Wavefront error sensing for LDR
Tubbs, Eldred F.; Glavich, T. A.
1988-01-01
Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.
Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data
Wilson, R. G.
1975-01-01
The diffraction theory of the Foucault test provides an integral formula expressing the complex amplitude and irradiance distribution in the Foucault pattern of a test mirror (lens) as a function of wavefront error. Recent literature presents methods of inverting this formula to express wavefront error in terms of irradiance in the Foucault pattern. The present paper describes a study in which the inversion formulation was applied to photometric Foucault-test measurements on a nearly diffraction-limited mirror to determine wavefront errors for direct comparison with ones determined from scatter-plate interferometer measurements. The results affirm the practicability of the Foucault test for quantitative wavefront analysis of very small errors, and they reveal the fallacy of the prevalent belief that the test is limited to qualitative use only. Implications of the results with regard to optical testing and the potential use of the Foucault test for wavefront analysis in orbital space telescopes are discussed.
Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.
Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David
2012-06-01
This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.
Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent
2008-07-01
This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.
Optimal control strategy to reduce the temporal wavefront error in AO systems
Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.
2004-01-01
An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the
Analysis technique for controlling system wavefront error with active/adaptive optics
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Study of wavefront error and polarization of a side mounted infrared window
Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin
2008-03-01
The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.
Predicting crystalline lens fall caused by accommodation from changes in wavefront error
He, Lin; Applegate, Raymond A.
2011-01-01
PURPOSE To illustrate and develop a method for estimating crystalline lens decentration as a function of accommodative response using changes in wavefront error and show the method and limitations using previously published data (2004) from 2 iridectomized monkey eyes so that clinicians understand how spherical aberration can induce coma, in particular in intraocular lens surgery. SETTINGS College of Optometry, University of Houston, Houston, USA. DESIGN Evaluation of diagnostic test or technology. METHODS Lens decentration was estimated by displacing downward the wavefront error of the lens with respect to the limiting aperture (7.0 mm) and ocular first surface wavefront error for each accommodative response (0.00 to 11.00 diopters) until measured values of vertical coma matched previously published experimental data (2007). Lens decentration was also calculated using an approximation formula that only included spherical aberration and vertical coma. RESULTS The change in calculated vertical coma was consistent with downward lens decentration. Calculated downward lens decentration peaked at approximately 0.48 mm of vertical decentration in the right eye and approximately 0.31 mm of decentration in the left eye using all Zernike modes through the 7th radial order. Calculated lens decentration using only coma and spherical aberration formulas was peaked at approximately 0.45 mm in the right eye and approximately 0.23 mm in the left eye. CONCLUSIONS Lens fall as a function of accommodation was quantified noninvasively using changes in vertical coma driven principally by the accommodation-induced changes in spherical aberration. The newly developed method was valid for a large pupil only. PMID:21700108
Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters
Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.
Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes
Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.
Donnelly, William J., III
Purpose. The purpose of this research is to determine if Shack/Hartmann (S/H) wavefront sensing (SHWS) can be used to objectively quantify ocular forward scatter. Methods. Patient S/H images from an study of nuclear cataract were analyzed to extract scattering data by examining characteristics of the lenslet point spread functions. Physical and computer eye models with simulated cataract were developed to control variables and to test the underlying assumptions for using SHWS to measure aberrations and light scatter from nuclear cataract. Results. (1) For patients with nuclear opalescence (NO) >=2.5, forward scatter metrics in a multiple regression analysis account for 33% of variance in Mesopic Low Contrast acuity. Prediction of visual acuity was improved by employing a multiple regression analysis that included both backscatter and forward scatter metrics (R2 = 51%) for Mesopic High Contrast acuity. (2) The physical and computer models identified areas of instrument noise (e.g., stray light and unwanted reflections) improving the design of a second generation SHWS for measuring both wavefront error and scatter. (3) Exposure time had the most influence on, and pupil size had negligible influence on forward scatter metrics. Scatter metric MAX_SD predicted changes in simulated cataract up to R2 = 92%. There were small but significant differences (alpha = 0.05) between 1.5-pass and 1-pass wavefront measurements inclusive of variable simulated nuclear cataract and exposure; however, these differences were not visually significant. Improvements to the SHWS imaging hardware, software, and test protocol were implemented in a second generation SHWS to be used in a longitudinal cataract study. Conclusions. Forward light scatter in real eyes can be quantified using a SHWS. In the presence of clinically significant nuclear opalescence, forward scatter metrics predicted acuity better than the LOCS III NO backscatter metric. The superiority of forward scatter metrics over back
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
Koek, W.D.; Zwet, E.J. van
2015-01-01
When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
Sandri, P.
2017-12-01
The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.
Ocular wavefront aberration and refractive error in pre-school children
Thapa, Damber; Fleck, Andre; Lakshminarayanan, Vasudevan; Bobier, William R.
2011-11-01
Hartmann-Shack images taken from an archived collection of SureSight refractive measurements of pre-school children in Oxford County, Ontario, Canada were retrieved and re-analyzed. Higher-order aberrations were calculated over the age range of 3 to 6 years. These higher-order aberrations were compared with respect to magnitudes of ametropia. Subjects were classified as emmetropic (range -0.5 to + 0.5D), low hyperopic (+ 0.5 to +2D) and high hyperopic (+2D or more) based upon the resulting spherical equivalent. Higher-order aberrations were found to increase with higher levels of hyperopia (p < 0.01). The strongest effect was for children showing more than +2.00D of hyperopia. The correlation coefficients were small in all of the higher-order aberrations; however, they were significant (p < 0.01). These analyses indicate a weak association between refractive error and higher-order aberrations in pre-school children.
Moshirfar, Majid; McCaughey, Michael V; Santiago-Caban, Luis
2015-01-01
Postoperative residual refractive error following cataract surgery is not an uncommon occurrence for a large proportion of modern-day patients. Residual refractive errors can be broadly classified into 3 main categories: myopic, hyperopic, and astigmatic. The degree to which a residual refractive error adversely affects a patient is dependent on the magnitude of the error, as well as the specific type of intraocular lens the patient possesses. There are a variety of strategies for resolving residual refractive errors that must be individualized for each specific patient scenario. In this review, the authors discuss contemporary methods for rectification of residual refractive error, along with their respective indications/contraindications, and efficacies. PMID:25663845
Residual-based Methods for Controlling Discretization Error in CFD
2015-08-24
ccjccjccj iVi Jwxf V dVxf V 1 ,,, )(det)( 1)(1 . (25) where J is the Jacobian of the coordinate transformation and the weights can be found from...179. Layton, W., Lee , H.K., and Peterson, J. (2002). “A Defect-Correction Method for the Incompressible Navier-Stokes Equations,” Applied Mathematics...and Computation, Vol. 129, pp. 1-19. Lee , D. and Tsuei, Y.M. (1992). “A Formula for Estimation of Truncation Errors of Convective Terms in a
Pencil kernel correction and residual error estimation for quality-index-based dose calculations
International Nuclear Information System (INIS)
Nyholm, Tufve; Olofsson, Joergen; Ahnesjoe, Anders; Georg, Dietmar; Karlsson, Mikael
2006-01-01
Experimental data from 593 photon beams were used to quantify the errors in dose calculations using a previously published pencil kernel model. A correction of the kernel was derived in order to remove the observed systematic errors. The remaining residual error for individual beams was modelled through uncertainty associated with the kernel model. The methods were tested against an independent set of measurements. No significant systematic error was observed in the calculations using the derived correction of the kernel and the remaining random errors were found to be adequately predicted by the proposed method
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong; Sun, Shuyu; Xie, Xiaoping
2015-01-01
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong
2015-10-26
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
A new method for weakening the combined effect of residual errors on multibeam bathymetric data
Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue
2014-12-01
Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-11-01
Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases
International Nuclear Information System (INIS)
Chan, Mark; Grehn, Melanie; Cremers, Florian; Siebert, Frank-Andre; Wurster, Stefan; Huttenlocher, Stefan; Dunst, Jürgen; Hildebrandt, Guido; Schweikard, Achim; Rades, Dirk; Ernst, Floris
2017-01-01
Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.
Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases
Energy Technology Data Exchange (ETDEWEB)
Chan, Mark [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Tuen Mun Hospital, Hong Kong (China); Grehn, Melanie [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Cremers, Florian [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Siebert, Frank-Andre [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Wurster, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Department for Radiation Oncology, University Medicine Greifswald, Greifswald (Germany); Huttenlocher, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Dunst, Jürgen [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen (Denmark); Hildebrandt, Guido [Department for Radiation Oncology, University Medicine Rostock, Rostock (Germany); Schweikard, Achim [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Rades, Dirk [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Ernst, Floris [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); and others
2017-03-15
Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.
David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera
2017-04-01
This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George
2017-03-01
Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George
2016-04-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).
Fellner, Klemens; Kovtunenko, Victor A
2016-01-01
A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.
Directory of Open Access Journals (Sweden)
K. B. Pershin
2017-01-01
Full Text Available The review presents an analysis of the literature data on the methods of surgical correction of residual refractive error after cataract phacoemulsification. Keratorefractive and intraocular approaches are considered in details. A comparison of the efficacy and safet y of different groups of methods on the example of comparative studies is given. Historically earlier keratorefractive methods (laser vision correction with LASIK and PRK techniques on intact eyes, LASIK after implantation of multifocal IOLs and arcuate keratotomy after phaco are indicated for the correction of astigmatic refractive error and a small spherical refractive error. Intraocular methods, including the replacement of the IOL and «piggyback» IOLs implantation are used to correct a large spherical refractive error. The introduction of new technology, the implantation of light-adjustable IOLs, will expand the existing evidence and provide greater predictabilit y and efficiency of the method of correction of residual refractive error.
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
Enhancing Intervention for Residual Rhotic Errors Via App-Delivered Biofeedback: A Case Study.
Byun, Tara McAllister; Campbell, Heather; Carey, Helen; Liang, Wendy; Park, Tae Hong; Svirsky, Mario
2017-06-22
Recent research suggests that visual-acoustic biofeedback can be an effective treatment for residual speech errors, but adoption remains limited due to barriers including high cost and lack of familiarity with the technology. This case study reports results from the first participant to complete a course of visual-acoustic biofeedback using a not-for-profit iOS app, Speech Therapist's App for /r/ Treatment. App-based biofeedback treatment for rhotic misarticulation was provided in weekly 30-min sessions for 20 weeks. Within-treatment progress was documented using clinician perceptual ratings and acoustic measures. Generalization gains were assessed using acoustic measures of word probes elicited during baseline, treatment, and maintenance sessions. Both clinician ratings and acoustic measures indicated that the participant significantly improved her rhotic production accuracy in trials elicited during treatment sessions. However, these gains did not transfer to generalization probes. This study provides a proof-of-concept demonstration that app-based biofeedback is a viable alternative to costlier dedicated systems. Generalization of gains to contexts without biofeedback remains a challenge that requires further study. App-delivered biofeedback could enable clinician-research partnerships that would strengthen the evidence base while providing enhanced treatment for children with residual rhotic errors. https://doi.org/10.23641/asha.5116318.
Differential Effects of Visual-Acoustic Biofeedback Intervention for Residual Speech Errors
McAllister Byun, Tara; Campbell, Heather
2016-01-01
Recent evidence suggests that the incorporation of visual biofeedback technologies may enhance response to treatment in individuals with residual speech errors. However, there is a need for controlled research systematically comparing biofeedback versus non-biofeedback intervention approaches. This study implemented a single-subject experimental design with a crossover component to investigate the relative efficacy of visual-acoustic biofeedback and traditional articulatory treatment for residual rhotic errors. Eleven child/adolescent participants received ten sessions of visual-acoustic biofeedback and 10 sessions of traditional treatment, with the order of biofeedback and traditional phases counterbalanced across participants. Probe measures eliciting untreated rhotic words were administered in at least three sessions prior to the start of treatment (baseline), between the two treatment phases (midpoint), and after treatment ended (maintenance), as well as before and after each treatment session. Perceptual accuracy of rhotic production was assessed by outside listeners in a blinded, randomized fashion. Results were analyzed using a combination of visual inspection of treatment trajectories, individual effect sizes, and logistic mixed-effects regression. Effect sizes and visual inspection revealed that participants could be divided into categories of strong responders (n = 4), mixed/moderate responders (n = 3), and non-responders (n = 4). Individual results did not reveal a reliable pattern of stronger performance in biofeedback versus traditional blocks, or vice versa. Moreover, biofeedback versus traditional treatment was not a significant predictor of accuracy in the logistic mixed-effects model examining all within-treatment word probes. However, the interaction between treatment condition and treatment order was significant: biofeedback was more effective than traditional treatment in the first phase of treatment, and traditional treatment was more effective
Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.
2018-04-01
Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.
Wavefront-Guided and Wavefront-Optimised Laser Treatments
Directory of Open Access Journals (Sweden)
Canan Aslı Utine
2012-12-01
Full Text Available Optical aberrations of the eye are the errors of the optical system that limit the resolution, contrast and amount of detail in the image formed on the retina. Wavefront technology allows us to measure these optical aberrations, calculate mathematically, and transfer this information into excimer laser system to perform customized treatment on the cornea. Two treatment algorithms developed to create low aberration-corneal profile are wavefront-optimised (WF-O and wavefront-guided (WF-G treatments. WF-O treatment, aims not to increase the existing spherical aberration while treatment is based on manifest refractive error as in conventional laser treatments. By increasing the number of laser spots applied peripherally in order to optimize the corneal asphericity, the preoperative central:peripheral keratometry ratio is preserved and optic zone shrinkage is prevented. On the other hand, WF-G treatment is based on aberrometry measurements and aims to correct the existing high-order aberrations in the eye. Thus, retinal image with high spatial details can be achieved. However, presence of postoperative defocus can abolish the successful results obtained with WF-G treatment. Clinical randomized controlled trials showed that in patients with preoperative RMS value of <0.3 μm, higher order aberration outcomes are similar after WF-G and WF-O treatments, but WF-G treatment yields better results when it is ≥0.4 μm. In normal eyes, very limited visual advantage can be achieved with WF-G treatment and preservation of asphericity value with WF-O treatment carries greater importance. On the other hand, in case of high astigmatism or higher order aberrations other than spherical aberration, decreasing aberrations with WF-G treatment becomes more important. In this study, we aimed to make a comparative analysis of characteristics and outcomes of the two treatment algorithms. (Turk J Ophthalmol 2012; 42: 474-8
International Nuclear Information System (INIS)
Laursen, Louise Vagner; Elstrøm, Ulrik Vindelev; Vestergaard, Anne; Muren, Ludvig P.; Petersen, Jørgen Baltzer; Lindegaard, Jacob Christian; Grau, Cai; Tanderup, Kari
2012-01-01
Purpose: Due to the often quite extended treatment fields in cervical cancer radiotherapy, uncorrected rotational set-up errors result in a potential risk of target miss. This study reports on the residual rotational set-up error after using daily cone beam computed tomography (CBCT) to position cervical cancer patients for radiotherapy treatment. Methods and materials: Twenty-five patients with locally advanced cervical cancer had daily CBCT scans (650 CBCTs in total) prior to treatment delivery. We retrospectively analyzed the translational shifts made in the clinic prior to each treatment fraction as well as the residual rotational errors remaining after translational correction. Results: The CBCT-guided couch movement resulted in a mean translational 3D vector correction of 7.4 mm. Residual rotational error resulted in a target shift exceeding 5 mm in 57 of the 650 treatment fractions. Three patients alone accounted for 30 of these fractions. Nine patients had no shifts exceeding 5 mm and 13 patients had 5 or less treatment fractions with such shifts. Conclusion: Twenty-two of the 25 patients have none or few treatment fractions with target shifts larger than 5 mm due to residual rotational error. However, three patients display a significant number of shifts suggesting a more systematic set-up error.
Object-oriented wavefront correction in an asymmetric amplifying high-power laser system
Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo
2018-05-01
An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.
A method for the estimation of the residual error in the SALP approach for fault tree analysis
International Nuclear Information System (INIS)
Astolfi, M.; Contini, S.
1980-01-01
The aim of this report is the illustration of the algorithms implemented in the SALP-MP code for the estimation of the residual error. These algorithms are of more general use, and it would be possible to implement them on all codes of the series SALP previously developed, as well as, with minor modifications, to analysis procedures based on 'top-down' approaches. At the time, combined 'top-down' - 'bottom up' procedures are being studied in order to take advantage from both approaches for further reduction of computer time and better estimation of the residual error, for which the developed algorithms are still applicable
A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media
Chen, Huangxin
2016-12-09
In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.
Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients
International Nuclear Information System (INIS)
Letourneau, Daniel; Martinez, Alvaro A.; Lockman, David; Yan Di; Vargas, Carlos; Ivaldi, Giovanni; Wong, John
2005-01-01
Purpose: Kilovoltage cone-beam CT (CBCT) implemented on board a medical accelerator is available for image-guidance applications in our clinic. The objective of this work was to assess the magnitude and stability of the residual setup error associated with CBCT online-guided prostate cancer patient setup. Residual error pertains to the uncertainty in image registration, the limited mechanical accuracy, and the intrafraction motion during imaging and treatment. Methods and Materials: The residual error for CBCT online-guided correction was first determined in a phantom study. After online correction, the phantom residual error was determined by comparing megavoltage portal images acquired every 90 deg. to the corresponding digitally reconstructed radiographs. In the clinical study, 8 prostate cancer patients were implanted with three radiopaque markers made of high-winding coils. After positioning the patient using the skin marks, a CBCT scan was acquired and the setup error determined by fusing the coils on the CBCT and planning CT scans. The patient setup was then corrected by moving the couch accordingly. A second CBCT scan was acquired immediately after the correction to evaluate the residual target setup error. Intrafraction motion was evaluated by tracking the coils and the bony landmarks on kilovoltage radiographs acquired every 30 s between the two CBCT scans. Corrections based on soft-tissue registration were evaluated offline by aligning the prostate contours defined on both planning CT and CBCT images. Results: For ideal rigid phantoms, CBCT image-guided treatment can usually achieve setup accuracy of 1 mm or better. For the patients, after CBCT correction, the target setup error was reduced in almost all cases and was generally within ±1.5 mm. The image guidance process took 23-35 min, dictated by the computer speed and network configuration. The contribution of the intrafraction motion to the residual setup error was small, with a standard deviation of
Wavefront division digital holography
Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan
2018-05-01
Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.
A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array
International Nuclear Information System (INIS)
Toeppen, J.S.; Bliss, E.S.; Long, T.W.; Salmon, J.T.
1991-07-01
we have developed a video Hartmann wavefront sensor that incorporates a monolithic array of microlenses as the focusing elements. The sensor uses a monolithic array of photofabricated lenslets. Combined with a video processor, this system reveals local gradients of the wavefront at a video frame rate of 30 Hz. Higher bandwidth is easily attainable with a camera and video processor that have faster frame rates. When used with a temporal filter, the reconstructed wavefront error is less than 1/10th wave
WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance
Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team
2018-01-01
The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.
International Nuclear Information System (INIS)
Aikens, D.; Roussel, A.; Bray, M.
1995-01-01
In preparation for beginning the design of the Nation Ignition Facility (NIF) in the United States and the Laser Mega-Joule (LMJ) in France, the authors are in the process of deriving new specifications for the large optics required for these facilities. Traditionally, specifications for transmitted wavefront and surface roughness of large ICF optics have been based on parameters which were easily measured during the early 1980's, such as peak-to-valley wavefront error (PV) and root-mean-square (RMS) surface roughness, as well as wavefront gradients in terms of waves per cm. While this was convenient from a fabrication perspective, since the specifications could be easily interpreted by fabricators in terms which were understood and conventionally measurable, it did not accurately reflect the requirements of the laser system. For the NIF and LMJ laser systems, the authors use advances in metrology and interferometry and an enhanced understanding of laser system performance to derive specifications which are based on power spectral densities (PSD's.) Such requirements can more accurately reflect the requirements of the laser system for minimizing the amplitude of mid- and high-spatial frequency surface and transmitted wavefront errors, while not over constraining the fabrication in terms of low spatial frequencies, such as residual coma or astigmatism, which are typically of a very large amplitude compared to periodic errors. In order to study the effect of changes in individual component tolerances, it is most useful to have a model capable of simulating real behavior. The basis of this model is discussed in this paper, outlining the general approach to the open-quotes theoreticalclose quotes study of ICF optics specifications, and an indication of the type of specification to be expected will be shown, based upon existing ICF laser optics
Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg
2014-09-01
A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.
Estima de error residual explícita para cantidades de interés utilizando funciones burbuja
Rosales, R.; Díez, P.
2009-01-01
En este trabajo se introduce un nuevo estimador de error residual explícito a posteriori para problemas elípticos orientado a cantidades de interés. Se propone utilizar funciones burbuja sobre elementos y sobre aristas. Se parte de la solución de elementos finitos del problema primal y de la de un problema junto (o dual), asociado a una cantidad de interés definida por el usuario. Por ejemplo, la variación de temperatura o el desplazamiento de un punto del dominio. La estima se calcula en...
Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.
Malik, Nadeem A
2017-01-01
Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS), Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992)], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K) due to the sweeping effect decreases with increasing pair separation (σl), such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.
Directory of Open Access Journals (Sweden)
Guo Xiao-Mao
2010-10-01
Full Text Available Abstract Background The cone beam CT (CBCT guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT guided accelerated partial breast irradiation (APBI. Methods Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. Results A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR, 3.1 mm and 2.3 mm in the superior-inferior (SI, and 2.3 mm and 2.0 mm in the anterior-posterior (AP directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10
International Nuclear Information System (INIS)
Cai, Gang; Hu, Wei-Gang; Chen, Jia-Yi; Yu, Xiao-Li; Pan, Zi-Qiang; Yang, Zhao-Zhi; Guo, Xiao-Mao; Shao, Zhi-Min; Jiang, Guo-Liang
2010-01-01
The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI). Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction
Wavefront Measurement in Ophthalmology
Molebny, Vasyl
Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.
Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin
2018-03-01
Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.
Receding-horizon adaptive contyrol of aero-optical wavefronts
Tesch, J.; Gibson, S.; Verhaegen, M.
2013-01-01
A new method for adaptive prediction and correction of wavefront errors in adaptive optics (AO) is introduced. The new method is based on receding-horizon control design and an adaptive lattice filter. Experimental results presented illustrate the capability of the new adaptive controller to predict
Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.
2017-04-01
In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.
Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue
2014-11-01
Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.
International Nuclear Information System (INIS)
Ahmad, Rozilawati; Hoogeman, Mischa S.; Quint, Sandra; Mens, Jan Willem; Osorio, Eliana M. Vásquez; Heijmen, Ben J.M.
2012-01-01
Purpose: To quantify the impact of uncorrected or partially corrected pelvis rotation and spine bending on region-specific residual setup errors in prone-treated cervical cancer patients. Methods and materials: Fifteen patients received an in-room CBCT scan twice a week. CBCT scans were registered to the planning CT-scan using a pelvic clip box and considering both translations and rotations. For daily correction of the detected translational pelvis setup errors by couch shifts, residual setup errors were determined for L5, L4 and seven other points of interest (POIs). The same was done for a procedure with translational corrections and limited rotational correction (±3°) by a 6D positioning device. Results: With translational correction only, residual setup errors were large especially for L5/L4 in AP direction (Σ = 5.1/5.5 mm). For the 7 POIs the residual setup errors ranged from 1.8 to 5.6 mm (AP). Using the 6D positioning device, the errors were substantially smaller (for L5/L4 in AP direction Σ = 2.7/2.2 mm). Using this device, the percentage of fractions with a residual AP displacement for L4 > 5 mm reduced from 47% to 9%. Conclusions: Setup variations caused by pelvis rotations are large and cannot be ignored in prone treatment of cervical cancer patients. Corrections with a 6D positioning device may considerably reduce resulting setup errors, but the residual setup errors should still be accounted for by appropriate CTV-to-PTV margins.
Wavefront measurement of plastic lenses for mobile-phone applications
Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen
2016-08-01
In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.
Integrated Wavefront Corrector, Phase II
National Aeronautics and Space Administration — One of the critical issues for NASA missions requiring high contrast astrophysical imaging such as Terrestrial Planet Finder (TPF) is wavefront control. Without use...
International Nuclear Information System (INIS)
Wust, Peter; Graf, Reinhold; Boehmer, Dirk; Budach, Volker
2010-01-01
Purpose: To evaluate the residual errors and required safety margins after stereoscopic kilovoltage (kV) X-ray target localization of the prostate in image-guided radiotherapy (IGRT) using internal fiducials. Patients and Methods: Radiopaque fiducial markers (FMs) have been inserted into the prostate in a cohort of 33 patients. The ExacTrac/Novalis Body trademark X-ray 6d image acquisition system (BrainLAB AG, Feldkirchen, Germany) was used. Corrections were performed in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) direction. Rotational errors around LR (x-axis), AP (y) and SI (z) have been recorded for the first series of nine patients, and since 2007 for the subsequent 24 patients in addition corrected in each fraction by using the Robotic Tilt Module trademark and Varian Exact Couch trademark. After positioning, a second set of X-ray images was acquired for verification purposes. Residual errors were registered and again corrected. Results: Standard deviations (SD) of residual translational random errors in LR, AP, and SI coordinates were 1.3, 1.7, and 2.2 mm. Residual random rotation errors were found for lateral (around x, tilt), vertical (around y, table), and longitudinal (around z, roll) and of 3.2 , 1.8 , and 1.5 . Planning target volume (PTV)-clinical target volume (CTV) margins were calculated in LR, AP, and SI direction to 2.3, 3.0, and 3.7 mm. After a second repositioning, the margins could be reduced to 1.8, 2.1, and 1.8 mm. Conclusion: On the basis of the residual setup error measurements, the margin required after one to two online X-ray corrections for the patients enrolled in this study would be at minimum 2 mm. The contribution of intrafractional motion to residual random errors has to be evaluated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wust, Peter [Dept. of Radiation Oncology, Charite - Univ. Medicine Berlin, Campus Virchow-Klinikum, Berlin (Germany); Graf, Reinhold; Boehmer, Dirk; Budach, Volker
2010-10-15
Purpose: To evaluate the residual errors and required safety margins after stereoscopic kilovoltage (kV) X-ray target localization of the prostate in image-guided radiotherapy (IGRT) using internal fiducials. Patients and Methods: Radiopaque fiducial markers (FMs) have been inserted into the prostate in a cohort of 33 patients. The ExacTrac/Novalis Body trademark X-ray 6d image acquisition system (BrainLAB AG, Feldkirchen, Germany) was used. Corrections were performed in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) direction. Rotational errors around LR (x-axis), AP (y) and SI (z) have been recorded for the first series of nine patients, and since 2007 for the subsequent 24 patients in addition corrected in each fraction by using the Robotic Tilt Module trademark and Varian Exact Couch trademark. After positioning, a second set of X-ray images was acquired for verification purposes. Residual errors were registered and again corrected. Results: Standard deviations (SD) of residual translational random errors in LR, AP, and SI coordinates were 1.3, 1.7, and 2.2 mm. Residual random rotation errors were found for lateral (around x, tilt), vertical (around y, table), and longitudinal (around z, roll) and of 3.2 , 1.8 , and 1.5 . Planning target volume (PTV)-clinical target volume (CTV) margins were calculated in LR, AP, and SI direction to 2.3, 3.0, and 3.7 mm. After a second repositioning, the margins could be reduced to 1.8, 2.1, and 1.8 mm. Conclusion: On the basis of the residual setup error measurements, the margin required after one to two online X-ray corrections for the patients enrolled in this study would be at minimum 2 mm. The contribution of intrafractional motion to residual random errors has to be evaluated. (orig.)
Design of pre-optics for laser guide star wavefront sensor for the ELT
Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel
2017-12-01
In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.
Wavefront cellular learning automata.
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Wavefront cellular learning automata
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
International Nuclear Information System (INIS)
Graff, Pierre; Kirby, Neil; Weinberg, Vivian; Chen, Josephine; Yom, Sue S.; Lambert, Louise; Pouliot, Jean
2013-01-01
Purpose: To assess residual setup errors during head and neck radiation therapy and the resulting consequences for the delivered dose for various patient alignment procedures. Methods and Materials: Megavoltage cone beam computed tomography (MVCBCT) scans from 11 head and neck patients who underwent intensity modulated radiation therapy were used to assess setup errors. Each MVCBCT scan was registered to its reference planning kVCT, with seven different alignment procedures: automatic alignment and manual registration to 6 separate bony landmarks (sphenoid, left/right maxillary sinuses, mandible, cervical 1 [C1]-C2, and C7-thoracic 1 [T1] vertebrae). Shifts in the different alignments were compared with each other to determine whether there were any statistically significant differences. Then, the dose distribution was recalculated on 3 MVCBCT images per patient for every alignment procedure. The resulting dose-volume histograms for targets and organs at risk (OARs) were compared to those from the planning kVCTs. Results: The registration procedures produced statistically significant global differences in patient alignment and actual dose distribution, calling for a need for standardization of patient positioning. Vertically, the automatic, sphenoid, and maxillary sinuses alignments mainly generated posterior shifts and resulted in mean increases in maximal dose to OARs of >3% of the planned dose. The suggested choice of C1-C2 as a reference landmark appears valid, combining both OAR sparing and target coverage. Assuming this choice, relevant margins to apply around volumes of interest at the time of planning to take into account for the relative mobility of other regions are discussed. Conclusions: Use of different alignment procedures for treating head and neck patients produced variations in patient setup and dose distribution. With concern for standardizing practice, C1-C2 reference alignment with relevant margins around planning volumes seems to be a valid
A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media
Chen, Huangxin; Sun, Shuyu
2016-01-01
for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator
Combined shearing interferometer and hartmann wavefront sensor
International Nuclear Information System (INIS)
Hutchin, R. A.
1985-01-01
A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor
Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying
2018-04-01
The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to
Iterative wave-front reconstruction in the Fourier domain.
Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry
2017-05-15
The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.
Closed-loop focal plane wavefront control with the SCExAO instrument
Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier
2016-09-01
Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.
Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun
2018-03-01
Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.
Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics
Paul, Lancelot; Kumar Saxena, Ajay
2010-12-01
An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.
Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.
2017-12-01
A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build
Optical Aberrations and Wavefront
Directory of Open Access Journals (Sweden)
Nihat Polat
2014-08-01
Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11
A hybrid system for beam steering and wavefront control
Nikulin, Vladimir V.
2004-06-01
Performance of long-range mobile laser systems operating within Earth's atmosphere is generally limited by several factors. Movement of the communicating platforms, such as aircraft, terrain vehicles, etc., complemented by mechanical vibrations, is the main cause of pointing errors. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path that lead to phase distortions (aberrations), thus creating random redistribution of optical energy in the spatial domain. The combined effect of these factors leads to an increased bit-error probability under adverse operation conditions. While traditional approaches provide separate treatment of these problems, suggesting the development of high-bandwidth beam steering systems to perform tracking and jitter rejection, and wavefront control for the mitigation of atmospheric effects, the two tasks could be integrated. In this paper we present a hybrid laser beam steering/wavefront control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount platform. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while the purpose of the SLM is twofold: it performs wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using the decentralized approach that provides independent access to the azimuth and declination channels, while the algorithm for calculating the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the both systems and the simulation results.
International Nuclear Information System (INIS)
Yu, Xiangzhi; Gillmer, S R; Ellis, J D
2015-01-01
Heterodyne interferometry is a widely accepted methodology with high resolution in many metrology applications. As a functionality enhancement, differential wavefront sensing (DWS) enables simultaneous measurement of displacement, pitch, and yaw using a displacement interferometry system and a single beam incident on a plane mirror target. The angular change is measured using a weighted phase average between symmetrically adjacent quadrant photodiode pairs. In this paper, we present an analytical model to predict the scaling of differential phase signals based on fundamental Gaussian beams. Several numerical models are presented to discuss the effects of physical beam parameters, detector size, system alignment errors, and beam wavefront aberrations on the DWS technique. The results of our modeling predict rotational scaling factors and a usable linear range. Furthermore, experimental results show the analytically predicted scaling factor is in good agreement with empirical calibration. Our three degree-of-freedom interferometer can achieve a resolution of 0.4 nm in displacement and 0.2 μrad in pitch and yaw simultaneously. (paper)
Wavefront Control and Image Restoration with Less Computing
Lyon, Richard G.
2010-01-01
PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial
International Nuclear Information System (INIS)
Kapanen, Mika; Laaksomaa, Marko; Skyttä, Tanja; Haltamo, Mikko; Pehkonen, Jani; Lehtonen, Turkka; Kellokumpu-Lehtinen, Pirkko-Liisa; Hyödynmaa, Simo
2016-01-01
Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors and setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.
Daugirdas, John T
2017-07-01
The protein catabolic rate normalized to body size (PCRn) often is computed in dialysis units to obtain information about protein ingestion. However, errors can manifest when inappropriate modeling methods are used. We used a variable volume 2-pool urea kinetic model to examine the percent errors in PCRn due to use of a 1-pool urea kinetic model or after omission of residual urea clearance (Kru). When a single-pool model was used, 2 sources of errors were identified. The first, dependent on the ratio of dialyzer urea clearance to urea distribution volume (K/V), resulted in a 7% inflation of the PCRn when K/V was in the range of 6 mL/min per L. A second, larger error appeared when Kt/V values were below 1.0 and was related to underestimation of urea distribution volume (due to overestimation of effective clearance) by the single-pool model. A previously reported prediction equation for PCRn was valid, but data suggest that it should be modified using 2-pool eKt/V and V coefficients instead of single-pool values. A third source of error, this one unrelated to use of a single-pool model, namely omission of Kru, was shown to result in an underestimation of PCRn, such that each ml/minute Kru per 35 L of V caused a 5.6% underestimate in PCRn. Marked overestimation of PCRn can result due to inappropriate use of a single-pool urea kinetic model, particularly when Kt/V <1.0 (as in short daily dialysis), or after omission of residual native kidney clearance. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Wavefront compensation applied to AVLIS laser systems
International Nuclear Information System (INIS)
Gonsiorowski, T.; Wirth, A.
1995-01-01
The efficiency of an AVLIS system depends upon the power density and uniformity of the laser system. Because of wavefront aberrations the realized beam quality is not ideal. Wavefront compensation provides a means to improve beam quality and system efficiency. (author)
Correlator optical wavefront sensor COWS
1991-02-01
This report documents the significant upgrades and improvements made to the correlator optical wavefront sensor (COWS) optical bench during this phase of the program. Software for the experiment was reviewed and documented. Flowcharts showing the program flow are included as well as documentation for programs which were written to calculate and display Zernike polynomials. The system was calibrated and aligned and a series of experiments to determine the optimum settings for the input and output MOSLM polarizers were conducted. In addition, design of a simple aberration generation is included.
Focal plane based wavefront sensing with random DM probes
Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.
2017-09-01
An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.
Wavefront Measurement for Laser-Guiding Diagnostic
International Nuclear Information System (INIS)
Shiraishi, S.; Gonsalves, A.J.; Lin, C.; Nakamura, K.; Osterhoff, J.; Sokollik, T.; van Tilborg, J.; Geddes, C.G.R.; Schroeder, C.B.; Toth, Cs.; Esarey, E.; Leemans, W.P.
2010-01-01
The wavefront of a short laser pulse after interaction in a laser-plasma accelerator (LPA) was measured to diagnose laser-guiding quality. Experiments were performed on a 100 TW class laser at the LOASIS facility of LBNL using a hydrogenfilled capillary discharge waveguide. Laser-guiding with a pre-formed plasma channel allows the laser pulse to propagate over many Rayleigh lengths at high intensity and is crucial to accelerate electrons to the highest possible energy. Efficient coupling of laser energy into the plasma is realized when the laser and the channel satisfy a matched guiding condition, in which the wavefront remains flat within the channel. Using a wavefront sensor, the laser-guiding quality was diagnosed based on the wavefront of the laser pulse exiting the plasma channel. This wavefront diagnostic will contribute to achieving controlled, matched guiding in future experiments.
Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy
2008-03-01
To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.
Correction of the wavefront using the irradiance transport equation
García, M.; Granados, F.; Cornejo, A.
2008-07-01
The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)
Photon counting arrays for AO wavefront sensors
Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva
2005-01-01
Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...
DEFF Research Database (Denmark)
Herceg, Matija; Artemieva, Irina; Thybo, Hans
2013-01-01
) uncertainties in the velocity-density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions...... from velocity to density and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by high-quality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. The residual...
International Nuclear Information System (INIS)
Delana, Anna; Menegotti, Loris; Valentini, Aldo; Bolner, Andrea; Tomio, Luigi; Vanoni, Valentina; Lohr, Frank
2009-01-01
Purpose: To estimate the dosimetric impact of residual setup errors on parotid sparing in head-and-neck (H and N) intensity-modulated treatments and to evaluate the effect of employing an PRV (planning organ-at-risk volume) margin for the parotid gland. Patients and methods: Ten patients treated for H and N cancer were considered. A nine-beam intensity-modulated radiotherapy (IMRT) was planned for each patient. A second optimization was performed prescribing dose constraint to the PRV of the parotid gland. Systematic setup errors of 2 mm, 3 mm, and 5 mm were simulated. The dose-volume histograms of the shifted and reference plans were compared with regard to mean parotid gland dose (MPD), normal-tissue complication probability (NTCP), and coverage of the clinical target volume (V 95% and equivalent uniform dose [EUD]); the sensitivity of parotid sparing on setup error was evaluated with a probability-based approach. Results: MPD increased by 3.4%/mm and 3.0%/mm for displacements in the craniocaudal and lateral direction and by 0.7%/mm for displacements in the anterior-posterior direction. The probability to irradiate the parotid with a mean dose > 30 Gy was > 50%, for setup errors in cranial and lateral direction and 95% and EUD variations < 1% and < 1 Gy). Conclusion: The parotid gland is more sensitive to craniocaudal and lateral displacements. A setup error of 2 mm guarantees an MPD ≤ 30 Gy in most cases, without adding a PRV margin. If greater displacements are expected/accepted, an adequate PRV margin could be used to meet the clinical parotid gland constraint of 30 Gy, without affecting target volume coverage. (orig.)
110 °C range athermalization of wavefront coding infrared imaging systems
Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong
2017-09-01
110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.
Model wavefront sensor for adaptive confocal microscopy
Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony
2000-05-01
A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.
International Nuclear Information System (INIS)
Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing
2015-01-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)
Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun
2018-03-01
A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.
Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle
Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon
2018-03-01
Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.
Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry
Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun
2018-06-01
The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.
Advanced Imaging Optics Utilizing Wavefront Coding.
Energy Technology Data Exchange (ETDEWEB)
Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.
Ultra-high resolution coded wavefront sensor
Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang
2017-01-01
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor
Wavefront-ray grid FDTD algorithm
ÇİYDEM, MEHMET
2016-01-01
A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...
Coded Shack-Hartmann Wavefront Sensor
Wang, Congli
2016-12-01
Wavefront sensing is an old yet fundamental problem in adaptive optics. Traditional wavefront sensors are limited to time-consuming measurements, complicated and expensive setup, or low theoretically achievable resolution. In this thesis, we introduce an optically encoded and computationally decodable novel approach to the wavefront sensing problem: the Coded Shack-Hartmann. Our proposed Coded Shack-Hartmann wavefront sensor is inexpensive, easy to fabricate and calibrate, highly sensitive, accurate, and with high resolution. Most importantly, using simple optical flow tracking combined with phase smoothness prior, with the help of modern optimization technique, the computational part is split, efficient, and parallelized, hence real time performance has been achieved on Graphics Processing Unit (GPU), with high accuracy as well. This is validated by experimental results. We also show how optical flow intensity consistency term can be derived, using rigor scalar diffraction theory with proper approximation. This is the true physical law behind our model. Based on this insight, Coded Shack-Hartmann can be interpreted as an illumination post-modulated wavefront sensor. This offers a new theoretical approach for wavefront sensor design.
International Nuclear Information System (INIS)
Adamson, Justus; Wu Qiuwen; Yan Di
2011-01-01
Purpose: To quantify the dosimetric effect and margins required to account for prostate intrafractional translation and residual setup error in a cone beam computed tomography (CBCT)-guided hypofractionated radiotherapy protocol. Methods and Materials: Prostate position after online correction was measured during dose delivery using simultaneous kV fluoroscopy and posttreatment CBCT in 572 fractions to 30 patients. We reconstructed the dose distribution to the clinical tumor volume (CTV) using a convolution of the static dose with a probability density function (PDF) based on the kV fluoroscopy, and we calculated the minimum dose received by 99% of the CTV (D 99 ). We compared reconstructed doses when the convolution was performed per beam, per patient, and when the PDF was created using posttreatment CBCT. We determined the minimum axis-specific margins to limit CTV D 99 reduction to 1%. Results: For 3-mm margins, D 99 reduction was ≤5% for 29/30 patients. Using post-CBCT rather than localizations at treatment delivery exaggerated dosimetric effects by ∼47%, while there was no such bias between the dose convolved with a beam-specific and patient-specific PDF. After eight fractions, final cumulative D 99 could be predicted with a root mean square error of <1%. For 90% of patients, the required margins were ≤2, 4, and 3 mm, with 70%, 40%, and 33% of patients requiring no right-left (RL), anteroposterior (AP), and superoinferior margins, respectively. Conclusions: For protocols with CBCT guidance, RL, AP, and SI margins of 2, 4, and 3 mm are sufficient to account for translational errors; however, the large variation in patient-specific margins suggests that adaptive management may be beneficial.
LENUS (Irish Health Repository)
Adamson, Justus
2012-02-01
PURPOSE: To quantify the dosimetric effect and margins required to account for prostate intrafractional translation and residual setup error in a cone beam computed tomography (CBCT)-guided hypofractionated radiotherapy protocol. METHODS AND MATERIALS: Prostate position after online correction was measured during dose delivery using simultaneous kV fluoroscopy and posttreatment CBCT in 572 fractions to 30 patients. We reconstructed the dose distribution to the clinical tumor volume (CTV) using a convolution of the static dose with a probability density function (PDF) based on the kV fluoroscopy, and we calculated the minimum dose received by 99% of the CTV (D(99)). We compared reconstructed doses when the convolution was performed per beam, per patient, and when the PDF was created using posttreatment CBCT. We determined the minimum axis-specific margins to limit CTV D(99) reduction to 1%. RESULTS: For 3-mm margins, D(99) reduction was <\\/=5% for 29\\/30 patients. Using post-CBCT rather than localizations at treatment delivery exaggerated dosimetric effects by ~47%, while there was no such bias between the dose convolved with a beam-specific and patient-specific PDF. After eight fractions, final cumulative D(99) could be predicted with a root mean square error of <1%. For 90% of patients, the required margins were <\\/=2, 4, and 3 mm, with 70%, 40%, and 33% of patients requiring no right-left (RL), anteroposterior (AP), and superoinferior margins, respectively. CONCLUSIONS: For protocols with CBCT guidance, RL, AP, and SI margins of 2, 4, and 3 mm are sufficient to account for translational errors; however, the large variation in patient-specific margins suggests that adaptive management may be beneficial.
Correlations between corneal and total wavefront aberrations
Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo
2002-06-01
Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.
Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes
Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang
2018-01-01
Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.
Optically sensitive Medipix2 detector for adaptive optics wavefront sensing
Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva
2005-01-01
A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.
Optically sensitive Medipix2 detector for adaptive optics wavefront sensing
International Nuclear Information System (INIS)
Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan
2005-01-01
A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Knöpfler, Andreas; Mayer, Michael; Heck, Bernhard
2014-05-01
Within the last decades, positioning using GNSS (Global Navigation Satellite Systems; e.g., GPS) has become a standard tool in many (geo-) sciences. The positioning methods Precise Point Positioning and differential point positioning based on carrier phase observations have been developed for a broad variety of applications with different demands for example on accuracy. In high precision applications, a lot of effort was invested to mitigate different error sources: the products for satellite orbits and satellite clocks were improved; the misbehaviour of satellite and receiver antennas compared to an ideal antenna is modelled by calibration values on absolute level, the modelling of the ionosphere and the troposphere is updated year by year. Therefore, within processing of data of CORS (continuously operating reference sites), equipped with geodetic hardware using a sophisticated strategy, the latest products and models nowadays enable positioning accuracies at low mm level. Despite the considerable improvements that have been achieved within GNSS data processing, a generally valid multipath model is still lacking. Therefore, site specific multipath still represents a major error source in precise GNSS positioning. Furthermore, the calibration information of receiving GNSS antennas, which is for instance derived by a robot or chamber calibration, is valid strictly speaking only for the location of the calibration. The calibrated antenna can show a slightly different behaviour at the CORS due to near field multipath effects. One very promising strategy to mitigate multipath effects as well as imperfectly calibrated receiver antennas is to stack observation residuals of several days, thereby, multipath-loaded observation residuals are analysed for example with respect to signal direction, to find and reduce systematic constituents. This presentation will give a short overview about existing stacking approaches. In addition, first results of the stacking approach
X-ray digital wavefront sensor development
International Nuclear Information System (INIS)
Idir, Mourad; Fricker, Sebastien; Modi, Mohammed H.; Potier, Jonathan
2010-01-01
Phase contrast imaging (PCI) is a wavefront sensing method that uses a series of intensity images to reconstruct the wavefront. The lateral resolution of PCI is limited mainly by the resolution of the intensity images. PCI provides a simple and efficient technique for characterizing X-ray mirrors. A simulation experiment was conducted to demonstrate the performances of PCI. The results of these experiments have shown the feasibility and potential performances of this method. The use of phase retrieval presents opportunities for greatly simplifying the techniques and apparatus used for characterizing optical surfaces and systems, particularly aspherical surfaces. This paper addresses the design, implementation and performances of an integrated at wavelength digital wavefront sensor.
Asymmetric cryptography based on wavefront sensing.
Peng, Xiang; Wei, Hengzheng; Zhang, Peng
2006-12-15
A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.
Visual optics under the wavefront perspective
Directory of Open Access Journals (Sweden)
Sidney Júlio Faria-E-Sousa
2014-08-01
Full Text Available Some intriguing concepts of visual optics cannot be explained by ray tracing. However, they can be clarified using wavefront formalism. Its main advantage is in the use of the concept of vergence, which is very helpful in interpreting the optical phenomena involved in the neutralization of the ametropias. In this line of thinking, the major role of a lens is in the creation of a new light source (the image point that orientates the refracted waves. Once the nature and position of this source is known, one can easily predict the behavior of the wavefronts. The formalism also allows for an easier understanding on how wavefronts relate to light rays and on how algebraic signs are assigned to optical distances.
Advances in detector technologies for visible and infrared wavefront sensing
Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier
2012-07-01
The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS
Ultra-high resolution coded wavefront sensor
Wang, Congli
2017-06-08
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
International Nuclear Information System (INIS)
Liu, Qian; Wang, Yang; He, Jianguo; Ji, Fang
2015-01-01
The fluctuations of background and contrast cause measurement errors in the phase-shifting technique. To extract the phase shifts from interferograms with background and contrast fluctuations, an iterative algorithm is represented. The phase shifts and wavefront phase are calculated in two individual steps with the least-squares method. The fluctuation factors are determined when the phase shifts are calculated, and the fluctuations are compensated when the wavefront phase is calculated. The advantage of the algorithm lies in its ability to extract phase shifts from interferograms with background and contrast fluctuations converging stably and rapidly. Simulations and experiments verify the effectiveness and reliability of the proposed algorithm. The convergence accuracy and speed are demonstrated by the simulation results. The experiment results show its ability for suppressing phase retrieval errors. (paper)
High-resolution wavefront control of high-power laser systems
International Nuclear Information System (INIS)
Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.
1999-01-01
Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more
Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload
Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya
2018-01-01
A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.
Implementation of a Wavefront-Sensing Algorithm
Smith, Jeffrey S.; Dean, Bruce; Aronstein, David
2013-01-01
A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.
MORPHOLOGICAL DESCRIPTIONS USING THREE-DIMENSIONAL WAVEFRONTS
Directory of Open Access Journals (Sweden)
Jean Serra
2011-05-01
Full Text Available The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious nor generally clearly visible. Our approach is illustrated through three examples taken from biological microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections. The cells are not numerous, but are characterized by long branches, hence they will be separated using a directional wavefront The two other objects are more complex and will be analysed by means of a spherical wavefront In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the branches, their extremities,and their spatial arrangement. The wavefront method enables us to define precisely branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth of the chicken shinbone. The central part of the bone (or shaft is structured as a series of nested cylinders following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is possible to separate the cylinders,and to extract and count the bridges that connect them.
High order dark wavefront sensing simulations
Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele
2016-07-01
Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.
A modified phase diversity wavefront sensor with a diffraction grating
International Nuclear Information System (INIS)
Luo Qun; Huang Lin-Hai; Gu Nai-Ting; Rao Chang-Hui
2012-01-01
The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
Manufacturing and testing of wavefront filters for DARWIN
Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao
2017-11-01
Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre
International Nuclear Information System (INIS)
Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S.; Galle, G.
2013-01-01
The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was ≤ 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)
International Nuclear Information System (INIS)
Hartley, R.; Kartz, M.; Behrendt, W.
1996-10-01
The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new, higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t 0 -1 system
Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R
2018-02-01
High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.
Directory of Open Access Journals (Sweden)
Rong Fan
2012-04-01
Full Text Available PURPOSE: To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. METHODS: A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62 under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm, scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm. The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. RESULTS: The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z3-3, Z4(0 and Z5-5. The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010. When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z4(0, Z4², Z6-4, Z6-2, Z6² decreased and all the higher-order aberrations decreased statistically significantly (P<0.010, demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. CONCLUSIONS: The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan to measure scotopic
Nikulin, Vladimir V.
2005-10-01
The performance of mobile laser communication systems operating within Earth's atmosphere is generally limited by the pointing errors due to movement of the platforms and mechanical vibrations. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path, creating random redistribution of the optical energy in the spatial domain. Under adverse conditions these effects lead to increased bit error rate. While traditional approaches provide separate treatment of these problems, suggesting high-bandwidth beam steering systems for tracking and wavefront control for the mitigation of atmospheric effects, the two tasks can be integrated. This paper presents a hybrid laser beam-steering-wavefront-control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while that of the SLM is twofold: wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using a decentralized approach that provides independent access to the azimuth and declination channels; calculation of the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the two systems, and the results.
Wavefront analysis for plenoptic camera imaging
International Nuclear Information System (INIS)
Luan Yin-Sen; Xu Bing; Yang Ping; Tang Guo-Mao
2017-01-01
The plenoptic camera is a single lens stereo camera which can retrieve the direction of light rays while detecting their intensity distribution. In this paper, to reveal more truths of plenoptic camera imaging, we present the wavefront analysis for the plenoptic camera imaging from the angle of physical optics but not from the ray tracing model of geometric optics. Specifically, the wavefront imaging model of a plenoptic camera is analyzed and simulated by scalar diffraction theory and the depth estimation is redescribed based on physical optics. We simulate a set of raw plenoptic images of an object scene, thereby validating the analysis and derivations and the difference between the imaging analysis methods based on geometric optics and physical optics are also shown in simulations. (paper)
Adaptable Diffraction Gratings With Wavefront Transformation
Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.
2010-01-01
Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.
Dynamic wavefront creation for processing units using a hybrid compactor
Energy Technology Data Exchange (ETDEWEB)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
2018-02-20
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment to be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.
Wavefront sensorless adaptive optics ophthalmoscopy in the human eye
Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason
2011-01-01
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779
Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator
Energy Technology Data Exchange (ETDEWEB)
West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.
2010-06-20
The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.
Wavefront reconstruction using computer-generated holograms
Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael
2012-02-01
We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.
JWFront: Wavefronts and Light Cones for Kerr Spacetimes
Frutos Alfaro, Francisco; Grave, Frank; Müller, Thomas; Adis, Daria
2015-04-01
JWFront visualizes wavefronts and light cones in general relativity. The interactive front-end allows users to enter the initial position values and choose the values for mass and angular momentum per unit mass. The wavefront animations are available in 2D and 3D; the light cones are visualized using the coordinate systems (t, x, y) or (t, z, x). JWFront can be easily modified to simulate wavefronts and light cones for other spacetime by providing the Christoffel symbols in the program.
[Monochromatic aberration in accommodation. Dynamic wavefront analysis].
Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J
2011-06-01
Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement
Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance
Saha, Timo T.; Rohrbach, Scott; Zhang, William W.
2011-01-01
Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.
A wavefront analyzer for terahertz time-domain spectrometers
DEFF Research Database (Denmark)
Abraham, E.; Brossard, M.; Fauche, P.
2017-01-01
the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.
2017-12-01
The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We
Conical wavefronts in optics and tomography
International Nuclear Information System (INIS)
Soroko, L.M.
1990-01-01
A wide range of techniques in which the information is transferred by conical (nonspherical and nonplanar) wave fronts is considered. This is the first summary of papers published in the field of mesooptics and optical tomography. After the introduction into the new branch of modern optics - mesooptics -the properties of conical wavefronts are treated in detail. Some possible applications of mesooptics in science and technology are considered. The long history of mesooptics treated in the last chapter of this review lecture goes from the early stage of our Universe, gravitational lens, first publications in the last century and up-to-date innovations in optics, mesooptics and optical tomography. 3 refs
Wavefront picking for 3D tomography and full-waveform inversion
AlTheyab, Abdullah
2016-09-08
We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using interactive software, first-break wavefronts were geometrically modeled on time slices with a minimal number of picks. We picked sparse time slices, performed traveltime tomography, and then compared the predicted traveltimes with the data in-between the picked slices. The picking interval was refined with iterations until the errors in traveltime predictions fell within the limits necessary to avoid cycle skipping in early arrivals FWI. This approach was applied to a 3D ocean-bottom-station data set. Our results indicate that wavefront picking has 28% fewer data slices to pick compared with picking traveltimes in shot gathers. In addition, by using sparse time samples for picking, data storage is reduced by 88%, and therefore allows for a faster visualization and quality control of the picks. Our final traveltime tomogram is sufficient as a starting model for early arrival FWI. © 2016 Society of Exploration Geophysicists.
Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope
Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc
2010-01-01
The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.
Coronagraphic wavefront control for the ATLAST 9.2m telescope
Lyon, Richard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc
2010-07-01
The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of-view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.
Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J
2014-07-01
We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.
2006-07-01
amounts of ametropia . The fact that performance remained relatively constant after PRK meant that there were no significant negative effects, with...refractive errors, which would have been substantial even for small amounts of ametropia . 5.6 Rabin Small Letter Contrast Test The Rabin SLCT data are
CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor
Pui, Boon Hean
2004-01-01
A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a who...
Whole eye wavefront aberrations in Mexican male subjects.
Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio
2004-01-01
To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-01-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-09-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Geometry of fast magnetosonic rays, wavefronts and shock waves
Energy Technology Data Exchange (ETDEWEB)
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-11-25
Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.
Manipulation of wavefront using helical metamaterials.
Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming
2016-08-08
Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.
Wavefront Propagation and Fuzzy Based Autonomous Navigation
Directory of Open Access Journals (Sweden)
Adel Al-Jumaily
2005-06-01
Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.
Wavefront measurement using computational adaptive optics.
South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A
2018-03-01
In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.
Method and apparatus for wavefront sensing
Bahk, Seung-Whan
2018-03-20
A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelength $ \\lamda $ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.
Authentication via wavefront-shaped optical responses
Eilers, Hergen; Anderson, Benjamin R.; Gunawidjaja, Ray
2018-02-01
Authentication/tamper-indication is required in a wide range of applications, including nuclear materials management and product counterfeit detection. State-of-the-art techniques include reflective particle tags, laser speckle authentication, and birefringent seals. Each of these passive techniques has its own advantages and disadvantages, including the need for complex image comparisons, limited flexibility, sensitivity to environmental conditions, limited functionality, etc. We have developed a new active approach to address some of these short-comings. The use of an active characterization technique adds more flexibility and additional layers of security over current techniques. Our approach uses randomly-distributed nanoparticles embedded in a polymer matrix (tag/seal) which is attached to the item to be secured. A spatial light modulator is used to adjust the wavefront of a laser which interacts with the tag/seal, and a detector is used to monitor this interaction. The interaction can occur in various ways, including transmittance, reflectance, fluorescence, random lasing, etc. For example, at the time of origination, the wavefront-shaped reflectance from a tag/seal can be adjusted to result in a specific pattern (symbol, words, etc.) Any tampering with the tag/seal would results in a disturbance of the random orientation of the nanoparticles and thus distort the reflectance pattern. A holographic waveplate could be inserted into the laser beam for verification. The absence/distortion of the original pattern would then indicate that tampering has occurred. We have tested the tag/seal's and authentication method's tamper-indicating ability using various attack methods, including mechanical, thermal, and chemical attacks, and have verified our material/method's robust tamper-indicating ability.
Deep Tissue Wavefront Estimation for Sensorless Aberration Correction
Directory of Open Access Journals (Sweden)
Ibrahimovic Emina
2015-01-01
Full Text Available The multiple light scattering in biological tissues limits the measurement depth for traditional wavefront sensor. The attenuated ballistic light and the background noise caused by the diffuse light give low signal to noise ratio for wavefront measurement. To overcome this issue, we introduced a wavefront estimation method based on a ray tracing algorithm to overcome this issue. With the knowledge of the refractive index of the medium, the wavefront is estimated by calculating optical path length of rays from the target inside of the samples. This method can provide not only the information of spherical aberration from the refractive-index mismatch between the medium and biological sample but also other aberrations caused by the irregular interface between them. Simulations based on different configurations are demonstrated in this paper.
Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection
Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei
2013-08-01
We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.
Parallel-Computing Architecture for JWST Wavefront-Sensing Algorithms
2011-09-01
results due to the increasing cost and complexity of each test. 2. ALGORITHM OVERVIEW Phase retrieval is an image-based wavefront-sensing...broadband illumination problems we have found that hand-tuning the right matrix sizes can account for a speedup of 86x faster. This comes from hand-picking...Wavefront Sensing and Control”. Proceedings of SPIE (2007) vol. 6687 (08). [5] Greenhouse, M. A., Drury , M. P., Dunn, J. L., Glazer, S. D., Greville, E
Advanced wavefront measurement and analysis of laser system modeling
Energy Technology Data Exchange (ETDEWEB)
Wolfe, C.R.; Auerback, J.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.
A zonal wavefront sensor with multiple detector planes
Pathak, Biswajit; Boruah, Bosanta R.
2018-03-01
A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.
Design and realization of adaptive optical principle system without wavefront sensing
Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.
2018-02-01
In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.
Refractive optics to compensate x-ray mirror shape-errors
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian
2017-08-01
Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.
Directory of Open Access Journals (Sweden)
Suguru Miyagawa
Full Text Available To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.
Enabling Super-Nyquist Wavefront Control on WFIRST
Bendek, Eduardo; Belikov, Ruslan; Sirbu, Dan; Shaklan, Stuart B.; Eldorado Riggs, A. J.
2018-01-01
A large fraction of sun-like stars is contained in Binary systems. Within 10pc there are 70 FGK stars from which, 43 belong to a multi-star system, and 28 of them have companion leak that is greater than 1e-9 contrast assuming typical Hubble-quality space optics. Currently, those binary stars are not included in the WFIRST-CGI target list, but they could be observed if high-contrast imaging around binary star systems using WFIRST is possible, increasing by 70% the number of possible FGK targets for the mission. The Multi-Star Wavefront Control (MSWC) algorithm can be used to suppress the companion star leakage. If the targets have angular separations larger than the Nyquist controllable region of the Deformable Mirror the MSWC must operate in its Super-Nyquist (SN) mode. This mode requires a target star replica within the SN region in order to provide the energy, and coherent light necessary to null speckles at SN angular separations. For the case of WFIRST, about half of the targets that can be observed using MSWC have angular separations larger than the Nyquist controllable region of the 48x48 actuator Deformable Mirror (DM) to be used. Here, we discuss multiple alternatives to generate those PSF replicas with minimal or no impact to the WFIRST Coronagraph instrument such as 1) the addition of a movable diffractive pupil mounted of the Shape Pupil wheel. 2) Design of a modified Shape Pupil design able to create a dark zone and at the same time diffract a small fraction of the starlight on the SN region. 3) Predict the minimum residual quilting on Xinetics DM that would allow observing a given target.
Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu
2018-03-01
Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.
Ghosh, Sudipta; Couper, Terry A; Lamoureux, Ecosse; Jhanji, Vishal; Taylor, Hugh R; Vajpayee, Rasik B
2008-02-01
To evaluate the visual and refractive outcomes of wavefront-guided laser in situ keratomileusis (LASIK) using an iris recognition system for the correction of myopic astigmatism. Centre for Eye Research Australia, Melbourne Excimer Laser Research Group, and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia. A comparative analysis of wavefront-guided LASIK was performed with an iris recognition system (iris recognition group) and without iris recognition (control group). The main parameters were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity, amount of residual cylinder, manifest spherical equivalent (SE), and the index of success using the Alpins method of astigmatism analysis 1 and 3 months postoperatively. A P value less than 0.05 was considered statistically significant. Preoperatively, the mean SE was -4.32 diopters (D) +/- 1.59 (SD) in the iris recognition group (100 eyes) and -4.55 +/- 1.87 D in the control group (98 eyes) (P = .84). At 3 months, the mean SE was -0.05 +/- 0.21 D and -0.20 +/- 0.40 D, respectively (P = .001), and an SE within +/-0.50 D of emmetropia was achieved in 92.0% and 85.7% of eyes, respectively (P = .07). At 3 months, the UCVA was 20/20 or better in 90.0% and 76.5% of eyes, respectively. A statistically significant difference in the amount of astigmatic correction was seen between the 2 groups (P = .00 and P = .01 at 1 and 3 months, respectively). The index of success was 98.0% in the iris recognition group and 81.6% in the control group (P = .03). Iris recognition software may achieve better visual and refractive outcomes in wavefront-guided LASIK for myopic astigmatism.
Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems
National Research Council Canada - National Science Library
Schgallis, Richard J
2007-01-01
Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...
Iterative-Transform Phase Diversity: An Object and Wavefront Recovery Algorithm
Smith, J. Scott
2011-01-01
Presented is a solution for recovering the wavefront and an extended object. It builds upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering the wavefront and extended object from noisy data.
Peak-locking centroid bias in Shack-Hartmann wavefront sensing
Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.
2018-05-01
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
International Nuclear Information System (INIS)
Indekeu, Joseph O; Smets, Ruben
2017-01-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Wavefront optimized nonlinear microscopy of ex vivo human retinas
Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo
2010-03-01
A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Broadband manipulation of acoustic wavefronts by pentamode metasurface
International Nuclear Information System (INIS)
Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun
2015-01-01
An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing
Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed
Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya
2017-09-01
NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.
Focusing light through dynamical samples using fast continuous wavefront optimization.
Blochet, B; Bourdieu, L; Gigan, S
2017-12-01
We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
Describing the Corneal Shape after Wavefront-Optimized Photorefractive Keratectomy
de Jong, Tim; Wijdh, Robert H. J.; Koopmans, Steven A.; Jansonius, Nomdo M.
2014-01-01
PURPOSE: To develop a procedure for describing wavefront-optimized photorefractive keratectomy (PRK) corneas and to characterize PRK-induced changes in shape. METHODS: We analyzed preoperative and postoperative corneal elevation data of 41 eyes of 41 patients (mean [±SD] age, 38 [±11] years) who
Wavefront reversal in a copper vapor active medium
Energy Technology Data Exchange (ETDEWEB)
Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.
1981-09-01
Wavefront reversal in the resonator of a copper vapor laser was observed. The frequencies of the signal and reversed waves were the same. The dependence of the reversed signal power on the input signal power had a threshold. Photographs were obtained of the reconstructed image of an object when a distorting phase plate was inserted in the resonator.
Directory of Open Access Journals (Sweden)
Zina Zhang
2017-01-01
Full Text Available Purpose: To compare the outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens (IOL power calculation in eyes undergoing cataract surgery with monofocal IOL implantation. Methods: Preoperative data were obtained with the IOLMaster. Intraoperative aphakic measurements and IOL power calculations were obtained in some patients with the optiwave refractive analysis (ORA system. Analysis was performed to determine the accuracy of monofocal IOL power prediction and postoperative manifest refraction at 1 month of the ORA versus IOLMaster. Results: Two hundred and ninety-five eyes reviewed, 61 had only preoperative IOLMaster measurements and 234 had both IOLMaster and ORA measurements. Of these 234 eyes, 6 were excluded, 107 had the same recommended IOL power by ORA and IOLMaster. Sixty-four percent of these eyes were within ±0.5D. 95 eyes had IOL power implantation based on ORA instead of IOLMaster. Seventy percent of these eyes were within ±0.5D of target refraction. 26 eyes had IOL power chosen based on IOLMaster predictions instead of ORA. Sixty-five percent were within ±0.5D. In the group with IOLMaster without ORA measurements, 80% of eyes were within ±0.5D of target refraction. The absolute error was statistically smaller in those eyes where the ORA and IOLMaster recommended the same IOL power based on preoperative target refraction compared to instances in which IOL selection was based on ORA or IOLMaster alone. Neither prediction errors were statistically different between the ORA and IOLMaster alone. Conclusion: Intraoperative wavefront aberrometry with the ORA system provides postoperative refractive results comparable to conventional biometry with the IOLMaster for monofocal IOL selection.
Hoede, C.; Li, Z.
2001-01-01
In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,
Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.
Directory of Open Access Journals (Sweden)
Xinjie Mao
Full Text Available To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor.Twenty-eight adult subjects (32 pseudophakic eyes having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR and intraclass correlation coefficient (ICC were calculated.Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951.The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.
Differences between wavefront and subjective refraction for infrared light.
Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N
2014-10-01
To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.
International Nuclear Information System (INIS)
Knuefer; Lindauer
1980-01-01
Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)
Atmospheric turbulence temperature on the laser wavefront properties
Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.
2017-06-01
Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.
Atmospheric turbulence temperature on the laser wavefront properties
International Nuclear Information System (INIS)
López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres
2017-01-01
Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)
Wavefront modulation of water surface wave by a metasurface
International Nuclear Information System (INIS)
Sun Hai-Tao; Cheng Ying; Liu Xiao-Jun; Wang Jing-Shi
2015-01-01
We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. (paper)
Wavefront sensing with all-digital Stokes measurements
CSIR Research Space (South Africa)
Dudley, Angela L
2014-09-25
Full Text Available to wavefront sensing [8] based on Stokes polarimetry which makes use of the amplitude and phase relationship between orthogonal states of polarization. With our approach a field of interest is generated by encoding an appropriate hologram on a spatial light... modulator (SLM). Since SLMs are diffraction-inefficient, we can exploit the amplitude relationship between the orthogonal polarization states allowing the execution of Stokes polarimetry of the co-linear superposition of the reference beam and the beam...
Optimizing a Water Simulation based on Wavefront Parameter Optimization
Lundgren, Martin
2017-01-01
DICE, a Swedish game company, wanted a more realistic water simulation. Currently, most large scale water simulations used in games are based upon ocean simulation technology. These techniques falter when used in other scenarios, such as coastlines. In order to produce a more realistic simulation, a new one was created based upon the water simulation technique "Wavefront Parameter Interpolation". This technique involves a rather extensive preprocess that enables ocean simulations to have inte...
The size effect of searching window for measuring wavefront of laser beam
International Nuclear Information System (INIS)
Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Kim, Jung Cheol; Yi, Seung Jun; Ra, Sung Woong
2003-01-01
We investigated the size effect of the searching window for measuring of a laser beam using a Shack-Hartmann sensor. The shapes of spot images on an acquired wavefront image by using a Shack-Hartmann sensor are usually imbalanced. Also, the distributed intensity pattern of each spot image is varied according to successively acquired wavefront image. We studied on the optimized size of searching window to get wavefront with high measurement resolution. We experimented on the various size effect of searching window on an acquired wavefront image to get fine wavefront information using a Shack-Hartmann sensor. As the experimental results, we proposed the optimum size of searching window to measure improved wavefront.
Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo
2005-11-10
The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.
X-ray pulse wavefront metrology using speckle tracking
International Nuclear Information System (INIS)
Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter
2015-01-01
The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology
Control algorithms and applications of the wavefront sensorless adaptive optics
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Estimation of chromatic errors from broadband images for high contrast imaging
Sirbu, Dan; Belikov, Ruslan
2015-09-01
Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.
A study on high speed wavefront control algorithm for an adaptive optics system
International Nuclear Information System (INIS)
Park, Seung Kyu; Baik, Sung Hoon; Kim, Cheol Jung; Seo, Young Seok
2000-01-01
We developed a high speed control algorithm and system for measuring and correcting the wavefront distortions based on Windows operating system. To get quickly the information of wavefront distortion from the Hartman spot image, we preprocessed the image to remove background noises and extracted the centroid position by finding the center of weights. We moved finely the centroid position with sub-pixel resolution repeatedly to get the wavefront information with more enhanced resolution. We designed a differential data communication driver and an isolated analog driver to have robust system control. As the experimental results, the measurement resolution of the wavefront was 0.05 pixels and correction speed was 5Hz
5-D interpolation with wave-front attributes
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that
International Nuclear Information System (INIS)
Winterflood, A.H.
1980-01-01
In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)
Tomographic flow cytometry assisted by intelligent wavefronts analysis
Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.
2017-06-01
High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.
Compensation of X-ray mirror shape-errors using refractive optics
Energy Technology Data Exchange (ETDEWEB)
Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Dhamgaye, Vishal [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore 452012 (India)
2016-08-01
Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.
Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri
2009-01-20
In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.
Twisted speckle entities inside wave-front reversal mirrors
International Nuclear Information System (INIS)
Okulov, A. Yu
2009-01-01
The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.
Analysis of error functions in speckle shearing interferometry
International Nuclear Information System (INIS)
Wan Saffiey Wan Abdullah
2001-01-01
Electronic Speckle Pattern Shearing Interferometry (ESPSI) or shearography has successfully been used in NDT for slope (∂w/ (∂x and / or (∂w/ (∂y) measurement while strain measurement (∂u/ ∂x, ∂v/ ∂y, ∂u/ ∂y and (∂v/ (∂x) is still under investigation. This method is well accepted in industrial applications especially in the aerospace industry. Demand of this method is increasing due to complexity of the test materials and objects. ESPSI has successfully performed in NDT only for qualitative measurement whilst quantitative measurement is the current aim of many manufacturers. Industrial use of such equipment is being completed without considering the errors arising from numerous sources, including wavefront divergence. The majority of commercial systems are operated with diverging object illumination wave fronts without considering the curvature of the object illumination wavefront or the object geometry, when calculating the interferometer fringe function and quantifying data. This thesis reports the novel approach in quantified maximum phase change difference analysis for derivative out-of-plane (OOP) and in-plane (IP) cases that propagate from the divergent illumination wavefront compared to collimated illumination. The theoretical of maximum phase difference is formulated by means of three dependent variables, these being the object distance, illuminated diameter, center of illuminated area and camera distance and illumination angle. The relative maximum phase change difference that may contributed to the error in the measurement analysis in this scope of research is defined by the difference of maximum phase difference value measured by divergent illumination wavefront relative to the maximum phase difference value of collimated illumination wavefront, taken at the edge of illuminated area. Experimental validation using test objects for derivative out-of-plane and derivative in-plane deformation, using a single illumination wavefront
Maurer, Tana; Deaver, Dawne; Howell, Christopher; Moyer, Steve; Nguyen, Oanh; Mueller, Greg; Ryan, Denise; Sia, Rose K.; Stutzman, Richard; Pasternak, Joseph; Bower, Kraig
2014-06-01
Major decisions regarding life and death are routinely made on the modern battlefield, where visual function of the individual soldier can be of critical importance in the decision-making process. Glasses in the combat environment have considerable disadvantages: degradation of short term visual performance can occur as dust and sweat accumulate on lenses during a mission or patrol; long term visual performance can diminish as lenses become increasingly scratched and pitted; during periods of intense physical trauma, glasses can be knocked off the soldier's face and lost or broken. Although refractive surgery offers certain benefits on the battlefield when compared to wearing glasses, it is not without potential disadvantages. As a byproduct of refractive surgery, elevated optical aberrations can be induced, causing decreases in contrast sensitivity and increases in the symptoms of glare, halos, and starbursts. Typically, these symptoms occur under low light level conditions, the same conditions under which most military operations are initiated. With the advent of wavefront aberrometry, we are now seeing correction not only of myopia and astigmatism but of other, smaller optical aberrations that can cause the above symptoms. In collaboration with the Warfighter Refractive Eye Surgery Program and Research Center (WRESP-RC) at Fort Belvoir and Walter Reed National Military Medical Center (WRNMMC), the overall objective of this study is to determine the impact of wavefront guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK) on military task visual performance. Psychophysical perception testing was conducted before and after surgery to measure each participant's performance regarding target detection and identification using thermal imagery. The results are presented here.
Barreto, Jackson; Barboni, Mirella T S; Feitosa-Santana, Claudia; Sato, João R; Bechara, Samir J; Ventura, Dora F; Alves, Milton Ruiz
2010-08-01
To compare intraocular straylight measurements and contrast sensitivity after wavefront-guided LASIK (WFG LASIK) in one eye and wavefront-guided photorefractive keratectomy (WFG PRK) in the fellow eye for myopia and myopic astigmatism correction. A prospective, randomized study of 22 eyes of 11 patients who underwent simultaneous WFG LASIK and WFG PRK (contralateral eye). Both groups were treated with the NIDEK Advanced Vision Excimer Laser System, and a microkeratome was used for flap creation in the WFG LASIK group. High and low contrast visual acuity, wavefront analysis, contrast sensitivity, and retinal straylight measurements were performed preoperatively and at 3, 6, and 12 months postoperatively. A third-generation straylight meter, C-Quant (Oculus Optikgeräte GmbH), was used for measuring intraocular straylight. Twelve months postoperatively, mean uncorrected distance visual acuity was -0.06 +/- 0.07 logMAR in the WFG LASIK group and -0.10 +/- 0.10 logMAR in the WFG PRK group. Mean preoperative intraocular straylight was 0.94 +/- 0.12 logs for the WFG LASIK group and 0.96 +/- 0.11 logs for the WFG PRK group. After 12 months, the mean straylight value was 1.01 +/- 0.1 log s for the WFG LASIK group and 0.97 +/- 0.12 log s for the WFG PRK group. No difference was found between techniques after 12 months (P = .306). No significant difference in photopic and mesopic contrast sensitivity between groups was noted. Intraocular straylight showed no statistically significant increase 1 year after WFG LASIK and WFG PRK. Higher order aberrations increased significantly after surgery for both groups. Nevertheless, WFG LASIK and WFG PRK yielded excellent visual acuity and contrast sensitivity performance without significant differences between techniques.
Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking
Bowden, Daniel C.
2017-11-15
As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface-wave amplification and attenuation at shorter periods (8 – 32 seconds) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach of [Lin et al., 2012a] can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than travel-time observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh-wave amplitudes without the need for 3D tomographic inversions.
International Nuclear Information System (INIS)
Sahotra, I.M.
2006-01-01
The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)
Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance
Sidick, Erkin; Shi, Fang
2015-01-01
The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.
International Nuclear Information System (INIS)
Macherauch, E.
1978-01-01
Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de
Identified state-space prediction model for aero-optical wavefronts
Faghihi, Azin; Tesch, Jonathan; Gibson, Steve
2013-07-01
A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.
Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering
Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.
1998-03-01
This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.
Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates
Malas, T.
2015-07-02
The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multicore wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor.
Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces
Directory of Open Access Journals (Sweden)
Xiao-Peng Wang
2016-06-01
Full Text Available Acoustic metasurface (AMS is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell’s law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC, some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection, acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.
TRL-6 for JWST Wavefront Sensing and Control
Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan;
2007-01-01
NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed
Laboratory simulation of atmospheric turbulence induced optical wavefront distortion
Taylor, Travis Shane
1999-11-01
Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as
Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates
Malas, T.; Hager, G.; Ltaief, Hatem; Stengel, H.; Wellein, G.; Keyes, David E.
2015-01-01
The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multicore wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor.
Vinay BC; Nikhitha MK; Patel Sunil B
2015-01-01
In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.
International Nuclear Information System (INIS)
Hoisie, A.; Lubeck, O.; Wasserman, H.
1998-01-01
The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, they analyze two problem sizes. The model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor
Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes
Directory of Open Access Journals (Sweden)
Jinhua Bao
2009-01-01
Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.
Optimal Shack-Hartmann Wavefront Sensing For Low-Light-Levels
National Research Council Canada - National Science Library
Solomon, Christopher
1997-01-01
.... He will analyze the sensitivity gains achievable in shack-hartmann wavefront sensors using bayesian estimators and compare the results with those achieved using a standard least squares approach...
Directory of Open Access Journals (Sweden)
Massimo Camellin
2017-01-01
Conclusions: Corneal-Wavefront guided transepithelial PRK ablation profiles after conventional CXL yields to good visual, optical, and refractive results. These treatments are safe and efficacious for the correction of refracto-therapeutic problems in keratoconic patients.
Travelling wavefronts of a generalized Fisher equation with spatio-temporal delay
International Nuclear Information System (INIS)
Jin Chunhua; Yin Jingxue; Wang Yifu
2009-01-01
We discuss a generalized Fisher equation with a convolution term which introduces a time-delay in the nonlinearity. Special attention is paid to the existence and the asymptotic behavior of travelling wavefronts connecting two uniform steady states.
Wave optics modeling of real-time holographic wavefront compensation systems using OSSim
Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.
2005-08-01
OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.
Wavefront picking for 3D tomography and full-waveform inversion
AlTheyab, Abdullah; Schuster, Gerard T.
2016-01-01
We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using
Aslanides, Ioannis M; Kolli, Sai; Padroni, Sara; Padron, Sara; Arba Mosquera, Samuel
2012-05-01
To evaluate the long-term outcomes of aspheric corneal wavefront ablation profiles for excimer laser retreatment. Eighteen eyes that had previously undergone LASIK or photorefractive keratectomy (PRK) were retreated with LASIK using the corneal wavefront ablation profile. Custom Ablation Manager (SCHWIND eye-tech-solutions, Kleinostheim, Germany) software and the ESIRIS flying spot excimer laser system (SCHWIND) were used to perform the ablations. Refractive outcomes and wavefront data are reported up to 4 years after retreatment. Pre- and postoperative data were compared with Student t tests and (multivariate) correlation tests. P<.05 was considered statistically significant. A bilinear correlation of various postoperative wavefront aberrations versus planned correction and preoperative aberration was performed. Mean manifest refraction spherical equivalent (MRSE) before retreatment was -0.38±1.85 diopters (D) and -0.09±0.22 D at 6 months and -0.10±0.38 D at 4 years postoperatively. The reduction in MRSE was statistically significant at both postoperative time points (P<.005). Postoperative aberrations were statistically lower (spherical aberration P<.05; coma P<.005; root-mean-square higher order aberration P<.0001) at 4 years postoperatively. Distribution of the postoperative uncorrected distance visual acuity (P<.0001) and corrected distance visual acuity (P<.01) were statistically better than preoperative values. Aspheric corneal wavefront customization with the ESIRIS yields visual, optical, and refractive results comparable to those of other wavefront-guided customized techniques for the correction of myopia and myopic astigmatism. The corneal wavefront customized approach shows its strength in cases where abnormal optical systems are expected. Systematic wavefront customized corneal ablation appears safe and efficacious for retreatment cases. Copyright 2012, SLACK Incorporated.
Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire
Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.
2018-01-01
An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.
Energy Technology Data Exchange (ETDEWEB)
Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-04
We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B_{0} is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB_{0}/B_{0}, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2
The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO
Crass, Jonathan; King, David; Mackay, Craig
2013-12-01
Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.
International Nuclear Information System (INIS)
Mulder, E.; Duin, P.J. van; Grootenboer, G.J.
1995-01-01
A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs
Solow Residuals Without Capital Stocks
DEFF Research Database (Denmark)
Burda, Michael C.; Severgnini, Battista
2014-01-01
We use synthetic data generated by a prototypical stochastic growth model to assess the accuracy of the Solow residual (Solow, 1957) as a measure of total factor productivity (TFP) growth when the capital stock in use is measured with error. We propose two alternative measurements based on curren...
Propagation and wavefront ambiguity of linear nondiffracting beams
Grunwald, R.; Bock, M.
2014-02-01
Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.
JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status
Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team
2018-01-01
After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.
Precise starshade stationkeeping and pointing with a Zernike wavefront sensor
Bottom, Michael; Martin, Stefan; Seubert, Carl; Cady, Eric; Zareh, Shannon Kian; Shaklan, Stuart
2017-09-01
Starshades, large occulters positioned tens of thousands of kilometers in front of space telescopes, offer one of the few paths to imaging and characterizing Earth-like extrasolar planets. However, for a starshade to generate a sufficiently dark shadow on the telescope, the two must be coaligned to just 1 meter laterally, even at these large separations. The principal challenge to achieving this level of control is in determining the position of the starshade with respect to the space telescope. In this paper, we present numerical simulations and laboratory results demonstrating that a Zernike wavefront sensor coupled to a WFIRST-type telescope is able to deliver the stationkeeping precision required, by measuring light outside of the science wavelengths. The sensor can determine the starshade lateral position to centimeter level in seconds of open shutter time for stars brighter than eighth magnitude, with a capture range of 10 meters. We discuss the potential for fast (ms) tip/tilt pointing control at the milli-arcsecond level by illuminating the sensor with a laser mounted on the starshade. Finally, we present early laboratory results.
Continuous shearlet frames and resolution of the wavefront set
Grohs, Philipp
2010-12-04
In recent years directional multiscale transformations like the curvelet- or shearlet transformation have gained considerable attention. The reason for this is that these transforms are-unlike more traditional transforms like wavelets-able to efficiently handle data with features along edges. The main result in Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009) confirming this property for shearlets is due to Kutyniok and Labate where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the wavefront set of f. We demonstrate that the same result can be verified under much weaker assumptions on ψ, namely to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for L2(ℝ2)from any such function. To prove our statements we develop a new approach based on an adaption of the Radon transform to the shearlet structure. © 2010 Springer-Verlag.
Wavefront sensing and adaptive control in phased array of fiber collimators
Lachinova, Svetlana L.; Vorontsov, Mikhail A.
2011-03-01
A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change
The wavefront of the radio signal emitted by cosmic ray air showers
Energy Technology Data Exchange (ETDEWEB)
Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others
2014-09-01
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.
Wigledowska-Promienska, D; Zawojska, I
2007-01-01
To assess efficacy, safety, and changes in higher order aberrations after wavefront-guided photorefractive keratectomy (PRK) in comparison with conventional PRK for low to moderate myopia with myopic astigmatism using a WASCA Workstation with the MEL 70 G-Scan excimer laser. A total of 126 myopic or myopic-astigmatic eyes of 112 patients were included in this retrospective study. Patients were divided into two groups: Group 1, the study group; and Group 2, the control group. Group 1 consisted of 78 eyes treated with wavefront-guided PRK. Group 2 consisted of 48 eyes treated with spherocylindrical conventional PRK. Two years postoperatively, in Group 1, 5% of eyes achieved an uncorrected visual acuity (UCVA) of 0.05; 69% achieved a UCVA of 0.00; 18% of eyes experienced enhanced visual acuity of -0.18 and 8% of -0.30. In Group 2, 8% of eyes achieved a UCVA of 0.1; 25% achieved a UCVA of 0.05; and 67% achieved a UCVA of 0.00 according to logMAR calculation method. Total higher-order root-mean square increased by a factor 1.18 for Group 1 and 1.6 for Group 2. There was a significant increase of coma by a factor 1.74 in Group 2 and spherical aberration by a factor 2.09 in Group 1 and 3.56 in Group 2. The data support the safety and effectiveness of the wavefront-guided PRK using a WASCA Workstation for correction of low to moderate refractive errors. This method reduced the number of higher order aberrations induced by excimer laser surgery and improved uncorrected and spectacle-corrected visual acuity when compared to conventional PRK.
International Nuclear Information System (INIS)
D'Elboux, C.V.; Paiva, I.B.
1980-01-01
Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt
Accuracy of modal wavefront estimation from eye transverse aberration measurements
Chyzh, Igor H.; Sokurenko, Vyacheslav M.
2001-01-01
The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave aberration as well as ametropia and astigmatism parameters is investigated. The dependence of mentioned errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for different pupil location of measurement points. Recommendations are proposed for setting these ratios.
The measurement and analysis of wavefront structure from large aperture ICF optics
International Nuclear Information System (INIS)
Wolfe, C.R.; Lawson, J.K.
1995-01-01
This paper discusses the techniques, developed over the past year, for high spatial resolution measurement and analysis of the transmitted and/or reflected wavefront of large aperture ICF optical components. Parts up to 400 mm x 750 mm have been measured and include: laser slabs, windows, KDP crystals and lenses. The measurements were performed using state-of-the-art commercial phase shifting interferometers at a wavelength of 633 μm. Both 1 and 2-D Fourier analysis have been used to characterize the wavefront; specifically the Power Spectral Density, (PSD), function was calculated. The PSDs of several precision optical components will be shown. The PSD(V) is proportional to the (amplitude) 2 of components of the Fourier frequency spectrum. The PSD describes the scattered intensity and direction as a function of scattering angle in the wavefront. The capability of commercial software is limited to 1-D Fourier analysis only. We are developing our own 2-D analysis capability in support of work to revise specifications for NIF optics. 2-D analysis uses the entire wavefront phase map to construct 2D PSD functions. We have been able to increase the signal-to-noise relative to 1-D and can observe very subtle wavefront structure
X-ray wavefront characterization using a rotating shearing interferometer technique.
Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian
2011-08-15
A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America
An Optical Wavefront Sensor Based on a Double Layer Microlens Array
Directory of Open Access Journals (Sweden)
Hsiang-Chun Wei
2011-10-01
Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Wang, Tsung-Jen; Lin, Yu-Huang; Chang, David C-K; Chou, Hsiu-Chu; Wang, I-Jong
2012-04-01
To analyse the magnitude of cylindrical corrections over which cyclotorsion compensation with iris recognition (IR) technology is beneficial during wavefront laser-assisted in situ keratomileusis. A retrospectively comparative case series. Fifty-four eyes that underwent wavefront laser-assisted in situ keratomileusis without IR (non-IR group) and 53 eyes that underwent wavefront laser-assisted in situ keratomileusis with IR (IR group) were recruited. Subgroup analysis based on baseline astigmatism were: a low degree of astigmatism (≥1.00 D to <2.00 D), a moderate degree of astigmatism (≥2.00 D to <3.00 D) and a high degree of astigmatism (≥3.00 D). Vector and non-vector analyses were used for comparison. The mean cylinder was -1.89 ± 0.76 D in the non-IR group and -2.00 ± 0.77 D in the IR group. Postoperatively, 38 eyes (74.50%) in the IR group and 31 eyes (57.50%) in the non-IR group were within ± 0.50 D of the target induced astigmatism vector (P = 0.063). The difference vector was 0.49 ± 0.28 in the IR group and 0.63 ± 0.40 in the non-IR group (P = 0.031). In the analysis of subgroups, the magnitude of error was significantly lower in the moderate IR subgroup than that of the moderate non-IR subgroup (P = 0.034). Furthermore, the moderate IR subgroup had a lower mean difference vector (P = 0.0078) and a greater surgically induced astigmatism (P = 0.036) than those of the moderate non-IR group. Wavefront laser-assisted in situ keratomileusis for the treatment of astigmatism using IR technology was effective and accurate for the treatment of myopic astigmatism. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.
Directory of Open Access Journals (Sweden)
Marcony Rodrigues de Santhiago
2009-01-01
Full Text Available PURPOSE: To evaluate intraindividual visual acuity, wavefront errors and modulation transfer functions in patients implanted with two diffractive multifocal intraocular lenses. METHODS: This prospective study examined 40 eyes of 20 cataract patients who underwent phacoemulsification and implantation of a spherical multifocal ReSTOR intraocular lens in one eye and an aspheric Tecnis ZM900 multifocal intraocular lens in the other eye. The main outcome measures, over a 3-month follow-up period, were the uncorrected photopic distance and near visual acuity and the defocus curve. The visual acuity was converted to logMAR for statistical analysis and is presented in decimal scale. The wavefront error and modulation transfer function were also evaluated in both groups. RESULTS: At the 3-month postoperative visit, the mean photopic distance uncorrected visual acuity (UCVA was 0.74 ± 0.20 in the ReSTOR group and 0.76 ± 0.22 in the Tecnis group (p=0.286. The mean near UCVA was 0.96 ± 0.10 in the ReSTOR group and 0.93 ± 0.14 in the Tecnis group (p=0.963. The binocular defocus curve showed measurements between the peaks better than 0.2 logMAR. The total aberration, higher-order aberration and coma aberration were not significantly different between the groups. The spherical aberration was significantly lower in the Tecnis group than in the ReSTOR group. (p=0.004. Both groups performed similarly for the modulation transfer function. CONCLUSION: The ReSTOR SN60D3 and Tecnis ZM 900 intraocular lenses provided similar photopic visual acuity at distance and near. The diffractive intraocular lenses studied provided a low value of coma and spherical aberrations, with the Tecnis intraocular lens having a statistically lower spherical aberration compared to the ReSTOR intraocular lens. In the 5 mm pupil diameter analyses, both intraocular lens groups showed similar modulation transfer functions.
Hinnen, K.; Verhaegen, M.; Doelman, N.
2005-01-01
Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By
International Nuclear Information System (INIS)
Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.
1995-01-01
This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 angstrom. The optical components studied range in size from approximately 50 mm x 100 mm to 400 mm x 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ''micro roughness'', ''mid-spatial scale'', and ''optical figure/curvature.'' Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically λ/100 to λ/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program
Zonal wavefront sensing using a grating array printed on a polyester film
Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.
2015-12-01
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.
Zonal wavefront sensing using a grating array printed on a polyester film
Energy Technology Data Exchange (ETDEWEB)
Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Kumar, Suraj [Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014 (India)
2015-12-15
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.
Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer
Directory of Open Access Journals (Sweden)
Brijesh Kumar Singh
2012-01-01
Full Text Available Optical vortex arrays have been generated using simple, novel, and stable reversed-wavefront folding interferometer. Two new interferometric configurations were used for generating a variety of optical vortex lattices. In the first interferometric configuration one cube beam splitter (CBS was used in one arm of Mach-Zehnder interferometer for splitting and combining the collimated beam, and one mirror of another arm is replaced by second CBS. At the output of interferometer, three-beam interference gives rise to optical vortex arrays. In second interferometric configuration, a divergent wavefront was made incident on a single CBS which splits and combines wavefronts leading to the generation of vortex arrays due to four-beam interference. It was found that the orientation and structure of the optical vortices can be stably controlled by means of changing the rotation angle of CBS.
On distributed wavefront reconstruction for large-scale adaptive optics systems.
de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel
2016-05-01
The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.
Optimization of scanning strategy of digital Shack-Hartmann wavefront sensing.
Guo, Wenjiang; Zhao, Liping; Li, Xiang; Chen, I-Ming
2012-01-01
In the traditional Shack-Hartmann wavefront sensing (SHWS) system, a lenslet array with a bigger configuration is desired to achieve a higher lateral resolution. However, practical implementation limits the configuration and this parameter is contradicted with the measurement range. We have proposed a digital scanning technique by making use of the high flexibility of a spatial light modulator to sample the reflected wavefront [X. Li, L. P. Zhao, Z. P. Fang, and C. S. Tan, "Improve lateral resolution in wavefront sensing with digital scanning technique," in Asia-Pacific Conference of Transducers and Micro-Nano Technology (2006)]. The lenslet array pattern is programmed to laterally scan the whole aperture. In this paper, the methodology to optimize the scanning step for the purpose of form measurement is proposed. The correctness and effectiveness are demonstrated in numerical simulation and experimental investigation. © 2012 Optical Society of America
Image system analysis of human eye wave-front aberration on the basis of HSS
Xu, Ancheng
2017-07-01
Hartmann-Shack sensor (HSS) has been used in objective measurement of human eye wave-front aberration, but the research on the effects of sampling point size on the accuracy of the result has not been reported. In this paper, point spread function (PSF) of the whole system mathematical model was obtained via measuring the optical imaging system structure of human eye wave-front aberration measurement. The impact of Airy spot size on the accuracy of system was analyzed. Statistics study show that the geometry of Airy spot size of the ideal light source sent from eye retina formed on the surface of HSS is far smaller than the size of the HSS sample point image used in the experiment. Therefore, the effect of Airy spot on the precision of the system can be ignored. This study theoretically and experimentally justifies the reliability and accuracy of human eye wave-front aberration measurement based on HSS.
Directory of Open Access Journals (Sweden)
Avi Karsenty
2017-01-01
Full Text Available Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram’s modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article.
Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua
2018-01-01
Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.
X-ray active mirror coupled with a Hartmann wavefront sensor
International Nuclear Information System (INIS)
Idir, Mourad; Mercere, Pascal; Modi, Mohammed H.; Dovillaire, Guillaume; Levecq, Xavier; Bucourt, Samuel; Escolano, Lionel; Sauvageot, Paul
2010-01-01
This paper reports on the design and performances of a test prototype active X-ray mirror (AXM) which has been designed and manufactured in collaboration with the French Small and Medium Enterprise mechanical company ISP System for the national French storage ring SOLEIL. Coupled with this active X-ray mirror and also in collaboration with another French Small and Medium Enterprise (Imagine Optic) a lot of efforts have been done in order to design and fabricate a wavefront X-ray analyzer based on the Hartmann principle (Hartman wavefront sensor, HWS).
Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.
Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L
2002-09-01
We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.
Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts
Karasawa, Naoki
2018-04-01
Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.
Learning from prescribing errors
Dean, B
2002-01-01
The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...
Biometric iris image acquisition system with wavefront coding technology
Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao
2013-09-01
Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code
Residual nilpotence and residual solubility of groups
International Nuclear Information System (INIS)
Mikhailov, R V
2005-01-01
The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.
Roberts, William R.; Gould, Christopher J.; Smith, Adlai H.; Rebitz, Ken
2000-08-01
Several ideas have recently been presented which attempt to measure and predict lens aberrations for new low k1 imaging systems. Abbreviated sets of Zernike coefficients have been produced and used to predict Across Chip Linewidth Variation. Empirical use of the wavefront aberrations can now be used in commercially available lithography simulators to predict pattern distortion and placement errors. Measurement and Determination of Zernike coefficients has been a significant effort of many. However the use of this data has generally been limited to matching lenses or picking best fit lense pairs. We will use wavefront aberration data collected using the Litel InspecStep in-situ Interferometer as input data for Prolith/3D to model and predict pattern placement errors and intrafield overlay variation. Experiment data will be collected and compared to the simulated predictions.
Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.
Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae
2017-08-07
Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.
Study of wavefront aberration in DR patients with different degree of dry eye
Directory of Open Access Journals (Sweden)
Jin-Ran Fang
2018-05-01
Full Text Available AIM: To compare the changes of wavefront aberrations in patients with diabetic retinopathy(DRand with different degrees of dry eye and to explore the reasons of visual quality decline in them. METHODS: We randomly selected 40 eyes in our hospital for treatment with DR and varying degrees of dry eye, and 40 eyes of normal control group. Topcon KR-1W visual quality analyzer was used to record the mean square the total high order corneal aberration, spherical aberration, comatic aberration and trefoil aberration of cornea with pupil diameters of 4mm and 6mm. Analysis of variance were used to compare the wavefront aberrations and the aberration values in the control group and in patients with diabetic retinopathy and with different degrees of dry eye. RESULTS: For 4mm and 6mm pupil diameters, nondiabetic retinopathy(NDRwith dry eye group, the nonproliferative diabetic retinopathy(NPDRwith dry eye group and proliferative diabetic retinopathy(PDRdry eye group had significantly increased tHOA, coma and trefoil compared with the contrast group(PPCONCLUSION: Dry eye of diabetic retinopathy with different degrees is closely related to the increase of wavefront aberration. Increased wavefront aberration may be one of the reasons to reduced visual quality in patients with diabetic retinopathy and with dry eye, and provide the basis for the decline of visual function of diabetic patients with dry eye.
High speed real-time wavefront processing system for a solid-state laser system
Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing
2008-03-01
A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.
Athermalization of infrared dual field optical system based on wavefront coding
Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha
2017-02-01
Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.
International Nuclear Information System (INIS)
Hoisie, A.; Lubeck, O.; Wasserman, H.
1998-01-01
The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, the authors analyze two problem sizes. Their model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor
High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging
Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.
2016-01-01
We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze
Wavefront-guided versus standard laser in situ keratomileusis to correct low to moderate myopia.
Nuijts, R.M.; Nabar, V.A.; Hament, W.J.; Eggink, F.A.G.J.
2002-01-01
To evaluate the 6-month refractive outcomes of wavefront-guided laser in situ keratomileusis (LASIK) (Zyoptix, Bausch & Lomb) versus standard LASIK (PlanoScan, Bausch & Lomb).Department of Ophthalmology, University Hospital Maastricht, Maastricht, The Netherlands.In a prospective randomized study,
Wave-front reversal in a copper-vapor active medium
Energy Technology Data Exchange (ETDEWEB)
Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.
1981-09-01
The implementation of wave-front reversal in a copper-vapor laser resonator is reported. The frequencies of the signal wave and the reversed wave are the same, and the dependence of reversed-signal power on input-signal power has a threshold character. Photographs of the reconstructed object image upon insertion of a distorting phase plate into the resonator are presented.
Tool to estimate optical metrics from summary wave-front analysis data in the human eye
Jansonius, Nomdo M.
Purpose Studies in the field of cataract and refractive surgery often report only summary wave-front analysis data data that are too condensed to allow for a retrospective calculation of metrics relevant to visual perception. The aim of this study was to develop a tool that can be used to estimate
Automatic centroid detection and surface measurement with a digital Shack–Hartmann wavefront sensor
International Nuclear Information System (INIS)
Yin, Xiaoming; Zhao, Liping; Li, Xiang; Fang, Zhongping
2010-01-01
With the breakthrough of manufacturing technologies, the measurement of surface profiles is becoming a big issue. A Shack–Hartmann wavefront sensor (SHWS) provides a promising technology for non-contact surface measurement with a number of advantages over interferometry. The SHWS splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. So the accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented a new centroid measurement algorithm based on an adaptive thresholding and dynamic windowing method by utilizing image-processing techniques. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront and measure the 3D profile of the surface. The system has been tested with various simulated and real surfaces such as flat surfaces, spherical and aspherical surfaces as well as deformable surfaces. The experimental results demonstrate that the system has good accuracy, repeatability and immunity to optical misalignment. The system is also suitable for on-line applications of surface measurement
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
International Nuclear Information System (INIS)
Picard, R.R.
1989-01-01
Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process
Martínez-Legaz, Juan Enrique; Soubeyran, Antoine
2003-01-01
We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
Medication errors: prescribing faults and prescription errors.
Velo, Giampaolo P; Minuz, Pietro
2009-06-01
1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.
Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up.
Aizawa, Daisuke; Shimizu, Kimiya; Komatsu, Mari; Ito, Misae; Suzuki, Masanobu; Ohno, Koji; Uozato, Hiroshi
2003-08-01
To evaluate the clinical outcomes 6 months after wavefront-guided laser in situ keratomileusis (LASIK) for myopia in Japan. Department of Ophthalmology, Sanno Hospital, Tokyo, Japan. This prospective study comprised 22 eyes of 12 patients treated with wavefront-guided LASIK who were available for evaluation at 6 months. The mean patient age was 31.2 years +/- 8.4 (SD) (range 23 to 50 years), and the mean preoperative spherical equivalent refraction was -7.30 +/- 2.72 diopters (D) (range -2.75 to -11.88 D). In all cases, preoperative wavefront analysis was performed with a Hartmann-Shack aberrometer and the Technolas 217z flying-spot excimer laser system (Bausch & Lomb) was used with 1.0 mm and 2.0 mm spot sizes and an active eye tracker with a 120 Hz tracking rate. The clinical outcomes of wavefront-guided LASIK were evaluated in terms of safety, efficacy, predictability, stability, complications, and preoperative and postoperative aberrations. At 6 months, 10 eyes had no change in best spectacle-correct visual acuity and 10 gained 1 or more lines. The safety index was 1.11 and the efficacy index, 0.82. Slight undercorrections were observed in highly myopic eyes. In all eyes, the postoperative refraction tended slightly toward myopia for 3 months and stabilized after that. No complication such as epithelial ingrowth, diffuse lamellar keratitis, or infection was observed. Comparison of the preoperative and postoperative aberrations showed that 2nd-order aberrations decreased and higher-order aberrations increased. In the 3rd order, aberrations increased in the high-myopia group (-6.0 D or worse) and decreased in the low to moderate-myopia group (better than -6.0 D). Wavefront-guided LASIK was a good option for refractive surgery, although a longer follow-up in a larger study is required.
Non-uniform dispersion of the source-sink relationship alters wavefront curvature.
Directory of Open Access Journals (Sweden)
Lucia Romero
Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the
Error Resilient Video Compression Using Behavior Models
Directory of Open Access Journals (Sweden)
Jacco R. Taal
2004-03-01
Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.
Computer Generated Hologram System for Wavefront Measurement System Calibration
Olczak, Gene
2011-01-01
Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.
Energy Technology Data Exchange (ETDEWEB)
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Liu, Bin; Liu, Chong; Shen, Lifeng; Wang, Chunhua; Ye, Zhibin; Liu, Dong; Xiang, Zhen
2016-04-18
A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.
Prescription Errors in Psychiatry
African Journals Online (AJOL)
Arun Kumar Agnihotri
clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.
The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results
Crass, Jonathan; King, David; MacKay, Craig
2014-08-01
Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.
Kartush, J M
1996-11-01
Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.
The effect of errors in charged particle beams
International Nuclear Information System (INIS)
Carey, D.C.
1987-01-01
Residual errors in a charged particle optical system determine how well the performance of the system conforms to the theory on which it is based. Mathematically possible optical modes can sometimes be eliminated as requiring precisions not attainable. Other plans may require introduction of means of correction for the occurrence of various errors. Error types include misalignments, magnet fabrication precision limitations, and magnet current regulation errors. A thorough analysis of a beam optical system requires computer simulation of all these effects. A unified scheme for the simulation of errors and their correction is discussed
Sparse aperture differential piston measurements using the pyramid wave-front sensor
Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-07-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.
Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M
2018-02-13
Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.
Effective wavefront aberration measurement of spectacle lenses in as-worn status
Jia, Zhigang; Xu, Kai; Fang, Fengzhou
2018-04-01
An effective wavefront aberration analysis method for measuring spectacle lenses in as-worn status was proposed and verified using an experimental apparatus based on an eye rotation model. Two strategies were employed to improve the accuracy of measurement of the effective wavefront aberrations on the corneal sphere. The influences of three as-worn parameters, the vertex distance, pantoscopic angle, and face form angle, together with the eye rotation and corresponding incident beams, were objectively and quantitatively obtained. The experimental measurements of spherical single vision and freeform progressive addition lenses demonstrate the accuracy and validity of the proposed method and experimental apparatus, which provide a potential means of achieving supernormal vision correction with customization and personalization in optimizing the as-worn status-based design of spectacle lenses and evaluating their manufacturing and imaging qualities.
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-02-01
Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.
Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor
International Nuclear Information System (INIS)
Lee, Junwon; Shack, Roland V.; Descour, Michael R.
2005-01-01
We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics
Directory of Open Access Journals (Sweden)
Jingkun Gao
2016-12-01
Full Text Available An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG-based nonuniform FFT (NUFFT is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section of targets in the terahertz regime.
Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model
International Nuclear Information System (INIS)
Barbosa, Carlos R Hall
2003-01-01
We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models
Research on a wavefront aberration calculation method for a laser energy gradient attenuator
International Nuclear Information System (INIS)
Dong, Tingting; Han, Xu; Chen, Chi; Fu, Yuegang; Li, Ming
2013-01-01
When a laser energy gradient attenuator is working, there is an inhomogeneous temperature distribution in the whole of the glass because of the non-uniform light energy absorption. This will lead to optical performance reduction. An integrated opto-thermal–mechanical method is proposed to calculate the wavefront aberration for analysis of the thermal effect of the system. Non-sequential optical analysis is used for computing the absorbed energy distribution. The finite element analysis program solves the temperature distribution and the deformations of nodes on the surfaces. An interface routine is created to fit the surface shape and the index field, and extended Zernike polynomials are introduced to get a higher fitting precision. Finally, the parameters are imported to the CodeV optical design program automatically, and the user defined gradient index material is ray traced to obtain the wavefront aberration. The method can also be used in other optical systems for thermal effect analysis. (letter)
Hough transform used on the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor
Chia, Chou-Min; Huang, Kuang-Yuh; Chang, Elmer
2016-01-01
An approach to the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor (SHWS) is presented. The SHWS has a common problem, in that while measuring high-order wavefront distortion, the spots may exceed each of the subapertures, which are used to restrict the displacement of spots. This artificial restriction may limit the dynamic range of the SHWS. When using the SHWS to measure adaptive optics or aspheric lenses, the accuracy of the traditional spot-centroiding algorithm may be uncertain because the spots leave or cross the confined area of the subapertures. The proposed algorithm combines the Hough transform with an artificial neural network, which requires no confined subapertures, to increase the dynamic range of the SHWS. This algorithm is then explored in comprehensive simulations and the results are compared with those of the existing algorithm.
Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™
Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.
2015-01-01
We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high perfo...
Performance analysis of large-scale applications based on wavefront algorithms
International Nuclear Information System (INIS)
Hoisie, A.; Lubeck, O.; Wasserman, H.
1998-01-01
The authors introduced a performance model for parallel, multidimensional, wavefront calculations with machine performance characterized using the LogGP framework. The model accounts for overlap in the communication and computation components. The agreement with experimental data is very good under a variety of model sizes, data partitioning, blocking strategies, and on three different parallel architectures. Using the model, the authors analyzed performance of a deterministic transport code on a hypothetical 100 Tflops future parallel system of interest to ASCI
International Nuclear Information System (INIS)
He Zhigang; Wang Xiaohui; Jia Qika
2012-01-01
To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved. (authors)
Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging
Olczak, Eugene G (Inventor)
2011-01-01
An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
Energy Technology Data Exchange (ETDEWEB)
Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2014-12-31
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
International Nuclear Information System (INIS)
Wolfe, C.R.; Lawson, J.K.; Aikens, D.M.; English, R.E.
1995-01-01
In the second half of the 1990's, LLNL and others anticipate designing and beginning construction of the National Ignition Facility (NIF). The NIF will be capable of producing the worlds first laboratory scale fusion ignition and bum reaction by imploding a small target. The NIF will utilize approximately 192 simultaneous laser beams for this purpose. The laser will be capable of producing a shaped energy pulse of at least 1.8 million joules (MJ) with peak power of at least 500 trillion watts (TV). In total, the facility will require more than 7,000 large optical components. The performance of a high power laser of this kind can be seriously degraded by the presence of low amplitude, periodic modulations in the surface and transmitted wavefronts of the optics used. At high peak power, these phase modulations can convert into large intensity modulations by non-linear optical processes. This in turn can lead to loss in energy on target via many well known mechanisms. In some cases laser damage to the optics downstream of the source of the phase modulation can occur. The database described here contains wavefront phase maps of early prototype optical components for the NIF. It has only recently become possible to map the wavefront of these large aperture components with high spatial resolution. Modem large aperture static fringe and phase shifting interferometers equipped with large area solid state detectors have made this possible. In a series of measurements with these instruments, wide spatial bandwidth can be detected in the wavefront
Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali
2014-09-10
The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.
High-QE fast-readout wavefront sensor with analog phase reconstruction
Baker, Jeffrey T.; Loos, Gary C.; Restaino, Sergio R.; Percheron, Isabelle; Finkner, Lyle G.
1998-09-01
The contradiction inherent in high temporal bandwidth adaptive optics wavefront sensing at low-light-levels (LLL) has driven many researchers to consider the use of high bandwidth high quantum efficiency (QE) CCD cameras with the lowest possible readout noise levels. Unfortunately, the performance of these relatively expensive and low production volume devices in the photon counting regime is inevitably limited by readout noise, no matter how arbitrarily close to zero that specification may be reduced. Our alternative approach is to optically couple a new and relatively inexpensive Ultra Blue Gen III image intensifier to an also relatively inexpensive high bandwidth CCD camera with only moderate QE and high rad noise. The result is a high bandwidth broad spectral response image intensifier with a gain of 55,000 at 560 nm. Use of an appropriately selected lenslet array together with coupling optics generates 16 X 16 Shack-Hartmann type subapertures on the image intensifier photocathode, which is imaged onto the fast CCD camera. An integral A/D converter in the camera sends the image data pixel by pixel to a computer data acquisition system for analysis, storage and display. Timing signals are used to decode which pixel is being rad out and the wavefront is calculated in an analog fashion using a least square fit to both x and y tilt data for all wavefront sensor subapertures. Finally, we present system level performance comparisons of these new concept wavefront sensors versus the more standard low noise CCD camera based designs in the low-light-level limit.
International Nuclear Information System (INIS)
Li Jia-Fang; Li Zhi-Yuan
2014-01-01
The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Directory of Open Access Journals (Sweden)
Eduardo Magdaleno
2009-12-01
Full Text Available In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain: international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975. It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA. These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO problems in Extremely Large Telescopes (ELTs in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs. Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope
Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.
2018-06-01
The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.
Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V
2015-02-01
Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.
Development of a hard x-ray wavefront sensor for the EuXFEL
Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry
2017-05-01
We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.
Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system
Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen
2018-02-01
In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.
The error in total error reduction.
Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R
2014-02-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.
Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador
2012-01-01
A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Satellite Magnetic Residuals Investigated With Geostatistical Methods
DEFF Research Database (Denmark)
Fox Maule, Chaterine; Mosegaard, Klaus; Olsen, Nils
2005-01-01
(which consists of measurement errors and unmodeled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyze the residuals of the Oersted (09d/04) field model (www.dsri.dk/Oersted/Field models/IGRF 2005 candidates/), which is based...
Sources of medical error in refractive surgery.
Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B
2013-05-01
To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.
Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano
2013-01-01
Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...
National Research Council Canada - National Science Library
Byrne, Michael D
2006-01-01
.... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...
International Nuclear Information System (INIS)
Wahlstroem, B.
1993-01-01
Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)
International Nuclear Information System (INIS)
Kiyko, V V; Kislov, V I; Ofitserov, E N
2015-01-01
In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of the mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)
Energy Technology Data Exchange (ETDEWEB)
Kiyko, V V; Kislov, V I; Ofitserov, E N [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2015-08-31
In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of the mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)
Schmid, Tobias; Rolland, Jannick P; Rakich, Andrew; Thompson, Kevin P
2010-08-02
We present the nodal aberration field response of Ritchey-Chrétien telescopes to a combination of optical component misalignments and astigmatic figure error on the primary mirror. It is shown that both astigmatic figure error and secondary mirror misalignments lead to binodal astigmatism, but that each type has unique, characteristic locations for the astigmatic nodes. Specifically, the characteristic node locations in the presence of astigmatic figure error (at the pupil) in an otherwise aligned telescope exhibit symmetry with respect to the field center, i.e. the midpoint between the astigmatic nodes remains at the field center. For the case of secondary mirror misalignments, one of the astigmatic nodes remains nearly at the field center (in a coma compensated state) as presented in Optics Express 18, 5282-5288 (2010), while the second astigmatic node moves away from the field center. This distinction leads directly to alignment methods that preserve the dynamic range of the active wavefront compensation component.
Manche, Edward E; Haw, Weldon W
2011-12-01
To compare the safety and efficacy of wavefront-guided laser in situ keratomileusis (LASIK) vs photorefractive keratectomy (PRK) in a prospective randomized clinical trial. A cohort of 68 eyes of 34 patients with -0.75 to -8.13 diopters (D) of myopia (spherical equivalent) were randomized to receive either wavefront-guided PRK or LASIK in the fellow eye using the VISX CustomVue laser. Patients were evaluated at 1 day, 1 week, and months 1, 3, 6, and 12. At 1 month, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), 5% and 25% contrast sensitivity, induction of higher-order aberrations (HOAs), and subjective symptoms of vision clarity, vision fluctuation, ghosting, and overall self-assessment of vision were worse (PPRK group. By 3 months, these differences had resolved (P>0.05). At 1 year, mean spherical equivalent was reduced 94% to -0.27 ± 0.31 D in the LASIK group and reduced 96% to -0.17 ± 0.41 D in the PRK group. At 1 year, 91% of eyes were within ±0.50 D and 97 % were within ±1.0 D in the PRK group. At 1 year, 88% of eyes were within ±0.50 D and 97% were within ±1.0 D in the LASIK group. At 1 year, 97% of eyes in the PRK group and 94% of eyes in the LASIK group achieved an UCVA of 20/20 or better (P=0.72). Refractive stability was achieved in both PRK and LASIK groups after 1 month. There were no intraoperative or postoperative flap complications in the LASIK group. There were no instances of corneal haze in the PRK group. Wavefront-guided LASIK and PRK are safe and effective at reducing myopia. At 1 month postoperatively, LASIK demonstrates an advantage over PRK in UCVA, BSCVA, low-contrast acuity, induction of total HOAs, and several subjective symptoms. At postoperative month 3, these differences between PRK and LASIK results had resolved.
Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods
Czech Academy of Sciences Publication Activity Database
Paige, C. C.; Strakoš, Zdeněk
2002-01-01
Roč. 23, č. 6 (2002), s. 1899-1924 ISSN 1064-8275 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: AV0Z1030915 Keywords : linear equations * eigenproblem * large sparse matrices * iterative solutions * Krylov subspace methods * Arnoldi method * GMRES * modified Gram-Schmidt * least squares * total least squares * singular values Subject RIV: BA - General Mathematics Impact factor: 1.291, year: 2002
Metcalfe, Janet
2017-01-01
Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Barboni, Mirella Telles Salgueiro; Feitosa-Santana, Claudia; Barreto Junior, Jackson; Lago, Marcos; Bechara, Samir Jacob; Alves, Milton Ruiz; Ventura, Dora Fix
2013-10-01
The present study aimed to compare the postoperative contrast sensitivity functions between wavefront-guided LASIK eyes and their contralateral wavefront-guided PRK eyes. The participants were 11 healthy subjects (mean age=32.4 ± 6.2 years) who had myopic astigmatism. The spatial contrast sensitivity functions were measured before and three times after the surgery. Psycho and a Cambridge graphic board (VSG 2/4) were used to measure luminance, red-green, and blue-yellow spatial contrast sensitivity functions (from 0.85 to 13.1 cycles/degree). Longitudinal analysis and comparison between surgeries were performed. There was no significant contrast sensitivity change during the one-year follow-up measurements neither for LASIK nor for PRK eyes. The comparison between procedures showed no differences at 12 months postoperative. The present data showed similar contrast sensitivities during one-year follow-up of wave-front guided refractive surgeries. Moreover, one year postoperative data showed no differences in the effects of either wavefront-guided LASIK or wavefront-guided PRK on the luminance and chromatic spatial contrast sensitivity functions.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
Uncorrected refractive errors.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.
Directory of Open Access Journals (Sweden)
Kovin S Naidoo
2012-01-01
Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.
Preventing Errors in Laterality
Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie
2014-01-01
An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...
International Nuclear Information System (INIS)
Reason, J.
1988-01-01
This paper is in three parts. The first part summarizes the human failures responsible for the Chernobyl disaster and argues that, in considering the human contribution to power plant emergencies, it is necessary to distinguish between: errors and violations; and active and latent failures. The second part presents empirical evidence, drawn from driver behavior, which suggest that errors and violations have different psychological origins. The concluding part outlines a resident pathogen view of accident causation, and seeks to identify the various system pathways along which errors and violations may be propagated
Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji
2016-08-01
The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of
Measurement range of phase retrieval in optical surface and wavefront metrology
International Nuclear Information System (INIS)
Brady, Gregory R.; Fienup, James R.
2009-01-01
Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates
Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System
Bartosewcz, Mike; Tyburski, Joe
1986-05-01
The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.
Impacto da análise do 'wavefront' na refratometria de pacientes com ceratocone
Ambrósio Junior,Renato; Caldas,Diogo Leitão; Silva,Renata Siqueira da; Pimentel,Leonardo Nogueira; Valbon,Bruno de Freitas
2011-01-01
OBJETIVO: Verificar se a aberrometria ocular total (análise da frente de onda ou 'wavefront') possibilita melhora na acuidade visual corrigida (AVc) com lentes esfero-cilíndricas, obtida com a refratometria manifesta em casos de ceratocone com algum grau de intolerância ao uso de lentes de contato. MÉTODOS: Os prontuários de 46 pacientes (89 olhos), referidos com diagnóstico de ceratocone e intolerantes ao uso de lentes de contato, submetidos ao exame de aberrometria ocular total seguido de r...
Enhanced wavefront reconstruction by random phase modulation with a phase diffuser
DEFF Research Database (Denmark)
Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan
2011-01-01
propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...
... this page: //medlineplus.gov/ency/patientinstructions/000618.htm Help prevent hospital errors To use the sharing features ... in the hospital. If You Are Having Surgery, Help Keep Yourself Safe Go to a hospital you ...
2012-03-01
This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...
International Nuclear Information System (INIS)
Jeach, J.L.
1976-01-01
When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables
Spotting software errors sooner
International Nuclear Information System (INIS)
Munro, D.
1989-01-01
Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)
International Nuclear Information System (INIS)
Kop, L.
2001-01-01
On request, the Dutch Association for Energy, Environment and Water (VEMW) checks the energy bills for her customers. It appeared that in the year 2000 many small, but also big errors were discovered in the bills of 42 businesses
Medical Errors Reduction Initiative
National Research Council Canada - National Science Library
Mutter, Michael L
2005-01-01
The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...
International Nuclear Information System (INIS)
Dashti, Mohsen; Rasouli, Saifollah
2012-01-01
Recently, an adjustable, high-sensitivity, wide dynamic range, two-channel wavefront sensor based on moiré deflectometry was proposed by Rasouli et al (2010 Opt. Express 18 23906). In this work we have used this sensor on a telescope for measuring turbulence-induced wavefront distortions. A slightly divergent laser beam passes through turbulent ground level atmosphere and enters the telescope’s aperture. The laser beam is collimated behind the telescope’s focal point by means of a collimator and the beam enters the wavefront sensor. First, from deviations in the moiré fringes we calculate the two orthogonal components of the angle of arrival at each location across the wavefront. The deviations have been deduced in successive frames which allows evolution of the wavefront shape and Fried’s seeing parameter r 0 to be determined. Mainly, statistical analysis of the reconstructed wavefront distortions are presented. The achieved accuracy in the measurements and comparison between the measurements and the theoretical models are presented. Owing to the use of the sensor on a telescope, and using sub-pixel accuracy for the measurement of the moiré fringe displacements, the sensitivity of the measurements is improved by more than one order of magnitude. In this work we have achieved a minimum measurable angle of arrival fluctuations equal to 3.7 × 10 −7 rad or 0.07 arc s. Besides, because of the large area of the telescope’s aperture, a high spatial resolution is achieved in detecting the spatial perturbations of the atmospheric turbulence. (paper)
Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris
2014-07-01
Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to
DEFF Research Database (Denmark)
Rasmussen, Jens
1983-01-01
An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....
2008-01-01
One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177
Thermodynamics of Error Correction
Directory of Open Access Journals (Sweden)
Pablo Sartori
2015-12-01
Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.
Energy Technology Data Exchange (ETDEWEB)
DOREN,NEALL E.
1999-10-01
Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction
International Nuclear Information System (INIS)
Baker, K.L.
2005-01-01
This article details a multigrid algorithm that is suitable for least-squares wave-front reconstruction of Shack-Hartmann and shearing interferometer wave-front sensors. The algorithm detailed in this article is shown to scale with the number of subapertures in the same fashion as fast Fourier transform techniques, making it suitable for use in applications requiring a large number of subapertures and high Strehl ratio systems such as for high spatial frequency characterization of high-density plasmas, optics metrology, and multiconjugate and extreme adaptive optics systems
Bueeler, Michael; Mrochen, Michael
2005-01-01
The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.
An Empirical State Error Covariance Matrix Orbit Determination Example
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance
Wang, Wei-qun; Zhang, Jin-song; Zhao, Xiao-jin
2011-10-01
To explore the postoperative visual acuity results of wavefront-guided LASIK with iris recognition for myopia or myopic astigmatism and the changes of higher-order aberrations and contrast sensitivity function (CSF). Series of prospective case studies, 158 eyes (85 cases) of myopia or myopic astigmatism were divided into two groups: one group underwent wavefront-guided LASIK with iris recognition (iris recognition group); another group underwent wavefront-guided LASIK treatment without iris recognition through the limbus maring point (non-iris recognition group). To comparative analyze the postoperative visual acuity, residual refraction, the RMS of higher-order aberrations and CSF of two groups. There was no statistical significance difference between two groups of the average uncorrected visual acuity (t = 0.039, 0.058, 0.898; P = 0.844, 0.810, 0.343), best corrected visual acuity (t = 0.320, 0.440, 1.515; P = 0.572, 0.507, 0.218), and residual refraction [spherical equivalent (t = 0.027, 0.215, 0.238; P = 0.869, 0.643, 0.626), spherical (t = 0.145, 0.117, 0.038; P = 0.704, 0.732, 0.845) and cylinder (t = 1.676, 1.936, 0.334; P = 0.195, 0.164, 0.563)] at postoperative 10 days, 1 month and 3 month. The security index of iris recognition group at postoperative 3 month was 1.06 and non-iris recognition group was 1.03; the efficacy index of iris recognition group is 1.01 and non-iris recognition group was 1.00. Postoperative 3 month iris recognition group 93.83% eyes and non-iris recognition group of 90.91% eyes spherical equivalent within ± 0.50 D (χ(2) = 0.479, P = 0.489), iris recognition group of 98.77% eyes and non-iris recognition group of 97.40% eyes spherical equivalent within ± 1.00 D (Fisher test, P = 0.613). There was no significance difference between the two groups of security, efficacy and predictability. Non-iris recognition group postoperative 1 month and postoperative 3 months 3-order order aberrations root mean square value (RMS) higher than the
Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™.
Gomes, Jeremias M; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H
2015-10-01
We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel ® Xeon Phi ™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63 × on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7 × and 1.62 × , respectively, as compared to efficient CPU and GPU implementations.
Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory
Groff, Tyler Dean; Kasdin, N.; Carlotti, A.
2011-01-01
Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.
Wavefronts, light rays and caustic of a circular wave reflected by an arbitrary smooth curve
International Nuclear Information System (INIS)
Marciano-Melchor, Magdalena; Silva-Ortigoza, Ramón; Montiel-Piña, Enrique; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Rosado, Alfonso; Suárez-Xique, Román
2011-01-01
The aim of the present work is to obtain expressions for both the wavefront train and the caustic associated with the light rays reflected by an arbitrary smooth curve after being emitted by a point light source located at an arbitrary position in the two-dimensional free space. To this end, we obtain an expression for the k-function associated with the general integral of Stavroudis to the eikonal equation that describes the evolution of the reflected light rays. The caustic is computed by using the definitions of the critical and caustic sets of the two-dimensional map that describes the evolution of an arbitrary wavefront associated with the general integral. The general results are applied to circular and parabolic mirrors. The main motivation to carry out this research is to establish, in future work, the caustic touching theorem in a two-dimensional optical medium and to study the diffraction problem by using the k-function concept. Both problems are important in the computation of the image of an arbitrary object under reflection and refraction
Towards Fast Reverse Time Migration Kernels using Multi-threaded Wavefront Diamond Tiling
Malas, T.
2015-09-13
Today’s high-end multicore systems are characterized by a deep memory hierarchy, i.e., several levels of local and shared caches, with limited size and bandwidth per core. The ever-increasing gap between the processor and memory speed will further exacerbate the problem and has lead the scientific community to revisit numerical software implementations to better suit the underlying memory subsystem for performance (data reuse) as well as energy efficiency (data locality). The authors propose a novel multi-threaded wavefront diamond blocking (MWD) implementation in the context of stencil computations, which represents the core operation for seismic imaging in oil industry. The stencil diamond formulation introduces temporal blocking for high data reuse in the upper cache levels. The wavefront optimization technique ensures data locality by allowing multiple threads to share common adjacent point stencil. Therefore, MWD is able to take up the aforementioned challenges by alleviating the cache size limitation and releasing pressure from the memory bandwidth. Performance comparisons are shown against the optimized 25-point stencil standard seismic imaging scheme using spatial and temporal blocking and demonstrate the effectiveness of MWD.
Akondi, Vyas; Pérez-Merino, Pablo; Martinez-Enriquez, Eduardo; Dorronsoro, Carlos; Alejandre, Nicolás; Jiménez-Alfaro, Ignacio; Marcos, Susana
2017-04-01
Standard evaluation of aberrations from wavefront slope measurements in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), results in large magnitude primary vertical coma, which is attributed to the intrinsic IOL design. The new proposed method analyzes aberrometry data, allowing disentangling the IOL power pupillary distribution from the true higher order aberrations of the eye. The new method of wavefront reconstruction uses retinal spots obtained at both the near and far foci. The method was tested using ray tracing optical simulations in a computer eye model virtually implanted with the Lentis Mplus IOL, with a generic cornea or with anterior segment geometry obtained from custom quantitative spectral-domain optical coherence tomography in a real patient. The method was applied to laser ray tracing aberrometry data at near and far fixation obtained in a patient implanted with the Lentis Mplus IOL. Higher order aberrations evaluated from simulated and real retinal spot diagrams following the new reconstruction approach matched the nominal aberrations (approximately 98%). Previously reported primary vertical coma in patients implanted with this IOL lost significance with the application of the proposed reconstruction. Custom analysis of ray tracing-based retinal spot diagrams allowed decoupling of the true higher order aberrations of the patient's eye from the power pupillary distribution of a rotationally asymmetric multifocal IOL, therefore providing the appropriate phase map to accurately evaluate through-focus optical quality. [J Refract Surg. 2017;33(4):257-265.]. Copyright 2017, SLACK Incorporated.
Konnik, Mikhail V.
2012-04-01
Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.
Adapting Wave-front Algorithms to Efficiently Utilize Systems with Deep Communication Hierarchies
International Nuclear Information System (INIS)
Kerbyson, Darren J.; Lang, Michael; Pakin, Scott
2011-01-01
Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processor cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wavefront processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the Reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.
Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™
Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.
2016-01-01
We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as compared to efficient CPU and GPU implementations. PMID:27298591
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Measurement of the wave-front aberration of the eye by a fast psychophysical procedure
International Nuclear Information System (INIS)
He, J.C.; Marcos, S.; Webb, R.H.; Burns, S.A.
1998-01-01
We used a fast psychophysical procedure to determine the wave-front aberrations of the human eye in vivo. We measured the angular deviation of light rays entering the eye at different pupillary locations by aligning an image of a point source entering the pupil at different locations to the image of a fixation cross entering the pupil at a fixed location. We fitted the data to a Zernike series to reconstruct the wave-front aberrations of the pupil. With this technique the repeatability of the measurement of the individual coefficients was 0.019 μm. The standard deviation of the overall wave-height estimation across the pupil is less than 0.3 μm. Since this technique does not require the administration of pharmacological agents to dilate the pupil, we were able to measure the changes in the aberrations of the eye during accommodation. We found that administration of even a mild dilating agent causes a change in the aberration structure of the eye. copyright 1998 Optical Society of America
Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen
2016-12-01
Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.
Kohnen, T; Kühne, C; Cichocki, M; Strenger, A
2007-01-01
Centration of the ablation zone decisively influences the result of wavefront-guided LASIK. Cyclorotation of the eye occurs as the patient changes from the sitting position during aberrometry to the supine position during laser surgery and may lead to induction of lower and higher order aberrations. Twenty patients (40 eyes) underwent wavefront-guided LASIK (B&L 217z 100 excimer laser) with a static eyetracker driven by iris recognition (mean preoperative SE: -4.72+/-1.45 D; range: -1.63 to -7.00 D). The iris patterns of the patients' eyes were memorized during aberrometry and after flap creation. The mean absolute value of the measured cyclorotation was -1.5+/-4.2 degrees (range: -11.0 to 6.9 degrees ). The mean cyclorotation was 3.5+/-2.7 masculine (range: 0.1 to 11.0 degrees ). In 65% of all eyes cyclorotation was >2 masculine. A static eyetracker driven by iris recognition demonstrated that cyclorotation of up to 11 degrees may occur in myopic and myopic astigmatic eyes when changing from a sitting to a supine position. Use of static eyetrackers with iris recognition may provide a more precise positioning of the ablation profile as they detect and compensate cyclorotation.
Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators
International Nuclear Information System (INIS)
Duran, Vicente; Climent, Vicent; Lancis, Jesus; Tajahuerce, Enrique; Bara, Salvador; Arines, Justo; Ares, Jorge; Andres, Pedro; Jaroszewicz, Zbigniew
2010-01-01
Off-the-shelf twisted nematic liquid crystal displays (TNLCDs) show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four level codification scheme. Wavefront estimation is performed through conventional Hartmann-Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0.76 microns and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. These values correspond to typical aberrations found in human eyes. The key of our approach is careful characterization and optimization of the TNLCD for phase-only modulation. For this purpose, we exploit the so-called retarder-rotator approach for twisted nematic liquid crystal cells. The optimization process has been successfully applied to SLMs working either in transmissive or in reflective mode, even when light depolarization effects are observed.
Directory of Open Access Journals (Sweden)
Renato Ambrósio Junior
2010-10-01
Full Text Available OBJETIVO: Verificar se a aberrometria ocular total (análise da frente de onda ou wavefront possibilita a melhora na acuidade visual corrigida (AVc com lentes esfero-cilíndricas, obtida com a refratometria manifesta em casos de ceratocone com algum grau de intolerância ao uso de lentes de contato. MÉTODOS: Os prontuários de 46 pacientes (89 olhos referidos com diagnóstico de ceratocone e intolerantes ao uso de lentes de contato, submetidos ao exame de aberrometria ocular total seguido de refração manifesta, foram estudados de forma retrospectiva. A AVc (logMAR com a correção existente antes do exame foi comparada com a obtida com a nova refração manifesta, realizada, considerando-se os dados objetivos da aberrometria. O teste não-paramétrico de Wilcoxon para amostras pareadas foi utilizado para verificação de diferenças estatisticamente significantes na AVc. RESULTADOS: Houve uma melhora estatisticamente significante na AVc com a nova refração manifesta (pOBJECTIVE: To verify if the total ocular aberrometry (wavefront analysis facilitates manifest refraction and improvement in best spectacle distance corrected visual acuity (BSCDVA with sphero-cylindrical lenses, in keratoconus cases with some degree of contact lenses intolerance. METHODS: Retrospective chart review of 46 patients (89 eyes referred with keratoconus and contact lenses intolerance was performed. Ocular aberrometry with ray tracing was followed by manifest refraction. BSCDVA (logMAR with the previous correction was compared with the one obtained based on the wavefront auto-refraction. The nonparametric test of Wilcoxon for paired samples was used to test statistically significant differences in BSCDVA. RESULTS: There was a statistically significant improvement in BSCDVA with the new manifest refraction (p <0,0001. The average BSCDVA changed from 0,37 or 20/47 (varying between 1,3 and 0; standard deviation [SD] = 0,25 with previous refraction to 0,23 or 20
Directory of Open Access Journals (Sweden)
MA. Lendita Kryeziu
2015-06-01
Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.
Compact disk error measurements
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
Directory of Open Access Journals (Sweden)
Antonio Boldrini
2013-06-01
Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research
International Nuclear Information System (INIS)
Berecz, I.
1982-01-01
Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)
LIBERTARISMO & ERROR CATEGORIAL
Directory of Open Access Journals (Sweden)
Carlos G. Patarroyo G.
2009-01-01
Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.
Libertarismo & Error Categorial
PATARROYO G, CARLOS G
2009-01-01
En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibili...
1985-01-01
A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.
International Nuclear Information System (INIS)
Yin Xiaoming; Li Xiang; Zhao Liping; Fang Zhongping
2009-01-01
A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.
Indian Academy of Sciences (India)
Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
DEFF Research Database (Denmark)
Højlund, Marie; Riis, Morten S.
2015-01-01
. Subscribing to this view also confronts music and sound art as consistent autonomous categories and focuses on how the pieces attune to the environment, emphasising meetings, transformations and translations through and with other objects. These meetings generate an ecological awareness of causal aesthetics...
Challenge and Error: Critical Events and Attention-Related Errors
Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel
2011-01-01
Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…
Directory of Open Access Journals (Sweden)
Seyed Javad Hashemian
2015-02-01
Full Text Available AIM: To compare the safety, efficacy, predictability, stability and complications of wavefront-guided laser-assisted subepithelial keratectomy(LASEKin low myopia, myopic astigmatism and high myopia correction.METHODS: A retrospective analysis of 416 eyes were assigned to 3 groups: 159 eyes with low myopia(LMand mean refractive spherical equivalent(MRSEof -3.68±1.33 dioptre(D; 161 eyes with myopic astigmatism(MAand MRSE of -5.99±2.24D and mean cylinder of 2.41±1.07D; and 96 eyes with high myopia(HMand MRSE of -7.41±0.80D. After an epithelial flap creation, a wavefront-based excimer laser ablation was performed. Safety, efficacy, predictability and stability were evaluated at day 10, 2, 6 and 12mo postoperatively.RESULTS:At 12mo, the MRSE was -0.36±0.31D in LM group, 0.15±0.41D in MA group and 0.58±0.68D in HM group. The uncorrected visual acuity(UCVAwas 20/20 in 90.60% of patients in LM group, 78.90% in MA group and 67% in HM group. Efficacy indices were 0.98, 1.04 and 0.92 in LM, MA and HM groups, respectively. Safety indices were 1.00, 1.07 and 1.05 in LM, MA and HM respectively. Five eyes(3.1%in the LM group gained 1 line. Forty-four eyes(27.3%in MA gained 1-3 lines and eighteen eyes(19.2%of HM group gained 1-2 lines of BSCVA. Only 2 eyes in LM group developed corneal haze. There were not statistically significant differences in efficacy and safety indices amongst three groups. CONCLUSION: Wavefront-guided LASEK is an effective and safe procedure for the treatment of LM, MA, and HM.although in myopic astigmatism the predictability, efficacy and safety indices had been better.
Team errors: definition and taxonomy
International Nuclear Information System (INIS)
Sasou, Kunihide; Reason, James
1999-01-01
In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors
Analysis of error-correction constraints in an optical disk
Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David
1996-07-01
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Lan, Jun; Li, Yifeng; Liu, Xiaozhou
2017-12-01
We present a space folding acoustic metasurface with a V-shaped structure, which exhibits ultra-broadband and high efficiency transmission compared to previously investigated space folding metasurfaces. The proposal employs a gradient refractive index profile to redirect the refracted wave arbitrarily and an existence of air channels with direct sound propagation to improve impedance matching between the metasurface and the background medium. As expected from frequency-independent generalized Snell's law, the demonstrated acoustic metasurface can steer refracted wavefronts at will, including anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat lens, and conversion of the propagating wave into the surface wave. The designed V-shape metasurface overcomes the limitation of narrowband, which may offer potential applications in medical ultrasound imaging and broadband acoustical devices.
Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor
International Nuclear Information System (INIS)
Salmon, J.T.; Bliss, E.S.; Long, T.W.; Orham, E.L.; Presta, R.W.; Swift, C.D.; Ward, R.S.
1991-07-01
We have developed an adaptive optics system that corrects up to five waves of 2nd-order and 3rd-order aberrations in a high-power laser beam to less than 1/10th wave RMS. The wavefront sensor is a Hartmann sensor with discrete lenses and position-sensitive photodiodes; the deformable mirror uses piezoelectric actuators with feedback from strain gauges bonded to the stacks. The controller hardware uses a VME bus. The system removes thermally induced aberrations generated in the master-oscillator-power-amplifier chains of a dye laser, as well as aberrations generated in beam combiners and vacuum isolation windows for average output powers exceeding 1 kW. The system bandwidth is 1 Hz, but higher bandwidths are easily attainable
Duncan, Paul G.
2002-01-01
Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.
Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations
Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan
2006-06-01
Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.
Nonlinear differential equations for the wavefront surface at arbitrary Hartmann-plane distances.
Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; Flores-Hernández, Ricardo; Gutiérrez-Hernández, David A; León-Rodríguez, Miguel
2016-03-20
In the Hartmann test, a wave aberration function W is estimated from the information of the spot diagram drawn in an observation plane. The distance from a reference plane to the observation plane, the Hartmann-plane distance, is typically chosen as z=f, where f is the radius of a reference sphere. The function W and the transversal aberrations {X,Y} calculated at the plane z=f are related by two well-known linear differential equations. Here, we propose two nonlinear differential equations to denote a more general relation between W and the transversal aberrations {U,V} calculated at any arbitrary Hartmann-plane distance z=r. We also show how to directly estimate the wavefront surface w from the information of {U,V}. The use of arbitrary r values could improve the reliability of the measurements of W, or w, when finding difficulties in adequate ray identification at z=f.
Li, Xuxu; Li, Xinyang; wang, Caixia
2018-03-01
This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.
Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.
Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter
2015-08-24
We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration.
Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving
International Nuclear Information System (INIS)
Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey
2017-01-01
Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.
Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.
Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs
2012-04-09
A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-10-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
Energy Technology Data Exchange (ETDEWEB)
Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)
2016-07-27
An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.
Yang, Hui; Deng, Yan
2017-12-01
All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.
Katkovnik, V; Shevkunov, I A; Petrov, N V; Egiazarian, K
2015-05-15
This work presents the new method for wavefront reconstruction from a digital hologram recorded in off-axis configuration. The main feature of the proposed algorithm is a good ability for noise filtration due to the original formulation of the problem taking into account the presence of noise in the recorded intensity distribution and the sparse phase and amplitude reconstruction approach with the data-adaptive block-matching 3D technique. Basically, the sparsity assumes that low dimensional models can be used for phase and amplitude approximations. This low dimensionality enables strong suppression of noisy components and accurate revealing of the main features of the signals of interest. The principal point is that dictionaries of these sparse models are not known in advance and reconstructed from given noisy observations in a multiobjective optimization procedure. We show experimental results demonstrating the effectiveness of our approach.
Rieger, Martina; Martinez, Fanny; Wenke, Dorit
2011-01-01
Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…
Error floor behavior study of LDPC codes for concatenated codes design
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Correction of refractive errors
Directory of Open Access Journals (Sweden)
Vladimir Pfeifer
2005-10-01
Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.
1989-01-01
001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.
Wavefront correction system based on an equilateral triangular arrangement of actuators
International Nuclear Information System (INIS)
Salmon, J.T.; Bergum, J.W.; Kartz, M.W.; Presta, R.W.; Swift, C.D.
1993-02-01
Atomic Vapor Laser Isotope Separation (AVLIS) requires the copropagation of multiple beams at different wavelengths and at average powers exceeding 1 kW. Although mirror coatings are used that absorb less than one part in 10 5 , the beams still suffer from thermally induced phase distortions, both in the dye amplifiers and in transmissive optics, such as beam combiners and vacuum windows. These aberrations are 2nd-order and 3rd-order and can reach 5 waves peak-to-valley (p-v), which causes the beam to distort and break up when propagated over large distances. The magnitude of the aberrations scales with power, with time constants on the order of 30 seconds. Previous adaptive systems that have been developed corrected these thermally induced phase distortions of both 2nd-order and 3rd-order; however, these systems had limited spatial resolution and in some cases marginal stability. The authors have developed a new adaptive optics system where both the actuators of the deformable mirror and the lenslets of the Hartmann sensor are arranged with centers at the vertices of equilateral triangles. The wavefront sensor is a video Hartmann sensor that also uses an equilateral array of lenslets. The controller hardware uses a VME bus. The design minimizes the generation of reflected wavefronts higher than first order across each lenslet for large excursions of actuators from positions where the mirror is flat and, thus maximizes the precision of the slopes measured by the Hartmann sensor. The design is also immune to the waffle mode that is present in the reconstructors of adaptive optics systems where actuators are arranged in a square array
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-09-01
Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
An imaging method of wavefront coding system based on phase plate rotation
Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2018-01-01
Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.
Randleman, J Bradley; White, Alfred J; Lynn, Michael J; Hu, Michelle H; Stulting, R Doyle
2009-03-01
To analyze and compare retreatment rates after wavefront-optimized photorefractive keratectomy (PRK) and LASIK and determine risk factors for retreatment. A retrospective chart review was performed to identify patients undergoing PRK or LASIK with the wavefront-optimized WaveLight platform from January 2005 through December 2006 targeted for a piano outcome and to determine the rate and risk factors for retreatment surgery in this population. Eight hundred fifty-five eyes were analyzed, including 70 (8.2%) eyes with hyperopic refractions and 785 (91.8%) eyes with myopic refractions. After initial treatment, 72% of eyes were 20/20 or better and 99.5% were 20/40 or better. To improve uncorrected visual acuity, 54 (6.3%) eyes had retreatments performed. No significant differences in retreatment rates were noted based on age (P = .15), sex (P = .8), eye (P = .3), PRK versus LASIK (P = 1.0), room temperature (P = .1) or humidity (P = .9), and no correlation between retreatment rate and month or season of primary surgery (P = .4). There was no correlation between degree of myopia and retreatment rate. Eyes were significantly more likely to undergo retreatment if they were hyperopic (12.8% vs 6.0%, P = .006) or had astigmatism > or = 1.00 diopter (D) (9.1% vs 5.3%, P = .04). Retreatment rate was 6.3% with the WaveLight ALLEGRETTO WAVE excimer laser. This rate was not influenced by age, sex, corneal characteristics, or environmental factors. Eyes with hyperopic refractions or astigmatism > or = 1.00 D were more likely to undergo retreatment.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.
Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R
2003-09-10
Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Minimum Tracking Error Volatility
Luca RICCETTI
2010-01-01
Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Satellite Photometric Error Determination
2015-10-18
Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical
Video Error Correction Using Steganography
Robie, David L.; Mersereau, Russell M.
2002-12-01
The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
Video Error Correction Using Steganography
Directory of Open Access Journals (Sweden)
Robie David L
2002-01-01
Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
International Nuclear Information System (INIS)
Medina Bermudez, Clara Ines
1999-01-01
The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development
An Empirical State Error Covariance Matrix for Batch State Estimation
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
Error-related brain activity and error awareness in an error classification paradigm.
Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E
2016-10-01
Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.
Prilepskiy, Boris V.; Alikhanov, Alexey N.; Berchenko, Evgeniy A.; Kiselev, Vladimir Yu; Narusbek, Ernest A.; Filatov, Aleksander S.
2005-08-01
Features of the formation of signals in wavefront sensors with the single-frequency light wave phase modulation and spatial separation of control channels are considered. Analysis is performed for sensors in which phase modulation is governed by a controlled element located in the pupil of the optical system of a sensor or in the focal plane of the objective of this system. Peculiarities of the signal formation for a tilted wavefront are considered separately for internal points of the exit pupil in the case of light wave phase modulation in the pupil. It is shown that a signal at the modulation frequency in these wavefront sensors for points located far from the pupil boundaries is determined by the wavefront curvature.
Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR
Directory of Open Access Journals (Sweden)
Li Yin-wei
2013-12-01
Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.
Diagnostic errors in pediatric radiology
International Nuclear Information System (INIS)
Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.
2011-01-01
Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)
Minimum Error Entropy Classification
Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A
2013-01-01
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Characterization of Hospital Residuals
International Nuclear Information System (INIS)
Blanco Meza, A.; Bonilla Jimenez, S.
1997-01-01
The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es
Calibration Errors in Interferometric Radio Polarimetry
Hales, Christopher A.
2017-08-01
Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.
International Nuclear Information System (INIS)
Poynee, L A
2003-01-01
Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation
Standard Errors for Matrix Correlations.
Ogasawara, Haruhiko
1999-01-01
Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)
Jun, Ikhyun; Kang, David Sung Yong; Reinstein, Dan Z; Arba-Mosquera, Samuel; Archer, Timothy J; Seo, Kyoung Yul; Kim, Tae-Im
2018-03-01
To comparatively investigate the clinical outcomes, vector parameters, and corneal aberrations of small incision lenticule extraction (SMILE) with a triple centration technique and corneal wavefront-guided transepithelial photorefractive keratectomy (PRK) for the correction of high astigmatism. This retrospective, comparative case series study included 89 eyes (89 patients) that received treatment for myopia with high astigmatism (≥ 2.50 diopters) using SMILE with a triple centration technique (SMILE group; 45 eyes) and corneal wavefront-guided transepithelial PRK (transepithelial PRK group; 44 eyes). Visual acuity measurement, manifest refraction, slit-lamp examination, autokeratometry, corneal topography, and evaluation of corneal wavefront aberration were performed preoperatively and at 1, 3, and 6 months after surgery. The safety, efficacy, vector parameters, and corneal aberrations at 6 months after surgery were compared between the two groups. At 6 months after surgery, the transepithelial PRK and SMILE groups exhibited comparable mean uncorrected distance visual acuities (-0.06 ± 0.07 and -0.05 ± 0.07 logMAR, respectively), safety, efficacy, and predictability of refractive and visual outcomes. There was a slight but statistically significant difference in the correction index between the transepithelial PRK and SMILE groups (0.96 ± 0.11 and 0.91 ± 0.10, respectively). Whereas the transepithelial PRK group exhibited increased corneal spherical aberration and significantly reduced corneal coma and trefoil, no changes in aberrometric values were noted in the SMILE group. Both SMILE with a triple centration technique and corneal wavefront-guided transepithelial PRK are effective and provide predictable outcomes for the correction of high myopic astigmatism, although slight undercorrection was observed in the SMILE group. The triple centration technique was helpful in astigmatism correction by SMILE. [J Refract Surg. 2018;34(3):156-163.]. Copyright 2018
Error forecasting schemes of error correction at receiver
International Nuclear Information System (INIS)
Bhunia, C.T.
2007-08-01
To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R.; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a stand...
A user's manual of Tools for Error Estimation of Complex Number Matrix Computation (Ver.1.0)
International Nuclear Information System (INIS)
Ichihara, Kiyoshi.
1997-03-01
'Tools for Error Estimation of Complex Number Matrix Computation' is a subroutine library which aids the users in obtaining the error ranges of the complex number linear system's solutions or the Hermitian matrices' eigen values. This library contains routines for both sequential computers and parallel computers. The subroutines for linear system error estimation calulate norms of residual vectors, matrices's condition numbers, error bounds of solutions and so on. The error estimation subroutines for Hermitian matrix eigen values' derive the error ranges of the eigen values according to the Korn-Kato's formula. This user's manual contains a brief mathematical background of error analysis on linear algebra and usage of the subroutines. (author)
International Nuclear Information System (INIS)
2013-06-01
The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues
Uncertainty quantification and error analysis
Energy Technology Data Exchange (ETDEWEB)
Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL
2010-01-01
UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.
Error Patterns in Problem Solving.
Babbitt, Beatrice C.
Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…
Performance, postmodernity and errors
DEFF Research Database (Denmark)
Harder, Peter
2013-01-01
speaker’s competency (note the –y ending!) reflects adaptation to the community langue, including variations. This reversal of perspective also reverses our understanding of the relationship between structure and deviation. In the heyday of structuralism, it was tempting to confuse the invariant system...... with the prestige variety, and conflate non-standard variation with parole/performance and class both as erroneous. Nowadays the anti-structural sentiment of present-day linguistics makes it tempting to confuse the rejection of ideal abstract structure with a rejection of any distinction between grammatical...... as deviant from the perspective of function-based structure and discuss to what extent the recognition of a community langue as a source of adaptive pressure may throw light on different types of deviation, including language handicaps and learner errors....
Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ezeilo, A N; Webster, G A [Imperial College, London (United Kingdom); Webster, P J [Salford Univ. (United Kingdom)
1997-04-01
Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).
Controlling errors in unidosis carts
Directory of Open Access Journals (Sweden)
Inmaculada Díaz Fernández
2010-01-01
Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.
Prioritising interventions against medication errors
DEFF Research Database (Denmark)
Lisby, Marianne; Pape-Larsen, Louise; Sørensen, Ann Lykkegaard
errors are therefore needed. Development of definition: A definition of medication errors including an index of error types for each stage in the medication process was developed from existing terminology and through a modified Delphi-process in 2008. The Delphi panel consisted of 25 interdisciplinary......Abstract Authors: Lisby M, Larsen LP, Soerensen AL, Nielsen LP, Mainz J Title: Prioritising interventions against medication errors – the importance of a definition Objective: To develop and test a restricted definition of medication errors across health care settings in Denmark Methods: Medication...... errors constitute a major quality and safety problem in modern healthcare. However, far from all are clinically important. The prevalence of medication errors ranges from 2-75% indicating a global problem in defining and measuring these [1]. New cut-of levels focusing the clinical impact of medication...
Social aspects of clinical errors.
Richman, Joel; Mason, Tom; Mason-Whitehead, Elizabeth; McIntosh, Annette; Mercer, Dave
2009-08-01
Clinical errors, whether committed by doctors, nurses or other professions allied to healthcare, remain a sensitive issue requiring open debate and policy formulation in order to reduce them. The literature suggests that the issues underpinning errors made by healthcare professionals involve concerns about patient safety, professional disclosure, apology, litigation, compensation, processes of recording and policy development to enhance quality service. Anecdotally, we are aware of narratives of minor errors, which may well have been covered up and remain officially undisclosed whilst the major errors resulting in damage and death to patients alarm both professionals and public with resultant litigation and compensation. This paper attempts to unravel some of these issues by highlighting the historical nature of clinical errors and drawing parallels to contemporary times by outlining the 'compensation culture'. We then provide an overview of what constitutes a clinical error and review the healthcare professional strategies for managing such errors.
Sun drying of residual annatto seed powder
Directory of Open Access Journals (Sweden)
Dyego da Costa Santos
2015-01-01
Full Text Available Residual annatto seeds are waste from bixin extraction in the food, pharmaceutical and cosmetic industries. Most of this by-product is currently discarded; however, the use of these seeds in human foods through the elaboration of powder added to other commercial powders is seen as a viable option. This study aimed at drying of residual annatto powder, with and without the oil layer derived from the industrial extraction of bixin, fitting different mathematical models to experimental data and calculating the effective moisture diffusivity of the samples. Powder containing oil exhibited the shortest drying time, highest drying rate (≈ 5.0 kg kg-1 min-1 and highest effective diffusivity (6.49 × 10-12 m2 s-1. All mathematical models assessed were a suitable representation of the drying kinetics of powders with and without oil, with R2 above 0.99 and root mean square error values lower than 1.0.
An accelerated hologram calculation using the wavefront recording plane method and wavelet transform
Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi
2017-06-01
Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.
Futia, Gregory L.; Fontaine, Arjun; McCullough, Connor; Ozbay, Baris N.; George, Nickolas M.; Caldwell, John; Restrepo, Diego; Weir, Richard; Gibson, Emily A.
2018-02-01
Neural-machine interfaces using optogenetics are of interest due to their minimal invasiveness and potential for parallel read in and read out of activity. One possible biological target for such an interface is the peripheral nerve, where axonlevel imaging or stimulation could greatly improve interfacing with artificial limbs or enable neuron/fascicle level neuromodulation in the vagus nerve. Two-photon imaging has been successful in imaging brain activity using genetically encoded calcium or voltage indicators, but in the peripheral nerve, this is severely limited by scattering and aberrations from myelin. We employ a Shack-Hartman wavefront sensor and two-photon excitation guidestar to quantify optical scattering and aberrations in peripheral nerves and cortex. The sciatic and vagus nerves, and cortex from a ChAT-Cre ChR-eYFP transgenic mouse were excised and imaged directly. In peripheral nerves, defocus was the strongest aberration followed by astigmatism and coma. Peripheral nerve had orders of magnitude higher aberration compared with cortex. These results point to the potential of adaptive optics for increasing the depth of two-photon access into peripheral nerves.
Modeling of light-emitting diode wavefronts for the optimization of transmission holograms.
Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan
2017-06-20
The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.
Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser
International Nuclear Information System (INIS)
Kessler, T.J.
1984-01-01
Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab
Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor
Directory of Open Access Journals (Sweden)
Yongzhao Du
2016-11-01
Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.
Novel Detecting Methods of Shack-Hartmann Wavefront Sensor at Low Light Levels
International Nuclear Information System (INIS)
Zhang, A; Rao, C H; Zhang, Y D; Jiang, W H
2006-01-01
A study of novel detecting methods of Shack-Hartmann wavefront sensor at low light levels has been made. Three methods of images processing before slope estimating are presented: Linear Enhancing (LE), Exponential Enhancing (EE) and Fourier Spectrum Filtering (FSF). The idea of LE method is to time the image intensity with a special coefficient before slope estimation. The image points are powered by a selected exponent in EE method. The FSF method is based on the spectrum difference between signal and noise. Most of noise spectrum is filtered and the noise is restrained. The simulated and experimental results show that the LE method does not work effectively, and the other two methods can improve the slope estimation when the Signal-to-noise ratio is higher than 3.0. When the Signal-to-noise ratio is less than 3.0, especially when it is less than 1.0, the FSF is the only method that can overcome the readout noise of the CCD detector
On radiation emission from a microbunched beam with wavefront tilt and its experimental observation
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-06-15
In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work of T. Tanaka, H. Kitamura, and T. Shintake (2004), which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS, where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.
On radiation emission from a microbunched beam with wavefront tilt and its experimental observation
Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni
2018-03-01
In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work Tanaka et al. (2004) , which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS (Nuhn et al., 2015; Lutman etal., 2016), where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.
HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY
Energy Technology Data Exchange (ETDEWEB)
Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M., E-mail: baranec@hawaii.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)
2015-08-10
Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.
Energy Technology Data Exchange (ETDEWEB)
Ju, Lili; Tian, Li; Wang, Desheng
2008-10-31
In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.
Designing with residual materials
Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.
2013-01-01
Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies
Errors in clinical laboratories or errors in laboratory medicine?
Plebani, Mario
2006-01-01
Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes
Errors in abdominal computed tomography
International Nuclear Information System (INIS)
Stephens, S.; Marting, I.; Dixon, A.K.
1989-01-01
Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab
Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes
International Nuclear Information System (INIS)
Lathouwers, D.
2011-01-01
In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that
Dopamine reward prediction error coding.
Schultz, Wolfram
2016-03-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.
Statistical errors in Monte Carlo estimates of systematic errors
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.
Statistical errors in Monte Carlo estimates of systematic errors
Energy Technology Data Exchange (ETDEWEB)
Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.
Statistical errors in Monte Carlo estimates of systematic errors
International Nuclear Information System (INIS)
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2
Architecture design for soft errors
Mukherjee, Shubu
2008-01-01
This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.
Dopamine reward prediction error coding
Schultz, Wolfram
2016-01-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...
Identifying Error in AUV Communication
National Research Council Canada - National Science Library
Coleman, Joseph; Merrill, Kaylani; O'Rourke, Michael; Rajala, Andrew G; Edwards, Dean B
2006-01-01
Mine Countermeasures (MCM) involving Autonomous Underwater Vehicles (AUVs) are especially susceptible to error, given the constraints on underwater acoustic communication and the inconstancy of the underwater communication channel...
Human Errors in Decision Making
Mohamad, Shahriari; Aliandrina, Dessy; Feng, Yan
2005-01-01
The aim of this paper was to identify human errors in decision making process. The study was focused on a research question such as: what could be the human error as a potential of decision failure in evaluation of the alternatives in the process of decision making. Two case studies were selected from the literature and analyzed to find the human errors contribute to decision fail. Then the analysis of human errors was linked with mental models in evaluation of alternative step. The results o...
Finding beam focus errors automatically
International Nuclear Information System (INIS)
Lee, M.J.; Clearwater, S.H.; Kleban, S.D.
1987-01-01
An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors
Heuristic errors in clinical reasoning.
Rylander, Melanie; Guerrasio, Jeannette
2016-08-01
Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.
A Hybrid Unequal Error Protection / Unequal Error Resilience ...
African Journals Online (AJOL)
The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...
A procedure for the significance testing of unmodeled errors in GNSS observations
Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling
2018-01-01
It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.
Evaluation of residue-residue contact predictions in CASP9
Monastyrskyy, Bohdan; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy
2011-01-01
This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures
Error studies for SNS Linac. Part 1: Transverse errors
International Nuclear Information System (INIS)
Crandall, K.R.
1998-01-01
The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)
DEFF Research Database (Denmark)
Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco
2016-01-01
Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... for policy makers and courts in awarding damages in a large number of real-world accident cases....
Wu, Fang; Yang, Yabo; Dougherty, Paul J
2009-05-01
To compare outcomes in wavefront-guided LASIK performed with iris recognition software versus without iris recognition software in different eyes of the same patient. A randomised, prospective study of 104 myopic eyes of 52 patients undergoing LASIK surgery with the MEL80 excimer laser system was performed. Iris recognition software was used in one eye of each patient (study group) and not used in the other eye (control group). Higher order aberrations (HOAs), contrast sensitivity, uncorrected vision (UCV), visual acuity (VA) and corneal topography were measured and recorded pre-operatively and at one month and three months post-operatively for each eye. The mean post-operative sphere and cylinder between groups was similar, however the post-operative angles of error (AE) by refraction were significantly smaller in the study group compared to the control group both in arithmetic and absolute means (p = 0.03, p = 0.01). The mean logMAR UCV was significantly better in the study group than in the control group at one month (p = 0.01). The mean logMAR VA was significantly better in the study group than in control group at both one and three months (p = 0.01, p = 0.03). In addition, mean trefoil, total third-order aberration, total fourth-order aberration and the total scotopic root-mean-square (RMS) HOAs were significantly less in the study group than those in the control group at the third (p = 0.01, p = 0.05, p = 0.04, p = 0.02). By three months, the contrast sensitivity had recovered in both groups but the study group performed better at 2.6, 4.2 and 6.6 cpd (cycles per degree) than the control group (p = 0.01, p iris recognition results in better VA, lower mean higher-order aberrations, lower refractive post-operative angles of error and better contrast sensitivity at three months post-operatively than LASIK performed without iris recognition.
Error begat error: design error analysis and prevention in social infrastructure projects.
Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M
2012-09-01
Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.
Effects of Measurement Error on the Output Gap in Japan
Koichiro Kamada; Kazuto Masuda
2000-01-01
Potential output is the largest amount of products that can be produced by fully utilizing available labor and capital stock; the output gap is defined as the discrepancy between actual and potential output. If data on production factors contain measurement errors, total factor productivity (TFP) cannot be estimated accurately from the Solow residual(i.e., the portion of output that is not attributable to labor and capital inputs). This may give rise to distortions in the estimation of potent...
Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben
2014-09-01
X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.
Dual Processing and Diagnostic Errors
Norman, Geoff
2009-01-01
In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…
Barriers to medical error reporting
Directory of Open Access Journals (Sweden)
Jalal Poorolajal
2015-01-01
Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.
Nassiri, Nader; Sheibani, Kourosh; Azimi, Abbas; Khosravi, Farinaz Mahmoodi; Heravian, Javad; Yekta, Abasali; Moghaddam, Hadi Ostadi; Nassiri, Saman; Yasseri, Mehdi; Nassiri, Nariman
2015-10-01
To compare refractive outcomes, contrast sensitivity, higher-order aberrations (HOAs), and patient satisfaction after photorefractive keratectomy for correction of moderate myopia with two methods: tissue saving versus wavefront optimized. In this prospective, comparative study, 152 eyes (80 patients) with moderate myopia with and without astigmatism were randomly divided into two groups: the tissue-saving group (Technolas 217z Zyoptix laser; Bausch & Lomb, Rochester, NY) (76 eyes of 39 patients) or the wavefront-optimized group (WaveLight Allegretto Wave Eye-Q laser; Alcon Laboratories, Inc., Fort Worth, TX) (76 eyes of 41 patients). Preoperative and 3-month postoperative refractive outcomes, contrast sensitivity, HOAs, and patient satisfaction were compared between the two groups. The mean spherical equivalent was -4.50 ± 1.02 diopters. No statistically significant differences were detected between the groups in terms of uncorrected and corrected distance visual acuity and spherical equivalent preoperatively and 3 months postoperatively. No statistically significant differences were seen in the amount of preoperative to postoperative contrast sensitivity changes between the two groups in photopic and mesopic conditions. HOAs and Q factor increased in both groups postoperatively (P = .001), with the tissue-saving method causing more increases in HOAs (P = .007) and Q factor (P = .039). Patient satisfaction was comparable between both groups. Both platforms were effective in correcting moderate myopia with or without astigmatism. No difference in refractive outcome, contrast sensitivity changes, and patient satisfaction between the groups was observed. Postoperatively, the tissue-saving method caused a higher increase in HOAs and Q factor compared to the wavefront-optimized method, which could be due to larger optical zone sizes in the tissue-saving group. Copyright 2015, SLACK Incorporated.
Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.
2017-11-01
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe
2014-03-01
Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.
Energy Technology Data Exchange (ETDEWEB)
Almeida, Taynna Vernalha Rocha [Faculdades Pequeno Principe (FPP), Curitiba, PR (Brazil); Cordova Junior, Arno Lotar; Almeida, Cristiane Maria; Piedade, Pedro Argolo; Silva, Cintia Mara da, E-mail: taynnavra@gmail.com [Centro de Radioterapia Sao Sebastiao, Florianopolis, SC (Brazil); Brincas, Gabriela R. Baseggio [Centro de Diagnostico Medico Imagem, Florianopolis, SC (Brazil); Marins, Priscila; Soboll, Danyel Scheidegger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)
2016-03-15
Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5- mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used. (author)
Accuracy of crystal structure error estimates
International Nuclear Information System (INIS)
Taylor, R.; Kennard, O.
1986-01-01
A statistical analysis of 100 crystal structures retrieved from the Cambridge Structural Database is reported. Each structure has been determined independently by two different research groups. Comparison of the independent results leads to the following conclusions: (a) The e.s.d.'s of non-hydrogen-atom positional parameters are almost invariably too small. Typically, they are underestimated by a factor of 1.4-1.45. (b) The extent to which e.s.d.'s are underestimated varies significantly from structure to structure and from atom to atom within a structure. (c) Errors in the positional parameters of atoms belonging to the same chemical residue tend to be positively correlated. (d) The e.s.d.'s of heavy-atom positions are less reliable than those of light-atom positions. (e) Experimental errors in atomic positional parameters are normally, or approximately normally, distributed. (f) The e.s.d.'s of cell parameters are grossly underestimated, by an average factor of about 5 for cell lengths and 2.5 for cell angles. There is marginal evidence that the accuracy of atomic-coordinate e.s.d.'s also depends on diffractometer geometry, refinement procedure, whether or not the structure has a centre of symmetry, and the degree of precision attained in the structure determination. (orig.)
Varying coefficients model with measurement error.
Li, Liang; Greene, Tom
2008-06-01
We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1981-01-01
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Correcting AUC for Measurement Error.
Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang
2015-12-01
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.
Cognitive aspect of diagnostic errors.
Phua, Dong Haur; Tan, Nigel C K
2013-01-01
Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.
Machine for compacting solid residues
International Nuclear Information System (INIS)
Herzog, J.
1981-11-01
Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr
LOWER BOUNDS ON PHOTOMETRIC REDSHIFT ERRORS FROM TYPE Ia SUPERNOVA TEMPLATES
International Nuclear Information System (INIS)
Asztalos, S.; Nikolaev, S.; De Vries, W.; Olivier, S.; Cook, K.; Wang, L.
2010-01-01
Cosmology with Type Ia supernova heretofore has required extensive spectroscopic follow-up to establish an accurate redshift. Though this resource-intensive approach is tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render it unsustainable. Photometry-based redshift determination may be a viable alternative, though the technique introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of statistical errors. Under highly degraded photometric conditions corresponding to a statistical error σ of 0.5, the residual redshift error is found to be 0.236 when assuming a nightly observing cadence and a single Large Synoptic Science Telescope (LSST) u-band filter. Utilizing all six LSST bandpass filters reduces the residual redshift error to 9.1 x 10 -3 . Assuming a more optimistic statistical error σ of 0.05, we derive residual redshift errors of 4.2 x 10 -4 , 5.2 x 10 -4 , 9.2 x 10 -4 , and 1.8 x 10 -3 for observations occuring nightly, every 5th, 20th and 45th night, respectively, in each of the six LSST bandpass filters. Adopting an observing cadence in which photometry is acquired with all six filters every 5th night and a realistic supernova distribution, binned redshift errors are combined with photometric errors with a σ of 0.17 and systematic errors with a σ∼ 0.003 to derive joint errors (σ w , σ w ' ) of (0.012, 0.066), respectively, in (w,w') with 68% confidence using Fisher matrix formalism. Though highly idealized in the present context, the methodology is nonetheless quite relevant for the next generation of ground-based all-sky surveys.
A posteriori error estimator and AMR for discrete ordinates nodal transport methods
International Nuclear Information System (INIS)
Duo, Jose I.; Azmy, Yousry Y.; Zikatanov, Ludmil T.
2009-01-01
In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems' simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR). In this paper, we derive an a posteriori error estimator based on the nodal solution of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N). Furthermore, by making assumptions on the regularity of the solution, we represent the error estimator as a function of computable volume and element-edges residuals. The global L 2 error norm is proved to be bound by the estimator. To lighten the computational load, we present a numerical approximation to the aforementioned residuals and split the global norm error estimator into local error indicators. These indicators are used to drive an AMR strategy for the spatial discretization. However, the indicators based on forward solution residuals alone do not bound the cell-wise error. The estimator and AMR strategy are tested in two problems featuring strong heterogeneity and highly transport streaming regime with strong flux gradients. The results show that the error estimator indeed bounds the global error norms and that the error indicator follows the cell-error's spatial distribution pattern closely. The AMR strategy proves beneficial to optimize resources, primarily by reducing the number of unknowns solved for to achieve prescribed solution accuracy in global L 2 error norm. Likewise, AMR achieves higher accuracy compared to uniform refinement when resolving sharp flux gradients, for the same number of unknowns
Quadratic residues and non-residues selected topics
Wright, Steve
2016-01-01
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
Evaluating and improving the representation of heteroscedastic errors in hydrological models
McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.
2013-12-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.
A residual Monte Carlo method for discrete thermal radiative diffusion
International Nuclear Information System (INIS)
Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.
2003-01-01
Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems
Subroutine library for error estimation of matrix computation (Ver. 1.0)
International Nuclear Information System (INIS)
Ichihara, Kiyoshi; Shizawa, Yoshihisa; Kishida, Norio
1999-03-01
'Subroutine Library for Error Estimation of Matrix Computation' is a subroutine library which aids the users in obtaining the error ranges of the linear system's solutions or the Hermitian matrices' eigenvalues. This library contains routines for both sequential computers and parallel computers. The subroutines for linear system error estimation calculate norms of residual vectors, matrices's condition numbers, error bounds of solutions and so on. The subroutines for error estimation of Hermitian matrix eigenvalues derive the error ranges of the eigenvalues according to the Korn-Kato's formula. The test matrix generators supply the matrices appeared in the mathematical research, the ones randomly generated and the ones appeared in the application programs. This user's manual contains a brief mathematical background of error analysis on linear algebra and usage of the subroutines. (author)
Heat transfer properties of organic coolants containing high boiling residues
International Nuclear Information System (INIS)
Debbage, A.G.; Driver, M.; Waller, P.R.
1964-01-01
Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)
Fusing metabolomics data sets with heterogeneous measurement errors
Waaijenborg, Sandra; Korobko, Oksana; Willems van Dijk, Ko; Lips, Mirjam; Hankemeier, Thomas; Wilderjans, Tom F.; Smilde, Age K.
2018-01-01
Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups. PMID:29698490
Errors, error detection, error correction and hippocampal-region damage: data and theories.
MacKay, Donald G; Johnson, Laura W
2013-11-01
This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identification of residue pairing in interacting β-strands from a predicted residue contact map.
Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng
2018-04-19
Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .
Human errors in NPP operations
International Nuclear Information System (INIS)
Sheng Jufang
1993-01-01
Based on the operational experiences of nuclear power plants (NPPs), the importance of studying human performance problems is described. Statistical analysis on the significance or frequency of various root-causes and error-modes from a large number of human-error-related events demonstrate that the defects in operation/maintenance procedures, working place factors, communication and training practices are primary root-causes, while omission, transposition, quantitative mistake are the most frequent among the error-modes. Recommendations about domestic research on human performance problem in NPPs are suggested
Linear network error correction coding
Guang, Xuan
2014-01-01
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an
Energy Technology Data Exchange (ETDEWEB)
Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)
1998-05-01
The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)
Directory of Open Access Journals (Sweden)
Cang-Yu Guan
2018-02-01
Full Text Available AIM: To assess the changes in higher order aberrations after wavefront guided femtosecond laser assisted laser in situ keratomileusis(FS-LASIKfor moderate to high astigmatism. METHODS: Eighty-eight eyes of 50 myopia patients with moderate to high astigmatism were included in this prospective study. There were 51 eyes with moderate astigmatism(≥-1.50D and RESULTS: At the 3mo after operation, the mean UDVA of all eyes was above 20/20, better than before operation(PP=0.36and no eyes lost ≥2 lines of CDVA. Mean astigmstism of 85 eyes(97%was reduced below -1.00D, mean astigmatism of 70 eyes(80%was reduced below -0.50D(PPP=0.078, 0.065. The spherical aberration, secondary astigmatism and the HOA root mean square(RMSincreased from 0.19±0.06, 0.05±0.02 and 0.42±0.12, preoperatively to 0.32±0.17, 0.26±0.08 and 0.78±0.28(PCONCLUSION: Wavefront-guided FS-LASIK is a safe and effective option for the patients with moderate to high astigmstism although parts of HOAs increased.
Burns, W. Robert
Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be
Impacto da análise do 'wavefront' na refratometria de pacientes com ceratocone
Directory of Open Access Journals (Sweden)
Renato Ambrósio Junior
2011-02-01
Full Text Available OBJETIVO: Verificar se a aberrometria ocular total (análise da frente de onda ou 'wavefront' possibilita melhora na acuidade visual corrigida (AVc com lentes esfero-cilíndricas, obtida com a refratometria manifesta em casos de ceratocone com algum grau de intolerância ao uso de lentes de contato. MÉTODOS: Os prontuários de 46 pacientes (89 olhos, referidos com diagnóstico de ceratocone e intolerantes ao uso de lentes de contato, submetidos ao exame de aberrometria ocular total seguido de refração manifesta, foram estudados de forma retrospectiva. A AVc (logMAR com a correção existente antes do exame foi comparada com a obtida com a nova refração manifesta, realizada considerando-se os dados objetivos da aberrometria. O teste não-paramétrico de Wilcoxon para amostras pareadas foi utilizado para verificação de diferenças estatisticamente significantes na AVc. RESULTADOS: Houve uma melhora estatisticamente significante na AVc com a nova refração manifesta (p<0,0001. A AVc média passou de 0,37 ou 20/47 (variando entre 1,3 e 0; desvio padrão[DP]=0,25 com a refração prévia para 0,23 ou 20/34 (variando entre 1 e 0,1; DP=0,21. Cinquenta e dois olhos (58,4% de 28 pacientes apresentaram melhora na AVc com a nova refração. A melhora média foi de 0,13 logMAR (1,3 linhas na tabela de Snellen, variando entre nula e 0,6 (6 linhas, com desvio padrão de 0,16. Oito pacientes apresentaram anisometropia significativa que limitou a prescrição de óculos em um dos olhos. CONCLUSÃO: A aberrometria facilitou a refratometria, determinando melhora significativa na acuidade visual corrigida com as lentes esfero-cilíndricas de pacientes com ceratocone intolerantes ao uso de lentes de contato. A anisometropia foi um fator limitante na prescrição de óculos.
Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope
Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.
1994-06-01
aberration content of the corrected images. Also, from only this test it was difficult to measure important pupil parameters, such as pupil intensity profiles and pupil sizes and location. To measure the COSTAR wavefront accurately and to determine pupil parameters, another very important test was performed on the COSTAR optics. A Hartmann test of the optical system consisting of the RAS and COSTAR was conducted by the Goddard Independent Verification Team (IVT). In this paper, we first describe the unique Hartmann sensor that was developed by the IVT. Then we briefly describe the RAS and COSTAR optical systems and the test setup. Finally, we present the results of the test and compare our results with results obtained from optical analysis and from image tests with the BIA.
Error field considerations for BPX
International Nuclear Information System (INIS)
LaHaye, R.J.
1992-01-01
Irregularities in the position of poloidal and/or toroidal field coils in tokamaks produce resonant toroidal asymmetries in the vacuum magnetic fields. Otherwise stable tokamak discharges become non-linearly unstable to disruptive locked modes when subjected to low level error fields. Because of the field errors, magnetic islands are produced which would not otherwise occur in tearing mode table configurations; a concomitant reduction of the total confinement can result. Poloidal and toroidal asymmetries arise in the heat flux to the divertor target. In this paper, the field errors from perturbed BPX coils are used in a field line tracing code of the BPX equilibrium to study these deleterious effects. Limits on coil irregularities for device design and fabrication are computed along with possible correcting coils for reducing such field errors
The uncorrected refractive error challenge
Directory of Open Access Journals (Sweden)
Kovin Naidoo
2016-11-01
Full Text Available Refractive error affects people of all ages, socio-economic status and ethnic groups. The most recent statistics estimate that, worldwide, 32.4 million people are blind and 191 million people have vision impairment. Vision impairment has been defined based on distance visual acuity only, and uncorrected distance refractive error (mainly myopia is the single biggest cause of worldwide vision impairment. However, when we also consider near visual impairment, it is clear that even more people are affected. From research it was estimated that the number of people with vision impairment due to uncorrected distance refractive error was 107.8 million,1 and the number of people affected by uncorrected near refractive error was 517 million, giving a total of 624.8 million people.
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Comprehensive Error Rate Testing (CERT)
U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) implemented the Comprehensive Error Rate Testing (CERT) program to measure improper payments in the Medicare...