60% based on weight of the growth media mixture (1500 g pot-1, and the second was NPK fertilizer addition at 0 and 2 g pot-1. Each pot was planted with 2-month old of J. curcas seedlings. Parameters evaluated were leaf number, leaf area, stem height, and stem diameter measured at 12 weeks after planting. The results showed that the biotoilet residue was suitable as soil conditioner because it had high porosity (76%, low bulk density (0.19 g cm-3, high water retention (2.6 ml g-1 DM, neutral pH (6.9, C

  14. Nitrogen fertilization of coffee: organic compost and Crotalaria juncea L.

    Directory of Open Access Journals (Sweden)

    João Batista Silva Araujo

    2013-12-01

    Full Text Available Information concerning the response of coffee to organic fertilizers is scarce. This study evaluates the effect of different doses of compost and Crotalaria juncea L. on growth, production and nitrogen nutrition of coffee trees. The treatments consisted of compost at rates of 25, 50, 75 and 100% of the recommended fertilization, with or without the aerial part of C. juncea. C. juncea was grown with NH4-N (2% 15N and applied to coffee. The use of C. juncea increased growth in height and diameter of the coffee canopy. In the first year, the percentage of N derived from C. juncea reached 8.5% at seven months and 4.1% at fifteen months after fertilization. In the second year, the percentage of N derived from C. juncea reached 17.9% N at the early harvest, five months after fertilization. Increased rates of compost increased pH , P , K , Ca , Mg , sum of bases , effective CEC, base saturation and organic matter and reduced potential acidity. 15N allowed the identification of the N contribution from C. juncea with percentage of leaf N derived from Crotalaria juncea from 9.2 to 17.9%.

  15. Impact of Forage Fertilization with Urea and Composted Cattle Manure on Soil Fertility in Sandy Soils of South-Central Vietnam

    Directory of Open Access Journals (Sweden)

    Keenan C. McRoberts

    2016-01-01

    Full Text Available Increased production in smallholder beef systems requires improved forage management. Our objective was to evaluate the effects of composted cattle manure and mineral nitrogen (urea application on soil fertility and partial nutrient balances in plots established to Brachiaria cv. Mulato II in south-central coastal Vietnam from 2010 to 2013. A randomized complete block design was implemented on six farms (blocks, with five rates of composted cattle manure (0, 4, 8, 12, and 24 Mg DM/ha per yr and three urea rates (0, 60, and 120 kg N/ha per yr in a factorial design. Soil was analyzed before and after the experiment. Compost increased soil pH, organic matter, Ca, Mg, and Mn. The effect of compost and urea applications on postexperiment soil fertility depended on preexperiment soil fertility for K, P, S, Mg, Zn, Mn, Cu, and organic matter, suggesting that the ability to maintain soil fertility depends on the interaction between soil organic and inorganic amendments and existing soil fertility. Highest farm yields were also achieved on farms with higher preexperiment soil fertility levels. Negative partial nutrient balances for N, P, and K suggest that yields will not be sustainable over time even for the highest fertilization inputs used in this experiment.

  16. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    Science.gov (United States)

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  17. The substitution of mineral fertilizers by compost from household waste in Cameroon: economic analysis with a partial equilibrium model.

    Science.gov (United States)

    Jaza Folefack, Achille Jean

    2009-05-01

    This paper analyses the possibility of substitution between compost and mineral fertilizer in order to assess the impact on the foreign exchange savings in Cameroon of increasing the use of compost. In this regard, a partial equilibrium model was built up and used as a tool for policy simulations. The review of existing literature already suggests that, the compost commercial value i.e. value of substitution (33,740 FCFA tonne(-1)) is higher compared to the compost real price (30,000 FCFA tonne(-1)), proving that it could be profitable to substitute the mineral fertilizer by compost. Further results from the scenarios used in the modelling exercise show that, increasing the compost availability is the most favourable policy for the substitution of mineral fertilizer by compost. This policy helps to save about 18.55% of the annual imported mineral fertilizer quantity and thus to avoid approximately 8.47% of the yearly total import expenditure in Cameroon. The policy of decreasing the transport rate of compost in regions that are far from the city is also favourable to the substitution. Therefore, in order to encourage the substitution of mineral fertilizer by compost, programmes of popularization of compost should be highlighted and be among the top priorities in the agricultural policy of the Cameroon government.

  18. Effects of compost on soil fertility in irrigated rice growing at Kou ...

    African Journals Online (AJOL)

    Effects of compost on soil fertility in irrigated rice growing at Kou Valley (Burkina Faso) : Amélioration de la fertilité du sol par utilisation du compost en riziculture irriguée dans la Vallée du Kou au Burkina Faso.

  19. Efficacy of Fertilizer from Tubang-Bakod (JatrophaCurcas Linn Compost

    Directory of Open Access Journals (Sweden)

    Erma B. Quinay

    2015-11-01

    Full Text Available In order to determine the efficacy of fertilizer from Tubang-Bakod (Jatophacurcas Linn compost, an experiment was carried out in complete randomized block design based on 3 replications. Varied ratios of commercial organic fertilizer (COF and Jatropha compost (JC are 100:0, 50:50 and 0:100 and commercial inorganic fertilizers (CIF were used in planting. Parameters such as number of leaves, length of stems, size and color of leaves were determined after harvesting. The maximum number of leaves was noted in 100:0ratios of JC and COF; the lengthiest stem was noted in vegetables grown with 100:0 JC; while the largest size of leaf was noted in CIF. The color of leaves was the same for the varied ratios with a reading of 4 while the CIF has a reading of 5 in the leaf color chart. The macronutrients of JC have 2.09% N, 1.98%P and 17. 49%K.However the micronutrients of the compost were 203.66 ppm Zn, 326.27 ppmMnand 3997.30 ppmFe. These nutrients are essential for the plant growth. It was observed that potassium (K exceeded the standard for the COF which is 3.66 wt. %. K hastens maturity and increase the size and quality of vegetables.

  20. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sweet Sorghum crop. Effect of the Compost Application; Cultivo de Sorgo Dulce. Efecto de la Aplicacion de Compost

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Solano, M L; Carrasco, J; Ciria, P

    1998-12-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs.

  2. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    Science.gov (United States)

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. THE WORMS COMPOST - EFFECTIVE FERTILIZER FOR IMPROVING DEGRADED SOILS

    Directory of Open Access Journals (Sweden)

    Larisa CREMENEAC

    2013-01-01

    Full Text Available Management of organic waste is a difficult, complex and intractable in Moldova, according to international standards. Acute problem of organic matter from livestock sector waste is generated by storing them in unauthorized areas. Organic waste management strategies require different methods. One of them is organic waste bio conversion technology by worm’s cultivation. As the main natural wealth of the Republic of Moldova, soil requires a special care. Agriculture, in particular, should pay attention to the soil’s humus and nutrient status – and restore losses of humus and the nutrients used by crops. This requires measures to improve soil fertility. Land use provides, first of all return losses of humus and nutrients used by plants. Therefore measures required to improve soil fertility. The essence of the research was to highlight the role of worms compost improve the soil. To this end, in ETS "Maximovca" was organized an experiment that included three groups (two - experimental, to fund worms compost and one - control the natural background. Observations on soil fertility have been conducted over three years. The soil samples were collected by usual methods determined values of organic matter and humus. The results of the investigations, to determine the values of organic matter and humus samples collected from surface and depth 15 cm exceeded that of the sample control group to 29,7%; 11,4% and 34,3%; 37,1% in experimental group I and 9,3%; 11,6% and 45,5%; 45,5% in experimental group II. Therefore, worms compost embedded in a dose of 3-4 tons / ha during three years, has improved the fertility of the soil

  4. Comparative effects of organic compost and NPK fertilizer on soil ...

    African Journals Online (AJOL)

    Pre-treatment and post planting soil samples were taken for laboratory soil analysis of soil chemical properties for a comparison of the assessment of the cumulative effects of organic compost and inorganic fertilizer in improving soil fertility over a period of three years. The organic matter increased by 23.3% and 0.6% in the ...

  5. Sweet Sorghum Crop. Effect of the Compost Application

    International Nuclear Information System (INIS)

    Negro, M. J.; Solano, M. L.; Carrasco, J.; Ciria, P.

    1998-01-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs

  6. Compostagem da fração sólida da água residuária de suinocultura Solid fraction composting of residual water from pig farms

    Directory of Open Access Journals (Sweden)

    Marco A. P. Orrico Júnior

    2009-09-01

    numbers (MPN of total coliforms and fecal coliforms, as well as volume and quality of the compost. The composting showed to be efficient for treatment of the solid fraction of residual water from pig farms because of the high reduction of manure polluting potential, which reduction of 71.24% of TS contents, 64.55% of volume, 56.89% of CDO and 56.89% COM. Reductions of 100% in MPN total coliforms and fecal coliforms were observed, what allows its use as organic fertilizer.

  7. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw

    Science.gov (United States)

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-01-01

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO2 fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg−1) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure. PMID:26927136

  8. Housefly maggot-treated composting as sustainable option for pig manure management.

    Science.gov (United States)

    Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan

    2015-01-01

    In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Composting Technology and the Impact of Compost on Soil Biochemical Properties

    International Nuclear Information System (INIS)

    Abdel-aziz, Reda Abdel Thaher; Al-Barakh, Fahad bin Nasser

    2005-01-01

    Organic farming is one of several approaches to sustainable agriculture. Properly managed, organic farming reduces or eliminates environmental pollution and helps conserve water and soil on the farm. Organic farming systems require significantly greater amounts of organic fertilizers input than conventional systems. Because of the shortage of organic fertilizers in arid areas, composting is a way to transform waste materials left over from agricultural production and processing into a useful resource. Mature compost is an excellent organic fertilizer and soil amendment. The potential of composting to turn on-farm waste material into farm resources makes it an attractive proposition. Composting offers several benefits such as to enhance soil fertility and soil health, thereby increasing agricultural productivity, improving soil biodiversity, reducing ecological risks and improving the environment. Aerobic composting of some agricultural wastes (peanut, wheat straw and palm tree wastes) was carried out to raise its fertilizing value compared with widely used organic fertilizer, farmyard manure. The influence of composted and non-composted agricultural wastes on the availability of nitrogen, phosphorus and potassium (NPK) in sandy soil, as well as the uptake of these elements by corn plants, was also studied. Results indicated a rapid degradation of palm tree and wheat straw wastes as compared with peanut wastes. The composting process raised the fertilizing value of agricultural wastes as indicated by increase in nutritional availability. The application of the composted wastes as organic fertilizers to sandy soil increased the content of available N, P and K. Results showed that the application of different composted organic materials increased the dry weight and NPK uptake by corn plants. (author)

  10. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  11. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  12. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    Science.gov (United States)

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (Pcompost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  13. Waste composting and proving fish for production the organic fertilizers

    Directory of Open Access Journals (Sweden)

    Fernanda San Martins Sanes

    2015-06-01

    Full Text Available The volumes of waste generated in the fishing activity are increasing due to the increase in demand for these products. This implies the need for fast processing and cycling of these materials. Thus, the aim of this study was to evaluate the use of waste generated in the fishing activity as a source of organic fertilizers in agricultural production systems familiar ecological basis. The experiment was conducted at the Experimental Station Cascade / Embrapa Temperate Climate was assessed throughout the composting process and the fermentation of fish waste, identifying the main points that enable the use of these fertilizers in farming systems ecological base. The composting process of rice husk revealed be incomplete during the experiment. The compound prepared with fish waste and exhausted bark of acacia presents itself as a good source of nutrients for crops, which may be suitable as organic fertilizer for production of ecologically-based systems. For liquid organic fertilizer, the conditions under which the experiment was conducted, it is concluded that the compound resulting from aerobic or anaerobic fermentation of fish waste, present themselves as a viable source of nutrients for productive systems of ecological base. However, further studies need to be conducted to better understanding and qualification of both processes.

  14. Managing soil nutrients with compost in organic farms of East Georgia

    Science.gov (United States)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  15. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

    Directory of Open Access Journals (Sweden)

    Suvendu Das

    2017-09-01

    Full Text Available Livestock waste composts with minimum inorganic fertilizer as a soil amendment in low-input intensive farming are a feasible agricultural practice to improve soil fertility and productivity and to mitigate soil degradation. The key benefits of the practice rely on the activities of soil microorganisms. However, the role of different livestock composts [composted cattle manure (CCM vs. composted swine manure (CSM] on soil microbes, their activities and the overall impact on soil fertility and productivity in a flooded paddy remains elusive. This study compares the effectiveness of CCM and CSM amendment on bacterial communities, activities, nutrient availability, and crop yield in a flooded rice cropping system. We used deep 16S amplicon sequencing and soil enzyme activities to decipher bacterial communities and activities, respectively. Both CCM and CSM amendment significantly increased soil pH, nutrient availability (C, N, and P, microbial biomass, soil enzyme activities indicative for C and N cycles, aboveground plant biomass and grain yield. And the increase in above-mentioned parameters was more prominent in the CCM treatment compared to the CSM treatment. The CCM amendment increased species richness and stimulated copiotrophic microbial groups (Alphaproteobacteria, Betaproteobacteria, and Firmicutes which are often involved in degradation of complex organic compounds. Moreover, some dominant species (e.g., Azospirillum zeae, Azospirillum halopraeferens, Azospirillum rugosum, Clostridium alkalicellulosi, Clostridium caenicola, Clostridium termitidis, Clostridium cellulolyticum, Magnetospirillum magnetotacticum, Pleomorphomonas oryzae, Variovorax boronicumulans, Pseudomonas xanthomarina, Pseudomonas stutzeri, and Bacillus niacini which have key roles in plant growth promotion and/or lignocellulose degradation were enhanced under CCM treatment compared to CSM treatment. Multivariate analysis revealed that soil pH and available carbon (C and

  16. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  17. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  18. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    Science.gov (United States)

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  20. Influence of composted organic waste and urea fertilization on rice ...

    African Journals Online (AJOL)

    The field experiment was conducted at the University of Ghana's Soil and Irrigation Research Centre - Kpong during 2014 and 2015 cropping seasons to evaluate the influence of composted organic waste and urea fertilization on rice yield, Nitrogen-use efficiency and soil chemical characteristics. The study was laid out in a ...

  1. Composting of cow dung and crop residues using termite mounds as bulking agent.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of Fertilizer Types on the Growth and Yield of Amaranthus caudatus in Ilorin, Southern Guinea, Savanna Zone of Nigeria

    Directory of Open Access Journals (Sweden)

    Olowoake Adebayo Abayomi

    2014-01-01

    Full Text Available Field experiment was carried out at the Teaching and Research Farm of Kwara State University, Malete, Ilorin, to evaluate the effect of compost, organomineral, and inorganic fertilizers on the growth and yield of Amaranthus caudatus as well as its residual effects. Amaranthus was grown with compost Grade B (unamended compost, organomineral fertilizer Grade A (compost amended with mineral fertilizer, and NPK 15-15-15 and no fertilizer (control. All the treatments except control were applied at the rate of 100 kg N/ha. The results indicated that the Amaranthus yield of 18.9 t/ha produced from Grade A was significantly (P<0.05 higher than 17.6 t/ha obtained from NPK fertilizer. Residual effect of Amaranthus growth parameters such as plant height, number of leaves, and yield values obtained from Grade A was also significantly (P<0.05 higher than that of NPK, compost, and control values. Thus, organomineral fertilizer could be used in cultivation of Amaranthus caudatus in Ilorin and in similar type of soil in similar agroecology.

  3. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Effects of mushroom residue compost on growth and nutrient accumulation of Larix principis-rupprechtii containerized transplants].

    Science.gov (United States)

    Teng, Fei; Liu, Yong; Lou, Jun Shan; Sun, Qiao Yu; Wan, Fang Fang; Yang, Chen; Zhang, Jin

    2016-12-01

    Excessive use of peat may cause some environmental problems. To alleviate the negative effect, an experiment was conducted with the mushroom residue compost to replace peat in Larix principis-rupprechtii containerized transplant production, and the proportion of mushroom residue compost was 0% (T 0 , control), 15% (T 1 ), 18.75% (T 2 ), 25% (T 3 ), 37.50% (T 4 ), 50% (T 5 ), 56.25% (T 6 ) and 60% (T 7 ), respectively. The physical and chemical features of the substrates and its effect on the vegetative growth and nutrient accumulation of L. principis-rupprechtii containerized transplants were studied. The results showed when the proportion of mushroom residue compost in the substrate accounted for 50% or less, there was no significant difference in the transplant height, diameter, and biomass compared with the control, and the nutrient concentration in T 2 , T 4 , T 5 treatments was significantly higher than in T 0 . The pH value was sub-acidic to neutral which was suitable to the transplant growth. When the compost proportion accounted for more than 50%, the pH value was altered to alkali and was not suitable to the transplant growth. When the proportion of mushroom residue compost accounted for 15%, the plant grew best, and the height, diameter, and total biomass got the highest. Therefore, using mushroom residue compost to replace peat in L. principis-rupprechtii containerized transplants cultivation was feasible and the maximum replacement ratio could reach 50%. The high quality transplants could be obtained when the compost replacement ratio was 15%.

  5. Testing the Remanent Fertilizing Effect that the Compost Prepared with Slurry Resulted from Urban Treatment Plants Has on Corn Crops

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2011-05-01

    Full Text Available Research was done on the remanent fertilizing effect that the compost resulted from treatment plant slurry and cellulosic waste has on corn growth and development. The fertilization was performed on chernozem soil from Banat plain region, by using three quantitative variations: 25 t, 50 t and 100 t of compost per ha. Research was done in the second year of compost fertilization. The greatest corn production was obtained on the variant fertilized with 50 t per ha, which provided a production gain of 19.9 % higher than the unfertilized variant. For the same variant, the corn production yield was also 5.34 % higher than the control sample. Although the corn production and the yield obtained in the variant of 100 t per ha fertilization were higher in comparison to the unfertilized variant (control sample and to the level of 25 t per ha, these values were inferior to the level of 50 t per ha fertilization.

  6. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    Science.gov (United States)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  7. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-01-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  8. Evaluation of crop residue retention, compost and inorganic fertilizer ...

    African Journals Online (AJOL)

    Soil fertility depletion is a serious problem in the highlands of Ethiopia. ... The design was randomized complete block with three replications. ... were obtained from the applications of the recommended nitrogen and phosphorus (NP) fertilizer ...

  9. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    Science.gov (United States)

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  10. nfluences of ammonium-nitrate, food waste compost and bacterial fertilizer on soluble soil nitrogen forms and on the growth of carrot (Daucus Carota L.

    Directory of Open Access Journals (Sweden)

    Andrea Balla Kovács

    2014-04-01

    Full Text Available This paper reports a greenhouse study to compare the effects of food waste compost, bacterial fertilizer and their combination with the effect of mineral fertilizer on yield of carrot and the available nutrient content of soils. The study was conducted on calcareous chernozem and acidic sandy soils and consisted of 8 treatments in a randomized complete block design with four replications. The NH4NO3 resulted in reduced growing of carrot plant in sandy soil, and the treatment effect of mineral fertilizer was not observed significantly in chernozem soil. Sandy soil showed higher response of growth of carrot to food waste compost fertilization than chernozem soil. Sole application of EM-1 bacterial fertilizer did not have marked effect on yield parameters and sizes of roots. When EM-1 bacterial fertilizer was applied together with ammonium-nitrate or with compost in chernozem soil, the weights of roots and the sizes of roots in some cases became higher compared to the values of appropriate treatments without inoculation. In sandy soil the diameter of roots slightly increased when EM-1 bacterial fertilizer was applied with ammonium-nitrate and with ammonium-nitrate+compost combination compared to appropriate treatment without inoculation. In chernozem soil the maximum weights and sizes of roots were achieved with the combined treatment of ammonium-nitrate+compost+EM-1 bacterial fertilizer and in sandy soil with compost treatment. Our results of soluble nitrogen content of soils are in good agreement with yield parameters of carrot. Results suggest that food waste compost could be a good substitute for mineral fertilizer application in carrot production mainly in sandy soil. EM-1 bacterial fertilizer did not cause marked effect on yield and yield parameters of carrot plant, but its combination with other fertilizers promises a little bit higher yield or plant available nutrient in the soil. These effects do not clear exactly, so further studies are

  11. Crop residues quantification to obtain self-consumption compost in an organic garden

    Science.gov (United States)

    Lopez de Fuentes, Pilar; Lopez Merino, María; Remedios Alvir, María; Briz de Felipe, Teresa

    2013-04-01

    This research focuses on quantifying the crop residue left after the campaign fall/winter (2011) for the organic garden crops of Agricultural ETSI, located in practice fields, to get compost for self-generated residues arising from within their own fields. This compost is produced by mixing this material with an organic residues source animal. In this way the plant organic residues provided the nitrogen required for an appropriate C/N and the animal organic residues can provide the carbon amount required to achieve an optimal scenario. The garden has a surface area of 180 m2 which was cultured with different seasonal vegetables, different families and attending practices and species associations' rotations, proper of farming techniques. The organic material of animal origin referred to, is rest from sheep renew bed, sustained management support the precepts of organic farming and cottage belongs to practice fields too. At the end of crop cycle, we proceeded to the harvest and sorting of usable crop residues, which was considered as net crop residues. In each case, these residues were subjected to a cutting treatment by the action of a mincing machine and then weighed to estimate the amounts given by each crop. For the sheep bed residue 1m2 was collected after three months having renewed. It had been made by providing 84 kg of straw bales in July and introducing about 12 Kg each. The herd consisted of three females and one playe. Each one of them was feed 300g and 600 g of straw per day. Two alternating different pens were used to simulate a regime of semi-intensive housing. A balance on how much organic residue material was obtained at the end and how much was obtained in the compost process is discussed in terms of volume and nutrients content is discussed.

  12. Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    Cam Van, Do Thi

    2013-08-01

    Compost and residues from biogas plant have been increasingly recognized as potting substrates in horticulture. To investigate the suitability of both materials to grow salt tolerant plants in 2010 a pot experiment was conducted in the greenhouse of INRES-Plant nutrition, University of Bonn. Ryegrass (Lolium perenne L.), rape (Brassica napus) and sunflower (Helianthus annuus) were chosen as experimental plants. To reduce the high salt content compost and residues from biogas plant were leached. To improve physical characteristics of raw materials, additives including Perlite, Styromull, Hygromull, Lecaton, Peat, Cocofiber were incorporated into compost or residues from biogas plant with the volumetric ratio of 4:1. Plant growth (DM) and nutrient uptake (N, P, K, Mg, Ca, Na and S) of the experimental plants grown in compost-based or residue-based substrates with and without additives and standard soil as a control were determined. Preliminary results reveal that origin compost and residues from biogas plant without leaching are suitable potting substrates for those plants. For compost leaching may not be recommended while for residues from biogas plant the effect of leaching was not distinct and needs further investigations. The incorporation of additives into the basic materials partially resulted in higher plant dry matter yield and nutrient uptake. However, differences between the additives on both parameters were mainly insignificant. Incorporation of Hygromull or Peat, especially into residues from biogas plant favored plant growth and enhanced total nutrient uptake. In 2011, pot experiments were continued with the salt-sensitive ornamental plants, Pelargonium (Pelargonium zonale Toro) and Salvia (Salvia splendens). Two separate experiments were carried out for the mixtures of compost and additives (SPS standard soil type 73 based on Peat, Hygromull or Cocofiber) with different volumetric ratios (4:1, 1:1, 1:4) and the mixtures of Peat incorporated with small

  13. Agronomic effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes in oil palm main nursery used Ganoderma endemic soil

    Science.gov (United States)

    Hanum, H.; Lisnawita; Tantawi, A. R.

    2018-02-01

    Using of Ganoderma endemic soil in oil palm main nursery is not recomended because produce bad quality seedling. The application of organic and anorganic fertilizer and endophytic microbes are the alternative for solving the problem. The objective of this research is to evaluate the effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes on growth of oil palm seedling in main nursery. This research used factorial randomized block design. The first factor was combination of empty fruit bunches compost and anorganic fertilizer, The second factor was endophytic microbes consisting of Trichoderma and Aspergillus. The results showed that interaction effect of the both treatment factor used increased growth of seedling in third and fourth month after application. The best growth of seedling was on the treatment of empty fruit bunches compost combined with anorganic fertilizer 150% recommended dosage and Trichoderma viride.

  14. Effect of Turning Frequency on Composting of Empty Fruit Bunches Mixed with Activated Liquid Organic Fertilizer

    Science.gov (United States)

    Trisakti, B.; Lubis, J.; Husaini, T.; Irvan

    2017-03-01

    Composting of Empty Fruit Bunch (EFB) by mixing it with activated liquid organic fertilizer (ALOF) is an alternative way in the utilization of solid waste produced from the palm oil mill (POM). This research was to determine the effect of turning frequency on the rate of composting of EFB mixed with ALOF in a basket composter. The composting process was started with cutting the EFB into pieces with size 1-3 cm, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the MC was maintained at 55-65% range by adding the ALOF. The turning frequency on each composter was varied i.e. once in every 1, 2, 3, 4, and 5 days. The parameters analysed during composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at turning frequency was 3 days. The best compost characteristic was pH 9.0; MC 57.24%; WHC 76%; CN ratio 12.15%; P 0.58%; and K 0. 95%.

  15. Effect of Sewage Sludge Addition on the Completion of Aerobic Composting of Thermally Hydrolyzed Kitchen Biogas Residue

    OpenAIRE

    Hong-tao Liu; Lu Cai

    2014-01-01

    The composting of thermal-hydrolyzed kitchen biogas residue, either with or without sewage sludge, was compared in this study. The addition of sewage sludge increased and prolonged the temperature to a sufficient level that met the requirements for aerobic composting. Moreover, after mixing the compost materials, oxygen, ammonia, and carbon dioxide levels reverted to those typical of aerobic composting. Finally, increased dewatering, organic matter degradation, and similar mature compost prod...

  16. Effects of Vermi-compost and Two Bacterial Bio-fertilizers on some Quality Parameters of Petunia

    Directory of Open Access Journals (Sweden)

    Mina Zarghami MOGHADAM

    2013-05-01

    Full Text Available The present research was conducted to study the effect of vermi-compost and two bio-fertilizer applications on growth, yield and quality of petunia (Petunia hybrida. The experiment laid out in randomized block design with 3 replications and 9 treatment combinations composing of vermi-compost, bio-fertilizers and NPK fertilizer. The treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose recorded the highest plant height, number of branches, plant spread, leaf area index, dry matter accumulation and yield attributes such as number of flowers per plant, number of flowers per plot, flower yield/plant, flower yield/plot. The early flower bud initiation, 50 percent flowering and more flowering duration was achieved in the treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose. Application of Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose registered significantly higher quality parameters such as flower diameter.

  17. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  18. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  19. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.

    Science.gov (United States)

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.

  20. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  1. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    Directory of Open Access Journals (Sweden)

    J Jara-Samaniego

    Full Text Available Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador, more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17 with a C/N ratio 25; pile 2: (60:30:10 with C/N ratio 24 and pile 3 (75:0:25 with C/N ratio 33, prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter

  2. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    Science.gov (United States)

    Jara-Samaniego, J; Pérez-Murcia, M D; Bustamante, M A; Paredes, C; Pérez-Espinosa, A; Gavilanes-Terán, I; López, M; Marhuenda-Egea, F C; Brito, H; Moral, R

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  3. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  4. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  5. Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure.

    Science.gov (United States)

    Zhu, Feng-Xiang; Wang, Wei-Ping; Hong, Chun-Lai; Feng, Ming-Guang; Xue, Zhi-Yong; Chen, Xiao-Yang; Yao, Yan-Lai; Yu, Man

    2012-07-01

    A two-stage composting experiment was performed to utilize pig manure for producing maggots as feed supplement and organic fertilizer. Seven-day composting of 1.8 ton fresh manure inoculated with 9 kg mixture of housefly neonates and wheat bran produced 193 kg aging maggots, followed by 12 week composting to maturity. Reaching the thermophilic phase and final maturity faster was characteristic of the maggot-treated compost compared with the same-size natural compost. Upon the transit of the maggot-treated compost to the second stage, the composting temperature maintained around 55 °C for 9 days and the moisture decreased to ~40%. Moreover, higher pH, faster detoxification and different activity patterns for some microbial enzymes were observed. There was a strong material loss (35% water-soluble carbon and 16% total nitrogen) caused by the maggot culture in the first stage. Our results highlight a higher economic value of pig manure achieved through the two-stage composting without bulking agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  7. Effect of Different Levels of Nitrogen Fertilizer and Vermi-Compost on Yield and Quality of Sweet Corn (Zea mays Hybrid Chase

    Directory of Open Access Journals (Sweden)

    S. Habibi

    2014-04-01

    Full Text Available In order to investigate the effect of source and rate of nitrogen fertilizer on yield and quality of sweet corn, a field study was conducted in 2011 cropping season in Agriculture Experiment Station of College of Agriculture, University of Guilan. A randomized complete block design with three replications was used. Treatment consisted of four levels of nitrogen fertilizer (0, 46, 92 and 138 kg N ha-1 and integrated N of chemical and biological (23 kg N ha-1 + 1 ton ha-1 Vermi-compost, 46 kg N ha-1 + 2 ton ha-1 Vermi-compost, and 69 kg N ha-1 +3 ton ha-1 Vermi-compost and organic sources (2, 4 and 6 ton ha-1. Effect of source and rate of nitrogen fertilizer on fresh ear yield, grain yield canned, grain protein amount and dry matter digestibility percent had significant. With increscent nitrogen at treatments nitrogen fertilizer, organic ant integrated farming yield fresh ear, grain yield, grain protein amount and dry matter digestibility percent increased. Maximum yield fresh ear was obtained with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost with an average 14595.9 kg ha-1. Maximum forage yield and dry forage yield obtained with an average 18619.5 and 3593 kg ha-1 at treatment with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost. Results of this research showed that the best grain yield and quality, and forage yield and quality of sweet corn were obtained in integrated farming and organic methods in Rasht region conditions and same climatology conditions.

  8. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    Science.gov (United States)

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Relationship between the nutrition status and sensory characteristics of melon fertilized with wine-distillery waste compost

    Science.gov (United States)

    Requejo, María Isabel; Sánchez-Palomo, Eva; González, Miguel Angel; Castellanos, Maria Teresa; Villena, Raquel; Cartagena, Maria Carmen; Ribas, Francisco

    2015-04-01

    The interest in developing sustainable agriculture is becoming more important day by day. A large quantity of wastes from the wine and distillery industry are produced and constitute a serious problem not only environmental but also economic. The use of exhausted grape marc compost as organic amendment is a management option of the fertility of soils. On the other hand, consumers are increasingly concerned about the type, quality and origin of food production. Flavor and aroma are most often the true indicators of shelf-life from the consumer's point of view. The aim of this study was to relate the nutritional status of melon fertilized with exhausted grape marc compost with the sensory profile of fresh-cut fruits. A field experiment was established with three doses of compost (1, 2 and 3 kg per linear meter) and a control. Melons were harvested at maturity and the sensory evaluation was carried out by an expert panel of melon tasters to describe odour, flavour and texture. Nitrogen, phosphorus and potassium concentration was determined in the fruits to calculate nutrient absorption. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01

  10. Effect of pieces size of Empty Fruit Bunches (EFB) on composting of EFB mixed with activated liquid organic fertilizer

    Science.gov (United States)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    This research was to determine the effect of pieces sizes of oil palm empty fruit bunch (EFB) on the composting of EFB mixed with activated liquid organic fertilizer (ALOF) in a basket composter in order to obtain high quality compost. The composting process was started by cutting the EFB into pieces with varies sizes, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The sizes of the EFB pieces were varied into <1, 1-3, 4-7, 8-11, and 12-15 cm. The parameters analysed during the composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at EFB pieces size was 1-3 cm with compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0. 95%.

  11. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    Science.gov (United States)

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  13. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce.

    Science.gov (United States)

    Busato, Jader Galba; de Carvalho, Caroline Moreira; Zandonadi, Daniel Basilio; Sodré, Fernando Fabriz; Mol, Alan Ribeiro; de Oliveira, Aline Lima; Navarro, Rodrigo Diana

    2017-11-23

    Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13 C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L -1 HA increased significantly both dry and wet root matter in lettuce but the CO 2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H + extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.

  14. Maximising municipal solid waste--legume trimming residue mixture degradation in composting by control parameters optimization.

    Science.gov (United States)

    Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J

    2013-10-15

    Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of different form of mineral nitrogen fertilizer and organic fertilization with compost on yield and quality of various field-grown vegetable crops (radish, carrot, spinach and tubers celery). Quality investigation through electrochemical method and the determination of p-value

    International Nuclear Information System (INIS)

    El-Sherbiny, M.

    1998-10-01

    This study was conducted to determine the effect of nitrogen form (calcium-nitrate, nitramoncal, ammonsulfate and urea) and the compost fertilization on yield and quality of different vegetable crops, which were grown under field condition at the same nitrogen fertilizer levels. In addition to evaluate the yield, the nitrate contents and p-value have been tested to determine the quality. Following results have been found: yield: the mineral nitrogen form had no significant effect on yield by radish, carrot, and celery. Spinach is positive responded by a different form of nitrogen fertilizer. The same yield results were nearly obtained by the use of compost, compared to another nitrogen fertilizer. Nitrate content: the nitrate content is investigated in edible plant parts. The nitrogen forms have been effected nitrate contents on researched vegetable crops. Generally, the minimum nitrate content is found in control variant and by use of compost, and too by ammonsulfate or urea fertilizer. The maximum nitrate content is reached by use of calcium-nitrate and nitramoncal fertilizer. Spinach leaves had less nitrate contents than stalks. P-value: results of examination shows a major relation between nitrogen fertilizer form and p-value. With the exception of carrot, had compost and control variants of radish, spinach and celery the highest significant p-value in comparison with another nitrogen fertilizer. The lowest p-value is obtained by application of calcium-nitrate and nitramoncal fertilizer, also for a better quality. (author)

  16. Composite Compost Produced from Organic Waste

    OpenAIRE

    Lăcătuşu Radu; Căpăţână Romeo; Lăcătuşu Anca-Rovena

    2016-01-01

    The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33%) of...

  17. Effect of pretreatment on biomass residue structure and the application of pyrolysed and composted biomass residues in soilless culture.

    Directory of Open Access Journals (Sweden)

    Linna Suo

    Full Text Available The changes in the structural characteristics of biomass residues during pyrolysis and composting were investigated. The biomass residues particles were prepared by pyrolysing at temperatures ranging from 350 to 400. For soilless production of the ornamental plant Anthurium andraeanum, pure sphagnum peat moss (P has traditionally been used as the growing medium. This use of P must be reduced, however, because P is an expensive and nonrenewable resource. The current study investigated the use of biomass residues as substitutes for P in A. andraeanum production. Plants were grown for 15 months in 10 soilless media that contained different proportions of pyrolysed corn cobs (PC, composted corn cobs (C, pyrolysed garden wastes (PG, and P. Although the media altered the plant nutrient content, A. andraeanum growth, development, and yield were similar with media consisting of 50% P+50% PC, 50% P+35% PC+15% PG, and 100% P. This finding indicates that, when pyrolysed, organic wastes, which are otherwise an environmental problem, can be used to reduce the requirement for peat in the soilless culture of A. andraeanum.

  18. Research Regarding the Accumulation in Soybeans of Heavy Metals from Anaerobic Composted Sewage Sludge Used as Organic Fertilizer

    Directory of Open Access Journals (Sweden)

    Benoni Lixandru

    2010-10-01

    Full Text Available In sewage sludge from urban wastewater treatment stations can often be find high levels of Ni, Pb, Cu, Zn, Mn andCd. Aerobic or anaerobic composting of this sewage sludge does not eliminate the possibility of bioaccumulation ofthese metals in plants through metabolic processes of phytoextraction type. Researches regarding the accumulationdegree of heavy metals through phytoextraction processes were performed on soybean plants (Glycine max, Condorvariety. Plants were fertilized with anaerobic composted sludge in amounts of 25 t of / ha, 50 t / ha and 100 t / ha.The chemical analysis was done on an average sample of three repetitions. Metal concentration in soybeans wasanalyzed by reporting to the maximum allowance level for sheep, considered one of the most sensitive farm speciesto heavy metal toxicity. Our results showed a higher level than normal with 5.8 mg / kg only in the case of copperions. Zn, Pb, Mn and Cd concentration in soybeans was below the maximum allowance limits set by the rules offeeding farm animals. Also, heavy metal content of soybeans was not affected by the amount of composted sludgeused as fertilizer.

  19. Availability of residual nitrogen from fertilizers in soil

    International Nuclear Information System (INIS)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M.

    1983-01-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30 0 C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen. (author)

  20. Availability of residual nitrogen from fertilizers in soil

    Energy Technology Data Exchange (ETDEWEB)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M. (Institut za Primeni Nuklearne Energije u Poljoprivedri, Veterinarstvu i Sumarstvu, Zemun (Yugoslavia))

    1983-05-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30/sup 0/C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen.

  1. Polemics on Ethical Aspects in the Compost Business.

    Science.gov (United States)

    Maroušek, Josef; Hašková, Simona; Zeman, Robert; Žák, Jaroslav; Vaníčková, Radka; Maroušková, Anna; Váchal, Jan; Myšková, Kateřina

    2016-04-01

    This paper focuses on compost use in overpasses and underpasses for wild animals over roads and other similar linear structures. In this context, good quality of compost may result in faster and more resistant vegetation cover during the year. Inter alia, this can be interpreted also as reduction of damage and saving lives. There are millions of tones of plant residue produced every day worldwide. These represent prospective business for manufacturers of compost additives called "accelerators". The opinions of the sale representatives' with regards to other alternatives of biowaste utilization and their own products were reviewed. The robust analyzes of several "accelerated" composts revealed that the quality was generally low. Only two accelerated composts were somewhat similar in quality to the blank sample that was produced according to the traditional procedure. Overlaps between the interests of decision makers on future soil fertility were weighed against the preferences on short-term profit. Possible causes that allowed the boom of these underperforming products and the possible consequences are also discussed. Conclusions regarding the ethical concerns on how to run businesses with products whose profitability depends on weaknesses in the legal system and customer unawareness are to follow.

  2. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    Science.gov (United States)

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  4. Technical evaluation of two methods for composting of organic wastes to be used in domestic vegetables gardens

    OpenAIRE

    Campos-Rodríguez, Rooel; Brenes-Peralta, Laura; Jiménez-Morales, María Fernanda

    2016-01-01

    The need to achieve organic waste management solutions has led to treatment options of waste like composting. This practice is defined as the transformation of organic wastes by biological means in controlled conditions; the result is a fertilizer or substrate which can be used in agriculture. In this investigation, a technical evaluation of two composting methods to be applied in home vegetable gardens was carried out. The first  method for degrading of residues evaluated consists in the add...

  5. Properties of a compost obtained starting from residuals of the production of cane sugar

    Directory of Open Access Journals (Sweden)

    Elvis López Bravo

    2017-10-01

    Full Text Available The goal of the present work was to determine the main properties of a compost made from bagasse, slowness and ash, obtained from the sugar factory process. To elaborate the mixture a characterization of the raw material was carried out in function of the properties related to the composting process. During the process of anaerobic biodigestion, the control of the main monitoring parameters was carried out, until reaching the maturation state. In the raw material used a bulk density of 0.12 to 0.48 g cm-3 was found, the pH oscillated between 5.2 and 8.7, while the electrical conductivity was in the range of 0,4 to 0,9 µ m-1. On the other hand, the contents of P, K, Ca and Mg showed values between 0.3 and 2.8 %. Finally, a bulk density of 0.5 g cm-3 was obtained in the compost. The carbon-nitrogen (C/N ratio, showed a linear relation with respect to the time of composting, showing a suitable maturation of the mixture. The presence of N, P, K, Ca and Mg with values of 1; 1.3; 1.1; 2 and 1.1 % were also verified. After evaluating the results it is concluded that compost shows a suitable composition to be used as organic fertilizer in agriculture.

  6. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit

  7. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  8. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    Science.gov (United States)

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  10. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob

    2009-01-01

    is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting...

  11. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  12. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  13. The Effect of Different Rates of Municipal Compost and N Fertilizer on the Essential Oil and some Vegetative Characteristics of Summer Savoury (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Sh Zare

    2013-08-01

    Full Text Available To evaluate the effect of different levels of nitrogen fertilizer and municipal compost on the essential yeild of savory pot experiment in 2009 was carried out in the Darab region. Different doses of compost was in four levels, including: zero C0:, 10C1:, 20C2: and 30C3: tons per hectare and nitrogen fertilizer include: zero N0:, 30N1:, 60 N2: and 90N3: kg of pure nitrogen from urea per hectare. Analysis of variance showed that the consumption of different amounts of nitrogen, compost and interaction between them on dry matter yield and height, percentage and yield of essential oil of savory, is statistically significant. Comparison of mean showed that treatment 90 kg N/ha along with 30 tons of municipal compost consumption per hectare (N3C3 with an average 50/8 g dry weight in pot greatest and treatments without N and compost (N0C0 and non-N with 10 and 20 tons of compost ha (N0C1 and N0C2 were mean 23/69, 23/42 and 24/63 g dry weight, the lowest plant dry weight were allocated to pot. N fertilizer and compost on the number of lateral branches per plant and nitrogen application on mean stem diameter was significant. N3 with an average 24/75 lateral branches and C3 with a mean 22/19 lateral branches, were the highest number of lateral branches per plant. N2C3 with mean of 2/13 percent of most essential oil produced. The most essential yield of the combination treatment N3C3, respectively. Generally produce more essential oil percent and to have more dry matter level N2C3 be seems appropriate.

  14. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management

    International Nuclear Information System (INIS)

    Zhou Chuanbin; Wang Rusong; Zhang Yishan

    2010-01-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD 5 concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36 weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  15. Recycling Improves Soil Fertility Management in Smallholdings in Tanzania

    Directory of Open Access Journals (Sweden)

    Ariane Krause

    2018-02-01

    Full Text Available Residues from bioenergy and ecological sanitation (EcoSan can be utilized to sustain soil fertility and productivity. With regard to certain cooking and sanitation technologies used in smallholder households (hh, we systematically analyzed how utilization of the respective potentials to recover residues for farming affects (i soil nutrient balances, (ii the potential for subsistence production of composts, and (iii environmental emissions. On the example of an intercropping farming system in Karagwe, Tanzania, we studied specific farming practices including (1 current practices of using standard compost only; (2 a combination of using biogas slurry, urine, and standard compost; (3 a combination of using so-called “CaSa-compost” (containing biochar and sanitized human excreta, Project “Carbonization and Sanitation”, urine, and standard compost. The system analysis combines a soil nutrient balance (SNB with material flow analysis (MFA. Currently, nitrogen (N and phosphorus (P are depleted by −54 ± 3 and −8 ± 1 kg∙ha−1∙year−1, respectively. Our analysis shows, however, a clear potential to reduce depletion rates of N, and to reverse the SNB of P, to bring about a positive outcome. Composts and biogas slurry supply sufficient P to crops, while urine effectively supplements N. By using resources recovered from cooking and sanitation, sufficient compost for subsistence farming may be produced. Human excreta contribute especially to total N and total P in CaSa-compost, whilst biochar recovered from cooking with microgasifier stoves adds to total carbon (C and total P. We conclude that the combined recycling of household residues from cooking and from sanitation, and CaSa-compost in particular, is especially suitable for sustainable soil management, as it mitigates existing P-deficiency and soil acidity, and also restores soil organic matter.

  16. [Effect of aeration on composting of date palm residues contaminated with Fusarium oxysporum f.sp. albedinis].

    Science.gov (United States)

    Chakroune, K; Bouakka, M; Hakkou, A

    2005-01-01

    Composting of date palm (Phoenix dactylifera L.) residues contaminated with Fusarium f.sp oxysporum albedinis, causal agent of the vascular wilt (Bayoud) of the date palm, has been achieved. The effect of the aeration of the piles by manual turning has been studied. The maintenance of an adequate humidity of 60%-70%, necessary to the good progress of the composting process, required the contribution of 11.4 L of water/kg of the dried residues. The evolution of the temperatures in the three piles presents the same phases. A latency phase, followed after 2-3 d of composting by a thermophilic phase, which lasts about 24 d, where the temperature remains elevated between 50 and 70 degrees C. Then a cooling phase that takes about 15 d, during which the temperatures fall to values between 25 and 35 degrees C, near room temperature. Fusarium f.sp oxysporum albedinis is eliminated completely during the thermophilic phase of composting, and increasing frequencies of turning accelerate its disappearance to a certain extent. On the other hand, pH remained steady and relatively basic oscillating between 8.2 and 8.7. Ninety percent (90%) of the the date palm residues are composed exclusively of organic matters. The total nitrogen represents only 0.4%. The contribution of manure decreases the ratio of carbon to nitrogen (C/N) from 115 to 48 in the initial mixture. After 80 d of composting and according to the frequency of return up, there is a reduction of the granulometry of the substratum, the C/N ratio (from 29% to 44%), the organic matter (from 15% to 23%), the total volume (from 25% to 35%), and of the dry weight of the swaths (from 16% to 24%). On the other hand there is an increase in total nitrogen rate (from 20% to 40%) and in the mineral matter (from 23% to 35%).

  17. Quality assessment of compost prepared with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Jodar J. R.

    2017-11-01

    Full Text Available One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  18. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  19. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J; Carrasco, J E; Negro, M J

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  20. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  1. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    Science.gov (United States)

    Smith, Stephen R

    2009-01-01

    additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals

  2. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  3. Enhancement of Cotton Stalks Composting with Certain Microbial Inoculations

    Directory of Open Access Journals (Sweden)

    Osama Abdel-Twab Seoudi

    2013-01-01

    Full Text Available Effect of inoculation with Phanerochaete chrysosporium and Azotobacter chrococcum microbes on cotton stalks composting was studied in an attempt to achieve rapid maturity and desirable characteristics of produced compost. Composting process was maintained for 16 weeks under aerobic conditions with proper moisture content and turning piles. The C/N ratio of the mixtures was adjusted to about 30:1 before composting using chicken manure. Temperature evolution and its profile were monitored throughout the composting period. Mineralization rates of organic matter and changes in nitrogen content during composting stages were evaluated. Total plate count of mesophilic and thermophilic bacteria, cellulose decomposers and Azotobacter were determined during composting periods. The treatment of cotton stalks inoculated with both P. chrysosporium and Azotobacter gave the most desirable characteristics of the final product with respect to the narrow C/N ratio, high nitrogen content and high numbers of Azotobacter. The phytotoxicity test of compost extracts was evaluated. The use of P. chrysosporium in composting accelerated markedly decomposition process, so that 16 weeks composting enough to produce a stable and mature compost suitable for use as fertilizer while the fertilizer obtained by composting cotton stalks mixed with chicken manure and inoculated with microorganisms is highest quality Compost.

  4. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J; Carrasco, J E; Negro, M J

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  5. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  6. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment.

    Science.gov (United States)

    Li, Yangyang; Manandhar, Ashish; Li, Guoxue; Shah, Ajay

    2018-03-20

    Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO 2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO 2 , EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of Vermi compost and Compost tea Application on the Growth criteria of Corn (Zea mays

    Directory of Open Access Journals (Sweden)

    R Afsharmanesh

    2016-07-01

    Full Text Available Introduction Maize (Zea mays is a cereal crop that is grown widely throughout the world in a range of agroecological environments. .Its value as a cost-effective ruminant feed is one of the main reasons that farmers grow it. However, lack of nutrients such as N and P, are the principal obstacles - to crop production under low input agricultural systems leading to dependency on chemical fertilizers. Long-term use of chemical fertilizers destroy soil physicochemical properties and it reduced permeability which restricts root growth, nutrient uptake and plant production. Therefore, the use of organic fertilizers can help to enrich the soil root zone As a result growth and yield will improve. Materials and Methods In order to study the effects of different levels of vermicompost and foliar application of tea compost on growth characteristics of the hybrid maize genotype 713, a greenhouse experiment was conducted as a factorial experiment in randomized complete block design with three replications at the Vali-e-Asr University of Rafsanjan, during 2013. Treatments were included vermicompost (0, 5%, 10%, 15%, 20%, 25% and 30% pot weight and tea composts (foliar application, non-foliar application. Measured traits were included root dry weight, root volume, leaf dry weight, stem dry weight, macro nutrient concentration (N and P and micro nutrient concentration (Zn, Mn, Fe and Cu. All the data were subjected to the statistical analysis (two-way ANOVA using SAS software (SAS 9.1.3. Differences between the treatments were performed by Duncan’s multiple range test (DMRT at 1% confidence interval. Results and Discussion Results indicated that leaf and stem dry weight affected by the application of vermicompost and tea compost. However, the interaction effects had no significant effects on the leaf and stem dry weight. Application of tea compost increased 20% and 50% leaf dry weight and stem dry weight of corn compared to non- foliar application

  8. USE OF ORGANIC RESIDUES FOR THE RECOVERY OF SOIL AND ENVIRONMENTAL SUSTAINABILITY

    Directory of Open Access Journals (Sweden)

    Antonia Galvez

    2011-12-01

    Full Text Available The aim of this work was to investigate the effects of different organic residues on soil fertility and climate change, through the evaluation of soil organic matter mineralisation, greenhouse gas emission, nutrient availability and soil microbial biomass content and activity. A degraded agricultural soil was amended with three different organic residues (pig slurry digestate, rapeseed meal, and compost at three different doses (0.1, 0.25 and 0.5% w/w and incubated for 30 days at 20 ºC. During incubation, soil CO2 and N2O emissions, K2SO4 extractable organic C, N, NH4+, NO3- and P, soil microbial biomass and some enzymatic activities were determined. Results obtained showed that rapeseed meal and pig slurry are best suited to improve soil chemical and biological fertility, while compost is more appropriate for the enhancement of soil organic matter content and to promote soil C sequestration.

  9. Effects of compost fertilization in organic farming on micronutrients and heavy metals in soil and crops

    Science.gov (United States)

    Erhart, Eva; Sager, Manfred; Bonell, Marion; Fuchs, Katrin; Haas, Dieter; Ableidinger, Christoph; Hartl, Wilfried

    2015-04-01

    For organic stockless and vegetable farms using biowaste compost is a way to sustain soil humus content. At the same time compost use in agriculture closes local nutrient cycles. Besides organic matter and main nutrients, biowaste compost also imports micronutrients and heavy metals in amounts determined by the compost input material. The aim of this work was to assess total and plant-available contents of micronutrients B, Ca, Cu, Fe, Mn, Mo, Ni, Zn, beneficial elements Co and Se and heavy metals Cd, Cr and Pb in the soil and in crops after 20 years of fertilization with compost produced from source-separated organic waste. Topsoil and wheat grain samples were collected from the long-term field experiment 'STIKO' situated near Vienna on a Molli-gleyic Fluvisol. Between 1992 and 2012 the organic treatments C1, C2 and C3 had received 5, 10 and 14 t ha-1 yr-1 (wet wt.) biowaste compost on average. They were compared with the unfertilized organic control treatment and with three mineral fertilization treatments, which had received 20, 32 and 44 kg N ha-1 yr 1, respectively, plus 40 kg P and 68 kg K ha-1 yr-1 on average. Total soil element contents of B, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn were measured in aqua regia digestion. Immediately water-soluble elements were analysed in soil saturation extract, elements in exchangeable form in LiCl extract following Husz (2001), and long-term available elements in 0.5 N HCl extract. Wheat grains were dehulled, milled and subjected to microwave digestion with HNO3 and H2O2. Wheat was analyzed for Cd and Pb with ICP-MS. All other elements in wheat and all soil extracts were analyzed using ICP-AES. Total soil concentrations of micronutrients, heavy metals and beneficial elements were in the range of usual soil contents and lower than the Austrian background values for arable land with comparable pH and carbonate concentration (Schwarz and Freudenschuss, 2004) in all treatments (all mg kg-1: B 14-19, Fe 16000-18000, Mn

  10. Electron beam sterilization and composting of sludge and its utilization as fertilizer for greenbelt and farmland

    International Nuclear Information System (INIS)

    Machi, Sueo; Hashimoto, Shoji

    1988-01-01

    Sludge should be sterilized to exterminate bacteria prior to its application as a fertilizer in greenbelts or farmland. Furthermore, sludge should be converted into compost to prevent odors or breeding of harmful insects. A technique is developed for complete sterilization of sludge and rapid production of compost. Sludge is first sterilized by electron beams and composting is performed under optimum conditions including the fermentation temperature. Typically, about 10 8 - 10 9 bacteria are contained in 1 g of sludge, with coliforms accounting for about 10 percent of the total bacteria. Irradiation of 15 kGy can reduce the total number of bacteria by 6 - 7 orders of magnitude. Irradiation of 2 kGy can almost completely exterminate coliforms, which are highly sensitive to radiations. This indicates that 0.2-second irradiation is sufficient if a dose rate of 10 kGy/sec is used. After the sterilization process, sludge is composted under the following conditions: temperature of 40 - 50 deg C, initial pH of 7 - 8 and particle size of 5 mm or less. Compared with conventional processes, the maximum fermentation rate is greater by 10 times and can be reached 10 times more rapidly. Conventional processes require more than 10 days while the present technique takes only 2 - 3 days until carbon dioxide stops generating. (Nogami, K.)

  11. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    Science.gov (United States)

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  13. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  14. An Investigation on In-Vessel Composting of Pistachio Residuals with Different Additions

    OpenAIRE

    M Jalili; M Mokhtari; AA Ebrahimi; F Boghri

    2016-01-01

    Background and Objective: About 1.35×105 tons of pistachio waste are produced in annually Iran that can result in environmental problems if managed improperly. . The purpose of this study was to investigate in-vessel composting of pistachio residuals with addition of cow manure and dewatered sludge as a recycling alternative. Materials and Methods: Pistachios wastes were combined with weight ratio of 5.5:10 (dewatered sludge: pistachio waste) and weight ratio of 1:10 (Cow manure: pi...

  15. Growth and yield of cucumber as influenced by compost and nitrogen fertilizer in sandy soils using the nuclear technique for determination of nitrogen

    International Nuclear Information System (INIS)

    El-Sherif, M.F.A.

    2005-01-01

    this study was carried out during the period from 2002 to 2003 seasons, at the department of plant research, Nuclear Research Center (NRC,) Atomic Energy Authority (AEA), Egypt, on cucumber plants c.v. dp007 F1 (wafer). the main objective of this work was to study the effect of compost type, application level and nitrogen rate on vegetative growth, chemical composition, early and total yield and to determine the fertilizer nitrogen uptake and utilization by the cucumber plant and its parts, i.e., shoots and fruits . results revealed that the sugar cane bagasse compost (SC) gave a significantly higher response with most vegetative growth expressed as plant length, leaf number and dry weight of cucumber plant, compared with beet compost (BC). the application of compost from 2 up to 6 ton/fed

  16. Evaluating of selected parameters of composting process by composting of grape pomace

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2011-01-01

    Full Text Available In Europe, there is annually available 8 million tons of grape pomace. From the viewpoint of waste management, pomace represents biotic waste produced in the FDM (Food–Drink–Milk sector. Composting process represents an effective use of grape pomace. Introduced experiment deals with monitoring of the composting process of grape pomace provided by 2 different variants of different composition of composting piles. Obtained results indicate that dynamics of process is affected by the share of raw materials. According to the temperature curve characteristics, the temperature above 45 °C for at least 5 days was necessary for compost sanitation. Such temperature was achieved in piles with higher proportion of pomace (Var.II. Analysis of results shows that the compost made ​​of grape pomace is a quality organic fertilizer, which may have in addition to agronomic point of view also great hygienic and ecological importance.

  17. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    OpenAIRE

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2015-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gra...

  18. Power generation with technology innovation of residual biomass utilization; Geracao de energia com inovacao tecnologica de aproveitamento de biomassa residual

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Johnson Pontes de; Selvam, P.V. Pannir [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2006-07-01

    In the present work, the introduction of alternative energy of biogas in agricultural communities for the sustainable development was studied through exploitation of residual biomass and also getting as by-product the biological fertilizer. A fast composting of the domestic residue with the organic was made possible where part of this residue after processing was taken together with effluent to the biodigester. The bibliographical research on the processes of generation of biogas, about composting and the equipment for processing had been carried through. The projects engineering with the use of computational tools had been developed with the software Super Pro 4,9 Design and ORC GPEC 2004 by our research group. Five case studies had been elaborated, where different scenes related with our innovation, that uses of the residue for the composting together with domestic effluent for digestion. Several economic parameters were obtained and our work proved the viability about the use of biogas for drying of the fruits banana. A economic feasibility study was carried where it was proven that the project with the innovation of the use of residues from the fruits possess more advantages than the conventional system of drying using electric energy. Considering the viability of this process and the use solar energy, it is intended to apply this technology in rural agricultural communities providing them an energy source of low cost in substitution of the conventional energy. (author)

  19. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    Science.gov (United States)

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  20. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  1. Bioavailability of phosphorus from composts and struvite in acid soils

    Directory of Open Access Journals (Sweden)

    Carmo Horta

    Full Text Available ABSTRACT The objective of this study was to assess the type and fractions of phosphorus (P forms in composts and struvite and how these P forms affect the bioavailability of P in the soil. P fertilization was performed with compost from sewage sludge (CSS, compost from poultry litter (CPL and struvite (SV and compared with single superphosphate (SSP. P forms were quantified through a sequential fractionation scheme. The first extraction was performed with H2O, the second with 0.5 M NaHCO3, the third with 0.1 M NaOH and the fourth with 1 M HCl. The release of P over time, after soil P fertilization, was assessed by incubating the fertilizers with a low-P acid soil. P bioavailability was assessed through a micro-pot experiment with the incubated soils in a growth chamber using rye plants (Secale cereale L.. Inorganic P forms in the first two fractions represented ~50% (composts, 32% (SV and 86% (SSP of the total P; and in the HCl fraction, ~40% (composts, 26% (SV and 13% (SSP of the total P. Despite the variability of the P form fractions in the composts and struvite, the P release and bioavailability were similar among the fertilized treatments. The acidic nature of the soil, which improve solubility of Ca-P forms, and the high efficiency of rye, which favors P uptake, were factors that contributed to these results.

  2. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost.

    Science.gov (United States)

    Alfano, G; Belli, C; Lustrato, G; Ranalli, G

    2008-07-01

    The present work proposed an economically sustainable solution for composting olive humid husks (OHH) and leaves (OL) at a small/medium sized olive oil mill. We planned and set up a composting plant, the prototype taking the form of a simplified low-cost turning machine, and evaluated the use of an inoculum of one year-old composted humid husks (CHH) and sheep manure (SM) to facilitate the starting phase of the process. Trials were carried out using four piles under different experimental conditions (turnover, static, and type of inoculum). The best results were achieved with turnover and an inoculum that induced fast start-up and a correct evolution of the composting process. The final product was a hygienically clean, cured compost.

  3. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Response of Maize Grown on Overburden Soil in a Coal Mining Area without Top Soil to Various Compost Sources

    Directory of Open Access Journals (Sweden)

    Erry Purnomo

    2015-05-01

    Full Text Available Soil in Kalimantan Island is considered infertile. To obtain a reasonable crop yield a high input fertilizer package should be applied. The situation will be worsening when an open pit system of coal mining adopted. Failure in re-arranging the soil layers can result in decreasing soil fertility compared to original soil prior to mining. This study aimed to determine the improvement of soil fertility of a disposal without top soil by using composts from various sources, namely, the public garbage pile, commercial compost, and compost from kitchen waste. The experiment was conducted in a disposal area of a coal mining of PT AI. A series of application rate of compost was set. This was 0, 5, 10, and 20 tonne compost ha-1. A plot with top soil was involved for another control. Maize was selected as the plant indicator to evaluate the effect of treatments applied. It can be concluded that application of composts to reclamation area without top soil significantly improve soil fertility. Among the composts used, K-compost (compost from kitchen waste was the best in improving soil fertility. There were some characters of the compost that had not enough to support maize yield. These were P, K, and pH. Addition of P and K fertilizers and lime material are needed. Of the equation coefficients obtained, the b coefficient of equation belong to K-compost was higher than of the others.

  5. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Abdel Aziz, H.A.; El-Degwy, S.M.A.; Abd El-Haleem, M.

    2008-01-01

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form ( 15 NH 4 ) 2 SO 4 , or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15 N as( 15 NH 4 ) 2 SO 4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15 N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15 N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer- 15 N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15 N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15 N alone and; the highest occurred where mineral 15 N was mixed with compost or leucaena-compost mixture

  6. evaluation of selected composted organic sources on potato plant grown in sandy soil using nuclear technique

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2008-01-01

    the main point of this study is the evaluation of organic compost as a source of nutrient demand by potatoes cultivated in light texture soil under drip irrigation system. the composted materials either applied alone or in combination with mineral fertilizer have an effective role on potato yields and nutrients management under field scale. so, many objectives were achieved. the valuable results obtained in the present study could be summarized as follows: part one: composting experiment contains ph changes of composted materials, EC changes with time, nitrogen content in composted materials, change of c/n ratio with time, organic matter content of the composted materials, phosphorus content in composted materials,. part two: potato field experiment contains .dry matter yield, tuber dry weight, tuber yield, nutrients uptake by potato varieties,. part three contains . application of 15 N isotope dilution technique, nitrogen derived from fertilizer (Ndff), nitrogen derived from organic compost (% Ndf comp),nitrogen derived from soil (% Ndfs), fertilizer use efficiency (% FUE), 15 N recovered by potatoes.

  7. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    Science.gov (United States)

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  8. School Compost Programs: Pathways to Success

    Science.gov (United States)

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    After the oft-repeated three Rs (reduce, reuse, recycle) comes the lesser-known but equally important fourth R: rot. In this case, rot means compost. Classrooms, schools, and school districts can use a number of methods to establish a compost program. The finished product is a valuable soil amendment that adds fertility to local farmland, school…

  9. 2 Influence of Composted Organic Waste.cdr

    African Journals Online (AJOL)

    user

    Fertilization on Rice Yield, N-Use Efficiency and Soil. Chemical .... Effect of compost and urea fertilizers on panicles per m , spikelets per panicle, 1000 seeds weight, percentage of filled grains and grain yield. Year. Treatment. Panicles.

  10. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    Science.gov (United States)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  11. Effect of organic amendments and compost extracts on tomato production and storability in ecological production systems

    Directory of Open Access Journals (Sweden)

    ghorbani reza

    2009-06-01

    Full Text Available A field experiment was conducted in Shiravan, Iran, during 2005 in order to investigate the effects of organic amendments, synthetic fertilizers and compost extracts on crop health, productivity and storability of commonly used tomato (Lycopersicon esculentum Mill.. Treatments included different fertilizers of cattle, sheep and poultry manures, house-hold compost and chemical fertilizers, and five aqueous extracts from cattle manure, poultry manures, green-waste and house-hold composts and water as control. The effect of fertilizer type on tomato yield and marketable yield was significant (P

  12. Resposta da alface à adubação nitrogenada com diferentes compostos orgânicos em dois ciclos sucessivos = Response of lettuce to nitrogen fertilization with different organic composts in two successive cycles

    Directory of Open Access Journals (Sweden)

    Francisca Alcivania de Melo Silva

    2010-01-01

    ; dry weight of aerial part and number of leaves. The applied composts satisfactorily supplied the nitrogen needs of the culture, in the first cycle, making the use of mineral fertilizer unnecessary. The composition of the applied materials significantly influenced the production of lettuce in the first cycle, promoting residual effect in the second cycle, although in lesser ratios.

  13. Organic and mineral fertilization of squash plant with application of 1'5N staple isotope

    International Nuclear Information System (INIS)

    El-Sherbiny, A.E.; Dahdouh, S.M.; Galal, Y.G.M.; Habib, A.A.M.

    2012-01-01

    A field experiment was conducted on virgin sand soil under drip irrigation system using squash fertilized with ammonium sulfate fertilizer, commercial compost locally manufactured in Egypt and artificial compost prepared fertilizer were applied either completely (100%) of mineral or of organic; or 50%: 50% (mineral: organic) by the authors at the Atomic Energy Authority of Egypt. All fertilization treatments were either inoculated or not inoculated with Azospirillum. Inoculation increased roots fresh weight. This was more pronounced with application of 50% mineral fertilizer plus 50% commercial compost, 100% artificial compost and 100% commercial compost. Similar trends, but to high extent were noticed with shoot fresh weight as affected by microbial inoculation and different organic composts. The 50%: 50% treatments as well as 100% artificial compost treatment gave high root and shoot dry weights. Inoculation and 50%: 50% fertilization treatments were more effective on N uptake. Higher N uptake was by shoots than roots. Portion and absolute value of N derived by roots from mineral fertilizer were significantly affected by combined fertilization treatments. Nitrogen derived from air (Ndfa) was positively affected by addition of organic compost and bacterial inoculation. Reversible trend was noticed with N derived from soil (Ndfa) which decreased when treated with compost and bacterial inoculation. All measurements were high in shoots than roots

  14. Significant plant growth stimulation by composted as opposed to untreated Biochar

    Science.gov (United States)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This

  15. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate

  16. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    Directory of Open Access Journals (Sweden)

    Francisca G. Albano

    Full Text Available ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as substrates, in the presence and absence of foliar fertilization. The materials used were: earthworm humus, carnauba residue + fresh rice husk; carnauba residue in powder; carnauba residue semi-decomposed and mixture of carnauba residues: carnauba residue + fresh rice husk + carnauba residue semi-decomposed + carnauba residue in powder, at the proportion 1:1:1. The agroindustrial residue of carnauba wax semi-decomposed can be used as substrates in the production of ‘Formosa’ papaya seedlings. The foliar fertilization increases the quality of papaya seedlings, leading to increment in leaf area, root volume and sulfur content in the leaves, thus becoming a necessary practice.

  17. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  18. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.

    Science.gov (United States)

    Odlare, M; Pell, M; Svensson, K

    2008-01-01

    A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.

  19. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  20. Critical evaluation of municipal solid waste composting and potential compost markets.

    Science.gov (United States)

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  1. EFFECT OF COMPOST FROM BY-PRODUCT OF THE FISHING INDUSTRY ON CROP YIELD AND MICROELEMENT CONTENT IN MAIZE

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2015-09-01

    Full Text Available A pot experiment was conducted to compare the effects of compost from fish waste with mineral and manure fertilization on the yield and chemical composition of the overground parts of maize (Zea mays L.. The experiment comprised two series: I – composts at a dose of 1 g of compost per pot, and II – composts with 0.5 g of urea. The treatments were conducted on the following types of composts: compost 1: fish waste (80% d.m., sawdust (20% d.m.; compost 2: fish waste (80% d.m., straw (20% d.m.; compost 3: fish waste (80% d.m., bark (20% d.m.; compost 4: fish waste (79.3% d.m., sawdust (19.7% d.m., lignite (1% d.m.; compost 5: fish waste (79.3% d.m., straw (19.7% d.m.; lignite (1% d.m.; compost 6: fish waste (79.3% d.m., bark (19.7% d.m, lignite (1% d.m. The contents of Ni, Zn, Cr, Cu and Cd were determined in an air-acetylene flame using the flame atomic absorption spectrophotometric method. The average crop yield of the overground parts of maize in the series without additional mineral fertilization and with mineral N-fertilization was higher compared to objects without mineral N-fertilization. The highest crop yield was noted in the case of compost containing fish waste and straw with addition of lignite and with bark and lignite. The addition of lignite to the compost mass in the series with mineral N-fertilization had stronger influence on the content of cadmium, chromium, nickel and zinc in the overground parts of maize.

  2. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  3. Nutrient composition of banana fruit as affected by farm manure, composted pressmud and mineral fertilizers

    International Nuclear Information System (INIS)

    Rajput, A.; Memon, M.; Memon, K.S.; Tunio, S.; Sial, T.A.

    2017-01-01

    Major area under banana cultivation in Pakistan consists of a single cultivar D warf Cavendish c alled B asrai . Quality of banana relies on the available nutrients in soil. Under poor fertility and organic matter scenario coupled with high requirement of banana, this study evaluated the combined effect of organic (farm manure and composted pressmud) and inorganic (NPK) sources of nutrients on nutrient composition of locally grown banana. Application of full NPK (500-250-500 kg ha-1) increased the fruit P (0.08-0.12%), K (0.77-1.50%) and Zn (1.74-2.17 mg kg-1) over full N and the respective values further increased to 0.14 and 0.22%, 2.28 and 1.79% and 2.42 and 2.21% with farm manure and composted pressmud additions. Moreover, there was a non-significant increase in N and significant one in Cu and Fe. There was no additional benefit of 1.25 NP. In fact, the higher rates i.e. full NPK and 1.25 NP reduced the micronutrient contents of fruit due to dilution effect. However, the P requirement was same even with application of organic sources. The regression analysis of the yield data with fruit nutrients (N, P, K, Cu, Fe, Mn and Zn) showed a highly significant relationship with respective rv alues of 0.65, 0.66, 0.75, 0.48, 0.65, 0.71 and 0.73. The integrated use of mineral fertilizers and organic amendments resulted in enhanced banana fruit nutrients and highlights the advantage of conjunctive use over their separate applications. (author)

  4. HEAVY METAL ASPECTS OF COMPOST USE

    Science.gov (United States)

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  5. Three-year study of fast-growing trees in degraded soils amended with composts: Effects on soil fertility and productivity.

    Science.gov (United States)

    Madejón, Paula; Alaejos, Joaquin; García-Álbala, José; Fernández, Manuel; Madejón, Engracia

    2016-03-15

    Currently, worries about the effects of intensive plantations on long-term nutrient supply and a loss of productivity have risen. In this study two composts were added to degraded soils where this type of intensive crops were growing, to avoid the soil fertility decrease and try to increase biomass production. For the experiment, two degraded soils in terms of low organic carbon content and low pH were selected in South-West Spain: La Rábida (RA) and Villablanca (VI) sites. Both study sites were divided into 24 plots. In RA, half of the plots were planted with Populus x canadensis "I-214"; the other half was planted with Eucalyptus globulus. At the VI site, half of the plots were planted with Paulownia fortunei, and the other plots were planted with Eucalyptus globulus. For each tree and site, three treatments were established (two organic composts and a control without compost), with four replications per treatment. The organic amendments were "alperujo" compost, AC, a solid by-product from the extraction of olive oil, and BC, biosolid compost. During the three years of experimentation, samples of soils and plants were analyzed for studying chemical and biochemical properties of soil, plant growth and plant nutritional status and biomass production. The composts increased total organic carbon, water-soluble carbon, nutrients and pH of soil only in the most acidic soil. Soil biochemical quality was calculated with the geometric mean of the enzymatic activities (Dehydrogenase, β-glucosidase, Phosphatase and Urease activities) determined in soils. The results showed a beneficial improvement in comparison with soils without compost. However, the best results were found in the growth and biomass production of the studied trees, especially in Eucalyptus. Nutritional levels of leaves of the trees were, in general, in the normal established range for each species, although no clear effect of the composts was observed. The results of this study justify the addition of

  6. Effect of Chemical Fertilizer, Cow Manure and Municipal Compost on Yield, Yield Components and Oil Quantity of three Sesame (Sesamum indicum L. Cultivars in Mashhad

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2013-10-01

    Full Text Available In order to evaluate the effects of different organic and chemical fertilizers on yield, yield components and seed oil content of sesame an experiment was conducted in a split plot layout based on randomized complete block design with four replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad in year 2006. Four types of fertilizer, including chemical fertilizer, cow manure, municipal compost and no fertilizer (control were allocated as main plots and three sesame cultivars (two local varieties of Kalat and Esfarayen, and Oltan cultivar were used as sub plots. The results showed that fertilizer treatments had significant effect (P

  7. Wheat nitrogen fertilizer residues on an ultisol from the IX Region

    International Nuclear Information System (INIS)

    Rouanet M, Juan Luis; Pino N, Ines; Nario M, Adriana; Jobet, Claudio; Parada V, Ana Maria; Videla L, Ximena

    2005-01-01

    The soil nitrogen fertilizer residue is a relevant issue on a wheat production system at the IX Region of Chile, due to the high level of yield and use of resources, having an environmental impact from the use of fertilizer economy. The N-soil residue, not absorb by the plant, can be leach and contaminate the groundwater with nitrates or be redistributed by erosion. The application of isotopic techniques, using fertilizer labeled with 15 N, providing the quantitative information of the fate of this nutrient in the plant-soil system, important in the rate formulation based on the nitrogen use efficiency and in the benefit/cost relation. An assay was carried out in an Ultisol Metrenco Soil (Family fine, mixed, mesic, Typic Paleudults) at Pumalal locality. A Kumpa wheat variety was used, with a control treatment and five N rates applied as Urea labeled with 10% 15 N a.e., split in four times during the crop growth cycle. Total N (Kjeldhal) and 15 N optical emission spectrometer were determined in grain and straw samples harvested in February. Before to the next sow on may, soil sample were taken with an 3 cm diameter hugger (0-20; 20-40 and 40-60 cm depth). The samples were air dried, sieved and analyzed for total N and 15 N. The parameters determined for each depth were: N total (%), 15 N a.e. to obtain the plant-soil system N fertilizer recovery and its N residues in the soil profile. The wheat yield obtained was related with a cubic model using the N fertilizer rate applied (R 2 =0.75). The highest yield for the grain, 9.8 Mg ha -1 , was obtained applying 197 k ha -1 of N, with 45% of 15 N recovered by the grain. Nevertheless, the soil-crop system obtained a high 15 N recovery (>88%), in the soil remained 32-60% as N residue, being not used by the plant during the growth period. Between 27-54% of the 15 N total residue was found at the 0-20 cm soil depth, portion that is susceptible of distribution by erosion, implied in the use of fertilizer economy. Around 4

  8. Influence of a few composts on the mineralization of 14C phenmedipham in a fresh meadow soil and the immobilization of the 14C residues

    International Nuclear Information System (INIS)

    Bellinck, C.; Mayaudon, J.

    1983-01-01

    The influence of four composts on the mineralization of 14 C phenmedipham in a fresh soil and the distribution of 14 C phenmedipham and its 14 C residues after one year incubation were studied. Straw compost had an important positive effect on the degradation of the herbicide. After a negative influence during the 15 first days of incubation, composts of mushroombeds, grapes and oak-bark - hen-dung had little influence. The soils treated with these three last composts showed a more important complexation of 14 C than the control-soil or the soil treated with straw-compost. Calculation of the quantity of free 14 C substances in the soil after one year incubation gave for the four composts values comprised between 39 and 84% of that of the control [fr

  9. Compost amendment, enhanced nutrient uptake and dry matter ...

    African Journals Online (AJOL)

    Field trial was conducted to assess the influence of Compost and inorganic fertilizer as well as plant growth stage on growth, nutrient uptake, dry matter accumulation and partitioning in maize crop grown on the battery waste contaminated site. Two types of compost (Mexican Sunflower (MSC) and Cassava peels (CPC) ...

  10. Decline in extractable antibiotics in manure-based composts during composting.

    Science.gov (United States)

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    International Nuclear Information System (INIS)

    Agegnehu, Getachew; Bass, Adrian M.; Nelson, Paul N.; Bird, Michael I.

    2016-01-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha"−"1 biochar (B) + F; 3) 25 t ha"−"1 compost (Com) + F; 4) 2.5 t ha"−"1 B + 25 t ha"−"1 Com mixed on site + F; and 5) 25 t ha"−"1 co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ"1"5N and δ"1"3C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO_3"− N), ammonium-nitrogen (NH_4"+-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO_2 and N_2O were higher from the organic-amended soils than from the fertilizer-only control. However, N_2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil organic carbon (SOC), soil water content (SWC) and N_2O

  12. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Agegnehu, Getachew [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia); Bass, Adrian M. [Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, New South Wales 2753 (Australia); Nelson, Paul N.; Bird, Michael I. [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia)

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha{sup −1} biochar (B) + F; 3) 25 t ha{sup −1} compost (Com) + F; 4) 2.5 t ha{sup −1} B + 25 t ha{sup −1} Com mixed on site + F; and 5) 25 t ha{sup −1} co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ{sup 15}N and δ{sup 13}C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO{sub 3}{sup −} N), ammonium-nitrogen (NH{sub 4}{sup +}-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO{sub 2} and N{sub 2}O were higher from the organic-amended soils than from the fertilizer-only control. However, N{sub 2}O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil

  13. Relative efficacy of cocoa pod husk-based compost on growth and ...

    African Journals Online (AJOL)

    The effect of cocoa pod husk-based compost on growth and nutrient uptake of cocoa seedlings was compared with conventional NPK 15-15-15 fertilizer at the nursery in a randomized complete block design experiment. Poly bags were filled with either top soil or compost alone, and also with mixtures of top soil, compost ...

  14. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of cow manure and empty fruit bunches application treated with different fertilizers on growth and yield of chili (Capsicum annum)

    Science.gov (United States)

    Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah

    2016-11-01

    Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit

  16. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  17. Sieving Effect of Sorting Machine with Vibration Table Type on Cacao Pod Based Compost

    Directory of Open Access Journals (Sweden)

    Siswoyo Soekarno

    2009-10-01

    Full Text Available Cacao pod is the biggest part (70% of weight of Cacao, which was not optimaly utilized.Cacao podis one of organic material that can be functioned as an organic fertilizer, such as compost. When utilizedwith right proportion, organic fertilizer is safe for plants and not degrades the soil composition. Compostingprocess is one of utilization form of Cacao pod. The size reduction of cacao pod in the organic fertilizerprocess would help to accelerate the composting process. Smaller particle size would faster interacting withenvironment, so the composting process would be well accelerated if compared to the material with biggersize. Chopping machine of Cacao pod is used to cut the biomass to be small particle in order to be able tobe utilized as some important necessity, i.e. fertilizer or farm animals feed. However, Varies compost sizewas one of the problems faced in the composting process. Therefore, the sorting process was needed tobe done after chopping process, so the compost size became uniform and fulfill the user demand. Thisresearch was aimed at knowing the slope effect of sorting machine and rotation speed (RPM. The methodused in analyzing the results of this research was comparing the treatment factors, which are shown withhistogram. As the super small size of compost recommended for applying in the fertilizing process, so theoptimum treatment combination for having high mass fraction of SS compost grade was achieved at 12oslope of sieve table and 1400 RPM motor rotation speed. As bigger the particle densities of the compostsize as smaller the compost porosity. Mass loss was very low at all treatment combination with the valuearound 0.43-1.33%, so the sieving efficiency can be said very high.

  18. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    Science.gov (United States)

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Offset project report : Cleanit Greenit aerobic composting project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-02-15

    The Cleanit Greenit site is owned and operated by Cleanit Greenit Composting System Inc. and is a composting facility located in Edmonton, Alberta. The facility has an annual processing capacity of 20,000 tonnes of organic waste and was the first in Canada to compost a large variety of industrial by-products containing hydrocarbons, through controlled blending with other wastes and monitoring of moisture, temperature and pH. The composting process turns organic waste material from industrial, commercial and domestic sources into finished projects, thus removing these materials from conditions where treatment and disposal is often difficult, expensive and environmentally harmful. This protocol document covered the diversion of organic residues from landfill for biological decomposition to a condition sufficiently stable for nuisance-free storage and for safe use in land application. A wide variety of organic residues were considered, including agricultural and agri-food residues; the organic portion of municipal solid waste; food wastes; and forestry and landscaping wastes. The document presented information on the Cleanit Greenit project and discussed the calculation of greenhouse gas emission reductions. An appendix that contained the Cleanit Greenit aerobic composting offset project plan was also provided. tabs., figs.

  20. Composted slaughterhouse sludge as a substitute for chemical fertilizers in the cultures of lettuce (Lactuca sativa L. and radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    José Juscelino de OLIVEIRA

    Full Text Available Abstract Flotation sludge (FS is produced in huge amounts at slaughterhouses in western Santa Catarina, Brazil. This waste is rich in plant nutrients and a valuable resource for soil amendments. Five FS composts were tested as a replacement for chemical fertilizers (QF, namely T1 (75% poultry manure (PM and 25% sawdust (SD; T2 (50% PM and 50% SD; T3 (25% PM and 75% SD; T4 (100% PM and 0% SD; and T5 (0% PM x 100% SD. For lettuce plants, treatments containing composted FS resulted in an increased number of leaves, leaf area and leaf fresh weight (LFW. T1 presented the best results with increases of 1.4 fold in LFW compared to plants supplemented with QF. T2 was the most effective treatment for radish with the best results of root fresh weight and root diameter. Although T4 had the highest nitrogen content, it did not present the best results in growth performance for lettuce or radish. The presence of higher proportions of SD in composts (25% for lettuce and 50% for radish improved the physical characteristics of the soil and proved to be a more balanced compost.

  1. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    Science.gov (United States)

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Energy generation for sustainable development with innovation technology and utilization of biomass residue; Geracao de energia para o desenvolvimento rural sustentavel com inovacao tecnologica de aproveitamento de biomassa residual

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Maria Roseane de Pontes; Lopes, Carlos Eduardo Bezerra; Costa Neto, Manoel Bezerra da; Selvam, P.V. Pannir [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    In the present work, the introduction of alternative energy of biogas in agricultural communities for the sustainable development was studied through exploitation of residual biomass and also getting as by-product the biological fertilizer. A fast composting of the domestic residue with the organic was made possible where part of this residue after processing was taken together with effluent to the biodigestor. The bibliographical research on the processes of generation of biogas, about composting and the equipment for processing had been carried through. The projects Engineering with the use of computational tools had been developed with the Software Super Pro 4,9 Design and ORC GPEC 2004 by our research group. Five case studies had been elaborated, where different scenes related with our innovation, that uses of the residue for the composting together with domestic effluent for digestion. Several economic parameters were obtained and our work proved the viability about the use of biogas for drying of the fruits banana. A economic feasibility study was carried where it was proven that the project with the innovation of the use of residues from the fruits possesses more advantages than the conventional system of drying using electric energy. Considering the viability of this process and the use solar energy, it is intended to apply this technology in rural agricultural communities providing them an energy source of low cost in substitution of the conventional energy. (author)

  3. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  4. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    Science.gov (United States)

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  5. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  6. The relative isotopic abundance (δ13C, δ15N) during composting of agricultural wastes in relation to compost quality and feedstock.

    Science.gov (United States)

    Inácio, Caio T; Magalhães, Alberto M T; Souza, Paulo O; Chalk, Phillip M; Urquiaga, Segundo

    2018-05-01

    Variations in the relative isotopic abundance of C and N (δ 13 C and δ 15 N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure + legume residues; dairy manure + jatropha mill cake; dairy manure + sugarcane residues; dairy manure alone) were used for aerobic-thermophilic composting. No significant differences were found between the δ 13 C values of the feedstock and the final compost, except for dairy manure + sugarcane residues (from initial ratio of -13.6 ± 0.2 ‰ to final ratio of -14.4 ± 0.2 ‰). δ 15 N values increased significantly in composts of horse bedding manure + legumes residues (from initial ratio of +5.9 ± 0.1 ‰ to final ratio of +8.2 ± 0.5 ‰) and dairy manure + jatropha mill cake (from initial ratio of +9.5 ± 0.2 ‰ to final ratio of +12.8 ± 0.7 ‰) and was related to the total N loss (mass balance). δ 13 C can be used to differentiate composts from different feedstock (e.g. C 3 or C 4 sources). The quantitative relationship between N loss and δ 15 N variation should be determined.

  7. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Organic Biochar Based Fertilization

    Science.gov (United States)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia

    2017-04-01

    Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.

  9. PHYSICO-CHEMICAL ASSESSMENT OF POMACE EXHAUSTED AND APPRECIATION OF THEIR COMPOSTABILITY IN THE DELEGATION OF KALAA KEBIRA (TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M'Sadak

    2016-05-01

    Full Text Available Olive pomace is the solid by-product obtained from the extraction of olive oil revealing serious environmental problems in all Mediterranean countries olive growing. Generally, that pomace can be valued, among others, as a source of organic matter (composting. In this perspective, we have addressed in this work to the quantitive and qualitative characterization (limited to certain physico-chemical parameters of the solid by-product of olive oil extraction in the delegation of Kalaa Kebira (Sousse, Tunisia while appreciating their compostability. The results showed that those olive residues are essentially dry, carbon-rich and CF, low in nitrogen. They can be used as compost by combining them with other available sources of plant originand/or animal such as manure of cattle, sheep or poultry (in varying proportions and responsible of the nature very heterogeneous and the variable quality that can be applied to improve soil fertility and crop productivity.

  10. Residual nitrogen-15 recovery by corn as influenced by tillage and fertilization method

    International Nuclear Information System (INIS)

    Timmons, D.R.; Cruse, R.M.

    1991-01-01

    Tillage systems that create different surface residue conditions may also affect the recovery of residual fertilizer N during subsequent growing seasons. This study evaluated the recovery of residual labeled N fertilizer in the soil by corn (Zea mays L.) for two tillage systems and two fertilization methods. Five atom % 15 N-enriched 28% urea-ammonium nitrate solution (UAN) at 224 kg N ha -1 was either surface-applied in the fall before any primary tillage or banded (knifed in) just before planting in the spring. Continuous corn was grown with either fall moldboard-plow (MP) or ridge-till (RT) systems. After the initial growing season, the recovery of residual labeled N in the soil by corn was determined for three consecutive growing seasons, and the soil profile was sampled periodically to measure residual 15 N in the organic and inorganic pools. One year after labeled UAN application, from 16 to 27% of the initial 15 N applied was found in the organic N pool and only 1% as inorganic N[NH 4 +(NO 2 +NO 3 )-N]. After four seasons, residual 15 N in the organic N pool ranged from 13 to 24%. Less than 0.5% remained as inorganic N. Regression analyses indicated that about 5 kg 15 N ha -1 year -1 became available for both MP and RT systems with banded N, so the amounts were small. Total residual 15 N recovery by corn grain plus stover for three seasons ranged from 1.7 to 3.5%, and was greatest for spring-banded fertilizer. Because the amounts of residual 15 N utilized were too small to affect corn growth, this N source appears to be negligible when considering corn-N needs

  11. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  12. Food Waste Composting Study from Makanan Ringan Mas

    Science.gov (United States)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  13. Effect of nitrogen fertilization and residue management practices on ammonia emissions from subtropical sugarcane production

    Science.gov (United States)

    mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.

    2016-08-01

    Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.

  14. Agro fertilizer from Myanmar traditional shrimp sauce and paste waste

    International Nuclear Information System (INIS)

    Yee Yee Nwe; Myint Khine; Nyunt Wynn

    2001-01-01

    The new growth agro fertilizer (npi) compost prepared from Myanmar traditional shrimp sauce and paste waste mixed with other ingredients [agricultural waste and animal waste (night soil)] was found to promote and enhance the growth as well as the rice crop to produce in higher percentage yield per acre as compare to the use of normal rice crops fertilizer and even to that of the current used EM compost fertilizer. (author)

  15. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  16. Freshwater quality of a stream in agricultural area where organic compost from animal and vegetable wastes is used

    Directory of Open Access Journals (Sweden)

    Luciana Maria Saran

    Full Text Available ABSTRACT Organic compost from biomass residues constitutes a viable alternative for partial or total replacement of mineral fertilizers for growing vegetables. This study evaluated the effects of compost on the water quality of a stream used mainly for irrigation of agricultural crops cultivated in nearby soil that has been treated with organic compost produced by carcasses, animal and vegetable waste for the last ten years. We sampled water biannually for two years, 2013 and 2014, from five locations along the stream. Physical variables and some chemical variables were analyzed. We also analyzed the total number of coliforms (Escherichia coli. Bacterial populations were compared by carbon substrate consumption. Total phosphorus contents in the samples from 2014 exceeded 0.1 mg L-1. The concentrations of other chemical species analyzed and the results for the physical variables were in accordance with the expected values compared with national and international water quality standards. The environment showed differential carbon source consumption and a high diversity of microorganisms, but our results did not show any evidence that the applied compost is changing the microbial population or its metabolic activity. This study shows that the use of the organic compost in agricultural areas seen does not negatively influence the quality of surface water in the study area. These results are important because the process of composting animal and vegetable waste and the use of compost obtained can be an alternative sustainable for adequate destination of these wastes.

  17. Effects of application of groundnut biomass compost on uptake of phosphorus by maize grown on an Ultisol of South Sulawesi

    Directory of Open Access Journals (Sweden)

    Kasifah

    2014-07-01

    Full Text Available Low crop production is acid dryland area of South Sulawesi is due to low availability of P in the soils. One of alternatives that can be performed to overcome the problems of acid soils having high level of exchangeable Al, is through the addition of organic material. In the upland areas in South Sulawesi, crop rice, maize and groundnut crop residues are readily available, but the crop residues are generally only used as animal feed or even burned. This study was aimed to elucidate the effects of groundnut compost on P uptake by maize in Ultisol of Moncongloe, South Sulawesi. Eight kilograms of air dried soil was mixed with compost according to the following treatments; 0, 10, 15, 20, 25, 30, 35 and 40 t compost/ha. All pots received 200 kg/ha KCl and 300 kg Urea/ha as basal fertilizers. Two maize seeds were planted in each pot and thinned to one plant per pot after one week. At harvest maize shoot dry weight and maize root dry weight, length of maize cop, cob weight, cob diameter, weight grains per cob, P uptake by maize, P content in maize grain, soil available P were measured. Results of the study showed that groundnut compost has the ability to improve the availability of P in the soil and increase P uptake by maize grown on an Ultisol of South Sulawesi. Application of 25 t groundnut compost/ha was the optimal rate that can be used to increase P availability in an Ultisol of South Sulawesi.

  18. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  19. Agriculture: Nutrient Management and Fertilizer

    Science.gov (United States)

    Fertilizers and soil amendments can be derived from raw materials, composts and other organic matter, and wastes, such as sewage sludge and certain industrial wastes. Overuse of fertilizers can result in contamination of surface water and groundwater.

  20. Status of compost usage and its performance on vegetable production in Monga areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    G.K.M.M. Rahman

    2014-12-01

    Full Text Available The present study was carried out to assess the existing status of compost usage on vegetable production and determine the overall effect of household waste compost (HWC on growth and yield of vegetables and enhancement of soil fertility in the monga areas of Bangladesh. A field survey was conducted on 152 sampled farmers during 2010 to 2011. Questionnaire containing both closed and open-ended questions were used to assess existing production practices of vegetables using compost in both homestead and field conditions. Three field trials at Badargonj and Kawnia upazilas of Rangpur district were conducted taking four treatments i.e. control, recommended doses (RD of fertilizers, HWC at the rate of 10 tha-1, and HWC 10 t ha-1 plus RD as IPNS based with Lal shak, Palong shak, Pui shak and Tomato. Base line survey results indicated inadequate knowledge of the farmers on use and preparation of the household waste compost. Yield data of all vegetables i.e. Tomato, Lal shak, Palong shak and Pui shak indicated that the combined application of nutrients using organic and inorganic sources were significantly better than that of solitary application of inorganic fertilizers. The potential of household waste compost applied @ 10 t ha-1 along with inorganic fertilizers applied was found highly satisfactory in producing Tomato, where yield was recorded 75 t ha-1 in the study area. The fresh yield of Palong shak was found 16 t ha-1 when recommended doses of inorganic fertilizers were applied, but it was about 19 t ha-1 under combined application of HWC @ 10 t ha-1 and inorganic fertilizers following IPNS concept. The fresh yield of Pui shak was found about 49 t ha-1 under combined application of organic and inorganic nutrients. Considering the availability and costs of different composts, it is evinced that HWC contained good amount of NPK which indicates its potentiality to be used as a soil amendment, improving soil fertility and crop productivity. It can be

  1. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A novel challenge test incorporating irradiation (60Co) of compost sub-samples to validate thermal lethality towards pathogenic bacteria.

    Science.gov (United States)

    Moore, John E; Watabe, Miyuki; Stewart, Andrew; Cherie Millar, B; Rao, Juluri R

    2009-01-01

    required by law for composted products arising from rural industrialists producing pelleted fertilizers from re-composted animal agriculture wastes comprising pig slurry solids, poultry litter and spent mushroom compost, which carry residual food-borne pathogens with implications to the food chain including humans. Environmentally, sustainable means of recycling farm wastes require that final composted products are free of pathogens in compliance with environmental safety legislation before their release to the market. This test developed provides a science-based risk characterization tool for sustainably managing environmental safety by 'validating' thermal lethality of a given composting process or their derivatives achieved without compromising the sample integrity or ambiguity attached to microbiological validation involving steam sterilization or autoclaving procedures and helps audit the resurgent bacterial populations from surviving non-pathogenic organisms in the end-products of animal waste compost formulations.

  3. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  4. Effects Of Organic Fertilizer And Spacing On Growth And Yield Of ...

    African Journals Online (AJOL)

    NIHORT), Ibadan to investigate the effects of maize-stover compost fertilizer and plant spacing on the growth and shoot yield of Celosia argentea L. var. TLV8. Plants were spaced 15x 15cm; 20 x 20cm and 25 x 25cm and the compost fertilizer was ...

  5. Cucumber nitrogen utilization as affected by compost levels and nitrogen rates using 15N technique

    International Nuclear Information System (INIS)

    El-Sherif, M.F.; Abdalla, A.A.; Abdalla, M.M.F.; El-Oksh, I.I.

    2005-01-01

    The beneficial effect of compost application to the sandy soil on dry matter production of shoots and fruits as well as its effect on l5N-uptake and nitrogen utilization percent of cucumber plant (Cucumis sativus L.) were studied under field conditions. Two types of natural compost (i.e. sugar cane bagasse (SC) and beet compost (BC)) with three levels (2, 4, 6 ton/fed) in addition to check treatment for each kind of compost (sheep manure with rate of 20 in/fed) combined with three rates of nitrogen fertilizer rates (50, 75, 100% from the recommended rate, i.e. 75 kg /fed) were used. The bagasse compost in both seasons gave a significantly higher response than the beet compost. There was a greet reduction in cucumber dry weight, N yield, Ndff%, FN yield and N utilization % of shoots and fruits as the level of compost application decreased. However, cucumber plants grown on high compost application level (6 ton/fed) were similar in their responses to plants grown on the check treatment. The results of N utilization indicated that the fertilizer utilization by the cucumber shoots and fruits during both seasons was significantly higher for the medium N rate (75% N) in comparison to the lowest fertigation treatment (50% N) and similar to the highest N fertigation rate (100% N). Generally, the results showed that under the experimental conditions to reach an acceptable yield with a high fertilizer utilization, it could be suggested to apply relatively medium rates of N fertigation (56.25 kg N/fed) combined with the high level ofSC compost application (6 t/fed) keeping in mind the regional site conditions

  6. Valorization of beer brewing wastes by composting

    OpenAIRE

    Silva, Maria Elisabete; Brás, Isabel

    2017-01-01

    The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored b...

  7. Biochar affected by composting with farmyard manure.

    Science.gov (United States)

    Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf

    2013-01-01

    Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Effect of phosphate - solubilizing bacteria and compost on the nutritional characteristics of the oil palm crop (Elaeis guineensis Jacq. in Casanare, Colombia

    Directory of Open Access Journals (Sweden)

    Anamaría García

    2012-08-01

    Full Text Available In accordance with interest to include biological practices in fertilization programs for commercially important crops, the effect of a bioinoculant application based on phosphate solubilizing bacteria along with compost was evaluated on oil palm cultivation in the nursery stage and in a definitive area. The five treatments that were evaluated included: (C compost, (CQ compost and chemical fertilizers 50/50, (IC compost and inoculant, (IQ chemical fertilizers and inoculant and (ICQ inoculant, compost and chemical fertilizers 50/50; as a positive control it was used a plant group fertilized with traditional chemical compounds. Organic matter was added at 2% (w/w at nursery stage and 15 kg/plant in the definitive area. Response variables includedagronomic variables were evaluated (total height, height to bifurcation, bulb diameter and number of leaves and soil physicochemical variables (pH, oxidizable organic carbon (OOC, extractable phosphorus and total boron, measured during 8 months in the nursery area and 6 months in the definitive area. The results showed that the evaluated compost constitutes an alternative for palm fertilization in the definitive area, as source of nutrients that meet crop demand at this stage of the crop, matching the nutritional levels of the control plants (P≥0.005. Meanwhile, in the nursery area, chemical fertilization is essential to ensure the quality of the plants during the first stage of growth, since, at this stage, plants require high amount of N, which is not supplied by the compost. Finally, it was not possible to demonstrate the promoting effect of the microbial inoculant on plant growth, so it is necessary to complement this research in regard to this product

  9. Utilization of the household organic wastes in compost

    International Nuclear Information System (INIS)

    Calvache O, B.

    1995-01-01

    Residues or wastes are a problem to the cities, owing to its collect and disposal produce many negative effects in public health and the environment as odors, microorganism (pathogens), vectors (flies, rodents and mosquitoes), and others. To solve this problem have been propose mainly two alternatives: 1. Sanitary landfills and 2. Recycling. To recover the residues as biodegradable as not-biodegradable, exist alternatives as composting (fermentation process or aerobic oxidation) and recycling - reuse, respectively. The composting process in aspects as the required conditions to that the organism acts efficiently as control of temperature (between 40-75 centigrade degrees), feed (carbon, nitrogen and other organic matter), aeration (by mixing or turning), control of moisture (between 50-60%), are present. Methodology aspects to composting also are described

  10. No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment

    Directory of Open Access Journals (Sweden)

    Hardy Schulz

    2014-01-01

    Full Text Available It is claimed that the addition of biochar to soil improves C sequestration, soil fertility and plant growth, especially when combined with organic fertilizers such as compost. However, little is known about agricultural effects of small amounts of composted biochar. This greenhouse study was carried out to examine effects of co-composted biochar on oat (Avena sativa L. yield in both sandy and loamy soil. The aim of this study was to test whether biochar effects can be observed at very low biochar concentrations. To test a variety of application amounts below 3 Mg biochar ha−1, we co-composted five different biochar concentrations (0, 3, 5, 10 kg Mg−1 compost. The biochar-containing compost was applied at five application rates (10, 50, 100, 150, 250 Mg ha−1 20 cm−1. Effects of compost addition on plant growth, Total Organic Carbon, Ntot, pH and soluble nutrients outweighed the effects of the minimal biochar amounts in the composted substrates so that a no effect level of biochar of at least 3 Mg ha−1 could be estimated.

  11. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  12. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    Science.gov (United States)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sharma, S. [Indian Institute of Technology, New Delhi (India). Centre for Rural Development and Technology

    2002-11-01

    Preliminary studies were conducted on wheat straw to test the technical viability of an integrated system of composting, with bioinoculants and subsequent vermicomposting, to overcome the problem of lignocellulosic waste degradation, especially during the winter season. Wheat straw was pre-decomposed for 40 days by inoculating it with Pleurotus sajor-caju, Trichoderma harzianum, Aspergillus niger and Azotobacter chroococcum in different combinations. This was followed by vermicomposting for 30 days. Chemical analysis of the samples showed a significant decrease in cellulose, hemicellulose and lignin contents during pre-decomposition and vermicomposting. The N, P, K content increased significantly during pre-decomposition with bioinoculants. The best quality compost, based on chemical analysis, was prepared where the substrate was treated with all the four bioinoculants together followed by vermicomposting. Results indicated that the combination of both the systems reduced the overall time required for composting and accelerated the composting of ligno-cellulosic waste during the winter season besides producing a nutrient-enriched compost product. (author)

  14. The Use of Nuclear Technique for Evaluation of Residual Effect of P Fertilizer on the Growth of Paddy

    International Nuclear Information System (INIS)

    Idawati; Rasjid, Havid; Haryanto; Sisworo, Elsje L

    1998-01-01

    Plant growth is much affected by nutrient supply so that, in practicing periodic P fertilization, monitoring of available P for plant is necessary. The aim of the conducted experiment was to study P availability for paddy after two growing seasons without P fertilization. Paddy of IR64 variety was tested to grow on Pusakanegara soil (planting IV) which had been treated in the three previous growing season (planting I) with P fertilizers at the rates of 0kg P-PR/ha (OP), 120 kg P-PR/ha (120 PR). 180 kg P-PR/ha (180 PR), 60 kg P-TSP/ha (60 TSP), and 90 kg P-TSP/ha (90 TSP). N and K fertilizers were applied as basal fertilizers. 32 P in the from of KH 2 32 PO 4 was used in isotope dilution method to gain the information of P availability. It was seen that in this Planting IV paddy was growing poorly caused by P deficiency as expressed by L value of P residue which was very low and even giving almost no increase to L value of the soil. The amount of P derived from residue found in plant at Planting IV was only about 3 to 11% of P derived from fertilizer found at Planting 1. This information gave warning that P fertilization was again needed after an interval of two growing seasons without P fertilization regarding that in those two growing seasons paddy grown well as previously reported. Furthermore, it seemed that TSP residue had a tendency to be more potential than phosphate rock residue in releasing available P. The higher of TSp residue made paddy grown on soil with TSP residue have higher ability grown soil with phosphate residue. (author)

  15. Compost production from municipal wastes of Canadian mining towns

    International Nuclear Information System (INIS)

    Jongejan, A.

    1983-01-01

    A summary of results of experiements on composting mumicipal wastes, and an overview of a type of composting process that could be used in small Canadian mining towns are given. The process is a means of waste disposal designed to produce compost. Compost can be used for the revegetation of mine-mill tailings as its sorptive properties complement the chemical action of inorganic fertilizers. The possibility of using compost instead of peat in water pollution-abatement processes can be considered. Difficulties that can be expected if a windrow composting process is continued during the low ambient-temperatures of Canadian winters can be avoided by storing the garbage-sewage mixture as hydraulically-compacted briquettes. Degradation of the briquettes takes place during mild-temperature periods without producing the foul odors of heaped garbage. A tentative plan for composting plant is presented as an illustration of the applicatin of the experimental results in a practical process. Because the process is a means of waste disposal, costs have to be divided between the municipality and the mining industry

  16. Concept for quality management to secure benefits of compost use for soil and plants

    OpenAIRE

    Fuchs, J.G.; Berner, A.; Mayer, J.; Schleiss, K.

    2014-01-01

    Use of quality compost can have an important positive impact on soil fertility and plant growth and health. For example, it increases soil humus and improves soil structure and suppressivity towards plant diseases. To obtain these positive results, it is important that the compost quality is appropriate for each use. If used inadequately, the impact of compost can also be negative. The compost producer should be responsible for the quality of his products, and has to communicate the propertie...

  17. THE COMPOST – A METHOD TO RESTORE THE ORGANIC WASTE PRODUCTS IN THE NATURAL CIRCUIT

    Directory of Open Access Journals (Sweden)

    Delia Nicoleta VIERU

    2009-03-01

    Full Text Available Half of the quantity of waste products produced by the households is made of foodremainders, vegetable and garden remainders and more of 50% of waste products are organicand they arrive in waste products storehouses, in cesspools or are burned, causing animportant pollution. As an alternative to those, we can transform the organic material througha set of microbial, biochemical, chemical and physical processes into a valuable material witha humus appearance, named compost. To obtain a quality compost we need to lead thecompost process, in accordance with the dimension, the humidity, the structure and thecomposition of residual materials, that these to be fast and efficient available to the microorganisms,making up an ideal substratum rich in nutrients for their development. Thedecomposition agents (bacterium, fungous, mites, Collembola, wooden lice, worms,diplopoda need the azote to build the cells and some food remainders, ripped grass and greenleaves. The chips of wood, the dry leaves and the sawdust are rich in carbon and theyconstitute another energy source for the decomposition agents. The azote sources aredesignated as the „green” elements, and the carbon sources are the „brown” ones. In a pile ofcompost is efficient to maintain a balance between the „brown” elements (carbon and the„green” ones (azote – in percent of 30:1 to offer the decomposition agents a balancednourishment and this thing can be acquired through the alternation of layers of brown andgreen elements. The production of compost in schools can be a way to determine the entireschool community to work together for helping the environment. This means the naturalrecirculation of resources, community education over the benefits of the compost, the changeof the cultural attitude over the garbage in a way that brings benefits to the society, thereduction of the alimentary remainders quantity from the school canteen, the implication ofthe students in extra

  18. Sieving Effect of Sorting Machine with Vibration Table Type on Cacao Pod Based Compost

    OpenAIRE

    Soekarno, Siswoyo; Suharyanto, Edy; Arif, Ahmad Hudi

    2009-01-01

    Cacao pod is the biggest part (70% of weight) of Cacao, which was not optimaly utilized.Cacao podis one of organic material that can be functioned as an organic fertilizer, such as compost. When utilizedwith right proportion, organic fertilizer is safe for plants and not degrades the soil composition. Compostingprocess is one of utilization form of Cacao pod. The size reduction of cacao pod in the organic fertilizerprocess would help to accelerate the composting process. Smaller particle size...

  19. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    Yan, Xiaoyuan; Ti, Chaopu; Zhu, Zhaoliang; Vitousek, Peter; Chen, Deli; Leip, Adrian; Cai, Zucong

    2014-01-01

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  20. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Composting toilets as a sustainable alternative to urban sanitation – A review

    International Nuclear Information System (INIS)

    Anand, Chirjiv K.; Apul, Defne S.

    2014-01-01

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  2. Composting toilets as a sustainable alternative to urban sanitation – A review

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Chirjiv K., E-mail: chirjiv@gmail.com; Apul, Defne S., E-mail: defne.apul@utoledo.edu

    2014-02-15

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  3. The influence of complex compost on the aggregate composition and water and air properties of an ordinary chernozem

    Science.gov (United States)

    Belyuchenko, I. S.; Antonenko, D. A.

    2015-07-01

    The influence of complex compost composed of the waste products of the agriculture (semi-rotted cattle manure and plant residues) and chemical industries (phosphogypsum) on the agrophysical properties of an ordinary chernozem (Haplic Chernozem) was studied in the western Ciscaucasian region. In the field experiment, the compost was applied to the plow layer (0-20 cm) in 2007. In five years, the content of agronomically valuable aggregates increased by 7-9%, and their water stability became higher. This resulted in a better aggregation of the plow layer; its bulk density decreased by about 0.1 g/cm3 in comparison with the control plot treated with mineral fertilizers according to traditional technology. The water and air properties of the soil were optimized, which was seen from an increase in the field and total water capacity, total porosity, and soil water storage.

  4. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    Science.gov (United States)

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Composting toilets as a sustainable alternative to urban sanitation--a review.

    Science.gov (United States)

    Anand, Chirjiv K; Apul, Defne S

    2014-02-01

    In today's flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50-60%), temperature (40-65°C), carbon to nitrogen ratio (25-35), pH (5.5-8.0), and porosity (35-50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature-time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and experience in composting toilet design and operation and program operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Assessment of Municipal Solid Waste (MSW Compost Properties Produced in Sanandaj City with a View of Improving the Soil Quality and Health

    Directory of Open Access Journals (Sweden)

    Z. Sharifi

    2017-01-01

    standard; both the composts can be used as fertilizers or soil amendments. In order to eliminate glass impurity, remediation approaches such as fine milling and pelleting is needed to disguise the residual glasses and render it as relatively harmless. A feasible approach to eliminate these problems is probably physical fractionation of the studied composts. It allows us to assess the distribution of nutrients and contaminants values in the different physical fractions of the composts, which is useful to detect and to eliminate of the particle sizes which are the responsible for these impurities. Conclusion: The assessment of MSW-based compost for use in agricultural soil as fertilizer or conditioner is a sustainable recycling practice owing to its nutrient content and its positive effects on soil physico-chemical properties. Thus, we evaluated the fertilizing potential of two MSW composts produced in Sanandaj city for agricultural purposes. Altogether, the results of the study showed that excessive amount of glass impurity bigger than 2 mm and salinity were the major problems in the use of the composts for agricultural purpose. As a result, the quality of the surveyed composts was not suitable for agricultural purposes without appropriate remediation of these restrictions.

  7. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    Science.gov (United States)

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-11-01

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Dissipation and residue of clothianidin in granules and pesticide fertilizers used in cabbage and soil under field conditions.

    Science.gov (United States)

    Zhang, P W; Wang, S Y; Huang, C L; Fu, J T; Huang, R L; Li, Z H; Zhang, Z X

    2018-01-01

    The single application of 0.5 % clothianidin granules, a novel formulation, was used to control pests in vegetables under a high dose. In this article, residues of clothianidin in cabbage and soil samples under field conditions from Guangzhou, Nanning, and Qianjiang were determined by HPLC. The terminal residues of clothianidin in cabbage were less than the limit of detection (clothianidin residual, clothianidin granules and fertilizers of chicken manure, urea, and organic fertilizer were mixed into different pesticide fertilizers through their normal field using dosage and evaluate residual influence of clothianidin in different formula. After analysis of variance of the effect factors, the effect of different pesticide types on half-life was not significant, but the effect of sample types was significant. Clothianidin granules and pesticide fertilizers could be safely applied in cabbage under a single high-dose administration.

  9. Gamma irradiation and heat treatment for sterilization of Mushroom Spent Compost (MSC)

    International Nuclear Information System (INIS)

    Rosnani Abdul Rashid; Hassan Hamdani Mutaat; Foziah Ali; Zainab Harun; Hoe, P.C.K.; Mohd Meswan Maskom; Khairuddin Abdul Rahim

    2016-01-01

    Mushroom spent compost (MSC) refers to substrate residue from mushroom cultivation. MSC can be used as a material to improve soil properties for farming. MSC is also suitable as a carrier or substrate to hold beneficial microorganisms in bio fertilizer products. The carrier for bio fertilizer products must be sterilized completely before inoculating with bacteria inoculum. In this study, the effects of gamma irradiation and heat on sterilization of MSC were evaluated by microbial enumeration technique. The MSC was packed into polyethylene bags. The packed MSC were irradiated at different doses of 0 (control), 10, 20, 30, 40, 50 kGy, and heat sterilized at different autoclaving time of 0 (control), 15, 30, 45 and 60 minutes, separately. The irradiated and autoclaved samples were enumerated for viable colonies. The results showed that MSC was completely sterilized by gamma irradiation at the dose of 30 kGy whilst sterilization by heat required 30 minute autoclaving time. (author)

  10. Good for sewage treatment and good for agriculture: Algal based compost and biochar.

    Science.gov (United States)

    Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky; Roberts, David A

    2017-09-15

    In this study we test a novel approach to closing the anthropogenic nutrient cycle, by using the freshwater macroalga, Oedogonium intermedium, to recover dissolved nitrogen (N) and phosphorous (P) from municipal wastewater. We then convert this cultivated algae into two types of soil ameliorant; compost and biochar. To produce compost, algae was combined with sugarcane bagasse and left to mature for 10 weeks, and to produce biochar, algae was processed through slow pyrolysis at 450 °C. The mature compost had a total N and P content of 2.5% and 0.6%, which was 2- to 4-times lower than the algal biochar, which had a total N and P content of 5.5% and 2.5% respectively. Composting stabilized the N and P recovered from wastewater, with 80% of the initial N and >99% of the initial P retained in the mature compost. In contrast, only 29% of the initial N and 62% of the initial P was retained in the biochar. When the mature compost was added to a low fertility soil it significantly increased the production of sweet corn (Zea mays). Treatments receiving 50 and 100% compost produced 4-9 times more corn biomass than when synthetic fertilizer alone was added to the low fertility soil. When biochar was applied in conjunction with compost there was an additional 15% increase in corn productivity, most likely due to the ability of the biochar to bind labile N and P and prevent its loss from the soil. This study demonstrates a unique model for recovering N and P from municipal wastewater and recycling these nutrients into the agricultural industry. This could be an ideal model for regional areas where agriculture and water treatment facilities are co-located and could ultimately reduce the reliance of agriculture on finite mineral sources of P. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Soil management, fertilization and plant nutrition in organic systems in Spain: A review of the research in last 20 years

    Science.gov (United States)

    Gonzalvez, Victor; Raigon Jiménez, M.° Dolores

    2016-04-01

    organic plant health and plant protection. In total 12 % of the papers presented in these events were devoted to soil conservation, soil fertility and plant nutrition management. We have analyzed this papers contributions dividing in five categories: a) organic and mineral fertilization; b) general evaluation of soil fertility under organic management; c) compost making and compost types; d) soil conservation and fertilization; e) crop fertilization and food quality The results shows that over 20 % of the total papers presented were related to general aspects of crop fertilization in 16% types of vegetables crops, 14% on arable crops and pastures and 8% on perennial crops (almonds, citrus, vineyards, olive trees, and banana) have been presented. Most studies were done on vegetables and very few on nutrient balance have been published. Some papers deal with cover crops. The soil fertility impact of organic farming compared with conventional is focused is included in nearly 30 % of all the scientific papers presented. Compost from different crop residues and the effects on soil and on different crops, including waste sludge (not allowed in organic farming) have been researched. Also some studies deal with how to use the residues of the olive oil mills or residues of vineyards as organic fertilizer. Some of the most recent studies are focused on how compost can control pest and diseases in crop cultivation. Another type of study has analyzed the soil disinfection potential of manure with high exposition to the sun (high temperature) to be used in greenhouses. Few studies are concentrated in the application of mycorrhizae to enhance the capacity of the plants to absorber nutrients from soil. We found some few studies on biofertilisers, but there are many different inputs being offered to organic farmers as natural fertilizer. Soil conservation and organic fertilisation studies are scarce and not sufficiently detailed. Finally we found a five category of very few studies on

  12. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    Science.gov (United States)

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  14. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    Science.gov (United States)

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  15. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Science.gov (United States)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  16. Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo Carbon and nitrogen mineralization in an ultisol fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2006-08-01

    Full Text Available Estudos da mineralização do C e do N em solos que receberam aplicação de composto de lixo urbano são importantes para avaliar o comportamento desse resíduo no solo e dar subsídios para definir as doses adequadas às culturas, com vistas em atender à necessidade de N das plantas. Foram realizados dois experimentos em condições de laboratório com o objetivo de avaliar a mineralização de C e de N em um Argissolo textura média adubado com composto de lixo urbano. No primeiro experimento, utilizou-se delineamento inteiramente ao acaso, com cinco tratamentos e três repetições, com os tratamentos constituídos de cinco doses de composto de lixo urbano, equivalentes a 0, 30, 60, 90 e 120 t ha-1. No segundo experimento, empregou-se esquema fatorial, com delineamento inteiramente ao acaso e três repetições, combinando as mesmas cinco doses de composto de lixo urbano utilizadas no primeiro experimento e 11 tempos de incubação (0, 7, 14, 28, 42, 56, 70, 84, 98, 112 e 126 dias. Os maiores aumentos de N-NO3- no solo foram obtidos até os 42 dias de incubação, independentemente da dose de composto de lixo aplicada, percebendo-se, a partir dos 70 dias, tendência de estabilização. A fração de mineralização de C-orgânico em C-CO2 menor do que 2 % em 168 dias indica que o composto de lixo urbano é material que contribui para aumentar os estoques de matéria orgânica do solo. Na ausência de adubação nitrogenada complementar, a fração de mineralização de N-orgânico de 12 % em 126 dias evidencia que o composto de lixo urbano apresenta potencial fertilizante de liberação lenta de N para as plantas.Studies about nitrogen and carbon mineralization in soils amended with urban waste compost are important to evaluate the reactions of this waste in soil and to define the best rates for crops. Two experiments were carried out under laboratory conditions to evaluate carbon and nitrogen mineralization in an Ultisol fertilized with

  17. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    Science.gov (United States)

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Qualitative and qualitative characteristics of milk thistle (Silybum marianum L. in response to organic, biological and chemical fertilizers

    Directory of Open Access Journals (Sweden)

    R. Yazdani Biuki

    2016-04-01

    Full Text Available In order to evaluate the effects of organic, biological and chemical fertilizers on yield and yield components of milk thistle (Silybum marianum L., an experiment was conducted at the Research Station of Ferdowsi University of Mashhad based on complete randomized block design with three replications and six treatments during year 2007. Treatments included inoculated seeds with Azotobacter, compost, vermicompost, combination of both Azotobacter and compost treatments, chemical NPK fertilizer and control (without any fertilizer. The traits such as number of branches per plant, plant height, number of inflorescences per plant, inflorescence diameter, number of seeds per capitol, 1000 seed weight, seed yield, biological yield, harvest index, oil percentage, silymarin percentage, silybin percentage, oil yield and silymarin yield were measured. The results showed that application of different types of organic fertilizers had no effect on yield components, but had significant effect on oil percentage of oil, silymarin and silybin of seed. Compost application resulted the highest oil percentage (20.1 compared to other treatments. There was no significant difference between control, chemical fertilizer, compost and Azotobacter treatments on silymarin percentage. In terms of silybin percentage, there was no significant difference between control, compost, Azotobacter and aztobacter+compost treatments. The chemical fertilizer treatment showed the lowest silybin percentage (16.4. There was a positive correlation between plant height and seed yield (r=0.68**. It seems that biofertilizers can consider as a replacement for chemical fertilizers in Milk thistle medicinal plant production.

  19. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-01-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D 10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts

  20. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    Science.gov (United States)

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  1. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    Science.gov (United States)

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  2. Accelerated In-vessel Composting for Household Waste

    Science.gov (United States)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  3. Nutrition and growth of potted gerbera according to mineral and organic fertilizer

    Directory of Open Access Journals (Sweden)

    Francielly Torres Santos

    2015-08-01

    Full Text Available In order to meet the growing market of gerbera, it is necessary to develop studies that maximize its production, especially using organic fertilizer. In order to assess the nutrition and growth of potted gerbera conducted with mineral and organic fertilization, an experiment in a greenhouse was done, located at Western Paraná State University, Brazil. The experimental design was made in randomized blocks, with four replications and five treatments. The treatments were defined according to the source of fertilization, mineral (NPK or organic. The organic fertilization were obtained by diluting in water four organic compost of poultry slaughter waste, obtained from in the composting process, in order to adjust electrical conductivity. The solution of the compost was used as organic fertigation, making the organic treatments. The liquid organic fertilizer, as well as irrigation of mineral treatment, was performed manually once a day. At the end of vegetative and reproductive periods, the levels of N, P, K, Ca, Mg and Fe were quantified in the plant tissue. At the same time, biometric parameters were assessed (number of leaves, plant diameter, leaf area, dry matter of aerial parts, number of heads, inflorescence dry matter, stem height, head diameter and diameter stem. The liquid organic fertilizers, obtained by composting procession of poultry slaughter waste, can be used as alternative source for potted gerbera nutrition, since they provide better or higher culture growth than the mineral fertilizer.

  4. PENETRATION OF NITROGEN INTO WATER AS A RESULT OF FERTILIZATION OF LIGHT SOIL

    Directory of Open Access Journals (Sweden)

    Franciszek Czyżyk

    2014-10-01

    Full Text Available In this article there are present the results of six-year study of infiltration of nitrogen through the sand soil (loamy sand. Every year the soil was fertilized by compost (from sewage sludge and equivalent doses of nitrogen in mineral fertilizers. Two variants of compost fertilization (K1-10 and K2-15 g N·m-2 were used. Additionally two variants of NPK with equivalent doses of nitrogen as an ammonium nitrate supplemented with PK as a superphosphate and potassium salt were applied. Systematically there were investigated the volume of all leachates and their chemical composition. With increasing doses of fertilizers the concentrations of total nitrogen and nitrate nitrogen in the leachate were increased. The concentration of nitrogen in the leachate from the soil fertilized by nitrate was much greater than in compost with equivalent dose of nitrogen. Not only nitrates but also nitrogen from soluble organic compounds were rinsed from the soil. In the case of soil fertilized by compost the participation of nitrates in the total value of nitorgen in the leachate was 41-77%. However in the case of fertilization by ammonium sulphate this proportion was significantly higher and was in the range 60-95%. Over the years, a systematic soil fertilization by both ways increased the nitrogen concentrations in leachate. It shows that in the soil there is surplus of nitrogen, increasing during the time.

  5. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration.

    Science.gov (United States)

    Mao, J-D; Johnson, R L; Lehmann, J; Olk, D C; Neves, E G; Thompson, M L; Schmidt-Rohr, K

    2012-09-04

    Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of ~6 fused aromatic rings substituted by COO(-) groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S. (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (~40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.

  6. In-pot evaluation of different composted and pelletized organic fertilizers on soil carbon dioxide efflux and basal respiration

    Science.gov (United States)

    Opsi, Francesca; Cavallo, Eugenio; Cocco, Stefania; Corti, Giuseppe

    2013-04-01

    Climate change is one of the most important environmental problems and it is closely related to concentration changes of greenhouse gases (GHG) in the atmosphere, mainly due to anthropogenic activities. As a consequence, measures have been taken to reduce GHG emissions, some of which are associated with agriculture, as well as to the enhancement of soil carbon storage. Modern intensive farming activities have also raised problems related to the safe disposal of large volume of animal waste, such as pig slurry, where the excessive land spreading can lead to water pollution and GHG evolution to the atmosphere. Composting is a great environmentally sustainable option for recycling agricultural by-products, and pelletisation is a promising technology to reduce the large volume of mature composted material in pelleted fertilizers, more suitable for long-distance transport. This study consisted of a pot-incubation experience carried out in a greenhouse of the National Research Council of Italy, under controlled conditions. The aim of the research was to investigate the effect of a composted swine solid fraction (CS, 13% w/w) and swine solid fraction blended with sawdust and composted (CSS, 9% w/w), both also as a result of pelletisation process (CSP, 12% w/w and CSSP, 8% w/w, respectively), on soil organic matter mineralization and basal respiration. Results were obtained by monitoring CO2 efflux, basal respiration and microbial biomass C on amended soil, freshly collected in a vineyard planted on a Typic Ustorthent, fine-loamy, mixed, calcareous, mesic. Samples, adjusted and maintained to about 50-60% of water holding capacity, were conditioned at 25±3 °C for 31 days of incubation. The CO2 fluxes showed a high production at the initial stage of incubation, where differences among treatments were well-rendered. CSSP produced the highest values, while CSS showed values as lower as about 45%. Intermediate values, and similar to those found in the soil sample used as

  7. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    Science.gov (United States)

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Production of valuable humified substrate by meansco-composting of source-collected vegetable and industrial wastes

    International Nuclear Information System (INIS)

    Varallo, G.

    1992-01-01

    Recently, the ENEL (Italian National Electricity Board) Coal-ash Utilization Research Centre has been more and more interested in developing suitable procedures in order to recycle residues from coal combustion in electric power generating stations for use in agricultural and forestry activities. Particular attention is currently being given to the production of humified substrates by means of co-composting mixtures of green waste and fly ash. The transformation process involves a reduction in the waste quantities destined for dumping, a decrease in environmental pollution and the recycling of nutrients which avoid or reduce the indiscriminate use of chemical fertilizers and humid biotopes such as peat mosses

  9. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  10. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  11. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  12. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Dong-Ho [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2007-11-15

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10{sup 5} to 10{sup 7} CFU/ml and 0 to 10{sup 3} CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10{sup 2} CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10{sup 7} CFU/g) were eliminated by irradiation at 3 kGy. Approximate D{sub {sub 1}{sub 0}} values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  13. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium.

    Science.gov (United States)

    Jones, B E H; Haynes, R J; Phillips, I R

    2012-03-01

    The effects of addition of carbonated residue mud (RMC) or seawater neutralized residue mud (RMS), at two rates, in the presence or absence of added green waste compost, on the chemical, physical and microbial properties of gypsum-treated bauxite residue sand were studied in a laboratory incubation study. The growth of two species commonly used in revegetation of residue sand (Lolium rigidum and Acacia saligna) in the treatments was then studied in a 18-week greenhouse study. Addition of green waste-based compost increased ammonium acetate-extractable (exchangeable) Mg, K and Na. Addition of residue mud at 5 and 10% w/w reduced exchangeable Ca but increased that of Mg and Na (and K for RMS). Concentrations of K, Na, Mg and level of EC in saturation paste extracts were increased by residue mud additions. Concentrations of cations in water extracts were considerably higher than those in saturation paste extracts but trends with treatment were broadly similar. Addition of both compost and residue mud caused a significant decrease in macroporosity with a concomitant increase in mesoporosity and microporosity, available water holding capacity and the quantity of water held at field capacity. Increasing rates of added residue mud reduced the percentage of sample present as discrete sand particles and increased that in aggregated form (particularly in the 1-2 and >10mm diameter ranges). Organic C content, C/N ratio, soluble organic C, microbial biomass C and basal respiration were increased by compost additions. Where compost was added, residue mud additions caused a substantial increase in microbial biomass and basal respiration. L. rigidum grew satisfactorily in all treatments although yields tended to be reduced by additions of mud (especially RMC) particularly in the absence of added compost. Growth of A. saligna was poor in sand alone and mud-amended sand and was greatly promoted by additions of compost. However, in the presence of compost, addition of carbonated

  14. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam

    Science.gov (United States)

    Dang, Thi Cam Ha; Thang Nguyen, Dang; Thai, Hoang; Chinh Nguyen, Thuy; Thu Hien Tran, Thi; Le, Viet Hung; Huynh Nguyen, Van; Bach Tran, Xuan; Phuong Thao Pham, Thi; Giang Nguyen, Truong; Nguyen, Quang Trung

    2018-03-01

    Three different kinds of plastic bags HL, VHL, and VN1 with different chemical nature were degraded by a novel thermophilic bacterial strain isolated from composting agricultural residual in Vietnam in shaking liquid medium at 55 °C after 30 d. The new strain was classified in the Bacillus genus by morphological property and sequence of partial 16Sr RNA coding gene and named as Bacillus sp. BCBT21. This strain could produce extracellular hydrolase enzymes including lipase, CMCase, xylanase, chitinase, and protease with different level of activity in the same media. After a 30-d treatment at 55 °C with Bacillus sp. BCBT21, all characteristics including properties and morphology of treated plastic bags had been significantly changed. The weight loss, structure and surface morphology of these bags as well as the change in the average molecular weight of VHL bag were detected. Especially, the average molecular weight of VHL bag was significantly reduced from 205 000 to 116 760. New metabolites from the treated bags indicated biodegradation occurring with the different pathways. This finding suggests that there is high potential to develop an effective integrated method for plastic bags degradation by a combination of extracellular enzymes from bacteria and fungi existing in the composting process.

  15. Contribution of Eucalyptus Harvest Residues and Nitrogen Fertilization to Carbon Stabilization in Ultisols of Southern Bahia

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Caparelli Oliveira

    2018-02-01

    Full Text Available ABSTRACT: Eucalyptus forests in southern Bahia (BA are planted in soils with a sandy surface layer and humid tropical climate, conditions that lead to soil carbon (C decomposition. Recent studies have shown that nitrogen (N may be important for soil C stabilization. The aim of this study was to evaluate the contribution of Eucalyptus harvest residues and nitrogen fertilization to C stabilization in Ultisols of southern BA. The experiment was conducted in Eucalyptus clonal plantations cultivated in two regions of Eunápolis, BA, Brazil, with different clay content: southern region (140 g kg-1 of clay and western region (310 g kg-1 of clay. Five treatments were evaluated: one control (CTR, without Eucalyptus harvest residues and N fertilization, and four treatments with harvest residues combined with four rates of N fertilization: 0, 25, 50, and 100 kg ha-1. Soil samples were collected from the 0.00-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m layers at the beginning and the end of the experiment (36 months. The amount of C and N and the C and N isotopic ratio (δ13C and δ15N of particulate organic matter (POM and mineral-associated organic matter (MAOM were determined. In the southern region after 36 months, the C-MAOM stocks in the 0.00-0.10 m layer of the CTR decreased by 33 %. The addition of harvest residue followed by 100 kg ha-1 N increased C-POM and N-POM stocks (0.00-0.10 m compared to the CTR, and the final N-POM stocks and residue-C recovery in the surface soil layer were positively correlated with the increase in N fertilization rates. In the western region, residue maintenance resulted in increased C-MAOM stocks (0.00-0.10 m compared to the CTR, but an increase in N availability reduced this increment. The increase in N fertilization rates did not alter C stocks, but reduced N stocks of POM and MAOM in the upper soil layer. At the end of the experiment, N fertilizer recovery (0.00-0.60 m was similar among the regions evaluated. In

  16. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes.

    Science.gov (United States)

    Chang, Ken-Lin; Chen, Xi-Mei; Sun, Jian; Liu, Jing-Yong; Sun, Shui-Yu; Yang, Zuo-Yi; Wang, Yin

    2017-07-01

    Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.

  17. Phosphate dynamics on the application of rice straw compost-biochar and phosphate fertilization in rice fields

    International Nuclear Information System (INIS)

    Ania Citraresmini; Taufiq Bachtiar

    2016-01-01

    Soil productivity is determined by soil characteristics itself, which consist of physical, chemical and biological character. The linkage between these three properties can be represented by a single indicator, namely the carbon content in the soil. One of the effects of soil organic matter fulfillment is the availability of soil nutrients, especially to the nutrient that limits the lowland rice production. In this case, P (phosphorus) nutrient become a limiting factor because their numbers are often in abundance but in a form that can not be used by plants. Experiments were carried out with the aim of studying the impact of straw compost application that integrates with Biochar, to the availability of P in lowland soil. The interaction of straw compost + Biochar with PSB inoculation and P sources, become the treatment that being tested in the experiment. Randomized Block Design with factorial pattern is applied as design experiment. As the first factor is the application dose of straw compost + Biochar, consists of 5 levels of treatment : 0; 1; 2; 3; 4 t ha -1 . Second factor is several sources of P, consist of 5 levels of treatment : without P sources (p 0 ); 100 kg ha -1 SP-36 fertilizer (p1); rock phosphate at the dose of 163 kg ha -1 (p 2 ); PSB inoculation at the inoculation dose of 2 kg ha -1 (p 3 ); and rock phosphate inoculated with PSB (p 4 ). The experiment done in the green house of PAIR-BATAN experimental station, Jakarta, on March-July 2014. Phosphorus dynamic as a result of the tested treatments, determined by using radioisotope 32 P technology at the activity of 30 mCi and described clearly on the plant P uptake data of Sidenuk rice plant variety. The experiment result showed that the treatments applied is causing significantly different response on the soil C-organic, the number of PSB populations, 32 P plant counting and plant P uptake derived from several P sources in the plant. (author)

  18. EFFECT OF VARIOUS GROWING MEDIA AND FERTILIZER LEVELS ON GROWTH OF Antherura Rubra Lour

    Directory of Open Access Journals (Sweden)

    Fitri Kurniawati

    2016-06-01

    Full Text Available Antherura rubra Lour is one of the critical plant at Cibodas Botanical Garden. Study of cultivation through vegetative propagation of A. Rubra is rare. Therefore, the research of A. rubra on various of media and inorganic fertilizers is required to conserve A.rubra at Cibodas Botanical Garden. This study was conducted at the Nursery - Cibodas Botanic Garden for 10 months. The experiment was conducted in randomized block design (RBD with four replications. Treatments consisted of three combinations of natural compost media with three levels of inorganic fertilizer (0, 1g/L, and 2g/L, three katalek compost combination with three levels of inorganic fertilizer and a control (top soil without inorganic fertilizers. Variable tested consists of plant height, number of leaves, and dry weight shoot and root as an indicator of growth A. rubra Lour The results showed that the growth of seedlings A. rubra Lour on katalek compost media's with one dose of levels inorganic fertilizer growth better than other treatments.

  19. Soil fertility and soil loss constraints on crop residue removal for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, S.

    1979-07-01

    A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

  20. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  1. Compost biofortification with diazotrophic and P-solubilizing bacteria improves maturation process and P availability.

    Science.gov (United States)

    Busato, Jader G; Zandonadi, Daniel B; Mól, Alan R; Souza, Rafaela S; Aguiar, Kamilla P; Júnior, Fábio B Reis; Olivares, Fábio L

    2017-02-01

    Phosphorus-containing fertilizers play an important role in tropical agriculture owing to the well documented shortage of plant-available P in soils. Traditional P fertilizer production is based on chemical processing of insoluble rock phosphate (RP), which includes an acid treatment at high temperature. Processing the RP increases fertilizer costs, making it unavailable for undercapitalized and typically family-based farmers. Biotechnological methods have been proposed as an alternative to increase phosphate availability in RP. In this study, Burkholderia silvatlantica and Herbaspirillum seropedicae were co-inoculated into an RP-enriched compost with the aim of determining the effects of this technology on the levels of phosphatase activities and release of plant-available P. Inoculation of both microorganisms resulted in higher organic matter decomposition and higher humic acid formation in composting. Herbaspirillum seropedicae was the most promising microorganism for the production of acid and alkaline phosphatase enzymes. Both microorganisms presented potential to increase the supply of P from poorly soluble sources owing to increased levels of water-soluble P and citric acid P. Burkholderia silvatlantica and H. seropedicae in RP-enriched compost may represent an important biotechnological tool to reduce the overall time required for composting and increase the supply of P from poorly soluble sources. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Nitrate capture and slow release in biochar amended compost and soil.

    Directory of Open Access Journals (Sweden)

    Nikolas Hagemann

    Full Text Available Slow release of nitrate by charred organic matter used as a soil amendment (i.e. biochar was recently suggested as potential mechanism of nutrient delivery to plants which may explain some agronomic benefits of biochar. So far, isolated soil-aged and composted biochar particles were shown to release considerable amounts of nitrate only in extended (>1 h extractions ("slow release". In this study, we quantified nitrate and ammonium release by biochar-amended soil and compost during up to 167 h of repeated extractions in up to six consecutive steps to determine the effect of biochar on the overall mineral nitrogen retention. We used composts produced from mixed manures amended with three contrasting biochars prior to aerobic composting and a loamy soil that was amended with biochar three years prior to analysis and compared both to non-biochar amended controls. Composts were extracted with 2 M KCl at 22°C and 65°C, after sterilization, after treatment with H2O2, after removing biochar particles or without any modification. Soils were extracted with 2 M KCl at 22°C. Ammonium was continuously released during the extractions, independent of biochar amendment and is probably the result of abiotic ammonification. For the pure compost, nitrate extraction was complete after 1 h, while from biochar-amended composts, up to 30% of total nitrate extracted was only released during subsequent extraction steps. The loamy soil released 70% of its total nitrate amount in subsequent extractions, the biochar-amended soil 58%. However, biochar amendment doubled the amount of total extractable nitrate. Thus, biochar nitrate capture can be a relevant contribution to the overall nitrate retention in agroecosystems. Our results also indicate that the total nitrate amount in biochar amended soils and composts may frequently be underestimated. Furthermore, biochars could prevent nitrate loss from agroecosystems and may be developed into slow-release fertilizers to

  3. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  4. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    International Nuclear Information System (INIS)

    Zhang Fabao; Gu Wenjie; Xu Peizhi; Tang Shuanhu; Xie Kaizhi; Huang Xu; Huang Qiaoyi

    2011-01-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  5. Status of compost usage and its performance on vegetable production in Monga areas of Bangladesh

    OpenAIRE

    G.K.M.M. Rahman

    2014-01-01

    The present study was carried out to assess the existing status of compost usage on vegetable production and determine the overall effect of household waste compost (HWC) on growth and yield of vegetables and enhancement of soil fertility in the monga areas of Bangladesh. A field survey was conducted on 152 sampled farmers during 2010 to 2011. Questionnaire containing both closed and open-ended questions were used to assess existing production practices of vegetables using compost in both hom...

  6. Responses of Pea (Pisum sativum Growth and Yield to Residual Effects of Organic and Urea Fertilizers from Previous Crop

    Directory of Open Access Journals (Sweden)

    S. Fallah

    2016-07-01

    Full Text Available Application of organic manure in organic farming and long-term mineralization may lead to residual effects on the succeeding crop. So, residual effects of combined cattle manure and urea fertilizer of previous crop (black cumin on growth and yield of pea were examined in a randomized complete block design. Treatments included of  cattle manure (CM, urea (U, three ratios of CM+U full dose application (2:1; 1:1; 1:2 and three ratios of CM+U split application (2:1; 1:1; 1:2, and unfertilized control to previous crop (black cumin in 2012. Pea planted without any fertilizer in 2013. There was no significant difference between control and residual of urea treatment for some parameters including dry matter in flowering stage, plant nitrogen and phosphorus concentration, plant height, yield components, grain yield and biological yield of pea. Biological and grain yields were greater under both residual of cattle manure treatment and integrated treatments compared to residual of urea treatment. The highest grain yield (4000 kg ha-1 was observed in residual of CM:U full dosed application treatment, to the extent that grain yield in this treatment indicated a 1.5-fold increase in comparison with residual of urea treatment. The highest biological yield (8325 kg ha-1 was obtained in residual of CM treatment, though it was not significant different from that of residual of CM:U (1:2 treatments. In general, although residual of urea fertilizer did not leave a notable effect on pea production, but production of this crop relying on residual of cattle manure deems effective to lowering of fertilization cost and ameliorating environmental contaminations.

  7. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  8. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  9. Bioconversion of biomass residue from the cultivation of pea sprouts on spent Pleurotus sajor-caju compost employing Lumbricus rubellus

    Directory of Open Access Journals (Sweden)

    Azizi Abu Bakar

    2012-11-01

    Full Text Available Vermicomposting is a green technology for the purpose of nutrient enrichment from a variety of organic waste products. In this study, saw dust-based spent mushroom compost (SMC, an organic waste and biomass residue, was used as a medium for the cultivation of pea sprouts. After harvesting the pea sprouts, the growth medium was reused to culture earthworms, Lumbricus rubellus. The culturing activity was conducted for 50 days without any pre-composting or thermocomposting. Thus duration of vermicomposting process was shortened as opposed to previous work on vermicomposting of saw dust-based SMC (no amendment for 70 days. The culturing treatments were conducted in triplicate, including one treatment without earthworms as the control. The analysis showed that concentrations of macronutrients in vermicompost were higher compared to controls, in which N = 4.12%, P = 2.07% and K = 1.56%. The C:N ratio was 11.77, which indicates a stabilisation and maturity of the organic waste compost, compared with the C:N ratio for the control, which was 59.34. At the end of the experiment, increment of total biomass and number of earthworms were observed and no mortality was recorded. The results suggested that vermicomposting could be used as an environmentally valuable technology to convert saw dust used for mushroom and pea sprouts cultivation into vermicompost or bio-fertiliser by employing L. rubellus.

  10. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    Science.gov (United States)

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  11. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  12. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  13. Impact of compost amendments and operating temperature on diesel fuel bioremediation

    International Nuclear Information System (INIS)

    Hesnawi, R.M.; McCartney, D.M.

    2006-01-01

    The optimal conditions for compost bioremediation of unweathered diesel-contaminated soil were examined in this laboratory study. A sandy soil from the Assiniboine Delta Aquifer in Manitoba was spiked with diesel fuel and radio-labeled phenanthrene to yield a contaminant load of 20,000 mg per kg of dry soil. Two amendment materials were used, consisting of municipal biosolids, leaves and wood shavings. Since temperature plays a significant role, this study observed the effect of the operating temperature and the amendment material on the fate of phenanthrene and extractable diesel range hydrocarbons during the composting bioremediation of diesel-contaminated soil. The material was amended with fresh feedstock material or finished compost and incubated at thermophilic or mesophilic temperatures for 126 days. No mineralization of carbon 14 phenanthrene was detected in the controls that were not amended with compost. However, 25 to 42 per cent phenanthrene mineralization was detected in treatments that received compost. The lowest extractable diesel range organic residual was observed in the treatment receiving fresh compost amendment and incubated at thermophilic temperatures. The highest residual was noted in the control without any amendment. All treatments that received amendments outperformed the control reactors. However, there were large differences among the treatment performances, indicating that amendment type and operating temperature are significant factors that affect the performance of bioremediation. 22 refs., 2 tabs., 5 figs

  14. Concentration and speciation of heavy metals in six different sewage sludge-composts

    International Nuclear Information System (INIS)

    Cai Quanying; Mo Cehui; Wu Qitang; Zeng Qiaoyun; Katsoyiannis, Athanasios

    2007-01-01

    This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg -1 dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability

  15. Production of oil palm empty fruit bunch compost for ornamental plant cultivation

    Science.gov (United States)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.

  16. Biodrying of animal slaughterhouse residues and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Y. [Centre de recherche industrielle, Quebec City, PQ (Canada)

    2010-07-01

    Animal carcasses from slaughterhouses are usually composted on farms, but the composting process is not optimized and a large volumes of carbonaceous residues are needed. This type of composting takes place over a period of 6 to 9 months in a nonaerated static pile. Quebec's industrial research centre (CRIQ) developed an organic biodrying process (BIOSECO) adapted to large-scale operations in order to optimize the treatment of slaughterhouse residues. Biodrying is a form of composting, in which the thermophilic phase is optimized, making it possible to evaporate large amounts of water. Biodrying is done inside a building and reduces the amount of carbonaceous residues considerably. The process is optimized by the sequence in which the slaughterhouse residues are added, the choice of input and the aeration flow. Slaughterhouse residues can be treated non-stop throughout the entire year. Since the odours are nearly completed limited to the building, the biodrying can be done near the slaughterhouse. A large amount of heat was produced by the process during the pilot project. It was concluded that the BIOSECO biodrying process is suitable for treating slaughterhouse residues in an effective and economic manner, and has the added advantage of producing heat that could be used for various purposes.

  17. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  19. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  20. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  1. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S.

    Science.gov (United States)

    Mu, Dongyan; Horowitz, Naomi; Casey, Maeve; Jones, Kimmera

    2017-01-01

    A composting system provides many benefits towards achieving sustainability such as, replacing fertilizer use, increasing the quantity of produce sold, and diverting organic wastes from landfills. This study delves into the many benefits a composting system provided by utilizing an established composting system at Kean University (KU) in New Jersey, as a scale project to examine the composters' environmental and economic impacts. The results from the study showed that composting food wastes in an in-vessel composter when compared to typical disposal means by landfilling, had lower impacts in the categories of fossil fuel, GHG emissions, eutrophication, smog formation and respiratory effects; whereas, its had higher impacts in ozone depletion, acidification human health impacts, and ecotoxicity. The environmental impacts were mainly raised from the manufacturing of the composter and the electricity use for operation. Applying compost to the garden can replace fertilizers and also lock carbon and nutrients in soil, which reduced all of the environmental impact categories examined. In particular, the plant growth and use stage reduced up to 80% of respiratory effects in the life cycle of food waste composting. A cost-benefit analysis showed that the composting system could generate a profit of $13,200 a year by selling vegetables grown with compost to the student cafeteria at Kean and to local communities. When educational and environmental benefits were included in the analysis, the revenue increased to $23,550. The results suggest that in-vessel composting and the subsequent usage of a vegetable garden should be utilized by Universities or food markets that generate intensive food wastes across the U.S. Published by Elsevier Ltd.

  2. Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan

    Science.gov (United States)

    Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda

    2018-03-01

    Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.

  3. Compostagem de bagaço de cana-de-açúcar triturado utilizado como material filtrante de águas residuárias da suinocultura Composting of sugarcane trash used as filtering material for swine wastewater

    Directory of Open Access Journals (Sweden)

    Marcos A. de Magalhães

    2006-06-01

    conclusion that the sugarcane trash corresponds to fertilizer obtained by biochemical, natural and controlled processes from mixture of residues of vegetable or animal origin, having one or more plant nutrients.The evaluation of chemical composition of the matured compost showed that the sugarcane trash plus swine residue presented total concentration of heavy metals that can be considered safe from the crop fertilization point of view, provided that the criterion of maximum rate of accumulative application is observed.

  4. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils

    DEFF Research Database (Denmark)

    Thonar, Cécile; Lekfeldt, Jonas Duus Stevens; Cozzolino, Vincenza

    2017-01-01

    results were mostly obtained with BEs in combination with organic fertilizers such as composted animal manures, fresh digestate of organic wastes, and sewage sludge. In only one experiment, the nutrient use efficiency of mineral recycling fertilizers was improved by BE inoculation. Conclusions......Background: Agricultural production is challenged by the limitation of non-renewable resources. Alternative fertilizers are promoted but they often have a lower availability of key macronutrients, especially phosphorus (P). Biological inoculants, the so-called bio-effectors (BEs), may be combined...... with these fertilizers to improve the nutrient use efficiency. Methods: The goal of this study was to assess the potential of three BEs in combination with alternative fertilizers (e.g., composted manure, biogas digestate, green compost) to promote plant growth and nutrient uptake in soils typical for various European...

  5. Effets de l'association du compost et de la fumure minérale sur la productivité d'un système de culture à base de cotonnier et de maïs au Burkina Faso

    Directory of Open Access Journals (Sweden)

    Koulibaly, B.

    2015-01-01

    Full Text Available Effects of the Association of Compost and Mineral Fertilizer on the Productivity of Cotton and Maize Cropping System in Burkina Faso. To improve the productivity of a cotton - maize rotation using organic and mineral fertilization, a study was carried out in experimental station from 2008 to 2010. Five levels of compost (0, 2, 6, 9 and 12 t of dry matter ha­1 combined to four rate of mineral fertilizer were compared in split­plot statistical design. The physical and chemical characteristics of soil, crop yields, as well as the mineral nutrition of maize and cotton plants were evaluated. The results show that the content of assimilable P and available K was significantly improved in amended soils by compost which had no significant effect on the carbon content. In amended soils, compost improved plants nutrition which was correct in nitrogen and potassium for cotton and deficient in nitrogen and phosphorus for maize. Compared to control soil, compost combined to mineral fertilizers increased significantly yields with a better efficacy for the recommended mineral manure. The application of 2 t ha­1 of compost per year was as effective as high doses of compost in the second year, and more effective than the latter in the third year. An economy on the recommended dose of mineral fertilizer could be considered, with an annual input of 2 t ha­1 of compost to the mineral fertilizers necessary to maintain the productivity of the cotton­cereal cropping systems.

  6. Use of a germination bioassay to test compost maturity in Tekelan Village

    Science.gov (United States)

    Oktiawan, Wiharyanto; Zaman, Badrus; Purwono

    2018-02-01

    Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.

  7. The effects of different fertilizers on the ciliate communities of forests

    International Nuclear Information System (INIS)

    Lehle, E.; Funke, W.

    1993-01-01

    The influence of lime, mineral fertilizers and different composts on the ciliate communities (Protozoa: Ciliophora) of very acidified spruce forests were tested. In succession culture experiments species range, total numbers, abundance and dominance structure of the ciliate communities showed continued changes over a 90 day period. This method offers the opportunity not only to diagnose, but also to quantify effects of soil treatments. Investigations at the ARINUS-site Schluchsee (Black Forest) showed the following results: Liming led to a greater change in the ciliate communities than fertilization with magnesium-sulphate and ammonia-sulphate. Liming and treatment with compost, made from household garbage, and compost, made from chopped wood on the Beimerstetten site (Swabian Alb) led also to remarkably changes in the ciliate communities. The total ciliate numbers of the household garbage area were very low. In contrast, the ciliate community of the chopped wood compost areas were characterized by a great species number and high abundances of spirotrichuous ciliates, especially Halteria grandinella. (orig./UWA) [de

  8. Residual Effect Of Organic Fertilizer And Addition Inorganik Fertilizer To Nutrient Uptake Growth And Productions Of Black Soy Bean Glycine Max L. Merr At Rainfed Areas.

    Directory of Open Access Journals (Sweden)

    Elli Afrida

    2015-02-01

    Full Text Available Abstract Research that have theme Residual Effect of Organic Fertilizer and Addition Anorganik Fertilizer to Nutrient Uptake Growth and pruductions of Black Soy Bean Glycine max L. Merr at Rainfed Wetland. Research was conducted at Suka Makmur village sub-distric Binjai Distric Langkat. Research was arranged in split plot design main plot is applications of phonska fertilizerwith 4 level i.e 0 t ha-1 A0 0.20 t ha-1 A1 0.25 t ha-1 A2 dan 0.30 t ha-1 A3 and sub plot is residual effect from first research with 16 combinations. Research was replicated 3 times. Result of research was showed application organic fertilizer that was combinated with anorganic fertilizer can increased N and K uptake. Application organic and anorganic fertilizer as single factor showed significantly effect of number of pods and soy bean productions but at interaction treatment not significantly effect however generally occurs increased production at O33A3 tratment until 80 comparison with control.

  9. High-nitrogen compost as a medium for organic container-grown crops.

    Science.gov (United States)

    Raviv, Michael; Oka, Yuji; Katan, Jaacov; Hadar, Yitzhak; Yogev, Anat; Medina, Shlomit; Krasnovsky, Arkady; Ziadna, Hammam

    2005-03-01

    Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.

  10. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  11. Automated monitoring of fissile and fertile materials in incinerator residue

    International Nuclear Information System (INIS)

    Schoenig, F.C. Jr.; Glendinning, S.G.; Tunnell, G.W.; Zucker, M.S.

    1986-01-01

    This patent describes an apparatus for determining the fissile and fertile material content of incinerator residue contained in a manipulatable container. The apparatus comprises a main body member formed of neutron moderating material and formed with a well for receiving the container; a first plug formed of neutron reflecting material for closing the top of the well; and a second plug containing a first neutron source for alternatively closing the top of the well and for directing neutrons into the well. It also includes a second neutron source selectively positionable in the bottom of the well for directing neutrons into the well; manipulating means for placing the container in the well and removing the container therefrom and for selectively placing one of the first and second plugs in the top of the well. Neutron detectors are positioned within the neutron moderating material of the main body member around the sides of the well. At least one gamma ray detector is positioned adjacent the bottom of the well. A means receives and processes the signals from the neutron and gamma ray detectors when the container is in the well for determining the fissile and fertile material content of the incinerator residue in the container

  12. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Science.gov (United States)

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  14. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  15. Proposal on placing of composting place in micro-region Lednice and Valtice

    Directory of Open Access Journals (Sweden)

    Pavel Zemánek

    2004-01-01

    Full Text Available In relation to entrance of Czech Republic to the European union and with wo-revolving harmonization of our law order with EU direction, happen to classification of composting meaning. In presents act there are two circle of problems. First is utilization of rising waste, the second is perfection of soil fertility and raising of enviroment quality.The contribution deal with problems of modelling solution of place to biowaste composting and it´s optimum placing, applied on concrete conditions of the Lednice-Valtice Area. The basis is placement of dominant producer of biowaste, their kind, quantity and season in relation to prescription of compost fill. The proposal of compost technology enable determine size of place and help solve its placing.Circumscribed method is able to find practical exploitation at creation of place suggestion in real condition of existent areas.

  16. Exploration of Rice Husk Compost as an Alternate Organic Manure to Enhance the Productivity of Blackgram in Typic Haplustalf and Typic Rhodustalf

    Directory of Open Access Journals (Sweden)

    Subramanium Thiyageshwari

    2018-02-01

    Full Text Available The present study was aimed at using cellulolytic bacterium Enhydrobacter and fungi Aspergillus sp. for preparing compost from rice husk (RH. Further, the prepared compost was tested for their effect on blackgram growth promotion along with different levels of recommended dose of fertilizer (RDF in black soil (typic Haplustalf and red soil (typic Rhodustalf soil. The results revealed that, inoculation with lignocellulolytic fungus (LCF Aspergillus sp. @ 2% was considered as the most efficient method of composting within a short period. Characterization of composted rice husk (CRH was examined through scanning electron microscope (SEM for identifying significant structural changes. At the end of composting, N, P and K content increased with decrease in CO2 evolution, C:N and C:P ratios. In comparison to inorganic fertilization, an increase in grain yield of 16% in typic Haplustalf and 17% in typic Rhodustalf soil over 100% RDF was obtained from the integrated application of CRH@ 5 t ha−1 with 50% RDF and biofertilizers. The crude protein content was maximum with the combined application of CRH, 50% RDF and biofertilizers of 20% and 21% in typic Haplustalf and typic Rhodustalf soils, respectively. Nutrient rich CRH has proved its efficiency on crop growth and soil fertility.

  17. Stabilization of industry sludge by composting for use as an organic fertilizer

    Science.gov (United States)

    Elia Ruda, Ester; Mercedes Ocampo, Ester; Acosta, Adriana; Mongiello, Adriana; Olmos, Graciela

    2013-04-01

    The effluent treatment plant having PBLEINER SA food industry produces sludge coming from aerobic treatment reactors. The research team FIQ-UNL evaluated the feasibility of their use for the production of organic fertilizers as part of an environmental management problem to reduce the volume of sludge to be moved to land farming located more than 300 km of the plant. The mean values of the variables analyzed in the sludge were the following: carbon: 23.7 %, nitrogen: 7.83 %, pH: 7.36, bulk density: 0.722 g.cm-3, actual density: 1.76 g.cm-3, porosity: 50.7 %, potassium: 0.242 %, phosphorus: 1.29 %, calcium: 1.84 %, magnesium: 0.364 % and electrical conductivity: 3.51 dS.m-1 (25 °C). The content of heavy metals in sludge is much lower than the limits set by the European Union, USEPA and SENASA for use in agriculture. The mean values of the metals analyzed in the sludge were the following: cadmium: no detected, lead: 18.7 mg.kg-1, zinc 213 mg.kg-1, copper: 40.7 mg.kg-1, nickel: 110 mg.kg-1, chrome: 406 mg.kg-1, mercury: 1.53 mg.kg-1. In this framework it was proposed stabilization of sludge by composting, using sawdust or chips as stabilizing material, with aeration technique in rows with frequent turning and recycling leachate, so as to degrade organic solids humic material for application as a soil conditioner, this is for transformation into a new product to be used as fertilizer. The company provided the physical space and technical staff to assist the research team. This process design is a proposal to improve the waste treatment of an industrial plant, reducing its environmental impact and enabling the use of the resulting product for soil enhancement in the region. Optimizing operating parameters such as kinetics, moisture, temperature, pH, total dissolved solids, nutrient availability, alternative sources of carbon and processing steps, will allow obtaining technical data for the modelling process.

  18. Amending Subsoil with Composted Poultry Litter-II: Effects on Kentucky Bluegrass (Poa pratensis Establishment, Root Growth, and Weed Populations

    Directory of Open Access Journals (Sweden)

    Mili Mandal

    2013-10-01

    Full Text Available Turfgrasses established on a soil deprived of the topsoil during construction disturbance often have low levels of density and uniformity making them susceptible to weeds. Field experiments evaluated composted poultry litter incorporation into subsoil on Kentucky bluegrass growth attributes and subsequent effects on weed populations. Top 20 cm of topsoil was removed and composted poultry litter was incorporated at 0.1, or 0.2, or 0.4 cm/cm-soil into the exposed subsoil to a depth of 12.7 cm before seeding or sodding, and was compared to N-fertilized (50 × 10−4 kg m−2 and control plots. A greenhouse experiment was also conducted to determine the effect of compost incorporation rates on turfgrass rooting depth. Turfgrass yield from seeded plots with compost incorporation rates of 0.1, 0.2, and 0.4 cm/cm-soil, were 200%, 300%, and 500% more, respectively, compared to control plots. Composted poultry litter incorporated at 0.1 cm/cm-soil resulted in at least 70 seedlings in 7.6 cm−2, which was sufficient to attain 100% turf cover. Higher incorporation rates in seeded plots maintained lower numbers of buckhorn plantain and red clover than untreated plots. Rooting depth also increased linearly with compost rates. Overall, compost treatments were able to maintain superior turf cover and quality compared to conventionally fertilized or control plots.

  19. Effect of residual nitrogen and fertilizer nitrogen on sugar beet production in Finland

    Directory of Open Access Journals (Sweden)

    Veikko Brummer

    1974-09-01

    Full Text Available Preliminary determinations for NO3- and NH4-N in topsoil from nitrogen field experiments are discussed. The amounts of residual nitrogen as well as the dates and depth for sampling are considerd in order to investigate the need of fertilizer-N for continuous sugar beet. Tops ploughed down as manure increased the available soil nitrogen by about 50 kg/ha. In practice nitrogen from fertilizer and farmyard manure given to previous beet crops seems to accumulate in the beet soils of Finland. The concentrations of nitrate and ammonium nitrogen in topsoil were low in the spring of 1972 and 1973. NO3-N increased in topsoil during the early summer, and the highest concentrations were found at the beginning of July. Starting from the middle of July the amount of NH4-N began to increase both in topsoil and in subsoil. With increasing amounts of nitrogen in the topsoil the sugar content decreases continuously. Also the α-amio N content of beets correlates with the soil nitrogen. There is experimental evidence that 150 180 kg/ha nitrate nitrogen in topsoil (residual + fertilizer N in early July gives the best economic result. The effects of fertilizer and accumulated soil nitrogen on the sugar beet quality together with som other experimental data have been statistically analysed. Regression coefficients indicated that both forms of nitrogen affected the suger content, the α-amino N concentration and clear juice purity, in a similar way.

  20. Cultivation of Chlorella vulgaris in photobioreactor by using compost ...

    African Journals Online (AJOL)

    Microalgae are well known for its high photosynthetic activity and ability to accumulate large amount of lipids within their cells. Compost fertilizers are derived from manure or food wastes which contain high concentration of nutrients such as nitrogen and phosphate. Hence, this study was to investigate the potential of ...

  1. Evaluation of the residual effect of P fertilizer`s on plant P nutrition using isotopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.C. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes; Kato, N. [National Inst. of Agro-Environmental Sciences, Tsukuba, Ibaraki (Japan); Zapata, F. [International Atomic Energy Agency, Seibersdorf (Austria). Laboratories

    1994-12-31

    The residual effect of P fertilizers previously applied to a soil on plant P nutrition was examined by both the isotopic dilution method (pot experiment) and isotopic exchange method (laboratory test) using {sup 32}p as a tracer. The fraction of P derived from a fertilizer in plant (%Pdff in plant) was compared with the fraction of P derived from fertilizer in soil solution (%Pdff in soil solution) which is a new laboratory index proposed by Morel and Fardeau to predict %Pdff in plant. Four soil samples of a Humic Andosol from long-term experimental plots, which received no fertilizer (A1 soil), a readily soluble fertilizer (A2 soil), the same readily soluble fertilizer (RSF) plus a fused magnesium phosphate (A3 soil), and combination of RSF with Florida phosphate rock (A4 soil), were tested. In the pot experiment, maize (Zea mays) was grown during 38 days and dry shoot weight, P uptake and specific radioactivity were measured. Dry shoot weight, P uptake and L-value were the highest in A3 soil, followed by A4, A2 and A1 soils. %Pdff in plant were 71,9%, 51,9% and 15,4% in A3, A4 and A2 soils respectively. A laboratory study using {sup 32}p isotopic exchange kinetics was carried out to examine three status parameters of soil P, intensity, quantity and capacity factors. Goof agreement was obtained between quantity factor (E{sub 1}-value), and the pot experimental data; i.e. P uptake and L-value. %Pdff in soil solution were similar to those %Pdff in plant except for A4 soil. The enhancement of P uptake by the plant from the phosphate rock obtained in A4 soil could be attributed to specific plant factors and soil moisture conditions. (authors).

  2. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    International Nuclear Information System (INIS)

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-01-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  3. Controlling the process of composting farm biomass with the use of fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, M. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of composting organic waste produces organic fertilizer. The main phases of composting include the mesophilic and thermophilic stages followed by cooling down and maturing. The thermophilic phase involves a relatively high temperature, from 45 to 80 degrees C and carbon dioxide emission. Extending this phase of the composting process may reduce the entire process time and the amount of methane produced. The process can be controlled by adjusting the amount of air supplied to the compost heap and controlling the temperature in the bed or oxygen content in the air leaving the heap. Precise control would help optimize the composting process in terms of heat reception, duration of the process and the temperature inside the bed. Excess heat could be put to use elsewhere, such as warming the substrate in a greenhouse. However, overheating the heap reduces the amount of thermophilic microorganisms and may actually reduce the compost temperature, thus slow down or even stop the thermophilic phase of the composting process. A literature survey focused on complex non-linear processes has shown that systems based on fuzzy logic are effective in controlling the process.

  4. Variation of different humification parameters during two composting types with lignicellulosics residual of roses

    International Nuclear Information System (INIS)

    Farias Camero, Diana Maria; Ballesteros G, Maria Ines; Bendeck L, Myriam

    2000-01-01

    Two composting processes were carried out; they lasted for about 165 days. In one of the processes only microorganisms performed the decomposition of the material only (direct composting) and in the other one by microorganisms and earthworms -Eisenia foetida- (indirect composting) Periodical samples were taken from different places of the pile and a temperature control was made weekly. Organic total carbon was analyzed in each sample, an organic matter extraction and fractionation was carried out with a mixture 1 M sodium hydroxide and 1M-sodium pyrophosphate in each sample too. Organic total carbon was quantified in the separated fractions, humic extract, humic acids, fulvic acids and humines; different humification parameters were calculated as of those results: Humification ratio, humification index, polymerization ratio, percentage of humic acids and no extractable organic carbon -extractable carbon ratio. E4/E6 ratio, oxygen, hydrogen, nitrogen and carbon content, C/H, C/O and C/N ratios were analyzed on humic acids. Humification parameters variation allows us to analyze the humic substances transformation and formation dynamics are limited by composting system and temperature generated and maintained. It was established that extractable carbon percent and CNoExt/Cext ratio cannot be considered as satisfactory parameters in order to evaluate the stabilization compost degree; polymerization ratio and humification index are the most adequate parameters to determinate the material humification degree

  5. EM.1 Compost and its effects on the nodulation, growth and yield of berseem (trifolium alexandrinum) crop

    International Nuclear Information System (INIS)

    Daur, I.; Abusuwar, A. O.

    2015-01-01

    To wisely utilize local organic resources and enhance their quality in order to effectively fertilize agricultural crops, a blend of organic resources, comprising cow manure, poultry manure, and kitchen waste (2:1:1 ratio by volume), was composted with (Compost EM.1) and without (Compost plain) effective microorganisms (EM.1). Various parameters including temperature, pH, carbon (C), nitrogen (N), and the C/N ratio were recorded during composting to assess the effects of EM.1 on this process. After completion of the composting process, the effects of the resultant composts on the nodulation, growth, and yield of berseem (Trifolium alexandrinum L.) crop were tested in a field trial. Temperature and pH were lower and the N content was higher in Compost EM.1 than in Compost plain throughout composting. C degradation was also faster in Compost EM.1 than in Compost plain. Consequently, the C/N ratio stabilized faster in Compost EM.1, leading to rapid completion of composting. In the field trial, composts showed no significant effect on nodulation or the shoot-to-root ratio. However, in comparison to Compost plain, Compost EM.1 significantly increased the leaf-to-stem ratio and the fresh and dry yields of berseem. We conclude that EM.1 enhances the composting process and the yield of berseem crop. (author)

  6. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    Science.gov (United States)

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.

  7. Biological testing of a digested sewage sludge and derived composts.

    Science.gov (United States)

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  8. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  9. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Atsushi, E-mail: asatou@ari.pref.niigata.jp [Niigata Horticultural Research Center, 177 Mano, Seiro, Niigata 957-0111 (Japan); Takeda, Hiroyuki [Niigata Horticultural Research Center, 177 Mano, Seiro, Niigata 957-0111 (Japan); Oyanagi, Wataru [Niigata Livestock Research Center, 178 Tanahire, Sanjo, Niigata 955-0143 (Japan); Nishihara, Eiji [Tottori University, 4-101 Koyama-Minami, Tottori 680-8550 (Japan); Murakami, Masaharu [Soil Environment Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2010-09-15

    A field experiment was conducted to evaluate the efficacy of animal waste compost (AWC) in reducing Cd uptake by spinach (Spinacia oleracea L.). Spinach was grown in a field that had been treated by having cattle, swine, or poultry waste compost incorporated into the soil before each crop throughout 4 years of rotational vegetable production. Cadmium concentration was 34-38% lower in spinach harvested from the AWC-treated soils than in the chemical fertilizer-treated soil. Although the repeated application of swine and poultry compost caused significant P accumulation in the cropped soils, that of cattle compost did not. These results indicate that cattle compost with high affinity for Cd and low P content should be the preferred soil amendment when used to reduce Cd uptake by spinach.

  10. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost

    International Nuclear Information System (INIS)

    Sato, Atsushi; Takeda, Hiroyuki; Oyanagi, Wataru; Nishihara, Eiji; Murakami, Masaharu

    2010-01-01

    A field experiment was conducted to evaluate the efficacy of animal waste compost (AWC) in reducing Cd uptake by spinach (Spinacia oleracea L.). Spinach was grown in a field that had been treated by having cattle, swine, or poultry waste compost incorporated into the soil before each crop throughout 4 years of rotational vegetable production. Cadmium concentration was 34-38% lower in spinach harvested from the AWC-treated soils than in the chemical fertilizer-treated soil. Although the repeated application of swine and poultry compost caused significant P accumulation in the cropped soils, that of cattle compost did not. These results indicate that cattle compost with high affinity for Cd and low P content should be the preferred soil amendment when used to reduce Cd uptake by spinach.

  11. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure.

    Science.gov (United States)

    Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua

    2017-10-01

    Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.

  12. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic

  13. Domestic sewage sludge composting in a rotary drum reactor: optimizing the thermophilic stage.

    Science.gov (United States)

    Rodríguez, Luis; Cerrillo, María I; García-Albiach, Valentín; Villaseñor, José

    2012-12-15

    The aim of this paper was to study the influence of four process variables (turning frequency, gas-phase oxygen level, type of bulking agent and sludge/bulking agent mixing ratio) on the performance of the sewage sludge composting process using a rotary drum pilot scale reactor, in order to optimize the thermophilic stage and reduce the processing time. Powdered sawdust, wood shavings, wood chips, prunings waste and straw were used as bulking agents and the thermophilic stage temperature profile was used as the main indicator for gauging if the composting process was developing correctly. Our results showed that a 12 h(-1) turning frequency and an oxygen concentration of 10% were the optimal conditions for the composting process to develop. The best results were obtained by mixing the sewage sludge with wood shavings in a 3:1 w/w ratio (on a wet basis), which adapted the initial moisture content and porosity to an optimal range and led to a maximum temperature of 70 °C being reached thus ensuring the complete removal of pathogens. Moisture, C:N ratio, pH, organic matter, heavy metals, pathogens and stability were all analysed for every mixture obtained at the end of the thermophilic stage. These parameters were compared with the limits established by the Spanish regulation on fertilizers (RD 824/2005) in order to assess if the compost obtained could be used on agricultural soils. The right combination of having optimal process variables combined with an appropriate reactor design allowed the thermophilic stage of the composting process to be speeded up, hence obtaining a compost product, after just two weeks of processing that (with the exception of the moisture content) complied with the Spanish legal requirements for fertilizers, without requiring a later maturation stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of Arbuscular Mycorrhizal Fungi and Organic Fertilizers Application on Yield Components of Two Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    A. Gholamalizadeh Ahangar

    2014-12-01

    Full Text Available This investigation was conducted in order to evaluate the direct effects of organic and bio - fertilizers on yield components of two native wheat cultivars, Bolani and cross - Bolani. The experiment conducted as a factorial in a completely randomized design with three replications. Treatment includes fertilizer factor: vermicompost (F1, vermicompost + compost (F2, vermicompost + mycorrhiza (F3, compost + vermicompost + mycorrhiza (F4, compost (F5, mycorrhiza + compost (F6, mycorrhiza (F7 and control (no fertilizer application F8 and cultivar factor includes two cultivar Bolani (C1 and cross - Bolani (C2. The results showed that the interaction effect of combined treatments (F7C2 of high yield (1.13 g.pot-1 obtained. The treatment combination (F7C2 of (0.355 was highest harvest index. The high correlation between weight per plant with plant height, spike length, grain yield and harvest index were observed. Generally the combined application of vermicompost and mycorrhiza cultivar cross - Bolani is more suitable for grain production.

  15. Bioremediation of Heavy Metals and Organic Toxicants by Composting

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2002-01-01

    Full Text Available Hazardous organic and metallic residues or by-products can enter into plants, soils, and sediments from processes associated with domestic, municipal, agricultural, industrial, and military activities. Handling, ingestion, application to land or other distributions of the contaminated materials into the environment might render harm to humans, livestock, wildlife, crops, or native plants. Considerable remediation of the hazardous wastes or contaminated plants, soils, and sediments can be accomplished by composting. High microbial diversity and activity during composting, due to the abundance of substrates in feedstocks, promotes degradation of xenobiotic organic compounds, such as pesticides, polycyclic aromatic hydrocarbons (PAHs, and polychlorinated biphenyls (PCBs. For composting of contaminated soils, noncontaminated organic matter should be cocomposted with the soils. Metallic pollutants are not degraded during composting but may be converted into organic combinations that have less bioavailability than mineral combinations of the metals. Degradation of organic contaminants in soils is facilitated by addition of composted or raw organic matter, thereby increasing the substrate levels for cometabolism of the contaminants. Similar to the composting of soils in vessels or piles, the on-site addition of organic matter to soils (sheet composting accelerates degradation of organic pollutants and binds metallic pollutants. Recalcitrant materials, such as organochlorines, may not undergo degradation in composts or in soils, and the effects of forming organic complexes with metallic pollutants may be nonpermanent or short lived. The general conclusion is, however, that composting degrades or binds pollutants to innocuous levels or into innocuous compounds in the finished product.

  16. Municipal household solid wasteorganic compost: Effects on soil ...

    African Journals Online (AJOL)

    The treatments included T1 (Control), T2 [SSP (45kg/ha) and S o A (120kg/ha)], T3 [SSP (45kg/ha) + S o A (120kg/ha) + compost (2t/ha)], T4 [SSP (45kg/ha) + S o ... of MHSWC and inorganic fertilizers generally improved soil organic carbon, available nitrogen, available phosphorus and exchangeable potassium more than ...

  17. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Kawasaki, A.; Iiyama, I.

    2009-01-01

    Long-term application of phosphate fertilizers causes accumulation of U in the surface soil of agricultural fields. We investigated the soil constituents that contribute to the accumulation of U by using chemical extraction methods. Surface soil samples were obtained from upland fields, pastures, and paddy fields cultivated without any phosphate fertilizer (control site), with NPK fertilizer (NPK site), and with both NPK fertilizer and compost (NPK + compost site) for more than 20 years. In addition to the total U (U t ) concentration in soil, the concentrations of pyrophosphate- and acid oxalate-extractable U were determined as a measure of U associated with soil organic matter and poorly crystalline Fe/Al minerals in soil, respectively. The total, pyrophosphate-extractable, and acid oxalate-extractable U concentrations were higher in the soil obtained from the NPK and NPK + compost sites than in that obtained from the control site. The difference in the U concentrations between the NPK or NPK + compost site and the control site corresponded with the increased U concentration observed after the application of the phosphate fertilizer or both the fertilizer and compost. In the upland field and pasture soil, the increase in pyrophosphate-extractable U was 83-94% of that in U t . On the other hand, the increase in acid oxalate-extractable U was 44-58% of that in U t in the upland field and pasture soil, but it was almost equivalent to the increase in U t in the paddy soil with NPK. In conclusion, most of the phosphate fertilizer-derived U was either incorporated into the soil organic matter or poorly crystalline Fe/Al minerals in the surface soil of agricultural fields. Thus, soil organic matter is an important pool of U in upland field and pasture soil, whereas poorly crystalline Fe/Al minerals are important pools of U in paddy soil experiencing alternating changes in redox conditions

  18. Residual recovery and yield performance of nitrogen fertilizer applied at sugarcane planting

    Directory of Open Access Journals (Sweden)

    Henrique Coutinho Junqueira Franco

    2015-12-01

    Full Text Available ABSTRACTThe low effectiveness of nitrogen fertilizer (N is a substantial concern that threatens global sugarcane production. The aim of the research reported in this paper was to assess the residual effect of N-fertilizer applied at sugarcane planting over four crop seasons in relation to sugarcane crop yield. Toward this end three field experiments were established in the state of São Paulo, Brazil, during February of 2005 and July of 2009, in a randomized block design with four treatments: 0, 40, 80 and 120 kg ha−1 of N applied as urea during sugarcane planting. Within each plot, a microplot was established to which 15N-labeled urea was applied. The application of N at planting increased plant cane yield in two of the three sites and sucrose content at the other, whereas the only residual effect was higher sucrose content in one of the following ratoons. The combined effect was an increase in sugar yield for three of the 11 crop seasons evaluated. Over the crop cycle of a plant cane and three ratoon crops, only 35 % of the applied N was recovered, split 75, 13, 7 and 5 % in the plant cane, first, second and third ratoons, respectively. These findings document the low efficiency of N recovery by sugarcane, which increases the risk that excessive N fertilization will reduce profitability and have an adverse effect on the environment.

  19. Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste.

    Science.gov (United States)

    Estrada-Bonilla, German A; Lopes, Cintia M; Durrer, Ademir; Alves, Paulo R L; Passaglia, Nicolle; Cardoso, Elke J B N

    2017-07-01

    Sugarcane processing generates a large quantity of residues, such as filter cake and ashes, which are sometimes composted prior to their amendment in soil. However, important issues still have to be addressed on this subject, such as the description of bacterial succession that occurs throughout the composting process and the possibilities of using phosphate-solubilizing bacteria (PSB) during the process to improve phosphorus (P) availability in the compost end product. Consequently, this study evaluated the bacterial diversity and P dynamics during the composting process when inoculated with Pseudomonas aeruginosa PSBR12 and Bacillus sp. BACBR01. To characterize the bacterial community structure during composting, and to compare PSB-inoculated compost with non-inoculated compost, partial sequencing of the bacterial 16S rRNA gene and sequential P fractionation were used. The data indicated that members of the order Lactobacillales prevailed in the early stages of composting for up to 30 days, mostly due to initial changes in pH and the C/N ratio. This dominant bacterial group was then slowly replaced by Bacillales during a composting process of up to 60 days. In addition, inoculation of PSB reduced the levels of Ca-bound P by 21% and increased the labile organic P fraction. In PSB-inoculated compost, Ca-P compound solubilization occurred concomitantly with an increase of the genus Bacillus. The bacterial succession and the final community is described in compost from sugarcane residues and the possible use of these inoculants to improve P availability in the final compost is validated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. The efficiency of home composting programmes and compost quality.

    Science.gov (United States)

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Investigation and optimization of composting processes--test systems and practical examples

    International Nuclear Information System (INIS)

    Koerner, I.; Braukmeier, J.; Herrenklage, J.; Leikam, K.; Ritzkowski, M.; Schlegelmilch, M.; Stegmann, R.

    2003-01-01

    To determine the optimal course of composting it is useful to carry out experiments. The selection of the right experimental set-up depends on the question of concern. Each set-up is useful for a particular application and has its limits. Two test systems of different scales (up to 1500 ml; up to 100 l) are introduced. The purpose and importance of each system design shall be highlighted by application examples: (1) Suitability of a liquid industrial residue as composting accelerator; (2) Determination of the compost maturity; (3) Behaviour of odor-reducing additives during waste collection and composting; (4) Production of tailor-made compost with respect to Nitrogen (5) Suitability of O 2 -enriched air for acceleration of composting. Small-scale respiration experiments are useful to optimize parameters which have to be adjusted during substrate pre-treatment and composting, with the exception of particle size and temperature, and to reduce the number of variants which have to be investigated in greater detail in larger scale experiments. As all regulation possibilities such as aeration, moistening, turning can be simulated with the technical scale set-up, their complex cooperation can be taken into consideration. Encouraging composting variants can be tested, compared and optimized

  2. YIELD FORMING EFFECT OF APPLICATION OF COMPOSTS CONTAINING POLYMER MATERIALS ENRICHED IN BIOCOMPONENTS

    Directory of Open Access Journals (Sweden)

    Florian Gambuś

    2014-01-01

    Full Text Available In a pot experiment the impact of composts containing polymeric materials modified with biocomponents on the diversity of crops of oats and mustard was examined. The composts used in the study were produced in the laboratory from wheat and rape straw, and pea seed cleaning waste with 8-percent addition of chopped biopolymer materials (films which were prepared in the Central Mining Institute (GIG in Katowice. Three polymers differing in content of starch and density were selected for the composting. The pot experiment was conducted on three substrates: light and medium soil and on the sediment obtained after flotation of zinc and lead ores, coming from the landfill ZGH “Boleslaw” S.A. in Bukowno. The need for using such materials and substrates results from the conditions of processing some morphological fractions of municipal waste and from improving methods of reclamation. Yield enhancing effect of composts depends on the substrate on which the compost was used, cultivated plants and crop succession. Application of composts prepared with 8% of polymeric materials based on polyethylene, modified with starch as biocomponent, resulted in significantly lower yields in sandy (light soil in case of oats and, in some cases, in medium soil. Subsequent plant yield did not differ significantly between the objects fertilized with compost.

  3. Evaluation of maifanite and silage as amendments for green waste composting.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L. Growth, Soil Properties, and Soil Microbial Activity and Abundance

    Directory of Open Access Journals (Sweden)

    Dalila Trupiano

    2017-01-01

    Full Text Available Impacts of biochar application in combination with organic fertilizer, such as compost, are not fully understood. In this study, we tested the effects of biochar amendment, compost addition, and their combination on lettuce plants grown in a soil poor in nutrients; soil microbiological, chemical, and physical characteristics were analyzed, together with plant growth and physiology. An initial screening was also done to evaluate the effect of biochar and compost toxicity, using cress plants and earthworms. Results showed that compost amendment had clear and positive effects on plant growth and yield and on soil chemical characteristics. However, we demonstrated that also the biochar alone stimulated lettuce leaves number and total biomass, improving soil total nitrogen and phosphorus contents, as well as total carbon, and enhancing related microbial communities. Nevertheless, combining biochar and compost, no positive synergic and summative effects were observed. Our results thus demonstrate that in a soil poor in nutrients the biochar alone could be effectively used to enhance soil fertility and plant growth and biomass yield. However, we can speculate that the combination of compost and biochar may enhance and sustain soil biophysical and chemical characteristics and improve crop productivity over time.

  5. Bio energy production in birch and hybrid aspen after addition of residue based fertilizers - establishment of fertilization trials; Bioenergiproduktion hos bjoerk och hybridasp vid tillfoersel av restproduktbaserade goedselmedel - etablering av goedslingsfoersoek

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar (EkoBalans Fenix AB, Malmoe (Sweden))

    2009-03-15

    Sewage sludge and wood ashes could be used as fertilizers in order to increase forest tree production. In southern Sweden forest growth normally increases with approximately 10 % after ash recycling due to increased N and/or P availability. P is added with the ashes and the pH-increasing effect of the wood ash can lead to increased N net mineralization. Other positive effects of wood ash recycling are improved nutrient sustainability and less acid run-off water. Possible negative effects are heavy metal accumulation, if the content of one or more heavy metals of the recycled ash exceeds the heavy metal content of the harvested biomass, and nitrate leaching if the vegetation cannot take up nitrified N. It is important to evaluate the sustainability of fertilization systems based on residues such as sludge and wood ash. Wood ash does not contain N and the P concentration often is too low for the ashes to function as an NP fertilizer. Thus N and sometimes P must be added. Sludge is an interesting alternative. The main purpose of the project is to study sustainable production of forest bio energy in intensively cultivated birch and hybrid aspen stands. Another purpose is to establish experiments that can be used for long term studies and as demonstration objects. In the first few years the goal is to study the short term effects of residue based fertilization compared to conventional NPK fertilization on tree nutrient uptake, nutrient leaching, sustainability and economy. In the long term the goal is to design appropriate fertilization strategies in a residue based fertilization system for the intensive cultivation of birch and hybrid aspen without negative side effects such as large scale nutrient leaching. Four field experiments were established in 2008 and one additional experiment in hybrid aspen will be established in the spring of 2009. Elevated bud N and P concentrations after fertilization with both Ashes+N and NPK means good possibilities for future growth

  6. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    International Nuclear Information System (INIS)

    Makan, Abdelhadi

    2015-01-01

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations

  7. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    Energy Technology Data Exchange (ETDEWEB)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    2015-08-15

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.

  8. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    Science.gov (United States)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment.

    Science.gov (United States)

    Doan, Thuy Thu; Henry-des-Tureaux, Thierry; Rumpel, Cornelia; Janeau, Jean-Louis; Jouquet, Pascal

    2015-05-01

    Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and vermicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost-biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH₄(+) and NO₃(-) transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of composted tobacco waste and farmyard manure on some soil physical properties and lettuce yield

    OpenAIRE

    Çerçioğlu, Melis; Okur, Bülent; Delibacak, Sezai; Ongun, Ali Rıza

    2008-01-01

    This research was held in Agriculture Faculty of Ege University Menemen Investigation and Practise Farmyard. Tobacco waste gathered from cigarette industry were composted and applied to the soil together with farmyard manure. lettuce (Lactuca sativa L. var. capitata) was grown as test plant. No mineral fertilizers or pestisides were applied. The effects of composted tobacco wastes and farmyard manures on soil physical properties and lettuce yield were investigated. All application...

  11. Evaluation of Irrigation Regimes and Use of Organic Fertilizers on Qualitive and Quantitive Yield of Borage (Borago officinalis L.

    Directory of Open Access Journals (Sweden)

    Rana Gholinezhad

    2016-10-01

    Full Text Available To study the effects of irrigation regimes and organic fertilizers (compost and vermicompost on mucilage percentage and some quality characteristics of borago (Borago officinalis a field experiment was conducted in a split plot arrangement based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture, University of Zabol, Iran during 2012. Irrigation regimes were S1: 100% FC, as control, S2: 80% FC (moderate stress and S3: 60% FC (severe stress and application of organic fertilizers: N1: without fertilizer as control, N2: 40 t.ha-1 compost, N3: 4 t.ha-1 vermicompost were assigned to main plots and sub plots, respectively. The results showed that N, P and K, as well as the amount of chlorophyll a, carotenoid and total chlorophyll content decreased with increasing drought stress, but decreasing effects of fertilizers levels on traits were not high. Stress conditions and application of compost increased sodium percentage. By increasing drought stress, soluble carbohydrates and mucilage percent also increased. Highest mucilage percent (2.37 was obtained from moderate stress treatment. Highest total dry yield (13.48 t.ha-1 was also due to non-stress conditions. This was not significantly different mild stress. Application of organic fertilizers, particularly compost, resulted in greater performance. It can be concluded that acceptable yield of dry borage and higher mucilage percent can be obtained from irrigation at 80 percent field capacity and use of compost in Zabol climatic condition.

  12. Municipal solid waste options : integrating organics management and residual disposal treatment : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Cant, M. (comp.) [Totten Sims Hubicki Associates Ltd., Calgary, AB (Canada); Van der Werf, P. [2cg Inc., Edmonton, AB (Canada); Kelleher, M. [Kelleher Environmental, Toronto, ON (Canada); Merriman, D. [MacViro Consultants, Markham, ON (Canada); Fitcher, K. [Gartner Lee Ltd., Toronto, ON (Canada); MacDonald, N. [CH2M Hill Engineering Ltd., Calgary, AB (Canada)

    2006-04-15

    The Municipal Solid Waste (MSW) Options Report explored different MSW management options for 3 community sizes: 20,000, 80,000 and 200,0000 people. It was released at a time when many communities were developing waste management plans to cost-effectively reduce environmental impacts and conserve landfill capacity. The purpose of this report was to provide a greater understanding on the environmental, social, economic, energy recovery/utilization and greenhouse gas (GHG) considerations of MSW management. The report also demonstrated the interrelationships between the management of organics and residuals. It was based on information from existing waste diversion and organics management options and emerging residual treatment technology options. The following organics management and residual treatment disposal options were evaluated: composting; anaerobic digestion; sanitary landfills; bioreactor landfills; and thermal treatment. Composting was examined with reference to both source separated organics (SSO) and mixed waste composting. SSO refers to the separation of materials suitable for composting solid waste from households, while mixed waste composting refers to the manual or mechanical removal of recyclable material from the waste, including compost. The composting process was reviewed along with available technologies such as non-reactor windrow; aerated static pile; reactor enclosed channel; and, container tunnel. An evaluation of SSO and mixed waste composting was then presented in terms of environmental, social, financial and GHG impacts. refs., tabs., figs.

  13. Methane and compost from straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rijkens, B A

    1982-01-01

    A concept is developed in which the farmer collects the straw and ferments it anaerobically to compost and methane at the farm. The methane can be used for heating and for production of mechanical energy, while the compost can be returned to the land at any suitable moment. This way of processing conserves part of the energy, present in the straw, that would otherwise be lost by the field-burning or the ploughing-in. In the meantime it solves the field-burning and environmental problems and it provides the possibility to recycle the organic matter in the humus, as well as all the fertilizing compounds K, P, Mg and nitrogen. There are indications that the arable land will need a restocking with humus that has been lost during many years of (modern) farming, leading to loss in structure and production capacity. This study collects the global technical and economical data, enabling us to indicate under which circumstances and local conditions the methane and compost concept would be feasible and would be an alternative to field-burning, ploughing-in or to the purely energetic use of the straw.

  14. Composting of cotton wastes; Compostaje de residuos de algodon

    Energy Technology Data Exchange (ETDEWEB)

    Dobao, M.M.; Tejada, M.; Benitez, C.; Gonzalez, J.L.

    1997-12-31

    In this article a study on the composting process of residuals of cotton gin is presented crushed and not crushed, previous. The analysis of correlation gotten for each one of the treatments reveals that although common correlations between the parameters studied for both treatment exist, they are presented a great number of correlations between this parameters for the treatment of cotton crushed residuals. (Author) 11 refs.

  15. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  16. Characterization of the organic fraction of earthworm humus and composts taken place starting from different substrates

    International Nuclear Information System (INIS)

    Melgarejo, M.R.; Ballesteros, M.I.; Bendeck L, M.

    1998-01-01

    In order to evaluate the quality and the humification degree of different composted materials, the organic fraction of earthworm humus obtained from kitchen and farm residues, coffee pulp, biodegradable garbage and roses residues and of composts from roses and carnation residues were characterized chemically. Thus, determination and analysis of the C/N ratio, as well as the fractionation of the organic matter and the purification and characterization of the humic acids by C, H, N, 0 elemental analysis, UV-VIS spectroscopy were done and different humification parameters were found. The fractionation of the organic matter showed a low content of extracted carbon with respect to the normal content found in the soil humus. The elemental analysis data of the humic acids from the composts and the earthworm humus did not reveal important differences between these materials, while the E4/E6 ratio provided more evident changes. The results showed that the C/N ratio is not an absolute indicative of the Maturity State of the studied materials. The best parameters to estimate the maturity degree of the composts and the earthworm humus turned out to be the polymerization ratio, the humification index and the extracted carbon/non extracted carbon ratio. Among the evaluated materials, the earthworm of roses residues showed the best conditions with respect to content and quality of the organic matter to be added to a soil

  17. Enhanced fertilization effect of a compost obtained from mixed herbs waste inoculated with novel strains of mesophilic bacteria

    Directory of Open Access Journals (Sweden)

    Dimitrijević Snežana M.

    2017-01-01

    Full Text Available Mixed medicinal plant waste was composted with addition of novel bacterial strains belonging to the genera Streptomyces, Paenybacillus, Bacillus and Hymenobacter. The composting was followed by assessment of chemical and biological parameters including C/N ratio, loss of organic matter, phosphorous and potassium content as well as CO2 generation and dehydrogenase activity during 164 days. The selected mesophilic bacterial starters had a potential to significantly reduce the period of mixed herb waste decomposition, from about 6 months to about 2.5 months. Based on the seed germination index of four plants (Fagopirum esculentum, Thymus vulgaris, Cynara scolimus and Lavandula officinalis the germination and radial root growth of the investigated plants was improved by the inoculated compost. The germination index of all tested species on the mature inoculated composts was in average 60% higher compared to the control compost. The research indicates that the mesophilic starter addition into the herbs waste can contribute to the speed of waste decomposition and lead to the improvement of biofertilization effect of the obtained compost. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31035

  18. Effects of organic fertilizers on yield and quality of potato tubers in organic farming

    OpenAIRE

    Kolbe, Hartmut

    2006-01-01

    In this lecture, an overview was given over effects of organic fertilizers (compost, farmyard manure, slurry, organic commercial fertilizers) on yield and quality (DM, starch, contents of N, P, K) of potato tubers in organic farming.

  19. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  20. Nitrate leaching in an Andisol treated with different types of fertilizers

    International Nuclear Information System (INIS)

    Maeda, Morihiro; Zhao Bingzi; Ozaki, Yasuo; Yoneyama, Tadakatsu

    2003-01-01

    Nitrate leaching in upland fields under Japanese conditions may be reduced by substituting compost or slow-release fertilizer for readily available chemical fertilizer. - Nitrate (NO 3 ) leaching was studied in an Andisol treated with four N fertilizers (SC: swine compost, CU: coated urea, AN: ammonium N, or NF: no fertilizer) for 7 years. Sweet corn (Zea mays L.) was grown in summer, followed by Chinese cabbage (Brassica rapa L. var. amplexicaulis) or cabbage (Brassica oleracea L. var. capitata) in autumn each year. In chemical fertilizer plots treated with AN or CU, NO 3 -N concentrations in soil water at 1-m depth increased markedly in the summer of the second year and fluctuated between 30 and 60 mg l -1 . In the SC plot, NO 3 -N concentration started increasing in the fourth year, reaching the same level as in the AN and CU plots in the late period of the experiment. In the NF plot, NO 3 -N concentration was about 10 mg l -1 for the first 4 years and decreased to 5 mg l -1 . The potential NO 3 -N concentrations by an N and water balance equation satisfactorily predicted NO 3 -N concentration in the AN and CU plots, but substantially overestimated that in the SC plot, presumably because a large portion of N from SC first accumulated in soil in the organic form. Our results indicate that, under the Japanese climate (Asian monsoon), excessive N from chemical fertilizers applied to Andisols can cause substantial NO 3 leaching, while compost application is promising to establish high yields and low N leaching during a few years but would cause the same level of NO 3 leaching as in chemically fertilized plots over longer periods

  1. Effect of Localities and organic Fertilizers on Yield in Conditions of Organic Farming

    Directory of Open Access Journals (Sweden)

    Jiri Antosovsky

    2017-01-01

    Full Text Available Nitrogen fertilization cannot be used by actual needs of plants during vegetation in organic farming. The proper crop rotation and harmonic nutrition are necessary for good and quality products. The methods of treatment are mainly realized by cultivation of green manure crop and fertilizing by organic fertilizers. The aim of the long-term experiment was to evaluate the effect of different localities and different organic fertilizers on crop yield in organic farming. Variants of fertilization included in the experiment are: 1. Unfertilized control, 2. Green manure, 3. Green manure + renewable external sources, 4. Green manure + renewable external sources + auxiliary substances, 5. Green manure + farm fertilizers, 6. Green manure + farm fertilizers + auxiliary substances. The experiment started by sowing of winter wheat so green manure crop was not grown in the first experimental year. The highest yield of winter wheat grain coming from the first year of the experiment was observed on the variant with renewable external sources (digestate. Average grain yield on this variant was about 7.12 t/ha (up to 0.74 t/ha increased than the unfertilized control. Average yield of potatoes from the second year of the experiment was the highest after combination with green manure + renewable external sources (compost + digestate + auxiliary substances. This variant achieved yield about 34.08 t/ha, which is increased by 9.35 t/ha compared to the control variant. Results from this two-year experiment showed that the most suitable combination of fertilization with or without green manure crop is compost + digestate. These results were probably caused by higher content of nitrogen in organic fertilizers (compost + digestate used in this variant compared to other variants. Statistical difference of achieved yields was observed between each experimental station in both experimental years.

  2. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-01-01

    Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

  3. Behavior of aluminum adsorption in different Compost-Derived humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yong-Hong; Su, Po-Hsin [Kaohsiung District Agricultural Research and Extension Station, Pingtung (China)

    2010-10-15

    Humic acid plays an important role in the distribution of heavy metals in the environment. The aims of this study were conducted to evaluate the spectroscopic characteristics and aluminum (Al) adsorption of humic acids which were extracted from four composts. The functional groups were determined by Fourier transform infrared spectroscopy (FTIR) and solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C-NMR). The results showed that the aromatic groups were all found in the humic acids of the four composts, and the surface of humic acids included carboxylic group, hydroxylic group, and amino group. The experiment of Al adsorption was described by Freundlich equation. It showed that the adsorption of Al by humic acid from compost of cattle manure was higher, but that from the compost of pig manure, lemon manure, tea manure in equal preparation was lower. The adsorptive behavior was different due to the interaction by functional groups (-OH and -COOH) with Al. These results can describe the fate and transportation of Al in the soil of different organic fertilizer. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  5. Biotransformation of some industries residuals and evaluation of their humification process

    International Nuclear Information System (INIS)

    Bravo Isabel; Giraldo E; Garces P

    2001-01-01

    At the Cauca Department, manures are using obtained by means of compost of agricultural and cattle waste, with base in a Central American formula (Bocashi). Fifteen days after their preparation, these manures are applied to different crops. It is sought to replace some components to give it use to agro industrial waste that have not been found utility, among them residual fine dust of bagasse cane (marrow) generated during paper production; vinasse and husk of coffee and hen-dung that is expensive and of difficult access for all farmers. The humification process is also evaluated in 60 days period. Three bio-organic fertilizers were prepared by means of compost of materials: coffee husk until 26.7%. Fine dust until 11% and vinasse until 34% the following parameters were evaluated: humification degree by determination of organic matter (MO), humic acid, fulvic acid, humification relationships, cation exchange capacity (CIC) and C/N relationship. Physicochemical parameters like: temperature, pH, and content of nutrients. The presence of fine dust in manure improved the physicochemical properties achieving a better microbial development that is translated in a better humification process and bigger content of nutrients. The results demonstrate that at 15 days it is still incipient the maturation process, and that in the evaluated period it has not finished the humification; that hen-dung can be replaced by cattle manure whenever it is in fine e dust presence and that coffee husk is useful for obtaining bio-organic fertilizers

  6. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  7. Composing compositions

    Energy Technology Data Exchange (ETDEWEB)

    DeBoodt, M. F. L. P.; Verdonck, O. F.

    1985-01-22

    A process is disclosed for producing compost and composting compositions having a high nitrogen content and being particularly advantageous for use as fertilizers, said process utilizing petroleum sludge and an organic biomass which preferably contains wood industry residue and organic waste products.

  8. THE USE OF POULTRY SLAUGHTERHOUSE WASTE TO PRODUCE COMPOST

    Directory of Open Access Journals (Sweden)

    Michał Kopeć

    2014-10-01

    Full Text Available Poultry industry generates large amounts of waste, which in the biological treatment process creates a number of problems. One of them is a high amount of fat and creatine which is hard to decompose. Composting process was carried out with the waste from poultry farms and abattoirs mixed with maize straw, which was used to improve the structure and to increase the amount of carbon in the substrate. The chemical composition of composts from poultry waste involving maize straw meets the minimum requirements for organic fertilizers. It seems that recycling of organic waste from the poultry industry should be the primary method of nutrient recovery for plants and organic matter contained in them, however on condition that the health safety is preserved.

  9. The organic fertilizers in pepper (Capsicum annuum L. and the impact on yield and its components

    Directory of Open Access Journals (Sweden)

    Juan José Reyes Pérez

    2017-10-01

    Full Text Available The use of organic fertilizers in the fertilization of crops is an alternative to the problems generated by the intensive use of chemical fertilizers. The objective of this research was to evaluate the application to soil of organics fertilizers compared with a control treatment with chemical fertilization on the yield and its components in pepper (Capsicum annuum L.. Treatments consisted in to apply worm humus, water hyacinth compost, a mixture with 50 % worm humus and 50 % of water hyacinth compost, and a chemical control. It was evaluated fruits quantity per harvest, fruit length, diameter and fruit weight per harvest and yield. Results showed that the plants that were supplemented with worm humus, followed by worm humus + water hyacinth they had significantly better response with respect to the length, diameter and weight of the fruits.

  10. Composting-derived organic coating on biochar enhances its affinity to nitrate

    Science.gov (United States)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron

  11. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB

    Science.gov (United States)

    A 30-month performance evaluation of a pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel installed at a former phosphate fertilizer manufacturing facility was conducted. The PRB is designed to remove ...

  12. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment

    DEFF Research Database (Denmark)

    Christel, Wibke; Bruun, Sander; Magid, Jakob

    2014-01-01

    The alteration of easily available phosphorus (P) from the separated solid fraction of pig slurry by composting and thermal processing (pyrolysis or combustion at 300-1000. °C) was investigated by water and acidic extractions and the diffusive gradients in thin films (DGT) technique. Temporal...... changes in P availability were monitored by repeated DGT application in three amended temperate soils over 16. weeks. P availability was found to decrease in the order: drying. >. composting. >. pyrolysis. >. combustion with increasing degree of processing. Water extractions suggested that no P would....... Composting and thermal treatment produced a slow-release P fertilizer, with P availability being governed by abiotic and biotic mechanisms....

  13. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  14. The effect of urban waste compost applied in a vineyard, olive grove and orange grove on soil proprieties in Mediterranean environment

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Bono, Giuseppe; Guaitoli, Fabio; Pasciuta, Giuseppe; Santoro, Antonino

    2013-04-01

    The application to soil of compost produced from urban wastes not only could improve the soil properties but also could be a solution for disposal of large quantities of different refuses. Knowledge on compost characteristic, soil properties as well as on mineral crop nutrition are important to proper management of fertilization with compost and to understanding the impact on C and N dynamics in field. We present the results of soil physical and chemical changes after the application of urban waste compost in three different orchards (vineyard, olive grove, and orange grove) in Mediterranean environment (Sicily). The compost was applied on November 2010 and samples were collected 1 month after application for two years. Soil pH, carbon content, weight of soil aggregate fractions, nitrate content were examined during the trial, comparing with adjacent no fertilized plot. The application of compost caused a decrease in soil organic carbon stock of 14% and 28% after two years in vineyard and orange grove, respectively, while a significant increase under olive grove was registered. Nitrate monitoring showed for all crops high content of Nitrate for most of the year that involved SOC stock depletion. This was not observed in olive grove, where soil received further C input thanks to soil management with cover crop. In two years of observations there were no significant change in soil physic properties.

  15. Effects of Soil Fertilizers on Growth Indices, Morpho-Physiological Traits and Potassium content of Baurley Tobacco Cultivar

    Directory of Open Access Journals (Sweden)

    M. R. Tadayon

    2016-10-01

    Full Text Available Introduction Tobacco with scientific name of (Nicotiana tabacum L. belongs to Solanaceae family is one of the important industrial crops in the world that plays a critical role in economy of producing countries and its income from various products had a major share of the national income. Tobacco is an annual, short day length and self pollinated crop that its chromosomal number is 2n=48. The yield of plants depends upon several production factors. Among these proper, balanced nutrition plays a significant role. The main purpose of fertilization in tobacco plants not only the quantity but quality should be considered. Now tobacco farmers apply a large amount of fertilizer to improve yields, but these actions not only decrease tobacco leaf quality, but also cause fertilizer pollution. Organic and chemical fertilizers use has played a significant role in increase of crop yield. The use of compost and vermicompost in the soil, generally in order to maintain and increase aggregate stability and fertility of soils for farming and gardening in the past decade has been of particular importance. Increasing soil organic matter stocks and stability by addition of organic amendment offers a good way to substantially improve soil quality and therefore agricultural sustainability. The objective of this study was evaluate the effect of chemical and organic fertilizer on morpho-physiological and yield of tobacco in field conditions. Materials and Methods In order to study the effects of organic and chemical fertilizers on morpho-physiological traits of baurley tobacco cultivar, an experiment was counducted as based on a randomized complete block design with three replications during growing season of 2012-2013 at the research field of Shahrekord University located in 50º 49´ E longitude and 32º21´ N latitude.with sea level of 2116 meter. Treatments included chemical fertilizers based on the tobacco needs and soil test results, compost based on the tobacco

  16. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L

    2012-01-01

    Knowledge of the cumulated effect of long-continued nitrogen (N) inputs is important for both agronomic and environmental reasons. However, only little attention has been paid to estimate the crop response to mineral fertilizer N residues. Before interpreting estimates for the crop response...

  17. Evaluation of Seedlings Gowth of Eucalyptus badjensis in Substrata from Composted Residues (Pulp and Paper Mill, Brewery Industry and Goat Dung Resíduos Industriais e Dejetos da Caprinocultura como Componentes de Substratos para Produção de Mudas de Eucalyptus badjensis

    Directory of Open Access Journals (Sweden)

    Shizuo Maeda

    2011-03-01

    Full Text Available

    The aim of this work was to evaluate the seedling growth of Eucalyptus badjensis Beuzev. & Welch in substrata prepared from different residues: pulp and paper mill wastes (organic sludge and cellulose mill liquid alkaline liquor, brewery malt and also goat manure. The experiment was carried out in the seedlings nursery of the Embrapa Florestas, in Colombo, Paraná. The organic sludge, cellulose mill liquid alkaline liquor and the brewer’s grain were previously composted with sawdust, and goat dung with pinus bark. A randomized blocks design with split-plot arrangement, with four replications was used. Plot treatments were the substrata and split-plot were base fertilization (with and without: 1 mixture of a commercial substratum prepared with composted pinus bark in a volume/volume relation - v/v - of 1/1 - standard of the experiment when base fertilization was applied; 2 composted brewery malt with sawdust in a relation v/v of 1/4; 3 composted organic sludge with sawdust (relation v/v of 1/1; 4 mixture of
    treatment 3 with pinus bark (relation v/v of 1/1; 5 composted cellulose mill liquid alkaline waste with sawdust (relation v/v of 4/1; 6 composted cellulose mill liquid alkaline waste with sawdust (relation v/v of 3/2; 7 mixture of the product
    of treatment 6 with Pinus bark (relation v/v of 1/1; 8 composted goat dung with pinus bark. The results showed that substrata of treatments 2 and 8 can be used for the production of E. badjensis seedlings, with or without base fertilization, while treatment 4 can only be used with base fertilization. The growth of E. badjensis in the substratum of the standard treatment was not influenced by the lack of base fertilization.
    Com o objetivo de avaliar resíduos gerados nas produções de papel e celulose, de cerveja e na caprinocultura como substratos para a produção de mudas de Eucalyptus badjensis Beuzev. & Welch, foi

  18. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  19. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Science.gov (United States)

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  20. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  1. Effect of Organic and Inorganic Fertilizers on Growth and Yield of Tef ...

    African Journals Online (AJOL)

    toshiba

    Results showed that tef yield, some yield components and soil chemical properties are ... integrated soil fertility management is an approach that attempts to make the best use of .... organic fertilizers applied were based on the recommended N equivalent rate for the test ..... Science and engineering of composting: Design,.

  2. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  3. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  4. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. COMPOSTING AS A WAY TO CONVERT CELLULOSIC BIOMASS AND ORGANIC WASTE INTO HIGH-VALUE SOIL AMENDMENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2010-11-01

    Full Text Available Plant-derived cellulosic materials play a critical role when organic wastes are composted to produce a beneficial amendment for topsoil. This review article considers publications dealing with the science of composting, emphasizing ways in which the cellulosic and lignin components of the composted material influence both the process and the product. Cellulose has been described as a main source of energy to drive the biological transformations and the consequent temperature rise and chemical changes that are associated with composting. Lignin can be viewed as a main starting material for the formation of humus, the recalcitrant organic matter that provides the water-holding, ion exchange, and bulking capabilities that can contribute greatly to soil health and productivity. Lignocellulosic materials also contribute to air permeability, bulking, and water retention during the composting process. Critical variables for successful composting include the ratio of carbon to nitrogen, the nature of the cellulosic component, particle size, bed size and format, moisture, pH, aeration, temperature, and time. Composting can help to address solid waste problems and provides a sustainable way to enhance soil fertility.

  6. The influence of organic substances type on the properties of mineral-organic fertilizers

    Science.gov (United States)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  7. Acidulocompost, a food waste compost with thermophilic lactic acid fermentation: its effects on potato production and weed growth

    OpenAIRE

    Naomi Asagi; Keisuke Minamide; Toru Uno; Masanori Saito; Toyoaki Ito

    2016-01-01

    Acidulocomposting recycles food wastes by means of thermophilic lactic acid fermentation. This process can decrease ammonia volatilization and odor emission during processing and produce compost with high nitrogen (N) content. To compare the yield of potatoes (Solanum tuberosum L. ‘Dansyakuimo’) and the suppression of weeds with acidulocompost (AC) and those with conventional composts and inorganic fertilizer (IF), we conducted field experiments in Miyagi Prefecture, northeastern Japan. Potat...

  8. Effect of organic waste compost and microbial activity on the growth ...

    African Journals Online (AJOL)

    One of the major problems of agricultural soils in the coastal areas of the Niger Delta is the low organic matter content. Therefore, land application of composted organic material as a fertilizer source not only provides essential nutrients to plants, it also improves soil quality and effectively disposes soil wastes. In this study ...

  9. Impact of level and source of compost based organic material on the productivity of autumn maize (zea mays l.)

    International Nuclear Information System (INIS)

    Iqbal, S.; Khan, H.Z.; Ehsanullah, A.

    2014-01-01

    Organic manure from different sources could be an effective substitute of chemical fertilizers. Therefore, the present study compares the effect of varying level (0, 2, 4, 6, 8, 10 t ha/sup -1/) of two types of compost, i.e poultry manure compost (PM compost) and press-mud compost (PrM compost) on the yield of maize. The experiment was conducted at Agronomic Research Area, University of Agriculture Faisalabad, Pakistan for two consecutive years 2011 and 2012. Results of this study revealed that all the levels and sources of compost based organic material had significant effect on the yield and yield parameters of autumn maize. Maximum plant height, cob diameter, cob length, cob weight, number of grain rows per cob, number of grains per cob, 1000-grain weight biological yield, grain yield and harvest index were produced by the application of 10 t ha/sup -1/ PM compost. Whereas, the number of cobs per plant was not significantly affected by level and source of compost based organic material. It was concluded that 10 t ha/sup -1/ PM compost could be used lucratively for optimizing maize yield. (author)

  10. Effects of organic and biological fertilizers on fruit yield and essential oil of sweet fennel (Foeniculum vulgare var. dulce)

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, R.; Rezvani Moghaddam, P.; Nasiri Mahallati, M.; Nezhadali, A.

    2011-07-01

    In order to evaluate the effects of different organic and biological fertilizers on quantity and quality of fennel essential oil, an experiment was conducted in a completely randomized block design with three replications. The experimental treatments included two organic (compost and vermicompost) and two biological (Pseudomonas putida and Azotobacter chroococcum) fertilizers, their all twin combinations (Ps. putida + A. chroococcum, Ps. putida + compost, Ps. putida + vermicompost, A. chroococcum + compost, A. chroococcum + vermicompost and compost + vermicompost) and control (non fertilized). There were significant differences between treatments in terms of seed essential oil percentage, essential oil yield; anethole, fenchone, limonene and straggle content in seed essential oil. Results showed that the highest and the lowest percentages of essential oil were obtained in control (2.9%) and A. chroococcum + vermicompost (2.2%) treatments, respectively. The highest essential oil yield (29.9 L ha{sup -}1) and anethole content of essential oil (69.7%) and the lowest contents of fenchone (6.14%), limonene (4.84%) and estragole (2.78%) in essential oil were obtained in compost + vermicompost treatment. It seems that compost + vermicompost treatment compared to other treatments supplied the highest equilibrium of nutrients and water in the root zone of sweet fennel which is led to increasing the anethole content, there upon, decreasing other compounds. Essential oil yield and percentage of anethole content in essential oil were significantly higher in all organic and biological treatments compared with control. (Author) 43 refs.

  11. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    Science.gov (United States)

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  12. Evaluation of Tillage, Residue Management and Nitrogen Fertilizer Effects on CO2 Emission in Maize (Zea Mays L. Cultivation

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2016-02-01

    Full Text Available Introduction: The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause climatic change (16. These conditions are also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. The three GHGs associated with agriculture CO2, CH4, and N2O differ in their effectiveness in trapping heat and in their turnover rates in the atmosphere. This environmental change will have serious impacts on different growth and development processes of crops. Increasing temperature could affect physiological processes such as photosynthesis, respiration and partitioning of photoassimilates. Farmers are not able to change or manage the climatic conditions, but some factors such as soil, water, seed and agricultural practices can be managed to reduce the adverse impacts of climate change (32. Mitigation and adaptation are two known ways for reducing the negative impacts of climate change. Mitigation strategies are associated with decreasing greenhouse gas (GHG emissions through management practices such as reducing chemical fertilizer application, mechanization, increasing carbon storage in agroecosystems, planting biofuel crops and moving towards organic farming (42, etc. Material and Methods: This study was carried out at the experimental field of the Ferdowsi University of Mashhad in 2011 and was repeated in 2012. The Research Station (36°16´N, 59°36´E is located at about 985 m a.s.l. Average temperature and precipitation rate of the research station in two years are shown in Figure. 1. The three-factor experiment was set up in a strip-split-plot arranged in a randomized complete block design with three replications. The experimental treatments were tillage systems (conventional and reduced tillage and residual management (remaining and leaving of maize residual assigned to main plots

  13. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  14. Bioremediation of oil-contaminated soils by composting

    Science.gov (United States)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  15. Nitrogen fertilization (15NH4NO3 of palisadegrass and residual effect on subsequent no-tillage corn

    Directory of Open Access Journals (Sweden)

    Emerson Borghi

    2014-10-01

    Full Text Available Nitrogen is required in large amounts by plants and their dinamics in corn and perennial forages intercropped is little known. This study analyzed the efficiency of nitrogen fertilization (15NH4NO3 applied after corn grain harvest to palisadegrass (Brachiaria brizantha cv. Marandu in intercrops sown at two times, as well as the N residual effect on the subsequent corn crop. The field experiment was performed in Botucatu, São Paulo State, in southeastern Brazil, on a structured Alfisol under no-tillage. The experiment was arranged in a randomized block design in a split plot scheme with four replications. The main plots consisted of two intercropping systems (corn and palisadegrass sown together and palisadegrass sown later, at corn top-dressing fertilization. The subplots consisted of four N rates (0, 30, 60, and 120 kg ha-1 N. The subplots contained microplots, in which enriched ammonium nitrate (15NH4NO3 was applied at the same rates. The time of intercrop sowing affected forage dry matter production, the amount of fertilizer-derived N in and the N use efficiency by the forage plants. Nitrogen applied in autumn to palisadegrass intercropped with corn, planted either at corn sowing or at N top-dressing fertilization, increased the forage yield up to a rate of 60 kg ha-1. The amount of fertilizer-derived N by the forage plants and the fertilizer use efficiency by palisadegrass were highest 160 days after fertilization for both intercrop sowing times, regardless of N rates. Residual N did not affect the N nutrition of corn plants grown in succession to palisadegrass, but increased grain yield at rates of 60 and 120 kg ha-1 N, when corn was grown on palisadegrass straw from the intercrop installed at corn fertilization (top-dressing. Our results indicated that the earlier intercropping allowed higher forage dry matter production. On the other hand, the later intercrop allowed a higher corn grain yield in succession to N-fertilized palisadegrass.

  16. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST/ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of 30% yard waste compost, 20% zero-valent iron (ZVI), 5% limestone and 45% pea gravel by volume was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The pilo...

  17. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating ener...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...... (K). Gasification of pure sewage sludge with a high Fe and Al content practically eliminated its P fertilizer value, while co-gasification of sludge lower in Fe and Al together with wheat straw resulted in a biochar product with only somewhat reduced P availability and improved P/K ratio...

  18. Response of fed dung composted with rock phosphate on yield and ...

    African Journals Online (AJOL)

    Field experiment was conducted on silty clay loam soil at the research farm of Khyber Pakhtunkhwa Agricultural University, Peshawar to study the effect of RP fed dung composted with RP on the yield, yield components and P uptake of maize (Zea mays. L. Azam). The fertilizers, N, P and K, were applied at the rate of 120- ...

  19. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment.

    Science.gov (United States)

    Kalemelawa, Frank; Nishihara, Eiji; Endo, Tsuneyoshi; Ahmad, Zahoor; Yeasmin, Rumana; Tenywa, Moses M; Yamamoto, Sadahiro

    2012-12-01

    This study sought to evaluate the efficacy of aerobic and anaerobic composting of inoculated banana peels, and assess the agronomic value of banana peel-based compost. Changes in the chemical composition under aerobic and anaerobic conditions were examined for four formulations of banana peel-based wastes over a period of 12 weeks. The formulations i.e. plain banana peel (B), and a mixture with either cow dung (BC), poultry litter (BP) or earthworm (BE) were separately composted under aerobic and anaerobic conditions under laboratory conditions. Inoculation with either cow dung or poultry litter significantly facilitated mineralization in the order: BP>BC>B. The rate of decomposition was significantly faster under aerobic than in anaerobic composting conditions. The final composts contained high K (>100 g kg(-1)) and TN (>2%), indicating high potential as a source of K and N fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity.

    Science.gov (United States)

    Soobhany, Nuhaa; Gunasee, Sanjana; Rago, Yogeshwari Pooja; Joyram, Hashita; Raghoo, Pravesh; Mohee, Romeela; Garg, Vinod Kumar

    2017-07-01

    This is the first-ever study of its kind for an extensive assessment and comparison of maturity indexes between compost and vermicompost that have been derived from Municipal Solid Waste (MSW). The spectroscopic (Fourier transform infrared spectroscopy: FT-IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and structural characterization (scanning electron microscope: SEM) were recorded. FT-IR spectra showed an increase in conversion of polysaccharides species and aliphatic methylene groups in vermicompost compared to compost as depicted from the variation of the intensity of the peaks. TG curves of final vermicompost showed a much lower mass loss when compared to compost, indicating higher stability in feedstock. SEM micrographs of the vermicompost reflected strong fragmentation of material than composts which revealed the extent of intra-structural degradation of MSW. These findings elucidate on a clear comparison between composts and vermicomposts in terms of maturity indexes for soil enhancement and in agriculture as organic fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Benefits from Bio and organic fertilization by cucumber (Cucumis Sativus) with application of 15N stable isotope

    International Nuclear Information System (INIS)

    Galal, Y. G. M.; Soliman, S. M.; Ahmed, F. A.; El-Sherbiny, A. E. A.; Dahdouh, S. M.

    2012-12-01

    Benefits from bio and organic fertilizer were evaluated under cucumber (Cucumis Sativus) crop grown on sandy soil at a field scale. The experiment was conducted under drip irrigation system. Fertilization treatment indicated that the combination of 50% mineral fertilizer (MF) + 50% organic compost (OC) was superior over all other fertilization treatment when the fresh weight of cucumber biomass or fruits was considered. It means that half of the recommended dose of of mineral fertilizer is enough to meet the requirement of cucumber crop when supplemented with organic compost. Nitrogen derived from mineral fertilizer (Ndff) by cucumber at different plant growth stages was significantly affected by the rate of addition and enhanced with microbial inoculation. Arbuscular mycorrhizea (AMF) was superior over Azospirillum and Rhizobium inoculations. The enhancement of Ndff uptake by plants was more pronounced at the fruit stage than at vegetative, flowering and hay growth stages. The highest values of Ndfa were induced by Rhizobium at hay stage followed by fruit. Similar trend, but to different extents was noticed with AMF and Azospirillum inoculum s. Most of nitrogen derived from compost (Ndfc) was occurred by addition of 50% MF + 50% Oc. Rhizobium and AMF were more effective than Azospirilum. High quantities of Ndfc were recognized at hay stage compared to other growth stages.The efficient use of mineral fertilizer-N (%NUE) was increased by addition of half:half mineral and organic fertilizer. Similarly, it seems that microbial inoculation in general has a synergistic effect on enhancement of %NUE. Higher NUE occurred at hay growth stage than others. (Author)

  2. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    Science.gov (United States)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  3. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    Science.gov (United States)

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of organic matter application on the fate of 15N-labeled ammonium fertilizer in an upland soil

    International Nuclear Information System (INIS)

    Nishio, T.; Oka, N.

    2003-01-01

    The effect of the application of organic matter on the fate of 15 N-labeled ammonium was investigated in a field. The organic materials incorporated into the experimental plots consisted of wheat straw, rape, pig compost, cow compost, plant manure. In May 2000, 10 g N m -2 of 15 N-labeled ammonium was applied to the field together with the organic materials, and maize and winter wheat were consecutively cultivated. The recovery of applied 15 N in soils and plants was determined after the harvest of each crop. Although only about 10% of the applied 15 N-labeled fertilizer remained in the 0-30 cm layer of the Control Plot and the Plant Manure Plot, more than 25% of the applied 15 N remained in the Pig Compost Plot. Amount and proportion of the immobilized 15 N to those of total N or microbial biomass N in soils were determined for the topsoil samples (0-10 cm layer). The amounts of both microbial biomass N and total immobilized 15 N in soil were highest in the Pig Compost Plot. Although the amount of microbial biomass N was comparable to the amount of immobilized 15 N-labeled fertilizer in soil, the amounts of 15 N-labeled fertilizer contained in the microbial biomass accounted for less than 10 % of the amount of total immobilized 15 N in soil. The ratio of the amount of 15 N-labeled fertilizer contained in biomass N to the total amount of biomass N was one order to magnitude higher than the ratio of the amount of immobilized 15 N-labeled fertilizer to the amount of total N in soil. No conspicuous changes in the amount of immobilized 15 N in soil were observed during the cultivation of winter wheat except for the Pig Compost Plot. No significant correlation was recognized between the amount of 15 N-labeled fertilizer contained in microbial biomass before wheat cultivation and that of 15 N-labeled fertilizer absorbed by wheat, indicating that microbial N immobilized during the growth period of the former crop (maize) was not a significant source of N for the latter

  5. Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum

    Science.gov (United States)

    Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...

  6. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB (ABSTRACT ONLY)

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  7. Determination of trace metal concentration in compost, DAP, and TSP fertilizers by neutron activation analysis (NAA) and insights from density functional theory calculations.

    Science.gov (United States)

    Rahman, Md Sajjadur; Hossain, Syed Mohammod; Rahman, Mir Tamzid; Halim, Mohammad A; Ishtiak, Mohammad Niaz; Kabir, Mahbub

    2017-11-08

    Leaching of toxic metals from fertilizers is a growing concern in an agricultural country like Bangladesh due to the serious consequences in health and food chain. Fertilizers used in farming fields and nurseries (plant sales outlet) in the mid-southern part of Bangladesh were collected for the determination of toxic metals. This study employed the neutron activation method and a relative standardization approach. Three standard/certified reference materials, namely NIST coal fly ash 1633b, IAEA-Soil-7, and IAEA-SL-1 (lake sediment), were considered for elemental quantification. Concentration of As (2.63-16.73 mg/kg), Cr (40.93-261.77 mg/kg), Sb (0.47-63.58 mg/kg), Th (1.44-19.16 mg/kg), and U (1.90-209.41 mg/kg) were determined in fertilizers. High concentrations of Cr, Sb, and U were detected in some compost and phosphate fertilizers (TSP and diammonium phosphate (DAP)) in comparison with the IAEA/European market standard and other studies. Quantum mechanical calculations were performed to understand the molecular level interaction of CrO 3 , Sb 2 O 3 , and AsO 3 , with DAP by employing density functional theory with the B3LYP/SDD level of theory. Our results indicated that CrO 3 and Sb 2 O 3 have strong binding affinity with DAP compared to AsO 3 , which supports the experimental results. These compounds attached to the phosphate group through covalent-like bonding with oxygen. The frontier molecular orbital calculation indicated that HOMO-LUMO gap of the AsO 3 -DAP (5.46 eV) and Sb 2 O 3 -DAP (6.48 eV) complexes are relatively lower than the CrO 3 -DAP, which indicates that As and Sb oxides are chemically more prone to attach with the phosphate group of DAP fertilizer.

  8. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano,Francisca G.; Cavalcante,Ítalo H. L.; Machado,Jailson S.; Lacerda,Claudivan F. de; Silva,Esdras R. da; Sousa,Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five mater...

  9. Application of nuclear technique to assess the optimization and benefits from bio and organic fertilization of some vegetables

    International Nuclear Information System (INIS)

    EL Sayed, A.F.A.A.

    2012-01-01

    Two field experiments were, conducted in the Plant Nutrition and Fertilization Unit, Soils and Water Department Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt, assessing application of N in totally organic or totally mineral or different mixtures with the rat of N (being fixed) with or without bio fertilizers carried out following design factorial complete block design with three replicates .In the first one, pea was planted and in the second cucumber was planted in the same plots. This study was planned to Determine the contribution of mineral, organic and bio fertilizers in supplying plant with nitrogen using nuclear technology 15 N and assess the optimization and benefits from bio and organic fertilization of some vegetables .Fertilization treatments indicated that the combination of 50% mineral fertilizer + 50% organic compost was superior over all other treatments. It means that half of the recommended dose of mineral fertilizer is enough to meet the requirement of pea and cucumber crops when supplemented with organic compost. This combination may have an environmental impact since it would reduce the risks of chemical fertilizers.

  10. Application of Spent Mushroom Compost and Mycorrhiza on Yield and Yield Components of Garlic (Allium sativum L. in the Low Input Cropping System

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-10-01

    Full Text Available Introduction In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient in the long-term in tropical ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of agrochemicals in agricultural systems is also known to have irreversible effects on soil and water resources. The use of organic and biological fertilizers are important strategies to reduce harmful effects of chemical fertilizers in sustainable management of agroecosystems. Spent mushroom compost is the residual compost waste generated by the mushroom production industry. It is readily available and its formulation generally consists of a combination of wheat straw, dried blood, horse manure and ground chalk, composted together. It is an excellent source of humus, although much of its nitrogen content will have been used up by the composting and growing mushrooms. It remains, however, a good source of general nutrients, as well as a useful soil conditioner. Most mineral soils contain mycorrhizal fungi, but often at levels that are too low for adequate colonization, especially in disturbed soils. Mycorrhizae are host specific and will only colonize certain plants; so in some soils, there are no native mycorrhizae that will benefit these plants. Therefore, most plants would benefit from mycorrhizae addition to the soil. Symbiosis begins when fungal spores germinate and emerging thread linke structures, called hyphae, enters the epidermis of plant roots. After colonization of the root, the fungus sends out a vast network of hyphae throughout the soil to form a greatly enhanced absorptive surface area. This results in improved nutrient acquisition and uptake by plant roots, particularly elemental phosphorus, zinc

  11. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation

    International Nuclear Information System (INIS)

    Tandy, Susan; Healey, John R.; Nason, Mark A.; Williamson, Julie C.; Jones, Davey L.

    2009-01-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost. - Co-composting did not provide enhanced stabilization of trace elements over the conventional addition of compost to contaminated land

  12. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils

    Energy Technology Data Exchange (ETDEWEB)

    Attanayake, Chammi P.; Hettiarachchi, Ganga M.; Ma, Qing; Pierzynski, Gary M.; Ransom, Michel D. (NWU); (KSU)

    2017-01-01

    In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment and aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.

  13. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    Science.gov (United States)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  14. Evaluation of integrated ammonia recovery technology and nutrient status with an in-vessel composting process for swine manure.

    Science.gov (United States)

    Kim, Jung Kon; Lee, Dong Jun; Ravindran, Balsubramani; Jeong, Kwang-Hwa; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of different initial moisture (IM) content (55, 60, 65, and 70%) of composting mixtures (swine manure and sawdust) for the production of nutrient rich manure, and the recovery of ammonia through a condensation process using a vertical cylindrical in-vessel composter for 56days. The composting resulted in a significant reduction in C:N ratio and electrical conductivity (EC), with a slight increase in pH in all products. The NH 3 were emitted notably, and at the same time the NO 3 - -N concentration gradually increased with the reduction of NH 4 + -N in the composting mixtures. The overall results confirmed, the 65% IM showed the maximum nutritional yield, maturity and non-phytotoxic effects (Lycopersicon esculentum L.), with the results of ideal compost product in the following order of IM: 65%>60%>70%>55%. Finally, the recovered condensed ammonia contained considerable ammonium nitrogen concentrations and could be used as fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  16. Energy and pressure requirements for compression of swine solid fraction compost

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2013-09-01

    Full Text Available The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE. Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kgm–3. This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa and pressure application time (5-120 s on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJkg–1 were significantly lower than the specific energy required to manufacture pellets from

  17. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  19. Optimisation Study on the Production of Anaerobic Digestate ...

    African Journals Online (AJOL)

    Organic fraction of municipal solid waste (OFMSW) is a rich substrate for biogas and compost production. Anaerobic Digestate compost (ADC) is an organic fertilizer produced from stabilized residuals of anaerobic digestion of OFMSW. This paper reports the result of studies carried out to optimise the production of ADC from ...

  20. Composting plant of sewage sludges in Calles, Valencia (Spain); Planta de compostaje de fangos en la localidad de Calles (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Jimenez Sanchez, J.; Zorrilla Soriano, F.; Manuelcandela, V.

    2000-07-01

    This article explains the operation of the composting plant of muds of residual waters in the location of Calles, in Valencia. Through the composting, the sludge is transformed in wet material. This process is developed by aerobic thermopile fermentation of the organic fraction of the muds. The composting is a biological process aerobic and thermopile by decomposition of organic waste in solid phase and in controlled conditions. (Author)

  1. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano, Francisca G.; Cavalcante, Ítalo H. L.; Machado, Jailson S.; Lacerda, Claudivan F. de; Silva, Esdras R. da; Sousa, Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as...

  2. Napropamide residues in runoff and infiltration water from pepper production.

    Science.gov (United States)

    Antonious, George F; Patterson, Matthew A

    2005-01-01

    A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).

  3. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  4. Acidulocompost, a food waste compost with thermophilic lactic acid fermentation: its effects on potato production and weed growth

    Directory of Open Access Journals (Sweden)

    Naomi Asagi

    2016-01-01

    Full Text Available Acidulocomposting recycles food wastes by means of thermophilic lactic acid fermentation. This process can decrease ammonia volatilization and odor emission during processing and produce compost with high nitrogen (N content. To compare the yield of potatoes (Solanum tuberosum L. ‘Dansyakuimo’ and the suppression of weeds with acidulocompost (AC and those with conventional composts and inorganic fertilizer (IF, we conducted field experiments in Miyagi Prefecture, northeastern Japan. Potatoes were cultivated in 2008 and 2009 in an Andosol field treated with AC, conventional food waste compost (FWC, poultry manure compost (PMC, cattle manure compost (CMC, IF, or no fertilizer (NF. AC, but not the other treatments, delayed the emergence of potatoes, and suppressed the emergence of weeds, but it did not inhibit potato growth during the late growth stage or yield. Potato N uptake and tuber yield with AC were significantly higher than those with NF and similar to those with FWC, PMC, and IF. The N uptake efficiencies (ratio of difference between N uptake in the treatment and the control to added N for AC (10.4–12.7% in 2008 and 2009 were similar to those for FWC and PMC (10.2–13.1%, higher than those for CMC (–1.3 to 6.3%, but significantly lower than those for IF (30.2–42.3%. Our findings indicate that AC has an N supply capacity similar to those of FWC and PMC and additionally suppresses the emergence and growth of weeds.

  5. Effects of Single and Combined Application of Organic and Biological Fertilizers on Quantitative and Qualitative Yield of Anisum (Pimpinella anisum

    Directory of Open Access Journals (Sweden)

    N Kamayestani

    2015-07-01

    Full Text Available In order to study the effects of single and combined applications of biofertilazer and organic fertilizers on quantitative and qualitative characteristics of anisum (Pimpinella anisum, an experiment was conducted based on a Randomized Complete Block Design with three replications and fifteen treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2011 year. Treatments were: (1 mycorrhiza (Glomus intraradices, (2 mycorrhiza + cow manure, (3 mycorrhiza + vermicompost, (4 mycorrhiza+ compost, (5 mycorrhiza + chemical fertilizer, (6 biosulfur (Thiobacillus sp. + Bentonite, (7 biosulfur + chemical fertilizer, (8 biosulfur + cow manure, (9 biosulfur + vermicompost, (10 biosulfur+compost,11 (cow manure, (12 vermicompost, (13 chemical fertilizer (NPK, (14compost and (15 control. The results showed that application of fertilizer treatments had significant effect on most characteristics of anisum. The highest number of seed per umbelet (7.24, economic yield (1263.4kg/ha were obtained fram biosulfur treatment. The highest dry matter yield (4504.1 kg/ha resulted from combined application of biosulfur + chemical fertilizer and the highest harvest index (25.97% observed in biosulfur+cow manure. The combined application of mycorrhiza affected some qualification traits, as the highest number of umbel per plant (65.7, 1000 seed-weight (3.24 g and essential oil percentage (5.3% resulted from combined application of mycorrhiza+chemical fertilizer. In general, it can be concluded that application of organic and biological fertilizer particularly mycorrhiza and biosulfur had a significant effect on improving of quantitative and qualitative characteristics of anisum. Furthermore, the combined application of organic and biological fertilizer had higher positive effects than their single application.

  6. Production and Characterization of Organic Fertilizer from Tubang-Bakod (Jatrophacurcas Seed Cake and Chicken Manure

    Directory of Open Access Journals (Sweden)

    Maylen G. Eroa

    2015-11-01

    Full Text Available The processing of Jatrophacurcas (tubang-bakod to produce biodiesel entails wastes in the form of seedcake which can be converted into valuable product that can help nurture and improve soil properties. The College of Industrial Technology and the Chemical Engineering Department of Batangas State University (BatstateU conducted an experimental study which includes the composting of the combination of Jatropha Seed-Cake(JSC and Chicken Manure(CM , formulating ratios of JSC and CM andcharacterization of the organic fertilizer produced. Generally, this study aimed to promote proper waste disposal by producing an organic fertilizer from the waste of biodiesel production which uses Jatropha plant and proving the feasibility of making the fertilizer as the main source of nutrient for plants. Specifically, the nutrients that were considered were Nitrogen (N, Phosphorus (P, Potassium (K and the Carbon: Nitrogen (C:N ratio. Composting lasted for 6 weeks, three formulations were used, 30(CM:70(JSC, 50(CM:50(JSC and 70(CM:30(JSC. The result implies that theorganic fertilizers produced can be a good substitute to the commercially available fertilizers.

  7. Fertilization effects of organic waste resources and bottom wood ash: results from a pot experiment

    Directory of Open Access Journals (Sweden)

    Eva Brod

    2012-12-01

    Full Text Available We conducted a pot experiment to study the fertilization effects of four N- and P-rich organic waste resources alone and in combination with K-rich bottom wood ash at two application rates (150 kg N ha–1 + 120 kg K ha–1, 300 kg N ha-1 + 240 kg K ha–1. Plant-available N was the growth-limiting factor. 48–73% of N applied with meat and bone meal (MBM and composted fish sludge (CFS was taken up in aboveground biomass, resulting in mineral fertilizer equivalents (MFE% of 53–81% for N uptake and 61–104% for yield. MFE% of MBM and CFS decreased for increasing application rates. Two industrial composts had weak N fertilization effects and are to be considered soil conditioners rather than fertilizers. Possible P and K fertilization effects of waste resources were masked by the soil’s ability to supply plant-available P and K, but effects on plant-available P and K contents in soil suggest that the waste resources may have positive effects under more nutrient-deficient conditions.

  8. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Chang Wang

    Full Text Available The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR spectroscopy with partial least squares (PLS analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  9. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    Science.gov (United States)

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  10. Effects of Chemical and Organic Fertilizers on Growth, Yield and Yield Component of Tomato (Lycopersicon sculentum L.

    Directory of Open Access Journals (Sweden)

    R Mirzaei Talarposhti

    2017-03-01

    Full Text Available Introduction Although using animal manures and crop residues as a traditional method for increasing soil fertility and crop yield has a long history but Conventional agricultural systems rely on the use of chemical fertilizer due to its immediate availability of nutrients. In many of modern agricultural systems using chemical fertilizers as a fast and easiest way to reduce nutrient deficiency and increasing soil fertility is considered. Intensive and continuous use of chemical fertilizers leads to decreasing the stability and sustainability of agricultural systems and also poses major threat to environment and human health. Organic fertilizers have positive effects on physiochemical and biological attributes of soil and could be classified in three different groups (i.e. Animal manures, green manure and composts.Using animal manure not only increase soil fertility but also could result in increasing infiltration, aeration and water holding capacity of soil. The main role of these fertilizers is related to physical change in soil. Different types of composts such as municipal waste compost and vermicompost also have similar positive effects, but usually the farmers observe the main effect of these organic fertilizers in long term. In order to investigate the effects of different types of organic fertilizers on growth indexes, yield and yield component of tomato (Lycopersicon sculentum L. current experiment was conducted. Materials and Methods The experiment was conducted based on randomized complete block design (RCBD with three replications and six treatments in the research station of Shahid Beheshti University. The experimental treatments were: Control or no fertilizer (NF, chemical fertilizer (CF, cow manure (CM, poultry manure (PM, vermicompost (VC and municipal waste compost (MC. Considering nitrogen concentration in all of the treatments different amounts of these fertilizers were used based on nitrogen recommendation for the field, so in

  11. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    Science.gov (United States)

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Cultivo orgânico de coentro em plantio direto utilizando cobertura viva e morta adubado com composto Organic faming of coriander in no-tillage system fertilized with compost using dead and living mulching

    Directory of Open Access Journals (Sweden)

    Leonardo Barreto Tavella

    2010-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o desempenho agronômico do coentro em sistema de plantio direto orgânico sob diferentes tipos de cobertura viva e palhada e doses crescentes de composto orgânico. Foi utilizado o delineamento em blocos aleatorizados em esquema de parcela subdividida com quatro repetições. As parcelas corresponderam aos sistemas de plantio direto com cobertura viva de Arachis pintoi, cobertura viva de plantas espontâneas e cobertura com palhada de resteva natural que foram comparados ao preparo convencional do solo com canteiro e sem cobertura. As subparcelas representavam as doses residuais de composto orgânico 10; 20 e 30 t ha-1 (base seca. O sistema de plantio direto com palhada de resteva natural e o preparo convencional proporcionaram os melhores resultados em todas as variáveis avaliadas na planta, comparado com os sistemas de plantio direto com cobertura viva de amendoim forrageiro e plantas espontâneas. O coentro respondeu linearmente a adubação orgânica, com produtividade de 4.554 t ha-1 a 6.542 t ha-1 quando adubado de 10 a 30 t ha-1, respectivamente.The objective of this work was to evaluate the agronomic behavior of the cilantro in organic no-tillage system under alive and dead mulching and fertilized with doses of compost. The experimental design was randomized blocks, in a split-plot arrangement with four replications. The plot corresponded to the planting system (no-tillage with live mulching of Arachis pintoi, with live mulching of native weed, with mulching of straw and conventional tillage. In each plot the split-plot were represented by the doses of organic compost 10; 20 e 30 t ha-1 of dry compost. The no-tillage system with straw and conventional tillage showed the best results in all variables in the plant compared with no-tillage systems with live mulching of peanut crop and native weed. Cilantro answered linearly to fertilization, with yields of 4,554 t ha-1 to 6,542 t ha-1 when fertilized

  13. Survival of fecal coliforms in dry-composting toilets.

    Science.gov (United States)

    Redlinger, T; Graham, J; Corella-Barud, V; Avitia, R

    2001-09-01

    The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation.

  14. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  15. Composting - not the optimum solution for all biodegradable residues. Activation of other possibilities of utilisation; Kompostieren - nicht die beste Loesung fuer die Verwertung aller biologisch abbaubaren Abfaelle. Aktivierung anderer Verwertungsmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [comp.

    1994-10-01

    The management of industrial biological waste is discussed, i.e. residues in gastronomy, wood treatment, slaughterhouses, breweries, etc. Composting and fermentation processes are discussed critically as well as utilization options. (SR) [Deutsch] Die Entsorgung von industriellem Bioabfall wird behandelt. Dieser Abfall faellt in der Gastronomie, Holzbearbeitung, Schlachthaeusern, Brauereien etc. an. Kompostierungsverfahren und Vergaerungsverfahren, aber auch Verwertung von organischen Abfaellen werden kritisch diskutiert. (SR)

  16. Isolation of bacteriophages against non-O157 and O157 Shiga toxin-producing Escherichia coli (STEC) from composting of non-fecal materials and the potential impact on produce safety

    Science.gov (United States)

    Composting is a complex process to produce fertilizers used to improve crop yields. A complete composting process usually confers bactericidal effect due to change of temperature and pH However, some produce outbreaks associated with Shiga toxin-producing E. coli (STEC) contamination were linked to ...

  17. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degrades soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.; Isitekhale, H.H.E.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1:1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  18. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degraded soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1: 1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  19. Effects of long-term application of municipal solid waste compost on speciation and availability of heavy metals in soil

    International Nuclear Information System (INIS)

    Ben Achiba, W.; Lakdar, A.; Verloo, M. G.; Gabteni, N.; Jedidi, N.; Gallali, T.

    2009-01-01

    The application of municipal solid waste compost in agriculture provides a valuable source of plant nutrients and soil fertility. Nevertheless, heavy metals accumulation may be a problem. A seven-year field study was carried out to investigate the effects of farmyard manure (40 and 120 t/ha) and municipal solid waste compost (40, 80 and 120 t/ha) application on the total content, speciation and availability of heavy metals in a calcareous Tunisian soil without vegetation. (Author)

  20. Impact of organic and inorganic fertilizers on growth, fruit yield ...

    African Journals Online (AJOL)

    Akanbi W B

    2015-08-05

    Aug 5, 2015 ... TC and control (non-fertilized plant) on the growth, fruit yield, nutritional and lycopene contents of .... and gaps of 1 m separated all the sub and main plots. ..... Solanum macrocarpon to plant spacing and maize stover compost.

  1. Use of high-stability composts in recreational areas: assays on cold season turf grasses

    International Nuclear Information System (INIS)

    Gomez de Barreda-Ferraz, D.; Albiach, M. R.; Pomares, F.; Ingelmo, F.; Canet, R.

    2009-01-01

    Recreational and sport areas, steadily increasing on number and occupied surface, show great interest as consumers of large amounts of organic products. High-quality composts could be used to improve soil properties, increasing its water-hold capacity and reducing the amounts of synthetic fertilizers needed to support the vegetal cover. (Author)

  2. Comparative environmental evaluation of three different waste treating methods for bio-degradable organic waste and residual waste from the six municipalities cooperating in Biogasanlaeg I/S and I/S Nordforbraending

    International Nuclear Information System (INIS)

    Cour Jansen, J. la.

    1997-03-01

    A comparative environmental evaluation has been made for three systems for processing household refuse. The first system (1) comprises thermofilic treatment of the organic waste. The inorganic parts of the waste from both systems is combusted in a cogeneration plant. The third system (3) is a cogeneration plant combusting all the wastes. The most essential issue in comparing the three waste processing systems is the possibility to use the residual products from the bio-gasification system (1) and the composting system in the agriculture as fertilizers. Without such a use it is estimated that the systems (1) and (2) will be very unfeasible, both environmentally and economically. The contents of heavy metals, organic chemicals, and plasticizers in the residual products are at present above the Danish threshold values. This problem can only be solved by reducing the contents of these pollutants in the household wastes. Based on these findings it is therefore very doubtful whether the residual waste products from bio-gasification and probably also from composting can be used in the agriculture in the future. However, it is for the other parts of the environmental analysis assumed that the problem will eventually be solved. Differences in resource utilization in the waste processing are very small in the three systems. When comparing the net energy production system (1) and (3) show the best results. The three systems are almost equal related to emissions of HC1, NO x , and SO 2 , the composting system performing the best. The three systems emit the same amount of CO 2 and other greenhouse gases. Composting, however, results in a smaller energy susbstituion and is therefore marginally a poorer solution. For reducing the heavy metals and plasticizers in the environment combustion of the organic wastes is the best system. (LN)

  3. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    Energy Technology Data Exchange (ETDEWEB)

    Entry, James A. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)]. E-mail: jentry@nwisrl.ars.usda.gov; Leytem, April B. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States); Verwey, Sheryl [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)

    2005-11-15

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al{sub 2}(SO{sub 4}){sub 3}) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects.

  4. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    International Nuclear Information System (INIS)

    Entry, James A.; Leytem, April B.; Verwey, Sheryl

    2005-01-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al 2 (SO 4 ) 3 ) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects

  5. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    Science.gov (United States)

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  6. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    Directory of Open Access Journals (Sweden)

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  7. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Farid, I.M.; Moursy, A.A.A.; Kotb, E.A.; Ismail, M.

    2012-01-01

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  8. Response of Maize Grown on Overburden Soil in a Coal Mining Area Without Top Soil to Various Compost Sources

    OpenAIRE

    Erry Purnomo

    2015-01-01

    Soil in Kalimantan Island is considered infertile. To obtain a reasonable crop yield a high input fertilizer package should be applied. The situation will be worsening when an open pit system of coal mining adopted. Failure in re-arranging the soil layers can result in decreasing soil fertility compared to original soil prior to mining. This study aimed to determine the improvement of soil fertility of a disposal without top soil by using composts from various sources, namely, the public garb...

  9. An assay of the utilization of the residual use of a N fertilizer [(15NH4)2SO4] made by a wheat crop, using an isotope technique

    International Nuclear Information System (INIS)

    Bujan, A.; Quitegui, M.I.; Quitegui, M.C.; Ghelfi, L.E.P. de; Deybe, D.

    1982-01-01

    An experimental study was carried out in order to determine the residual use of a N fertilizer made by wheat during a year. Wheat was seeded in plots which had been cropped the year before with inoculated soybean (glycine max), non-inoculated soybean and sorghum (sorghum caffrorum) fertilized with (NH 4 ) 2 SO 4 at two different levels: 20 and 100kg N/ha tagged with 5% excess 15 N and 1% respectively. It was concluded that:1) the % excess 15 N used in the previous crops were sufficient to determine residuality from the N fertilizer. 2)when the previous crop was non-inoculated soybean, the total nitrogen content of the wheat grains was significantly higher than when the previous crop was either inoculated soybean or sorghum. The total N content was significantly higher on the plots fertilized with 100KgN/ha than on those with 20kgN/ha.3) non-inoculated - and inoculated soybeans determined higher wheat grain yields than sorghum as previous crops. Higher wheat grain yields ocurred on the 100kgN/ha fertilized plots. Higher residual N content ocurred on the 100KgN/ha fertilized plots. Non-inoculated soybean determined higher residual N content in grain than inoculated soybean and sorghum; inoculated soybean determined higher content than sorghum. There were no significant differences in residual N content in the plants depending on the previous crop. (Author) [pt

  10. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    Science.gov (United States)

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  11. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    Science.gov (United States)

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  12. Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves.

    Science.gov (United States)

    Zhao, Gui-Hong; Yu, Yan-Ling; Zhou, Xiang-Tong; Lu, Bin-Yu; Li, Zi-Mu; Feng, Yu-Jie

    2017-05-01

    The main characteristic of discarded flue-cured tobacco leaves is their high nicotine content. Aerobic composting is an effective method to decrease the nicotine level in tobacco leaves and stabilize tobacco wastes. However, high levels of nicotine in discarded flue-cured tobacco leaves complicate tobacco waste composting. This work proposes a drying pretreatment process to reduce the nicotine content in discarded flue-cured tobacco leaves and thus enhance its carbon-to-nitrogen ratio to a suitable level for composting. The effect of another pretreatment method, particle size adjustment, on composting efficiency was also tested in this work. The results indicated that the air-dried (nicotine content: 1.35%) and relatively long discarded flue-cured tobacco leaves (25 mm) had a higher composting efficiency than damp (nicotine content: 1.57%) and short discarded flue-cured tobacco leaves (15 mm). When dry/25 mm discarded flue-cured tobacco leaves mixed with tobacco stems in an 8:2 ratio was composted at a temperature above 55 °C for 9 days, the nicotine content dropped from 1.29% to 0.28%. Since the discarded flue-cured tobacco leaves was successfully composted to a fertile and harmless material, the germination index values increased to 85.2%. The drying pretreatment and particle size adjustment offered ideal physical and chemical conditions to support microbial growth and bioactivity during the composting process, resulting in efficient conversion of discarded flue-cured tobacco leaves into a high quality and mature compost.

  13. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-01-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  14. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-07-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  15. Hygienization aspects of composting

    OpenAIRE

    Termorshuizen, A.J.; Alsanius, Beatrix

    2016-01-01

    Compost use in agriculture always brings about the risk of introducing plant and human pathogens. • The backbone of the hygienization process consists of temperature, moisture content and chemical compounds formed during composting and activity of antagonists. • Compost produced by proper composting, i.e. a process that produces high temperatures during asufficiently long thermophilic phase can be applied safely. • Farmers should invest in good relationships with compost produce...

  16. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Adrian M., E-mail: adrian.bass@glasgow.ac.uk [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Bird, Michael I. [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Kay, Gavin [Terrain Natural Resource Management, 2 Stitt Street, Innisfail, Queensland 4860 (Australia); Muirhead, Brian [Northern Gulf Resource Management Group, 317 Byrnes Street, Mareeba, Queensland 4880 (Australia)

    2016-04-15

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO{sub 3}, NH{sub 4} and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO{sub 2} was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N{sub 2}O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N{sub 2}O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N{sub 2}O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical

  17. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    International Nuclear Information System (INIS)

    Bass, Adrian M.; Bird, Michael I.; Kay, Gavin; Muirhead, Brian

    2016-01-01

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO_3, NH_4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO_2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N_2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N_2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N_2O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical agriculture.

  18. Pre-visualization of the biogas compost in rural area : Final Report of Technical Implementation

    International Nuclear Information System (INIS)

    De Goudet, A.

    1984-11-01

    Biogas-Compost Technology is being experimented in several research centers in Burkina Faso. This technology is about putting up prototypes in order to allow the use of fermentation products. Research on how to operate such technology, no matter small irrigation or domestic energy, has enabled the evaluation of the biogas-compost production and consumption. The implementation of such technology has made possible the agronomic valorization of fermentation residues, the improvement of the process of gas production, and the decrease of installation costs [fr

  19. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  20. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  1. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  2. Differential Concentrations of some Nutrient Element in Forage of Corn (Zea mays L. as Affected by Organic Fertilizers and Soil Compaction

    Directory of Open Access Journals (Sweden)

    N. Najafi

    2016-01-01

    Full Text Available Soil compaction is one of the most important limiting factor for normal crop growth, because it reduces absorption by the plant. Application of organic fertilizers in agricultural soils can reduce the detrimental effects of soil compaction on plant growth and also supply some nutrients to plant. Thus, a factorial experiment was carried out in a randomized complete block design with three replications and 14 treatments to evaluate the effects of organic fertilizers in mitigating soil compaction. The first factor in this study was the source and amount of organic fertilizer at seven levels (control, farmyard manure, sewage sludge compost and municipal solid waste compost and each of organic fertilizers at two levels of 15 and 30 g/kg of soil. The second factor was soil compaction at two levels (bulk density of 1.2 and 1.7 g/cm3. To perform this experiment, 10 kg of dry soil was poured into special PVC pots and then seeds of single cross 704 corn were planted. At the end of the growth period, the corn shoot was harvested and concentrations of phosphorus (P, potassium (K, sodium (Na, iron (Fe, zinc (Zn, manganese (Mn, cadmium (Cd and lead (Pb were determined by dry ashing method. The results showed that concentrations of Cd and Pb in the shoot, related to the different treatments, were negligible. Concentrations of P, K, Fe, Mn and Zn in the corn shoot were increased significantly by application of farmyard manure, sewage sludge compost and municipal solid waste compost at both levels of soil compaction. However, Na concentration of shoot did not change significantly. Soil compaction significantly reduced P, Fe, Mn and Zn concentrations of corn shoot, but it affected concentrations of Na and K significantly. Application of organic fertilizers and increasing their levels reduced the negative effects of soil compaction on nutrients uptake by corn plant. This study showed that to improve forage corn nutrition, application of 15 or 30 g of farmyard

  3. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost.

    Science.gov (United States)

    Liang, Jie; Yang, Zhaoxue; Tang, Lin; Zeng, Guangming; Yu, Man; Li, Xiaodong; Wu, Haipeng; Qian, Yingying; Li, Xuemei; Luo, Yuan

    2017-08-01

    The combination of biochar and compost has been proven to be effective in heavy metals contaminated wetland soil restoration. However, the influence of different proportions between biochar and compost on immobilization of heavy metals in soil has been less studied up to date. Therefore, we investigated the effect of different ratios of biochar-compost mixtures on availability and speciation distribution of heavy metals (Cd, Zn and Cu) in wetland soil. The results showed that applying all amendment combinations into wetland soil increased gradually the total organic carbon (TOC) and water-extract organic carbon (WEOC) as the compost percentage rose in biochar-composts. The higher pH was obtained in a certain biochar addition (20% and 40%) in combinations due to efficient interaction of biochar with compost. All amendments could significantly decrease availability of Cd and Zn mainly from pH change, but increase available Cu concentration as the result of increased water-extract organic carbon and high total Cu content in compost. Moreover, amendments can decrease easily exchangeable fraction and increase reducible of Cd and Zn greatly with increase of compost content in combinations, while amendments containing compost promote transformation of Cu from Fe/Mn oxide and residual fractions to organic bindings. These results demonstrate that different ratios of biochar and compost have a significant effect on availability and speciation of heavy metals in multi-metal-contaminated wetland soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. VALORIZATION ABOVEGROUND OF THE EXTRACT OF COMPOST OVINE FOR FERTIGATION OF THE VEGETABLES PLANTS IN TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2013-12-01

    Full Text Available The main objective of this study was to highlight the fertilizing capacity of the extract of ovine compost (prepared to the simple infusion in gardening nursery, while specifying the appropriate ratios of extraction and dilution ,for soilless plant fertigation intended for two strategic summer crops in Tunisia: seasonal tomato and seasonal pepper. It is clear that such extraction ratio of 1: 5 is effective for plants fertigation of two considered species. In addition, it has been shown that 200 times dilution of the concentrated extract is beneficial for the growth of tomato plants. However, this organic liquid fertilizer with different dilutions applied and in the experimental conditions adopted, wasn’t moderately efficient in stimulating the growth of pepper plants. The importance of this type of compost produced from sheep biomass, widely available in Tunisia, encourage the diversification of its exploitation, which is the object of this preliminary work, deserving more future investigations.

  5. Elimination of Linear Alkylbenzene Sulfonate (LAS) and soap during composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Prats, D.; Rodriguez, M.; Muela, M.A.; Llamas, J.M.; Moreno, A.; Ferrer, J. De; Berna, J.L.

    2003-07-01

    The composting plant uses a variety of agricultural residue and sludge from nearby wastewater treatment plants. The results obtained indicate a very high removal of LAS (>97%) in a very short period of time while the removal of soap was substantially lower (32%) as well as the elimination of TOC (total organic matter). The average half life of LAS in the process was between 6 and 9 days which is very short compared to the average residence time of the feed in the composting process (40 days). (author)

  6. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  7. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    Science.gov (United States)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  8. Initial growth of physic nut as a function of sources and doses of organic fertilizers

    OpenAIRE

    Schulz,Deisinara Giane; Fey,Rubens; Ruppenthal,Viviane; Malavasi,Marlene de Matos; Malavasi,Ubirajara Contro

    2012-01-01

    Organic fertilization provides low cost, supplemental nutrition for plant production. This study aimed to determine the best source and dose of organic fertilizer on the growth of physic nut (Jatropha curcas L.), a potential biodiesel producer. Physic nut seedlings were transplanted to 18 dm³ black plastic pots filled with soil mixed with four sources of organic fertilizer (chicken, fish, cattle manure or urban waste compost) at four dose levels (50, 100, 200 or 400 L m-3). Fertilized and con...

  9. Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, maturity and microbial communities.

    Science.gov (United States)

    Ren, Shengtao; Guo, Xiali; Lu, Aqian; Guo, Xiaoying; Wang, Yan; Sun, Guoping; Guo, Weiwei; Ren, Chaobin; Wang, Lianzhong

    2018-05-26

    This paper investigated the effect of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on the degradation of lincomycin, maturity and microbial communities. Results showed that after 66 days composting, the concentration of lincomycin was removed above 99%. The final pH, C/N and germination index (GI) all met the national standards in maturity. Enumeration of total cultivable microbes showed the composting process was not inhibited by the addition of LMDs. Microbial diversity suggested that co-composting was beneficial to increase the abundance and diversity of bacterial communities for LMDs' treatment. Canonical correlation analysis (CCA) indicated the bacteria communities were strongly affected by residual lincomycin, with lincomycin reduced greatly, microbial communities of T and CK became similar at the end of composting. The potential bacteria to degrade lincomycin were Anaerococcus, Peptostreptococcus, and Lactobacillus. Based on these results, this research indicated that the co-composting was a feasible treatment for LMDs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some quantitative and qualitative characteristics of sesame (Sesamum indicum L. in a low input cropping system

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2016-03-01

    Full Text Available Introduction In recent years, by increasing human knowledge and using different technology on food production, human concerns have increased on safety of food products especially medicinal crops. In order to achieve healthy food production, application of ecological inputs such as organic and biological fertilizers are inevitable. Organic fertilizers are fertilizer compounds that contain one or more kinds of organic matter. They can improve the soil ability to hold water and nutrients. They create a beneficial environment for earthworms and microbial organisms that break the soil down into rich, fine humus (Motta & Magggiore, 2013. Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost can greatly enhance the physical structure of soil. The addition of compost may provide greater drought resistance and more efficient water utilization. Vermicompost is the final product of composting organic material using different types of worms, such as red wigglers or earthworms, to create a homogenized blend of decomposed vegetable and food waste, bedding materials and manure. Vermicompost helps store nutrients and keeps them safe from leaching and irrigation, functioning to balance hormones within plant physiology, and adding beneficial biology to soil (Raja Sekar & Karmegan, 2010. Mycorrhiza arbuscular fungi are other coexist microorganisms that improves soil fertility, nutrients cycling and agroecosystem health. Mycorrhizal fungi are the most abundant organisms in agricultural soils. Many researchers have pointed to the positive roles of mycorrhizal fungi on plants growth characteristics. Despite of many researches on the effect of organic and biological fertilizers on different crops, information on the effects of these fertilizers for many medicinal plants is scarce, therefore, in this study the effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some

  11. Agricola use of compost and vermicomposts of urban wastes: supplying of nutrients to soil and plant; Uso agricola de compost y vermicompost de basuras urbanas: capacidad de cesion de nutrientes al suelo y la plant

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Dpto. Agroecoliga y Proteccion Vegetal, Estacion Experimental del Zaidin, CSIC (Spain)

    1996-06-01

    Compost and vermicomposts from town refuse can be considered as a valuable resource for supplying nitrogen, potassium and some micro nutrients to soils and plants. Application of these mature organic materials increase crop yield, although they are less efficient than mineral fertilizers in order to obtain inmediate crops. (Author) 79 refs.

  12. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S. M.K Tahhami Zarandi

    2015-04-01

    Full Text Available The use of organic manure and biofertilizers containing beneficial microorganisms instead of chemical fertilizers are known to improve plant growth through supply of plant nutrients and can help sustain environmental health and soil productivity. Because of special priority of the medicinal plants production in sustainable agricultural systems and lack of studies on assessment of different sources of fertilizer on basil plants, an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2009. A complete randomize block design with ten treatments, and three replications was used. The treatments were: 1cow manure, 2sheep manure, 3hen manure, 4compost 5vermicompost, 6biological fertilizer nitroxin (consisting of Azotobacter and Azospirillum, 7biological fertilizer consisting of Phosphate Solubilizing Bacteria (Pseudomonas and Bacillus, 8mixture of biological fertilizer nitroxin and Phosphate Solubilizing Bacteria 9NPK fertilizers, and 10control (no fertilizer. Results showed plant height in sheep manure was higher than other treatments. Number of branches in vermicompost and number of inflorescence in cow manure were significantly higher than other treatments. The number of whorled flowers in compost, sheep and cow manure were more than other treatments. Highest leaf and green area index was observed in nitroxin treatment and biological yield in sheep manure have significant difference with other treatments (except cow manure. The highest seed yield were obtained from plants treated with compost (1945 kg/h and the lowest of that observed in NPK fertilizer and control treatments. In all measured traits (except number of inflorescence NPK fertilizer and control treatment did not have any significant difference.

  13. Fertilizer nitrogen leaching in relation to water regime and the fertilizer placement method

    International Nuclear Information System (INIS)

    Moustafa, A.T.A.; Khadr, M.S.

    1983-01-01

    A field experiment was conducted at the farm of Sids Experimental Station, Ministry of Agriculture, Middle Egypt, to evaluate the effect of the water regime and fertilizer placement method on the leaching of urea fertilizer under field conditions. Ordinary and heavy irrigations were the water regimes, while side-banding and surface broadcasting were the fertilizer placement methods. Wheat (Giza 158, local variety) was planted, and urea labelled with 15 N at the rate of 100 kg N/ha was added at planting. The data obtained showed that in general the leaching process of urea fertilizer, as evaluated from the amounts of fertilizer nitrogen residues, is not uniform even within replicates. This is despite the fact that the average total amount of fertilizer nitrogen residues in the soil profile to a depth of 125 cm is almost the same in the different treatments. Data also show that the bulk of fertilizer nitrogen residues is accumulated in the surface soil layers, especially at 0-25 cm. Only 10% of the fertilizer nitrogen is detected below 75 cm and up to 125 cm depth of the soil profile. It could be concluded that urea leaching (amount and depth) under these conditions is affected mainly by the soil characteristics, namely soil pores. This is in addition to some other factors that cause variable concentrations in the soil solution leaving the root zone. (author)

  14. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    Science.gov (United States)

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  15. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Meier

    2016-07-01

    Full Text Available The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1 reduce emissions (e.g. those that reduce nitrous oxide (N2O emissions by avoiding excess nitrogen (N fertilizer application, and (2 increase soil organic carbon (SOC stocks (e.g. by retaining instead of burning crop residues. Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’. Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location  soil  fertilizer  trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 yr after trash blanketing commenced. After this period, there was potential to

  16. Composting of bio solids by composting tunnels; Compostaje de biosolidos mediante tunes de compostado

    Energy Technology Data Exchange (ETDEWEB)

    Varo, P.; Rodriguez, M.; Prats, D.; Soto, R.; Pastor, B.; Monges, M.

    2003-07-01

    The objective of this work is to study the bio-solid composting process carried out in the composting plant of Aspe (Alicante) by means of open composting tunnels, and to determine the quality of the resulting compost. The parameters under control are temperature. humidity, density, pH, conductivity, organic matter, C/N ratio, ammonium nitride and organic nitrogen. The concentrations of cadmium, chromium, nickel, lead and copper were monitored during the composting process. Observing the parameters analyzed we can conclude that the composting process of the sewage sludge from Aspe procedures a product suitable for agricultural use. The values obtained allow the product resulting from the process to be designated as compost. (Author)

  17. Compost duurzaam ingezet. De Compost Scorekaarten: een instrument voor het afwegen van de waarde van compost

    OpenAIRE

    Schrik, Yannick; Koopmans, Chris

    2015-01-01

    Het duurzame gebruik van een reststof zoals compost hangt sterk samen met de waarde die de compost heeft bij toepassing. Deze publicatie geeft via heldere Compost Score Kaarten inzicht in het vinden van de juiste compostsoort voor het gewenste doel. Of het nu gaat om organischestofvoorziening, verbetering van de bodemstructuur of de nutriëntenvoorziening van gewassen: een bewuste keuze voor de compostsoort en –kwaliteit draagt bij aan een duurzame inzet en duurzaam hergebruik van reststoffen.

  18. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2013-02-15

    Winery wastes were composted in the laboratory during five months in order to study the composting process of lignocellulosic wastes. In a first experiment, spent grape marc was composted alone, and in a second one, hydrolyzed grape marc, which is the residue generated after the acid hydrolysis of spent grape marc for biotechnological purposes, was composted together with vinification lees. During the composting of spent grape marc, total organic matter did not change, and as total N increased only slightly (from 1.7% to 1.9%), the reduction in the C/N ratio was very low (from 31 to 28). The mixture of hydrolyzed grape marc and lees showed bigger changes, reaching a C/N ratio around 20 from the third month on. Water-soluble organic matter followed the usual trend during composting, showing a progressive decrease in both experiments. Although the mixture of hydrolyzed grape marc and lees presented the highest initial water-soluble carbon concentrations, the final values for both experiments were similar (8.1 g kg(-1) for the spent grape marc, and 9.1 g kg(-1) for the mixture). The analysis of the humification parameters did not allow an adequate description of the composting process, maybe as a consequence of the inherent problems existing with alkaline extractions. The total humic substances, which usually increase during composting as a consequence of the humification process, followed no trend, and they were even reduced with respect to the initial values. Notwithstanding, the fractionation of organic matter into cellulose, hemicellulose and lignin enabled a better monitoring of the waste decomposition. Cellulose and hemicellulose were degraded mainly during the first three months of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place during the first three months of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Chemical Composition of Vermicompost Made from Organic Wastes through the Vermicomposting and Composting with the Addition of Fish Meal and Egg Shells Flour

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2017-05-01

    Full Text Available Chemical composition of compost is an important indicator that determines the quality of compost. This study compared the chemical composition of vermicompost resulting from the process of vermicomposting alone with combined vermicomposting and composting with addition of egg shells flour and fish meal. Organic wastes used were the mixture of spent mushrooms waste, coconut husks, cow dung, vegetables residue, and leaf litter. Lumbricus rubellus was the species of earthworm used in the vermicomposting process. In the composting process, egg shells flour and fish meal are added into the vermicompost as additives materials. The results indicate that the combined vermicomposting and composting process with addition the additives materials improves the chemical composition of vermicompost compared to using vermicomposting process alone. The change of chemical composition was indicated by a decrease in C-organic content and C/N ratio by 29% and 99%, respectively, while the content of N, P, K and S increased by 52%, 67.5%, 29% and 25%, respectively due to the addition of additives material in the composting process. The largest increase of vermicompost nutrient content occurred in the Ca content by an average of up to 7-fold. While polyphenols, lignin and cellulose content of vermicompost decreased slightly. The treatment of two mixture (a spent mushrooms waste, cow dung and vegetables residue, and (b spent mushroom waste, cow dung, vegetables residue, and leaf litter gave the best chemical composition. However, to determine the quality, we need to test the product in a plant growth bioassay as a follow-up study.

  20. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Directory of Open Access Journals (Sweden)

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  1. Short communication. Response of bacterial community composition to long-term applications of different composts in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M; Knapp, B A; Peintner, U; Insam, H

    2011-07-01

    Differences in the bacterial community composition of agricultural soils caused by a long-term (12 year) application of different composts were identified by cultivation-dependent and -independent methods (PCR-DGGE and 16S rRNA clone libraries). The number of colony forming units indicated that the successive incorporation of organic amendments increased the bacterial abundance (6.41-5.66 log10 cfu g-1dry soil) compared to control and mineral soils (5.54-3.74 log10 cfu g-1 dry soil). Isolated bacteria were dominated by Actinobacteria, whereby compost-amended soils and green compost-amended soils showed, respectively, higher number of members of Actinobacteria (100% and 64%) than control and mineral soils (50% and 40%). The 16S rRNA clone libraries were dominated by Proteobacteria (43%), Acidobacteria (21%) and Actinobacteria (13%). Proteobacteria and Actinobacteria were most abundant in compost amended soils while Acidobacteria were more frequently found in mineral fertilizer and control soils. Partial 16S rRNA gene clone libraries revealed a higher bacterial diversity than cultivation. In conclusion, we found differences of bacterial community composition with a cultivation approach and clone libraries between compost amended soils and control and mineral soil. (Author) 31 refs.

  2. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Science.gov (United States)

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The utilisation of municipal waste compost for the reclamation of anthropogenic soils: implications on C dynamics.

    Science.gov (United States)

    Said-Pullicino, D.; Bol, R.; Gigliotti, G.

    2009-04-01

    The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil

  4. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation.

    Science.gov (United States)

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-09-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO(-) 3-N than NH(+) 4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  6. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    Science.gov (United States)

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Broccoli yield in response to top-dressing fertilization with green manure and biofertilizer

    Directory of Open Access Journals (Sweden)

    Gilberto Bernardo de Freitas

    2011-10-01

    Full Text Available The objective of this work was to evaluate the productive performance of broccoli under different top-dressing organic fertilizations. The experiment was conducted under protected cultivation, in a completely randomized design with four replications, with two plants per experimental unit. Broccoli seedlings were produced in a commercial substrate in styrofoam trays. The seedlings were transplanted to plastic pots containing 10.0 L of substrate made up of subsoil and organic compost at the ratio of 3:1 (v/v, respectively, which is equivalent to about 20.0 t ha-1 of organic compost at planting. After seedling establishment, the top-dressing fertilization treatments were applied: gliricidia biomass associated or not with liquid biofertilizer of cattle manure to the soil and bokashi. Two control treatments were established: one with mineral fertilization recommended for the crop and the other without top-dressing fertilization. The broccoli production was evaluated (commercial standard. Plants that received mineral fertilizer were more productive, however, they were not significantly different (p>0.05, by Dunnet test, from the plants fertilized with 2.5 t ha-1 gliricidiabiomass (dry mass associated with liquid biofertilizer (2.0 L m-2 applied to soil. Top-dressing fertilizations with only gliricidia, at 2.5 and 5.0 t ha-1 of biomass (dry mass, resulted in no significant increase in production of broccoli inflorescence. The use of bokashi in addition to gliricidia biomass and liquid biofertilizer reduced the efficiency of the fertilization compared with plants that received only gliricidia and liquid biofertilizer.

  8. Development of a process for radiation disinfection and composting of sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, Waichiro; Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1985-05-01

    Radiation disinfection of sewage sludge and composting of the irradiated sludge were studied for a purpose of their safe land application from a viewpoint of environment protection and beneficial utilization of resources. Seasonal changes of total bacterial number and coliform number in sludge cake, those of the dose required for disinfection and the regrowth of bacteria after disinfection were examined. Determination of residual bacteria werealso carried out. The dose for disinfection of coliform was 0.3-0.5 Mrad(3-5 kGy). Fermentation conditions such as temperature, pH, pressure, buking agent and seeds, were studied in addition to continuation and scale-up of the process for aerobic fermentation of irradiated sludge for a purpose of shortening the period for primary fermentation. And conditions for maintaining high oxygen permeability of sludge and deordorization were also investigated. The optimum conditions for composting were shown to be near 7 for pH, 50 0 C for temperature. Composting in a continuous process was studied based on microbiological rate expressions, and it was shown that the composting rate could be estimated from batch-experimental data. Composting in a large scale was investigated by using a small scale fermentor and a computer, and was estimated to have the same rate as in a small scale, when the fermentation conditions were maintained at the optimum. It was also shown that the diameter of sludge grain should be less than about 5 mm to obtain high oxygen permeability of sludge and maintain the fast rate in isothermal composting, and that the evolution of anmonia which is an index of ill-smell would also cease within 3 days under the optimum conditions. The products obtained in the isothermal composting of irradiated sludge were shown to be almost the same as those by usual composting processes using nonirradiated sludges. (J.P.N.)

  9. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting.

    Science.gov (United States)

    Amir, Soumia; Benlboukht, Fatima; Cancian, Nadia; Winterton, Peter; Hafidi, Mohamed

    2008-12-30

    In Marrakech, solid by-products from tanneries are highly polluting, generating large amounts of nitrogenous and organic matter. In the present study composting is tested as a cost-effective method for waste management to overcome many of the environmental hazards and produce a stable, rich material for soil fertilization. Two composting trials were conducted after neutralization by ammonia or lime. The aim of the neutralization was to avoid the antimicrobial effects of the acidity in the tannery waste, thus ensuring correct composting. Different techniques such as elemental analysis and 13C NMR spectroscopy were applied to analyse humic acids isolated from raw and composted materials, and to monitor the process of tannery waste composting, and the stability and maturity of the final product according to the means of neutralization. Comparison of data showed similar behaviour in both trials, but the composting process appeared to be more complete following neutralization with lime. The C, H and N content decreased, while the O increased. The FTIR and 13C NMR spectra show the decrease of aliphatic compounds demonstrated by the reduction of absorbance around 2922cm(-1) and of the resonance in the C-alkyl area around 0-55ppm. The humic acids newly formed during composting were richer in the O-N alkyl and oxidized aromatic structures that increased almost twofold on composting after neutralization with lime. The first principal component axis PC1 (54%) separated C-aliphatic, C-carboxylic and other less stable and less polycondensed compounds such as polyphenols from the more polycondensed O-N alkyl and oxidized C-aromatic compounds.

  10. Study on Replacement Probability of Organic with Chemical Fertilizers in Canola (Brassica napus under Two Deficit and Full Irrigation Conditions

    Directory of Open Access Journals (Sweden)

    S. J. Azimzadeh

    2017-03-01

    Full Text Available Introduction In agricultural ecosystems, organic fertilizers play an important role in producing sustainable agricultural production. Considering this Sajjadi Nik et al (2011 reported that with increasing of vermicompost inoculation with nitroxin biofertilizer, capsule number per sesame plant increased, so that the most of capsule number per plant (124.7 was observed in 10 t/h vermicompost with nitroxin inoculation. Seyyedi and Rezvani Moghaddam (2011 reported that seed number per plant and the thousand kernel weight in treatment of 80 t/h mushroom compost in comparison with control were increased by 2.98 and 1.56 fold. In another experiment, Kato and Yamagishi (2011 reported that seed yield of wheat in application of manures equal to 80 t/h/ year more than 10 years in comparison with application of nitrogen fertilizer at the rate of 204 kg/h, showed significant increasing from 725 to 885 gr/m2. In another study, Rezvani Moghaddam et al (2010 reported that the most (74.08 and the least (60.94 seed number per capsule in sesame was obtained in the treatments of cow manure and control treatments respectively. The aim of this experiment was evaluation the effects of municipal waste compost, vermicompost and cow manure fertilizers in comparison with chemical fertilizer on yield and yield components of canola under two levels of deficit and full irrigation. Materials and Methods In order to evaluate the replacement probability of organic fertilizer with chemical fertilizers in canola cultivation, an experiment was conducted at research farm of Mashhad Faculty of Agriculture in year of 2013. Treatments were fertilizer and irrigation. Irrigation treatments included full and deficit irrigation. Fertilizer treatments included municipal waste compost, vermicompost, manure and chemical fertilizer. Chemical fertilizer included Nitrogen and Phosphorus. Experiment was conducted as split plot in randomized complete block design with three replications. Organic

  11. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings.

    Science.gov (United States)

    Morales, Ana Belen; Ros, Margarita; Ayuso, Luis Miguel; Bustamante, Maria de Los Angeles; Moral, Raul; Pascual, Jose Antonio

    2017-02-01

    Environmental concerns about peat extraction in wetland ecosystems have increased. Therefore, there is an international effort to evaluate alternative organic substrates for the partial substitution of peat. The aim of this work was to use different composts (C1-C10) obtained from the fruit and vegetable processing industry (pepper, carrot, broccoli, orange, artichoke residues, sewage sludge (citric and pepper) and vineyard pruning wastes) to produce added-value composts as growing media with suppressive effect against Fusarium oxysporum f.sp. melonis (FOM) in muskmelon. Composts showed values of water-soluble carbon fractions and dehydrogenase activity that allowed them to be considered mature and stabilized. All compost treatments produced significantly (F = 7.382; P values. Treatments T-C5, T-C7 and T-C8 showed percentages of disease incidence that were significantly (F = 16.052; P values below 50%. Composts produced are suitable components of mixed compost-peat growing media, providing a 50% substitution of peat. Furthermore, some of these composts also showed an added value as a suppressive organic medium against Fusarium wilt in muskmelon seedling, a fact probably related to high pH and pepper wastes and high content of pruning waste as initial raw materials. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    Science.gov (United States)

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  14. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil.

    Science.gov (United States)

    Kang, Yijun; Hao, Yangyang; Shen, Min; Zhao, Qingxin; Li, Qing; Hu, Jian

    2016-08-01

    Using pig manure (PM) compost as a partial substitute for the conventional chemical fertilizers (CFs) is considered an effective approach in sustainable agricultural systems. This study aimed to analyze the impacts of supplementing CF with organic fertilizers (OFs) manufactured using pig manure as a substrate on the spread of tetracycline resistance genes (TRGs) as well as the community structures and diversities of tetracycline-resistant bacteria (TRB) in bulk and cucumber rhizosphere soils. In this study, three organic fertilizers manufactured using the PM as a substrate, namely fresh PM, common OF, and bio-organic fertilizer (BF), were supplemented with a CF. Composted manures combined with a CF did not significantly increase TRB compared with the CF alone, but PM treatment resulted in the long-term survival of TRB in soil. The use of CF+PM also increased the risk of spreading TRGs in soil. As beneficial microorganisms in BF may function as reservoirs for the spread of antibiotic resistance genes, care should be taken when adding them to the OF matrix. The PM treatment significantly altered the community structures and increased the species diversity of TRB, especially in the rhizosphere soil. BF treatment caused insignificant changes in the community structure of TRB compared with CF treatment, yet it reduced the species diversities of TRB in soil. Thus, the partial use of fresh PM as a substitute for CF could increase the risk of spread of TRGs. Apart from plant growth promotion, BF was a promising fertilizer owing to its potential ability to control TRGs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Study and assessment of segregated biowaste composting: The case study of Attica municipalities.

    Science.gov (United States)

    Malamis, D; Bourka, A; Stamatopoulou, Ε; Moustakas, K; Skiadi, O; Loizidou, M

    2017-12-01

    This work aims to assess the operation of the first large scale segregated biowaste composting scheme in Greece to divert Household Food Waste (HFW) from landfill and produce a material which can be recovered and used as compost. The source separation and collection of HFW was deployed in selected areas in Attica Region serving about 3700 households. Sorted HFW is collected & transported to the Mechanical and Biological Treatment (MBT) plant in Attica Region that has been designed to produce Compost Like Output (CLO) from mixed MSW. The MBT facility has been adjusted in order to receive and treat aerobically HFW mixed with shredded green waste in a dedicated composting tunnel. The composting process was monitored against temperature, moisture and oxygen content indicating that the biological conditions are sufficiently developed. The product quality was examined and assessed against the quality specifications of EU End of Waste Criteria for biowaste subjected to composting aiming to specify whether the HFW that has undergone recovery ceases to be waste and can be classified as compost. More specifically, the heavy metals concentrations (Cr, Cu, Ni, Cd, Pb, Zn and Hg) are within the set limits and much lower compared to the CLO material that currently is being produced at the MBT plant. In regard to the hygienic requirements of the product it has been found that the process conditions result in a pathogen free material (i.e. E. Coli and Salmonella) which does not favor the growth of viable weeds and plant propagules, while it acquires sufficient organic matter content for soil fertilization. Noticeable physical impurities (mainly fractions of glass) have been detected exceeding the quality control threshold limit of 0.5% w/w (plastics, metals and glass). The latter is related to the missorted materials and to the limited pre-treatment configurations prior to composting. The above findings indicate that effective source separation of biowaste is prerequisite for

  16. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting

    International Nuclear Information System (INIS)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-01

    Highlights: • Nitrogen, phosphorus, and potassium contents in soil are substantially increased after the DOC washing. • The removal of Zn is dominated by proton replacement at pH 2.0, rather than by complexation with DOC. • The removal of Zn is dominated by DOC complexation between pH 3.0 and pH 5.0. - Abstract: A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg −1 in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L −1 DOC solution with a of pH 2.0 at 25 °C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH 4 + -N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  17. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Po-Neng [Experimental Forest, National Taiwan University, Chushan, Nantou County, 55750, Taiwan (China); Tong, Ou-Yang [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Chiou, Chyow-San; Lin, Yu-An [Department of Environmental Engineering, National Ilan University, Ilan 26047, Taiwan (China); Wang, Ming-Kuang [Department of Animal Science, National Ilan University, Ilan 26047, Taiwan (China); Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-01-15

    Highlights: • Nitrogen, phosphorus, and potassium contents in soil are substantially increased after the DOC washing. • The removal of Zn is dominated by proton replacement at pH 2.0, rather than by complexation with DOC. • The removal of Zn is dominated by DOC complexation between pH 3.0 and pH 5.0. - Abstract: A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg{sup −1} in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L{sup −1} DOC solution with a of pH 2.0 at 25 °C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH{sub 4}{sup +}-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  18. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  19. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    Science.gov (United States)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  20. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Composting: a growth market

    International Nuclear Information System (INIS)

    Bueker, D.; Guenther, H.; Komodromos, A.

    1994-01-01

    The paper explains the current state of affairs in composting in Germany from the angles of licensing, engineering, the number and scale of existing and projected plants, the market for compost, and the prospective market for composting plants. (orig.) [de

  2. Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage

    International Nuclear Information System (INIS)

    Ryu, Hong-Duck; Lim, Chae-Sung; Kang, Min-Koo; Lee, Sang-Ill

    2012-01-01

    Highlights: ► Recovered struvite from semiconductor wastewater was evaluated as fertilizer. ► The struvite showed more outstanding fertilizing effects than commercial fertilizers. ► Cu, Cd, As, Pb and Ni were observed at very low level in the vegetable tissue. ► The optimum struvite dosage for the cultivation of Chinese cabbage was 1.6 g struvite/kg soil. - Abstract: The present work evaluated the fertilizing value of struvite deposit recovered from semiconductor wastewater in cultivating Chinese cabbage. The fertilizing effect of struvite deposit was compared with that of commercial fertilizers: complex, organic and compost. Laboratory pot test results clearly showed that the growth of Chinese cabbage was better promoted when the struvite deposit was used than with organic and compost fertilizers even though complex fertilizer was the most effective in growing Chinese cabbage. It was revealed that potassium (K) was a key element in the determination of growth rate of Chinese cabbage. Also, the abundant nutrients such as nitrogen (N), phosphorus (P), K, calcium (Ca) and magnesium (Mg) were observed in the vegetable tissue of struvite pot. Specifically, P was the most-founded component in the vegetable tissue of struvite pot. Meanwhile, the utilization of struvite as a fertilizer led to the lowest accumulation of copper (Cu) and no detection of cadmium (Cd), arsenic (As), lead (Pb) and nickel (Ni) in the Chinese cabbage. It was found that the optimum struvite dosage for the cultivation of Chinese cabbage was 1.6 g struvite/kg soil. Based on these findings, it was concluded that the struvite deposits recovered from semiconductor wastewater were effective as a multi-nutrient fertilizer for Chinese cabbage cultivation.

  3. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of organic N Sources on N transformation and uptake by lupine plants using 15N technique

    International Nuclear Information System (INIS)

    Abdel-Salam, A.A.; Gadalla, A.M.; Abdel- Aziz, H.A.; Galal, Y.G.M.; EL-degwy, S.M.

    2008-01-01

    A pot experiment was carried out under greenhouse conditions to evaluate the comparative efficiency and transformation of nitrogen applied either as mineral or organic forms. The obtained data showed that shoot dry weight was enhanced by compost and its mixture with leucaena. When organic sources were combined with 15 N, the leucaena.compost mixture (LC p ) gave the highest yield, and the other two were not significantly different from each other. Reinforcing the organic N with mineral N caused an average greater N.uptake over the non reinforced treatment. Similar trend was noticed with root system. Nitrogen uptake by roots was increased according to the order of LC > L > C. N derived from fertilizer (% Ndff) by lupine shoots was significantly affected by fertilizer addition either alone or reinforced with organic plant residues. Both, the portions (%) or absolute values (mg pot -1 ) of Ndff were increased by adding the organic residues. The highest value of Ndfs was recorded with application of leucaena followed by compost, then Leucaena + compost. Portion Ndfa reflected an effective response of lupines plants to Rhizobium inoculation. Addition of LC mixture combined with 15 N-fertilizer had enhanced the N 2 fixation and increased Ndfa value by about 66.7 % over those recorded with 15 N0 treatment. Organic amendment of leucaena could be an efficient source for N to infertile sandy soils

  5. Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application

    OpenAIRE

    Fuchs, Jacques G.

    2010-01-01

    Numerous microorganisms are involved in the composting process, but their precise roles are often unknown. Compost microorganisms are influenced by the composition of the substrate and by the temperature in the compost pile. In addition, different microorganisms also influence each other, e.g. through competition. In the first phase of composting, microbial activity increase drastically, leading to a rise in temperature. The initial bacterial dominance is replaced by a fungal one during compo...

  6. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review.

    Science.gov (United States)

    Wu, Shaohua; He, Huijun; Inthapanya, Xayanto; Yang, Chunping; Lu, Li; Zeng, Guangming; Han, Zhenfeng

    2017-07-01

    Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.

  7. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

    Directory of Open Access Journals (Sweden)

    Min Jeong Kim

    2015-09-01

    Full Text Available This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR. It aimed to determine the effects of the aerated compost tea (ACT based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO⁻₃-N than NH⁺₄-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%, Ochrobactrum (13.0%, Spingomonas (6.0% and uncultured bacterium (4.0% by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  8. Wat is goede compost?

    NARCIS (Netherlands)

    Willekens, K.; Janmaat, L.

    2014-01-01

    Compost wordt voor meerdere doelen ingezet. Als meststof, maar ook om de organische stofbalans op peil te houden. Maar compost heeft nog meer voordelen. Zo worden aan compost ziektewerende eigenschappen toegekend. Het doel van compostgebruik bepaalt voor een groot deel welke prijs er voor wordt

  9. Effects of Organic and Chemical Fertilizers on some Quantitative Traits and Anthocyanin of Roselle under Zabol conditions

    Directory of Open Access Journals (Sweden)

    rahman Ebrahimzadeh abdashti

    2017-02-01

    Full Text Available Introduction: Roselle (Hibiscus sabdariffa L. belongs to the Malvaceae family, and is an annual or biennial plant that cultivated in tropical and subtropical regions for its stem fibers, eatable calyces, leaves and grains. Roselle is resistant to relatively high temperatures throughout the growing and fruiting times. Continuous use of chemical fertilizers destroys the soil ecological balance, reduces soil fertility and groundwater pollution is caused. In contrast, organic fertilizers are very safe for human health and the environment. It is made by recycling organic material as plant and animals waste, and food scraps in a controlled process. Of the organic fertilizers can be noted to compost, vermicompost, cattle manure andhumic acid. The study was carried out in order to sustainable agriculture. The aim of this study was to investigate the effects of organic and chemical fertilizers on some quantitative traits and anthocyanin of roselle. Materials and Methods: The experiment was performed in complete randomized block design with ten treatments and four replications in research field of agricultural faculty, university of zabol. The treatments included T1: control, T2: NPK in a ratio of 2:1:1 (300 kg ha-1, T3: cattle manure (20 t ha-1, T4: compost (10 t ha-1, T5: vermicompost (5 t ha-1, T6: humic acid foliar in a ratio of 1.5 per thousands, T7: 50% of T2 and T6 , T8: 50% of T3 and T6, T9: 50% of T4 and T6 and T10: 50% of the T5 and T6. Five plants were chosen and an average of five plants was calculated as the single plant for measuring of variables that included the height, number of branches, stem diameter, shoot fresh weight, number of fruits per plant, fruit weight, number of seeds per plant, fresh and dry weights of sepals, inflorescence length, length and diameter of fruit. Method of Wagner has been used for the anthocyanin measurement. Results and Discussion: Results of this research showed that the application of different fertilizers

  10. Produção comercializável e teores de Cu e Zn em cenoura em decorrência da ação residual de fósforo e composto de lixo em solo sob cerrado Marketable yield and contents of Cu and Zn in carrot as influenced by residual phosphate and urban compost in a cerrado soil

    Directory of Open Access Journals (Sweden)

    Manoel V. de Mesquita Filho

    2002-06-01

    Full Text Available Realizou-se em 1997, em condições de campo um experimento em Latossolo Vermelho Escuro distrófico argiloso sob cerrado de Brasília, para avaliar o efeito residual das aplicações em anos anteriores, a lanço de doses de fósforo (superfosfato triplo, e de composto de lixo na produção de cenoura (Daucus carota, cv. Brasília, assim como nos teores de cobre e zinco em raízes frescas. Aproveitou-se o mesmo delineamento experimental de blocos ao acaso com 3 repetições, no mesmo campo experimental dos experimentos anteriores distribuídos num esquema fatorial 3 x 5 incluindo-se 3 níveis de fósforo (0; 400 e 800 kg ha-1 de P2O5 e 5 níveis de composto de lixo (0; 20; 40; 60 e 80 t ha-1. A colheita foi realizada aos 90 dias após o plantio. A análise estatística dos dados de produção total de raízes revelou efeito residual da adubação dos últimos dois anos em linear e quadrático altamente significativo (pA field experiment was conducted on a clayey Yellow Red Oxisol to evaluate the residual effect of the application of phosphorus and urban waste compost of the previous two years on the root production of carrot cv. Brasília. The soil of the previous experiment design used a factorial consisting of three levels of phosphorus (0; 400 and 800 kg ha-1, applied as triple superphosphate combined with five levels of urban waste compost (0; 20; 40; 60 and 80 t.ha-1, was arranged in randomized complete blocks with three replicates. Carrot plants were harvested 90 days after planting. After the harvest, a linear and quadratic effect for phosphorus and urban waste compost (p<0,01 was observed. The linear interaction P x quadratic urban compost was highly significant (p<0,01. The maximum root total production was 26.5 t.ha-1 corresponding to 18.5 t ha-1 of marketable yield, estimated by the calculated doses of 762.5 kg ha-1 of P2O5 and 53.2 t ha-1 of urban waste compost according to the function: Y(PROD = 4.541143 + 4.0088 x 10-2 P2O5 + 2

  11. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    Science.gov (United States)

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  12. Evaluation of Composting for Reducing Volume of Solid Waste on Contingency Bases

    Science.gov (United States)

    2012-05-23

    Reduce SW on Contingency Bases, 23 May 2012, E2S2 5 National Def nse Cent rgy and Environment • An excellent soil amendment that adds stable organics...and nutrients to improve the soil • Natural fertilizer and valuable humus that promotes weed and erosion control, protects plant roots...National Def nse Cent rgy and Environment CompTainers HotRot System Rocket® Composter DTE ENVIRO -DRUM EcoPOD Ag-Bag Technology National Defense

  13. Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe.

    Science.gov (United States)

    Karanasios, Evangelos; Tsiropoulos, Nikolaos G; Karpouzas, Dimitrios G; Ehaliotis, Constantinos

    2010-08-25

    Biobeds have been used in northern Europe for minimizing point source contamination of water resources by pesticides. However, little is known regarding their use in southern Europe where edaphoclimatic conditions and agriculture practices significantly differ. A first step toward their adaptation in southern Europe is the use of low-cost and easily available substrates as biomixture components. This study investigated the possibility of replacing peat with agricultural composts in the biomixture. Five composts from local substrates including olive leaves, cotton crop residues, cotton seeds, spent mushroom substrate, and commercial sea wrack were mixed with topsoil and straw (1:1:2). Degradation of a mixture of pesticides (dimethoate, indoxacarb, buprofezin, terbuthylazine, metribuzin, metalaxyl-M, iprodione, azoxystrobin) at two dose rates was tested in the compost biomixtures (BX), in corresponding peat biomixtures (OBX), and in soil. Adsorption-desorption of selected pesticides were also studied. Pesticide residues were determined by gas chromatography with nitrogen-phosphorus detector, except indoxacarb, which was determined with a microelectron capture detector. Overall, BX degraded the studied pesticides at rates markedly higher than those observed in soil and OBX, in which the slowest degradation rates were evident. Overall, the olive leaf compost biomixture showed the highest degradation capacity. Adsorption studies showed that OBX and BX had higher adsorption affinity compared to soil. Desorption experiments revealed that pesticide adsorption in biomixtures was not entirely reversible. The results suggest that substitution of peat with local composts will lead to optimization of the biobed system for use in Mediterranean countries.

  14. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  15. Determination of ''2''1''0Po in fertilizers by electrochemical deposition method

    International Nuclear Information System (INIS)

    Oezalp, N.; Sac, M.; Tanbay, A.; Yener, G.

    2001-01-01

    In this study, activities of radioactive polonium and natural radionuclide concentrations in fertilizer most consumed in agricultural lands in Turkey were measured. Fertilizers containing phosphorus and potassium increase yield and quality. But, they contain some radionuclides. These radionuclides dissolve in water and first transport into plants and then transport from plants to humans. In the latest years, artificial fertilizing has replaced natural fertilizing in agriculture. Therefore, fruits and vegetables contain radionuclides those are found in artificial fertilizers. In this study, electrochemical deposition technique with alpha counting method was used for determining the radioactivity level of polonium in fertilizers. Radium, potassium and thorium concentrations were measured by gamma spectrometry. TSP, MAP, DSP,MKP, (15-15-15), (18-18-18), (20-20-20) compost fertilizers consumed at most has been analyzed and the results were evaluated with respect to human health

  16. Effects of Organic and Inorganic Fertilizers on Marigold Growth and Flowering

    Science.gov (United States)

    Two experiments were conducted to evaluate the growth and flowering responses of greenhouse-grown French marigold (Tagetes patula L. ‘Janie Deep Orange’) to two non-composted broiler chicken litter-based organic fertilizers 4-2-2 and 3-3-3, and one commonly used synthetic controlled-release fertiliz...

  17. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...... these issues and being able to account for them is a prerequisite in compost engineering and for establishing and running a successful composting facility. Of specific importance is the final use of the compost product. Use in agriculture is described in Chapter 9.10 and the use of compost in soil amendment...

  18. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    Science.gov (United States)

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  19. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product.

    Science.gov (United States)

    Santos, Cátia; Fonseca, João; Aires, Alfredo; Coutinho, João; Trindade, Henrique

    2017-01-01

    The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C 0 (Control), C 10 , C 20 and C 40 , containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C 40 , was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Organic Fertilizer Production From Cattle Waste Vermicomposting Assisted By Lumbricus Rubellus

    Directory of Open Access Journals (Sweden)

    Siswo Sumardiono

    2011-07-01

    Full Text Available Composting is decomposition of compound in organic waste by specific treatment using microorganism aerobically. Natural composting for producing organic fertilizer from manure and market waste utilize long time processing and less equal to the market demand. Vermicomposting is a technique to produce high quality compos fertilizer from biodegradable garbage and mixture of red worm (Lumbricus Rubellus. In conventional compos production took 8 weeks of processing time, in vermicomposting only took half processing time of conventional technique. It is occurred by red worm additional ease cellulose degradation contain in manure which is could not decomposed with composting bacteria. The purposes of this research are to investigate the effect of manure comparison to red worm growth and to evaluate the effect of comparison between manure and market waste to red worm growth. This research was conducted by vary the weight of red worm (100 gr, 200 gr, 300 gr, 400 gr, 500 gr and market waste addition (50 gr, 100 gr, 150 gr, 200 gr, 300 gr. Moreover, 3 kg of manure was mixed by various weight of red worm, while variation of market waste addition was involved 500 gr red worm and 3 kg manure mixture. Optimum increasing weight of red worm that was obtained by 100 gr red worm addition is 160 gr within 2 weeks. In added market waste variation, the highest increasing of red worm was resulted by 50 gr market waste addition, with 60 gr increasing weight of red worm. Production of casting fertilizer was highly effected by composition of used materials such as medium, manure and red worm comparison as well as market waste additional

  2. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  3. State of art and prospectives of composting; Stato dell`arte e prospettive del compostaggio

    Energy Technology Data Exchange (ETDEWEB)

    Canditelli, M [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dip. Ambiente

    1995-10-01

    The report illustrates the importance of composting, as a technology for wastes disposal and resource recovery. The process of aerobic stabilization, microbial mechanisms and physic-chemical parameters characterizing such activities, have been described. Importance of separate collection and compost able compound selection in the optimization of this spontaneous biotechnology for biodegradable wastes and sludge treatment, is emphasized. It is to be noted that residues that it can be used as an appropriate management process that allow the utilization of different types of wastes, converting them into a good compost, a product seems to be fit both from agronomic and environmental point of view. Regulations in force both at national and regional levels (Lombardia, Piemonte, Veneto) as well as a course to revise the present legislation, particularly suggestion to introduce a certification system, identified by an agronomic-environmental quality-mark, have also been reported.

  4. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    Science.gov (United States)

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  6. Physiological Studies On Response Of Grape Transplants To Mineral And Irradiated Organic Fertilizers

    International Nuclear Information System (INIS)

    Mohamed, M.F.A.

    2013-01-01

    This work was conducted during two successive seasons throughout 2008, 2009 and 2010 years under green house conditions. Three factorial experiments were included the 1st was dealing with investigating the effect of soil added compost rate (0.0, 5.0, 10.0 and 20.0 %) and gamma irradiated compost dose (0.0, 5.0, 10.0 and 15.0 KGy). Where, two other experiments were devoted for studying the effect of soil applied compost (irradiated or un-irradiated) from one hand and the rate of either N (urea/ ammonium sulphate) or K (K 2 SO 4 ) fertilization rates from the other for 2nd and 3rd experiments, respectively. Obtained results could be summarized as follows: 1- Application of compost, in particular irradiated one at 10.0% was the most promising treatment in the 1st experiment, improved significantly all growth, leaf chlorophyll, stem total carbohydrates and leaf mineral composition especially macro elements (N, P and K). 2- All N or K soil applied reflected positively on the above mentioned measurements of Thompson seedless rooted cuttings with a relative tendency of variance occurred from one N or K treatment to another. 3- It can be concluded that compost application to coarse-textured soil improved it and reflected on plants. Irradiating compost with effective dose (10 KGy) greatly increased compost efficiency which could be reached the double.

  7. Presence of Legionella and Free-Living Amoebae in Composts and Bioaerosols from Composting Facilities

    Science.gov (United States)

    Conza, Lisa; Pagani, Simona Casati; Gaia, Valeria

    2013-01-01

    Several species of Legionella cause Legionnaires’ disease (LD). Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA) that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture) and FLA (by culture) in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila) were detected in 69.3% (61/88) of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba) in 92.0% (81/88). L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88) of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012) than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47) were positive for FLA and 10.6% (5/47) for L. pneumophila. Composts (62.8%) were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents. PMID:23844174

  8. Presence of Legionella and free-living Amoebae in composts and bioaerosols from composting facilities.

    Directory of Open Access Journals (Sweden)

    Lisa Conza

    Full Text Available Several species of Legionella cause Legionnaires' disease (LD. Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture and FLA (by culture in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila were detected in 69.3% (61/88 of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba in 92.0% (81/88. L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88 of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012 than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47 were positive for FLA and 10.6% (5/47 for L. pneumophila. Composts (62.8% were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents.

  9. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy

    DEFF Research Database (Denmark)

    Case, Sean; Jensen, Lars Stoumann

    2018-01-01

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following...... of the material (r = −0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total...

  10. Biotransformación del pelo residual de curtiembres

    Directory of Open Access Journals (Sweden)

    Ruth Viviana Numpaque

    2016-12-01

    Full Text Available La industria de curtiembres genera una alta carga contaminante representada por residuos líquidos, sólidos y gaseosos. Entre los residuos sólidos, el pelo residual es vertido directamente al río Bogotá y/o en rellenos sanitarios, desencadenando serios conflictos de orden ambiental, social y económico. El objetivo de esta investigación fue evaluar la capacidad de los microorganismos del EM y Agroplux en la transformación del pelo residual en compost. Se evaluaron tres tratamientos con pelo residual y materiales orgánicos de plaza en diferentes porcentajes y dos controles, utilizando el diseño completamente al azar, con tres repeticiones. Durante el compostaje se determinaron las variables temperatura, formación de agregados, pH y conductividad eléctrica. El desarrollo de la temperatura ocurrió en ciclos que concordaron con los volteos y re-inoculaciones. En el tercer ciclo el mayor incremento de temperatura fue obtenido en los tres tratamientos, cuando ya se había agotado la mayor parte de los residuos orgánicos. La formación de agregados indicó que el proceso se llevó a efecto principalmente en el tratamiento con 20% de pelo residual más 80% de residuos orgánicos. Además de su color oscuro y la ausencia de olor y fragmentos, el compost producido mediante dicho tratamiento mostró la conductividad eléctrica más baja y un pH casi neutro. Se concluye que los microorganismos del EM y Agroplux tienen capacidad para transformar el pelo residual en compost y por lo tanto representan una alternativa viable para la continuación del funcionamiento de la industria de curtiembres en Villapinzón (Cundinamarca y en otras regiones de Colombia.

  11. Effect of addition of organic waste on reduction of Escherichia coli during cattle feces composting under high-moisture condition.

    Science.gov (United States)

    Hanajima, Dai; Kuroda, Kazutaka; Fukumoto, Yasuyuki; Haga, Kiyonori

    2006-09-01

    To ensure Escherichia coli reduction during cattle feces composting, co-composting with a variety of organic wastes was examined. A mixture of dairy cattle feces and shredded rice straw (control) was blended with organic wastes (tofu residue, rice bran, rapeseed meal, dried chicken feces, raw chicken feces, or garbage), and composted using a bench-scale composter under the high-moisture condition (78%). The addition of organic waste except chicken feces brought about maximum temperatures of more than 55 degrees C and significantly reduced the number of E. coli from 10(6) to below 10(2)CFU/g-wet after seven days composting, while in the control treatment, E. coli survived at the same level as that of raw feces. Enhancements of the thermophilic phase and E. coli reduction were related to the initial amount of easily digestible carbon in mass determined as BOD. BOD value more than 166.2 mg O2/DMg brought about significant E. coli reduction.

  12. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biotransformation of Organic Waste into High Quality Fertilizer

    DEFF Research Database (Denmark)

    Bryndum, Sofie

    Agriculture faces several challenges of future provision of nutrients such as limited P reserves and increasing prices of synthetic fertilizers and recycling of nutrients from organic waste can be an important strategy for the long-term sustainability of the agricultural systems. Organically...... and S, is often low; and (3) the unbalanced composition of nutrients rarely matches crop demands. Therefore the objective of this project was to investigate the potential for (1) recycling nutrients from agro-industrial wastes and (2) compost biotransformation into high-quality organic fertilizers...... other uses into fertilizer use would be unlikely. An estimated ~50 % of the total organic waste pool, primarily consisting of animal manure and waste from the processing of sugar cane, coffee, oil palm and oranges, is currently being re-used as “fertilizers”, meaning it is eventually returned...

  14. Effect of farmyard manure, mineral fertilizers and mung bean residues on some microbiological properties of eroded soil in district Swat

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2009-05-01

    Full Text Available The present study was conducted to evaluate the efficacy of organic and inorganic fertilizers and mung bean residues on improving microbiological properties of eroded lands of District Swat, North West Frontier Province (NWFP Pakistan under wheat-mung bean-wheat cropping system during 2006 to 2008. The experiment was laid out in RCBD split-plot arrangement. Mung bean was grown and a basal dose of 25-60 kg N-P2O5 ha-1 was applied. After mung bean harvest, three residues management practices, i.e., R+ (mung bean residues incorporated into soil, R- (mung bean residues removed and F (fallow were performed in the main-plots. Sub-plot factor consisted of six fertilizer treatments for wheat crop i.e., T1 (control, T2 (120 kg N ha-1, T3 (120-90-0 kg N-P2O5-K2O ha-1, T4 (120-90-60 kg N-P2O5-K2O ha-1, T5 (90-90-60 kg N-P2O5-K2O + 10 t FYM ha-1 and T6 (60-90-60 kg N-P2O5- K2O + 20 t FYM ha-1. The results showed that microbial activity, microbial biomass-C and-N, mineralizable C and N were highest with T6 as well as with the incorporation of mung bean residues (R+. Compared with control, T6 increased microbial biomass C, N, mineralizable C and N by 33.8, 164.1, 35.5 and 110.6% at surface and 38.4, 237.5, 38.7 and 124.1% at sub-surface soil, respectively, while R+ compared with fallow increased these properties by 33.7, 47.4, 21.4 and 32.2% at surface and 36.8, 51, 21.9 and 35.4% at sub-surface soil, respectively. Inclusion of mung bean with its residues incorporated and application of 20 t FYM ha-1 and reducing inorganic N fertilizer to 60 kg N ha-1 for wheat is recommended for improving microbiological properties of slightly eroded lands

  15. Effect of Organic Fertilizers on Yield and Yield Components of Safflower (Carthamus tinctorious L.

    Directory of Open Access Journals (Sweden)

    S. M Azimzadeh

    2017-12-01

    two different application dates of them on safflower an experiment was conducted at Islamic Azad University of Shirvan, Iran, in growing season of 2012-2013 and 2013-2014. Date of first application was two month prior of planting and date of second application was simultaneous with planting. Amounts of vermicompost included 4, 7 and 10 ton ha-1, municipal solid waste compost included 5, 10 and 15 ton ha-1, cow manure included 20, 33 and 50 ton ha-1, nitrogen chemical fertilizer included 100 kg ha-1 and control. Experiment was conducted as split plot based on randomized complete block design with three replications. Application time of organic fertilizers located in main plots and each one of organic fertilizers levels with nitrogen fertilizer and control as a independent treatment located in subplots. Required rates of different fertilizers were scattered by hand into the plots on 20th Feb then no operation was done until April 21th. On April 21th, main plots which should have been applied fertilization simultaneous with planting were received fertilizers. At this time, all of the plot which have been received fertilizers on Feb 20th plus plots which received fertilizers recently were planted simultaneously. Data were combined analyzed by MSTAT-C software and means were compared with Duncan’s test at the 5% level of probability. Results and Discussion The results showed that in first growing season, fertilizer application before planting caused 12% yield increment of safflower compared with fertilizer application at planting time but in second growing season, fertilizer application at the time of planting caused 12.8% yield increment of safflower compared with fertilizer application before planting. Enough time for manure decomposition can be the reason for this difference. In first year in fertilizer application before planting, all treatments except 10 ton h-1 municipal solid waste compost produced more seed yield than control and chemical fertilizer treatments

  16. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Production and characterization of APAT-RM004 (compost) and APAT-RM005 (agricultural soil) matrix reference materials

    International Nuclear Information System (INIS)

    Belli, M.; Balzamo, S.; Barbizzi, S.; Centioli, D.; Zorzi, P. de; Galas, C.; Gaudino, S.; Guagnini, T.; Pati, A.; Ravaioli, C.; Rosamilia, S.; Sentina, G.

    2006-01-01

    Compost is the decomposed remnants of organic materials (usually those with plant origins) and it is used in gardening and agriculture, mixed in with the soil. It improves soil structure, increases the amount of organic matter, and provides nutrients. Compost is a common name for humus, which is the result of the decomposition of organic matter. Generally, compost is the raw material obtained by the aerobic decomposition of the organic residues of the municipal waste or of the vegetable market waste. Composting is the industrial operation to produce compost on a large scale and it is the controlled decomposition technique of organic matter. Rather than allowing nature to take its slow course, a composter provides an optimal environment in which decomposer can thrive. The compost raw material used to prepare the APAT-RM004 reference material has been obtained from an aerobic composting plant located near Rome (Italy). This plant produces compost from organic waste originating from municipal routine plant trimmings, pruning, lawn mowing and wastes deriving from vegetable markets. The homogeneity test was carried out on 10 different units (bottles) sequentially selected over the whole bottling process. This study has been carried by measuring the total contents of C by CHN-S considering a sample intake of 0.02g and by the determination of the Hg content by direct mercury analyzer (DMA-80) considering a sample intake of 0.5g. Both techniques achieve high precision levels and require little or no sample processing prior to analysis

  18. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  19. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    Science.gov (United States)

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Strike It Rich with Classroom Compost.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)