WorldWideScience

Sample records for residual variance predicted

  1. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    Science.gov (United States)

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  2. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    Science.gov (United States)

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  3. Genetic control of residual variance of yearling weight in Nellore beef cattle.

    Science.gov (United States)

    Iung, L H S; Neves, H H R; Mulder, H A; Carvalheiro, R

    2017-04-01

    There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between them. The aim of our study was to investigate the genetic heterogeneity of residual variance on yearling weight (YW; 291.15 ± 46.67) in a Nellore beef cattle population; to compare the results of the statistical approaches, the two-step approach and the double hierarchical generalized linear model (DHGLM); and to evaluate the effectiveness of power transformation to accommodate scale differences. The comparison was based on genetic parameters, accuracy of EBV for residual variance, and cross-validation to assess predictive performance of both approaches. A total of 194,628 yearling weight records from 625 sires were used in the analysis. The results supported the hypothesis of genetic heterogeneity of residual variance on YW in Nellore beef cattle and the opportunity of selection, measured through the genetic coefficient of variation of residual variance (0.10 to 0.12 for the two-step approach and 0.17 for DHGLM, using an untransformed data set). However, low estimates of genetic variance associated with positive genetic correlations between mean and residual variance (about 0.20 for two-step and 0.76 for DHGLM for an untransformed data set) limit the genetic response to selection for uniformity of production while simultaneously increasing YW itself. Moreover, large sire families are needed to obtain accurate estimates of genetic merit for residual variance, as indicated by the low heritability estimates (Box-Cox transformation was able to decrease the dependence of the variance on the mean and decreased the estimates of genetic parameters for residual variance. The transformation reduced but did not eliminate all the genetic heterogeneity of residual variance, highlighting

  4. Reexamining financial and economic predictability with new estimators of realized variance and variance risk premium

    DEFF Research Database (Denmark)

    Casas, Isabel; Mao, Xiuping; Veiga, Helena

    This study explores the predictive power of new estimators of the equity variance risk premium and conditional variance for future excess stock market returns, economic activity, and financial instability, both during and after the last global financial crisis. These estimators are obtained from...... time-varying coefficient models are the ones showing considerably higher predictive power for stock market returns and financial instability during the financial crisis, suggesting that an extreme volatility period requires models that can adapt quickly to turmoil........ Moreover, a comparison of the overall results reveals that the conditional variance gains predictive power during the global financial crisis period. Furthermore, both the variance risk premium and conditional variance are determined to be predictors of future financial instability, whereas conditional...

  5. Longitudinal Analysis of Residual Feed Intake in Mink using Random Regression with Heterogeneous Residual Variance

    DEFF Research Database (Denmark)

    Shirali, Mahmoud; Nielsen, Vivi Hunnicke; Møller, Steen Henrik

    Heritability of residual feed intake (RFI) increased from low to high over the growing period in male and female mink. The lowest heritability for RFI (male: 0.04 ± 0.01 standard deviation (SD); female: 0.05 ± 0.01 SD) was in early and the highest heritability (male: 0.33 ± 0.02; female: 0.34 ± 0.......02 SD) was achieved at the late growth stages. The genetic correlation between different growth stages for RFI showed a high association (0.91 to 0.98) between early and late growing periods. However, phenotypic correlations were lower from 0.29 to 0.50. The residual variances were substantially higher...

  6. Genetic variance components for residual feed intake and feed ...

    African Journals Online (AJOL)

    Feeding costs of animals is a major determinant of profitability in livestock production enterprises. Genetic selection to improve feed efficiency aims to reduce feeding cost in beef cattle and thereby improve profitability. This study estimated genetic (co)variances between weaning weight and other production, reproduction ...

  7. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  8. An observation on the variance of a predicted response in ...

    African Journals Online (AJOL)

    ... these properties and computational simplicity. To avoid over fitting, along with the obvious advantage of having a simpler equation, it is shown that the addition of a variable to a regression equation does not reduce the variance of a predicted response. Key words: Linear regression; Partitioned matrix; Predicted response ...

  9. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures

  10. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance

    NARCIS (Netherlands)

    Mulder, H.A.; Veerkamp, R.F.; Vereijken, A.; Bijma, P.; Hill, W.G.

    2008-01-01

    some situations, it is worthwhile to change not only the mean, but also the variability of traits by selection. Genetic variation in residual variance may be utilised to improve uniformity in livestock populations by selection. The objective was to investigate the effects of genetic parameters,

  11. Genetic control of residual variance of yearling weight in nellore beef cattle

    NARCIS (Netherlands)

    Iung, L.H.S.; Neves, H.H.R.; Mulder, H.A.; Carvalheiro, R.

    2017-01-01

    There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between

  12. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    International Nuclear Information System (INIS)

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-01-01

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  13. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  14. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  15. Dynamics of Variance Risk Premia, Investors' Sentiment and Return Predictability

    DEFF Research Database (Denmark)

    Rombouts, Jerome V.K.; Stentoft, Lars; Violante, Francesco

    We develop a joint framework linking the physical variance and its risk neutral expectation implying variance risk premia that are persistent, appropriately reacting to changes in level and variability of the variance and naturally satisfying the sign constraint. Using option market data and real...... events and only marginally by the premium associated with normal price fluctuations....

  16. Evaluation of residue-residue contact prediction in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan

    2013-08-31

    We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of residues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium, and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the same level, and comparably to those participating in CASP9.

  17. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study.

    Science.gov (United States)

    Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee

    2016-06-01

    Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.

  18. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  19. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  20. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  1. Prediction-error variance in Bayesian model updating: a comparative study

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model

  2. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    Science.gov (United States)

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  3. Multilevel models for multiple-baseline data: modeling across-participant variation in autocorrelation and residual variance.

    Science.gov (United States)

    Baek, Eun Kyeng; Ferron, John M

    2013-03-01

    Multilevel models (MLM) have been used as a method for analyzing multiple-baseline single-case data. However, some concerns can be raised because the models that have been used assume that the Level-1 error covariance matrix is the same for all participants. The purpose of this study was to extend the application of MLM of single-case data in order to accommodate across-participant variation in the Level-1 residual variance and autocorrelation. This more general model was then used in the analysis of single-case data sets to illustrate the method, to estimate the degree to which the autocorrelation and residual variances differed across participants, and to examine whether inferences about treatment effects were sensitive to whether or not the Level-1 error covariance matrix was allowed to vary across participants. The results from the analyses of five published studies showed that when the Level-1 error covariance matrix was allowed to vary across participants, some relatively large differences in autocorrelation estimates and error variance estimates emerged. The changes in modeling the variance structure did not change the conclusions about which fixed effects were statistically significant in most of the studies, but there was one exception. The fit indices did not consistently support selecting either the more complex covariance structure, which allowed the covariance parameters to vary across participants, or the simpler covariance structure. Given the uncertainty in model specification that may arise when modeling single-case data, researchers should consider conducting sensitivity analyses to examine the degree to which their conclusions are sensitive to modeling choices.

  4. Quantitative milk genomics: estimation of variance components and prediction of fatty acids in bovine milk

    DEFF Research Database (Denmark)

    Krag, Kristian

    The composition of bovine milk fat, used for human consumption, is far from the recommendations for human fat nutrition. The aim of this PhD was to describe the variance components and prediction probabilities of individual fatty acids (FA) in bovine milk, and to evaluate the possibilities...

  5. A Decomposition Algorithm for Mean-Variance Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...

  6. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  7. Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato.

    Science.gov (United States)

    Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig

    2018-05-01

    As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.

  8. Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models

    Science.gov (United States)

    Mu, He-Qing; Xu, Rong-Rong; Yuen, Ka-Veng

    2014-03-01

    Peak ground acceleration (PGA) estimation is an important task in earthquake engineering practice. One of the most well-known models is the Boore-Joyner-Fumal formula, which estimates the PGA using the moment magnitude, the site-to-fault distance and the site foundation properties. In the present study, the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an efficiency-robustness balanced formula is proposed. For this purpose, a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship. In this approach, each model class (a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data. The one with the highest plausibility is robust since it possesses the optimal balance between the data fitting capability and the sensitivity to noise. A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis. The optimal predictive formula is proposed based on this database. It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore, Joyner and Fumal (1993).

  9. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  10. Evaluation of residue-residue contact prediction in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan; D'Andrea, Daniel; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy

    2013-01-01

    not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i

  11. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.

    Science.gov (United States)

    Lehermeier, Christina; Teyssèdre, Simon; Schön, Chris-Carolin

    2017-12-01

    A crucial step in plant breeding is the selection and combination of parents to form new crosses. Genome-based prediction guides the selection of high-performing parental lines in many crop breeding programs which ensures a high mean performance of progeny. To warrant maximum selection progress, a new cross should also provide a large progeny variance. The usefulness concept as measure of the gain that can be obtained from a specific cross accounts for variation in progeny variance. Here, it is shown that genetic gain can be considerably increased when crosses are selected based on their genomic usefulness criterion compared to selection based on mean genomic estimated breeding values. An efficient and improved method to predict the genetic variance of a cross based on Markov chain Monte Carlo samples of marker effects from a whole-genome regression model is suggested. In simulations representing selection procedures in crop breeding programs, the performance of this novel approach is compared with existing methods, like selection based on mean genomic estimated breeding values and optimal haploid values. In all cases, higher genetic gain was obtained compared with previously suggested methods. When 1% of progenies per cross were selected, the genetic gain based on the estimated usefulness criterion increased by 0.14 genetic standard deviation compared to a selection based on mean genomic estimated breeding values. Analytical derivations of the progeny genotypic variance-covariance matrix based on parental genotypes and genetic map information make simulations of progeny dispensable, and allow fast implementation in large-scale breeding programs. Copyright © 2017 by the Genetics Society of America.

  12. Predicting the residual life of plant equipment - Why worry

    International Nuclear Information System (INIS)

    Jaske, C.E.

    1985-01-01

    Predicting the residual life of plant equipment that has been in service for 20 to 30 years or more is a major concern of many industries. This paper reviews the reasons for increased concern for residual-life assessment and the general procedures used in performing such assessments. Some examples and case histories illustrating procedures for assessing remaining service life are discussed. Areas where developments are needed to improve the technology for remaining-life estimation are pointed out. Then, some of the critical issues involved in residual-life assessment are identified. Finally, the future role of residual-life prediction is addressed

  13. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    Energy Technology Data Exchange (ETDEWEB)

    Price, Oliver R., E-mail: oliver.price@unilever.co [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Oliver, Margaret A. [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Walker, Allan [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); Wood, Martin [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom)

    2009-05-15

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  14. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    International Nuclear Information System (INIS)

    Price, Oliver R.; Oliver, Margaret A.; Walker, Allan; Wood, Martin

    2009-01-01

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  15. Predicting evolutionary responses when genetic variance and selection covary with the environment: a large-scale Open Access Data approach

    NARCIS (Netherlands)

    Ramakers, J.J.C.; Culina, A.; Visser, M.E.; Gienapp, P.

    2017-01-01

    Additive genetic variance and selection are the key ingredients for evolution. In wild populations, however, predicting evolutionary trajectories is difficult, potentially by an unrecognised underlying environment dependency of both (additive) genetic variance and selection (i.e. G×E and S×E).

  16. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  17. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    Science.gov (United States)

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  18. Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations

    Directory of Open Access Journals (Sweden)

    Pascal Schopp

    2017-11-01

    Full Text Available A major application of genomic prediction (GP in plant breeding is the identification of superior inbred lines within families derived from biparental crosses. When models for various traits were trained within related or unrelated biparental families (BPFs, experimental studies found substantial variation in prediction accuracy (PA, but little is known about the underlying factors. We used SNP marker genotypes of inbred lines from either elite germplasm or landraces of maize (Zea mays L. as parents to generate in silico 300 BPFs of doubled-haploid lines. We analyzed PA within each BPF for 50 simulated polygenic traits, using genomic best linear unbiased prediction (GBLUP models trained with individuals from either full-sib (FSF, half-sib (HSF, or unrelated families (URF for various sizes (Ntrain of the training set and different heritabilities (h2 . In addition, we modified two deterministic equations for forecasting PA to account for inbreeding and genetic variance unexplained by the training set. Averaged across traits, PA was high within FSF (0.41–0.97 with large variation only for Ntrain < 50 and h2 < 0.6. For HSF and URF, PA was on average ∼40–60% lower and varied substantially among different combinations of BPFs used for model training and prediction as well as different traits. As exemplified by HSF results, PA of across-family GP can be very low if causal variants not segregating in the training set account for a sizeable proportion of the genetic variance among predicted individuals. Deterministic equations accurately forecast the PA expected over many traits, yet cannot capture trait-specific deviations. We conclude that model training within BPFs generally yields stable PA, whereas a high level of uncertainty is encountered in across-family GP. Our study shows the extent of variation in PA that must be at least reckoned with in practice and offers a starting point for the design of training sets composed of multiple BPFs.

  19. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits

    DEFF Research Database (Denmark)

    Gebreyesus, Grum; Lund, Mogens Sandø; Buitenhuis, Albert Johannes

    2017-01-01

    Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci...... of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we...... developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls...

  20. Allometric scaling of population variance with mean body size is predicted from Taylor's law and density-mass allometry.

    Science.gov (United States)

    Cohen, Joel E; Xu, Meng; Schuster, William S F

    2012-09-25

    Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.

  1. Prediction of interface residue based on the features of residue interaction network.

    Science.gov (United States)

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Mean-Variance Criterion for Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    , the tractability of the resulting optimal control problem is addressed. We use a power management case study to compare different variations of the mean-variance strategy with EMPC based on the certainty equivalence principle. The certainty equivalence strategy is much more computationally efficient than the mean......-variance strategies, but it does not account for the variance of the uncertain parameters. Openloop simulations suggest that a single-stage mean-variance approach yields a significantly lower operating cost than the certainty equivalence strategy. In closed-loop, the single-stage formulation is overly conservative...... be modified to perform almost as well as the two-stage mean-variance formulation. Nevertheless, we argue that the mean-variance approach can be used both as a strategy for evaluating less computational demanding methods such as the certainty equivalence method, and as an individual control strategy when...

  3. Efeitos da Heterogeneidade de Variância Residual entre Grupos de Contemporâneos na Avaliação Genética de Bovinos de Corte Effects of Heterogeneity of Residual Variance among Contemporary Groups on Genetic Evaluation of Beef Cattle

    Directory of Open Access Journals (Sweden)

    Roberto Carvalheiro

    2002-07-01

    variances (R = Isigmae². Different data sets of postweaning weight gain, adjusted to 345 days, were simulated with and without heterogeneity of residual variance, using a phenotypic variance of 300 kg² and a true heritability of 0.4. A real data set was used to provide the CG and parents related to each animal observation. Results showed that, when high levels of heterogeneity of residual variance were considered, animals were selected from CG with higher variability, especially with intense selection. With respect to prediction consistency, non parent animals and cows had their predicted breeding values more affected by heterogeneity of residual variance than sires. The weighed factor used reduced, but did not eliminate, the effect of heterogeneity of residual variance. The results of weighted genetic evaluations were similar or superior to those from evaluations that assumed homogeneity of variances. Even when the variances were homogeneous, the weighed genetic evaluations yielded results that were not inferior than those from the usual evaluations, which assumed homogeneity of variances.

  4. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance

    NARCIS (Netherlands)

    Mulder, H.A.; Bijma, P.; Hill, W.G.

    2007-01-01

    There is empirical evidence that genotypes differ not only in mean, but also in environmental variance of the traits they affect. Genetic heterogeneity of environmental variance may indicate genetic differences in environmental sensitivity. The aim of this study was to develop a general framework

  5. Combining specificity determining and conserved residues improves functional site prediction

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2009-06-01

    Full Text Available Abstract Background Predicting the location of functionally important sites from protein sequence and/or structure is a long-standing problem in computational biology. Most current approaches make use of sequence conservation, assuming that amino acid residues conserved within a protein family are most likely to be functionally important. Most often these approaches do not consider many residues that act to define specific sub-functions within a family, or they make no distinction between residues important for function and those more relevant for maintaining structure (e.g. in the hydrophobic core. Many protein families bind and/or act on a variety of ligands, meaning that conserved residues often only bind a common ligand sub-structure or perform general catalytic activities. Results Here we present a novel method for functional site prediction based on identification of conserved positions, as well as those responsible for determining ligand specificity. We define Specificity-Determining Positions (SDPs, as those occupied by conserved residues within sub-groups of proteins in a family having a common specificity, but differ between groups, and are thus likely to account for specific recognition events. We benchmark the approach on enzyme families of known 3D structure with bound substrates, and find that in nearly all families residues predicted by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly improves functional site prediction accuracy. We apply SDPsite to various families of proteins containing known three-dimensional structures, but lacking clear functional annotations, and discusse several illustrative examples. Conclusion The results suggest a better means to predict functional details for the thousands of protein structures determined prior to a clear understanding of molecular function.

  6. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  7. Predicting logging residues: an interim equation for Appalachian oak sawtimber

    Science.gov (United States)

    A. Jeff Martin

    1975-01-01

    An equation, using dbh, dbh², bole length, and sawlog height to predict the cubic-foot volume of logging residue per tree, was developed from data collected on 36 mixed oaks in southwestern Virginia. The equation produced reliable results for small sawtimber trees, but additional research is needed for other species, sites, and utilization practices.

  8. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  9. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  10. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    Science.gov (United States)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  11. Prediction of the residual strength of clay using functional networks

    Directory of Open Access Journals (Sweden)

    S.Z. Khan

    2016-01-01

    Full Text Available Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks (FN using data available in the literature. The performance of FN was compared with support vector machine (SVM and artificial neural network (ANN based on statistical parameters like correlation coefficient (R, Nash--Sutcliff coefficient of efficiency (E, absolute average error (AAE, maximum average error (MAE and root mean square error (RMSE. Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.

  12. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  13. Calculating the variance and prediction intervals for estimates obtained from allometric relationships

    CSIR Research Space (South Africa)

    Nickless, A

    2010-09-01

    Full Text Available that across the range of x values, the variability in the error does not change (i.e. no heteroscedasticity). Often the power function in allometry is used: y = axbε This can be converted to: ln(yi) = β0 + β1 ln(xi) + εi The above assumptions now apply... to the regression relationship with the logged variables. Therefore ln(yi) is assumed to be normally distributed with mean µ=β0+β1 ln(xi) and variance σ2*. From regression theory it is known that the expected value (e) and variance (Var) of ln(yi) is given by...

  14. firestar--advances in the prediction of functionally important residues.

    Science.gov (United States)

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.

  15. Downside Variance Risk Premium

    OpenAIRE

    Feunou, Bruno; Jahan-Parvar, Mohammad; Okou, Cedric

    2015-01-01

    We propose a new decomposition of the variance risk premium in terms of upside and downside variance risk premia. The difference between upside and downside variance risk premia is a measure of skewness risk premium. We establish that the downside variance risk premium is the main component of the variance risk premium, and that the skewness risk premium is a priced factor with significant prediction power for aggregate excess returns. Our empirical investigation highlights the positive and s...

  16. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.

    Science.gov (United States)

    Zhang, Haicang; Gao, Yujuan; Deng, Minghua; Wang, Chao; Zhu, Jianwei; Li, Shuai Cheng; Zheng, Wei-Mou; Bu, Dongbo

    2016-03-25

    Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely, the indirect coupling among residues, and the background correlations mainly caused by phylogenetic biases. While various studies have been conducted on how to disentangle indirect coupling, the removal of background correlations still remains unresolved. Here, we present an approach for removing background correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation matrix was decomposed into two components, i.e., a low-rank component representing background correlations, and a sparse component representing true correlations. Finally the residue contacts were inferred from the sparse component of correlation matrix. We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11 datasets. Our experimental results suggested that LRS significantly improves the contact prediction precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC: 0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that when equipped with our LRS technique, local inference strategies performed in a comparable manner to that of global inference strategies, implying that the application of LRS technique narrowed down the performance gap between local and global inference strategies. Overall, our LRS technique greatly facilitates

  17. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  18. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    Science.gov (United States)

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  19. Modelos de regressão aleatória com diferentes estruturas de variância residual para descrever o tamanho da leitegada Random regression models with different residual variance structures for describing litter size in swine

    Directory of Open Access Journals (Sweden)

    Aderbal Cavalcante-Neto

    2011-12-01

    Full Text Available Objetivou-se comparar modelos de regressão aleatória com diferentes estruturas de variância residual, a fim de se buscar a melhor modelagem para a característica tamanho da leitegada ao nascer (TLN. Utilizaram-se 1.701 registros de TLN, que foram analisados por meio de modelo animal, unicaracterística, de regressão aleatória. As regressões fixa e aleatórias foram representadas por funções contínuas sobre a ordem de parto, ajustadas por polinômios ortogonais de Legendre de ordem 3. Para averiguar a melhor modelagem para a variância residual, considerou-se a heterogeneidade de variância por meio de 1 a 7 classes de variância residual. O modelo geral de análise incluiu grupo de contemporâneo como efeito fixo; os coeficientes de regressão fixa para modelar a trajetória média da população; os coeficientes de regressão aleatória do efeito genético aditivo-direto, do comum-de-leitegada e do de ambiente permanente de animal; e o efeito aleatório residual. O teste da razão de verossimilhança, o critério de informação de Akaike e o critério de informação bayesiano de Schwarz apontaram o modelo que considerou homogeneidade de variância como o que proporcionou melhor ajuste aos dados utilizados. As herdabilidades obtidas foram próximas a zero (0,002 a 0,006. O efeito de ambiente permanente foi crescente da 1ª (0,06 à 5ª (0,28 ordem, mas decrescente desse ponto até a 7ª ordem (0,18. O comum-de-leitegada apresentou valores baixos (0,01 a 0,02. A utilização de homogeneidade de variância residual foi mais adequada para modelar as variâncias associadas à característica tamanho da leitegada ao nascer nesse conjunto de dado.The objective of this work was to compare random regression models with different residual variance structures, so as to obtain the best modeling for the trait litter size at birth (LSB in swine. One thousand, seven hundred and one records of LSB were analyzed. LSB was analyzed by means of a

  20. Demographic Factors and Hospital Size Predict Patient Satisfaction Variance- Implications for Hospital Value-Based Purchasing

    Science.gov (United States)

    McFarland, Daniel C.; Ornstein, Katherine; Holcombe, Randall F.

    2016-01-01

    Background Hospital Value-Based Purchasing (HVBP) incentivizes quality performance based healthcare by linking payments directly to patient satisfaction scores obtained from Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) surveys. Lower HCAHPS scores appear to cluster in heterogeneous population dense areas and could bias CMS reimbursement. Objective Assess nonrandom variation in patient satisfaction as determined by HCAHPS. Design Multivariate regression modeling was performed for individual dimensions of HCAHPS and aggregate scores. Standardized partial regression coefficients assessed strengths of predictors. Weighted Individual (hospital) Patient Satisfaction Adjusted Score (WIPSAS) utilized four highly predictive variables and hospitals were re-ranked accordingly. Setting 3,907 HVBP-participating hospitals. Patients 934,800 patient surveys, by most conservative estimate. Measurements 3,144 county demographics (U.S. Census), and HCAHPS. Results Hospital size and primary language (‘non-English speaking’) most strongly predicted unfavorable HCAHPS scores while education and white ethnicity most strongly predicted favorable HCAHPS scores. The average adjusted patient satisfaction scores calculated by WIPSAS approximated the national average of HCAHPS scores. However, WIPSAS changed hospital rankings by variable amounts depending on the strength of the predictive variables in the hospitals’ locations. Structural and demographic characteristics that predict lower scores were accounted for by WIPSAS that also improved rankings of many safety-net hospitals and academic medical centers in diverse areas. Conclusions Demographic and structural factors (e.g., hospital beds) predict patient satisfaction scores even after CMS adjustments. CMS should consider WIPSAS or a similar adjustment to account for the severity of patient satisfaction inequities that hospitals could strive to correct. PMID:25940305

  1. Importance of the macroeconomic variables for variance prediction: A GARCH-MIDAS approach

    DEFF Research Database (Denmark)

    Asgharian, Hossein; Hou, Ai Jun; Javed, Farrukh

    2013-01-01

    This paper aims to examine the role of macroeconomic variables in forecasting the return volatility of the US stock market. We apply the GARCH-MIDAS (Mixed Data Sampling) model to examine whether information contained in macroeconomic variables can help to predict short-term and long-term compone......This paper aims to examine the role of macroeconomic variables in forecasting the return volatility of the US stock market. We apply the GARCH-MIDAS (Mixed Data Sampling) model to examine whether information contained in macroeconomic variables can help to predict short-term and long...

  2. Variance in centrality within rock hyrax social networks predicts adult longevity.

    Directory of Open Access Journals (Sweden)

    Adi Barocas

    Full Text Available BACKGROUND: In communal mammals the levels of social interaction among group members vary considerably. In recent years, biologists have realized that within-group interactions may affect survival of the group members. Several recent studies have demonstrated that the social integration of adult females is positively associated with infant survival, and female longevity is affected by the strength and stability of the individual social bonds. Our aim was to determine the social factors that influence adult longevity in social mammals. METHODOLOGY/PRINCIPAL FINDINGS: As a model system, we studied the social rock hyrax (Procavia capensis, a plural breeder with low reproductive skew, whose groups are mainly composed of females. We applied network theory using 11 years of behavioral data to quantify the centrality of individuals within groups, and found adult longevity to be inversely correlated to the variance in centrality. In other words, animals in groups with more equal associations lived longer. Individual centrality was not correlated with longevity, implying that social tension may affect all group members and not only the weakest or less connected ones. CONCLUSIONS/SIGNIFICANCE: Our novel findings support previous studies emphasizing the adaptive value of social associations and the consequences of inequality among adults within social groups. However, contrary to previous studies, we suggest that it is not the number or strength of associations that an adult individual has (i.e. centrality that is important, but the overall configuration of social relationships within the group (i.e. centrality SD that is a key factor in influencing longevity.

  3. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    Science.gov (United States)

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  4. Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status.

    Science.gov (United States)

    Korfiatis, Panagiotis; Kline, Timothy L; Lachance, Daniel H; Parney, Ian F; Buckner, Jan C; Erickson, Bradley J

    2017-10-01

    Predicting methylation of the O6-methylguanine methyltransferase (MGMT) gene status utilizing MRI imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare three different residual deep neural network (ResNet) architectures to evaluate their ability in predicting MGMT methylation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture was the best performing model, achieving an accuracy of 94.90% (+/- 3.92%) for the test set (classification of a slice as no tumor, methylated MGMT, or non-methylated). ResNet34 (34 layers) achieved 80.72% (+/- 13.61%) while ResNet18 (18 layers) accuracy was 76.75% (+/- 20.67%). ResNet50 performance was statistically significantly better than both ResNet18 and ResNet34 architectures (p deep neural architectures can be used to predict molecular biomarkers from routine medical images.

  5. Does Trait Emotional Intelligence Predict Unique Variance in Early Career Success Beyond IQ and Personality?

    OpenAIRE

    Haro García, José Manuel de; Castejón Costa, Juan Luis

    2014-01-01

    In order to determine the contribution of emotional intelligence (EI) to career success, in this study, we analyzed the relationship between trait EI (TEI), general mental ability (GMA), the big five personality traits, and career success indicators, in a sample of 130 graduates who were in the early stages of their careers. Results from hierarchical regression analyses indicated that TEI, and especially its dimension “repair,” has incremental validity in predicting one of the career success ...

  6. A longitudinal study on dual-tasking effects on gait: cognitive change predicts gait variance in the elderly.

    Directory of Open Access Journals (Sweden)

    Rebecca K MacAulay

    Full Text Available Neuropsychological abilities have found to explain a large proportion of variance in objective measures of walking gait that predict both dementia and falling within the elderly. However, to this date there has been little research on the interplay between changes in these neuropsychological processes and walking gait overtime. To our knowledge, the present study is the first to investigate intra-individual changes in neurocognitive test performance and gait step time at two-time points across a one-year span. Neuropsychological test scores from 440 elderly individuals deemed cognitively normal at Year One were analyzed via repeated measures t-tests to assess for decline in cognitive performance at Year Two. 34 of these 440 individuals neuropsychological test performance significantly declined at Year Two; whereas the "non-decliners" displayed improved memory, working memory, attention/processing speed test performance. Neuropsychological test scores were also submitted to factor analysis at both time points for data reduction purposes and to assess the factor stability overtime. Results at Year One yielded a three-factor solution: Language/Memory, Executive Attention/Processing Speed, and Working Memory. Year Two's test scores also generated a three-factor solution (Working Memory, Language/Executive Attention/Processing Speed, and Memory. Notably, language measures loaded on Executive Attention/Processing Speed rather than on the Memory factor at Year Two. Hierarchal multiple regression revealed that both Executive Attention/Processing Speed and sex significantly predicted variance in dual task step time at both time points. Remarkably, in the "decliners", the magnitude of the contribution of the neuropsychological characteristics to gait variance significantly increased at Year Two. In summary, this study provides longitudinal evidence of the dynamic relationship between intra-individual cognitive change and its influence on dual task gait

  7. Leptonic Dirac CP violation predictions from residual discrete symmetries

    Directory of Open Access Journals (Sweden)

    I. Girardi

    2016-01-01

    Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cos⁡δ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cos⁡δ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cos⁡δ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cos⁡δ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2⁡θ12, sin2⁡θ13 and sin2⁡θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.

  8. Prediction of residual metabolic activity after treatment in NSCLC patients

    International Nuclear Information System (INIS)

    Rios Velazquez, Emmanuel; Aerts, Hugo J.W.L.; Oberije, Cary; Ruysscher, Dirk De; Lambin, Philippe

    2010-01-01

    Purpose. Metabolic response assessment is often used as a surrogate of local failure and survival. Early identification of patients with residual metabolic activity is essential as this enables selection of patients who could potentially benefit from additional therapy. We report on the development of a pre-treatment prediction model for metabolic response using patient, tumor and treatment factors. Methods. One hundred and one patients with inoperable NSCLC (stage I-IV), treated with 3D conformal radical (chemo)-radiotherapy were retrospectively included in this study. All patients received a pre and post-radiotherapy fluorodeoxyglucose positron emission tomography-computed tomography FDG-PET-CT scan. The electronic medical record system and the medical patient charts were reviewed to obtain demographic, clinical, tumor and treatment data. Primary outcome measure was examined using a metabolic response assessment on a post-radiotherapy FDG-PET-CT scan. Radiotherapy was delivered in fractions of 1.8 Gy, twice a day, with a median prescribed dose of 60 Gy. Results. Overall survival was worse in patients with residual metabolic active areas compared with the patients with a complete metabolic response (p=0.0001). In univariate analysis, three variables were significantly associated with residual disease: larger primary gross tumor volume (GTVprimary, p=0.002), higher pre-treatment maximum standardized uptake value (SUV max , p=0.0005) in the primary tumor and shorter overall treatment time (OTT, p=0.046). A multivariate model including GTVprimary, SUV max , equivalent radiation dose at 2 Gy corrected for time (EQD2, T) and OTT yielded an area under the curve assessed by the leave-one-out cross validation of 0.71 (95% CI, 0.65-0.76). Conclusion. Our results confirmed the validity of metabolic response assessment as a surrogate of survival. We developed a multivariate model that is able to identify patients at risk of residual disease. These patients may benefit from

  9. Cortisol and politics: variance in voting behavior is predicted by baseline cortisol levels.

    Science.gov (United States)

    French, Jeffrey A; Smith, Kevin B; Alford, John R; Guck, Adam; Birnie, Andrew K; Hibbing, John R

    2014-06-22

    Participation in electoral politics is affected by a host of social and demographics variables, but there is growing evidence that biological predispositions may also play a role in behavior related to political involvement. We examined the role of individual variation in hypothalamic-pituitary-adrenal (HPA) stress axis parameters in explaining differences in self-reported and actual participation in political activities. Self-reported political activity, religious participation, and verified voting activity in U.S. national elections were collected from 105 participants, who were subsequently exposed to a standardized (nonpolitical) psychosocial stressor. We demonstrated that lower baseline salivary cortisol in the late afternoon was significantly associated with increased actual voting frequency in six national elections, but not with self-reported non-voting political activity. Baseline cortisol predicted significant variation in voting behavior above and beyond variation accounted for by traditional demographic variables (particularly age of participant in our sample). Participation in religious activity was weakly (and negatively) associated with baseline cortisol. Our results suggest that HPA-mediated characteristics of social, cognitive, and emotional processes may exert an influence on a trait as complex as voting behavior, and that cortisol is a better predictor of actual voting behavior, as opposed to self-reported political activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cortisol and Politics: Variance in Voting Behavior is Predicted by Baseline Cortisol Levels

    Science.gov (United States)

    French, Jeffrey A.; Smith, Kevin B.; Alford, John R.; Guck, Adam; Birnie, Andrew K.; Hibbing, John R.

    2014-01-01

    Participation in electoral politics is affected by a host of social and demographics variables, but there is growing evidence that biological predispositions may also play a role in behavior related to political involvement. We examined the role of individual variation in hypothalamic-pituitary-adrenal (HPA) stress axis parameters in explaining differences in self-reported and actual participation in political activities. Self-reported political activity, religious participation, and verified voting activity in U.S. national elections were collected from 105 participants, who were subsequently exposed to a standardized (nonpolitical) psychosocial stressor. We demonstrated that lower baseline salivary cortisol in the late afternoon was significantly associated with increased actual voting frequency in six national elections, but not with self-reported non-voting political activity. Baseline cortisol predicted significant variation in voting behavior above and beyond variation accounted for by traditional demographic variables (particularly age of participant in our sample). Participation in religious activity was weakly (and negatively) associated with baseline cortisol. Our results suggest that HPA-mediated characteristics of social, cognitive, and emotional processes may exert an influence on a trait as complex as voting behavior, and that cortisol is a better predictor of actual voting behavior, as opposed to self-reported political activity. PMID:24835544

  11. Confidence Interval Approximation For Treatment Variance In ...

    African Journals Online (AJOL)

    In a random effects model with a single factor, variation is partitioned into two as residual error variance and treatment variance. While a confidence interval can be imposed on the residual error variance, it is not possible to construct an exact confidence interval for the treatment variance. This is because the treatment ...

  12. Predictive models of forest logging residues of Triplochiton ...

    African Journals Online (AJOL)

    The model developed indicated that logarithmic functions performed better than other form of equation. The findings of this study revealed that there is significant logging residues left to waste in the forest after timber harvest and quantifying this logging residue in terms of biomass model can serve as management tools in ...

  13. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    Science.gov (United States)

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  14. Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability.

    Science.gov (United States)

    Ivarsdottir, Erna V; Steinthorsdottir, Valgerdur; Daneshpour, Maryam S; Thorleifsson, Gudmar; Sulem, Patrick; Holm, Hilma; Sigurdsson, Snaevar; Hreidarsson, Astradur B; Sigurdsson, Gunnar; Bjarnason, Ragnar; Thorsson, Arni V; Benediktsson, Rafn; Eyjolfsson, Gudmundur; Sigurdardottir, Olof; Olafsson, Isleifur; Zeinali, Sirous; Azizi, Fereidoun; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F; Stefansson, Kari

    2017-09-01

    Sequence variants that affect mean fasting glucose levels do not necessarily affect risk for type 2 diabetes (T2D). We assessed the effects of 36 reported glucose-associated sequence variants on between- and within-subject variance in fasting glucose levels in 69,142 Icelanders. The variant in TCF7L2 that increases fasting glucose levels increases between-subject variance (5.7% per allele, P = 4.2 × 10 -10 ), whereas variants in GCK and G6PC2 that increase fasting glucose levels decrease between-subject variance (7.5% per allele, P = 4.9 × 10 -11 and 7.3% per allele, P = 7.5 × 10 -18 , respectively). Variants that increase mean and between-subject variance in fasting glucose levels tend to increase T2D risk, whereas those that increase the mean but reduce variance do not (r 2 = 0.61). The variants that increase between-subject variance increase fasting glucose heritability estimates. Intuitively, our results show that increasing the mean and variance of glucose levels is more likely to cause pathologically high glucose levels than increase in the mean offset by a decrease in variance.

  15. Residual life of technical systems; diagnosis, prediction and life extension

    International Nuclear Information System (INIS)

    Reinertsen, Rune

    1996-01-01

    The paper presents and discusses research related to residual life of non-repairable and repairable technical systems. Diagnosis of systems and extension of residual life of technical systems are also presented and discussed. This paper concludes that research published describing determination and extension of residual life as well as methods for diagnosis of non-repairable and repairable technical systems, is somewhat limited. Many papers have a rather pragmatic approach. The authors only describe special cases from their own plant and do not provide any explanation of a more academical nature. The other papers are mainly describing very specific applications of statistical models, leaving the more general case out of consideration. One of the main results of this paper is to point out these facts, and thereby identify the need for future research in this area

  16. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  17. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    Science.gov (United States)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  18. Non-"g" Residuals of the SAT and ACT Predict Specific Abilities

    Science.gov (United States)

    Coyle, Thomas R.; Purcell, Jason M.; Snyder, Anissa C.; Kochunov, Peter

    2013-01-01

    This research examined whether non-"g" residuals of the SAT and ACT subtests, obtained after removing g, predicted specific abilities. Non-"g" residuals of the verbal and math subtests of the SAT and ACT were correlated with academic (verbal and math) and non-academic abilities (speed and shop), both based on the Armed Services…

  19. Pharmacokinetics, efficacy prediction indexes and residue depletion of antibacterial drugs.

    Directory of Open Access Journals (Sweden)

    Arturo Anadón

    2016-06-01

    Full Text Available Pharmacokinetics behaviour of the antibacterial in food producing animals, provides information on the rates of absorption and elimination, half-life in plasma and tissue, elimination pathways and metabolism. The dose and the dosing interval of the antimicrobial can be justified by considering the pharmacokinetic/pharmacodynamic (PK/PD relationship, if established, as well as the severity of the disease, whereas the number of administrations should be in line with the nature of the disease. The target population for therapy should be well defined and possible to identify under field conditions. Based on in vitro susceptibility data, and target animal PK data, an analysis for the PK/PD relationship may be used to support dose regimen selection and interpretation criteria for a clinical breakpoint. Therefore, for all antibacterials with systemic activity, the MIC data collected should be compared with the concentration of the compound at the relevant biophase following administration at the assumed therapeutic dose as recorded in the pharmacokinetic studies. Currently, the most frequently used parameters to express the PK/PD relationship are Cmax/MIC (maximum serum concentration/MIC, %T > MIC (fraction of time in which concentration exceeds MIC and AUC/MIC (area under the inhibitory concentration– time curve/MIC. Furthermore, the pharmacokinetic parameters provide the first indication of the potential for persistent residues and the tissues in which they may occur. The information on residue depletion in food-producing animals, provides the data on which MRL recommendations will be based. A critical factor in the antibacterial medication of all food-producing animals is the mandatory withdrawal period, defined as the time during which drug must not be administered prior to the slaughter of the animal for consumption. The withdrawal period is an integral part of the regulatory authorities’ approval process and is designed to ensure that no

  20. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures

    DEFF Research Database (Denmark)

    Andersen, P.H.; Nielsen, Morten; Lund, Ole

    2006-01-01

    . We show that the new structure-based method has a better performance for predicting residues of discontinuous epitopes than methods based solely on sequence information, and that it can successfully predict epitope residues that have been identified by different techniques. DiscoTope detects 15...... experimental epitope mapping in both rational vaccine design and development of diagnostic tools, and may lead to more efficient epitope identification....

  1. Prediction of residual stresses in the heat affected zone

    International Nuclear Information System (INIS)

    Taleb, L.; Petit, S.; Jullien, J.F.

    2004-01-01

    In this paper the behavior of a disc made up of carbon manganese steel and subjected to an axisymmetric heating in its middle zone is considered. The applied thermal cycle generates localized metallurgical solid-solid phase transformations. Contrary to the study performed some years ago, the present work is concerned with relatively thick discs that lead to variable behavior according to axial direction. Experimentally, temperature and axial displacement of the face below have continuously been measured during tests. At the end of tests, the nature and the proportions of the final phases as well as residual stresses on both faces of the discs has also been assessed. These experimental results have been compared to numerical simulations using the finite element code ASTER, developed by EDF (Electricity of France), ASTER enables us to take into account the main mechanical consequences of phase transformations. From the obtained results it can be pointed out the significant importance to take into account the transformation induced plasticity (TRIP) phenomenon for better estimation of residual stresses. (authors)

  2. RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method

    KAUST Repository

    Ganesan, Pugalenthi; Kandaswamy, Krishna Kumar Umar; Chou -, Kuochen; Vivekanandan, Saravanan; Kolatkar, Prasanna R.

    2012-01-01

    Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf

  3. Residual Strength Prediction of Debond Damaged Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian

    followed by debond growth. The developed theoretical procedure is an extension of the Crack Surface Displacement method, here denoted the Crack Surface Displacement Extrapolation method. The method is first developed in 2D and then extended to 3D by use of a number of realistic assumptions...... for the considered configurations. Comparison of the theoretical predictions to two series of large-scale experiments with loadings (uniform and non-uniform in-plane compression) comparable with real life loading scenarios for sandwich ships shows that the model is indeed able to predict the failure modes...

  4. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  5. Possibility logic applied to pressure vessel residual lifetime prediction

    International Nuclear Information System (INIS)

    Garribba, S.; Lucia, A.C.; Volta, G.

    1985-01-01

    The adequacy is discussed of a probability measure to deal with the different types of uncertainty affecting any pressure vessel lifetime prediction. A more comprehensive framework derived from the fuzzy set theory and including as particular case possibility and probability measures is considered. With reference to the most critical step of lifetime assessment (the ND inspection), the paper compares the results, obtained adopting a possibility measure or a probability measure, in the representation models, fault tree-event tree, and in the decision models

  6. Prediction of residual stresses in electron beam welded Ti-6Al-4V plates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lianyong; Ge, Keke; Jing, Hongyang; Zhao, Lei; Lv, Xiaoqing [Tianjin Univ. (China); Han, Yongdian [Tianjin Univ. (China). Key Lab. of Advanced Joining Technology

    2017-05-01

    A thermo-metallurgical procedure based on the SYSWELD code was developed to predict welding temperature field, microstructure and residual stress in butt-welded Ti-6Al-4V plate taking into account phase transformation. The formation of martensite was confirmed by the CCT diagram and microstructure in the weld joint, which significantly affects the magnitude of residual stress. The hole drilling procedure was utilized to measure the values of residual stress at the top surface of the specimen, which are in well agreement with the numerical results. Both simulated and test results show that the magnitude and distribution of residual stress on the surface of the plate present a large gradient feature from the weld joint to the base metal. Moreover, the distribution law of residual stresses in the plate thickness was further analyzed for better understanding of its generation and evolution.

  7. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  8. Initial contents of residue quality parameters predict effects of larger soil fauna on decomposition of contrasting quality residues

    Directory of Open Access Journals (Sweden)

    Ratikorn Sanghaw

    2017-10-01

    Full Text Available A 52-week decomposition study employing the soil larger fauna exclusion technique through litter bags of two mesh sizes (20 and 0.135 mm was conducted in a long-term (18 yr field experiment. Organic residues of contrasting quality of N, lignin (L, polyphenols (PP and cellulose (CL all in grams per kilogram: rice straw (RS: 4.5N, 22.2L, 3.9PP, 449CL, groundnut stover (GN: 21.2N, 71.4L, 8.1PP, 361CL, dipterocarp leaf litter (DP: 5.1N, 303L, 68.9PP, 271CL and tamarind leaf litter (TM: 11.6N, 190L, 27.7PP, 212CL were applied to soil annually to assess and predict soil larger fauna effects (LFE on decomposition based on the initial contents of the residue chemical constituents. Mass losses in all residues were not different under soil fauna inclusion and exclusion treatments during the early stage (up to week 4 after residue incorporation but became significantly higher under the inclusion than the exclusion treatments during the later stage (week 8 onwards. LFE were highest (2–51% under the resistant DP at most decomposition stages. During the early stage (weeks 1–4, both the initial contents of labile (N and CL and recalcitrant C, and recalcitrant C interaction with labile constituents of residues showed significant correlations (r = 0.64–0.90 with LFE. In the middle stage (week 16, LFE under resistant DP and TM had significant positive correlations with L, L + PP and L/CL. They were also affected by these quality parameters as shown by the multiple regression analysis. In the later stages (weeks 26–52, the L/CL ratio was the most prominent quality parameter affecting LFE. Keywords: Mesofauna and macrofauna, Microorganisms, Recalcitrant and labile compounds, Residue chemical composition, Tropical sandy soil

  9. Prediction of Detailed Enzyme Functions and Identification of Specificity Determining Residues by Random Forests

    Science.gov (United States)

    Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji

    2014-01-01

    Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily. PMID:24416252

  10. Emotion regulation and Residual Depression Predict Psychosocial Functioning in Bipolar Disorder: Preliminary Study

    OpenAIRE

    Becerra, Rodrigo; Cruise, Kate; Harms, Craig; Allan, Alfred; Bassett, Darryl; Hood, Sean; Murray, Greg

    2015-01-01

    This study explores the predictive value of various clinical, neuropsychological, functional, and emotion regulation processes for recovery in Bipolar Disorder. Clinical and demographic information was collected for 27 euthymic or residually depressed BD participants. Seventy one percent of the sample reported some degree of impairment in psychosocial functioning. Both residual depression and problems with emotion regulation were identified as significant predictors of poor psychosocial funct...

  11. The Ising model for prediction of disordered residues from protein sequence alone

    International Nuclear Information System (INIS)

    Lobanov, Michail Yu; Galzitskaya, Oxana V

    2011-01-01

    Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database

  12. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  13. Predictions and measurements of residual stress in repair welds in plates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.B. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom)]. E-mail: bbrown@mitsuibabcock.com; Dauda, T.A. [Mitsui Babcock Energy Limited, Technology and Engineering, Porterfield Road, Renfrew, PA4 8DJ, Scotland (United Kingdom); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, England (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Memhard, D. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany); Pfeiffer, W. [Fraunhofer-Institut fuer Werkstoffmechanik, Freiburg (Germany)

    2006-11-15

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method.

  14. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    Science.gov (United States)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  15. Predictions and measurements of residual stress in repair welds in plates

    International Nuclear Information System (INIS)

    Brown, T.B.; Dauda, T.A.; Truman, C.E.; Smith, D.J.; Memhard, D.; Pfeiffer, W.

    2006-01-01

    This paper presents the work, from the European Union FP-5 project ELIXIR, on a series of rectangular repair welds in P275 and S690 steels to validate the numerical modelling techniques used in the determination of the residual stresses generated during the repair process. The plates were 1,000 mm by 800 mm with thicknesses of 50 and 100 mm. The repair welds were 50%, 75% and 100% through the plate thickness. The repair welds were modelled using the finite element method to make predictions of the as-welded residual stress distributions. These predictions were compared with surface-strain measurements made on the parent plates during welding and found to be in good agreement. Through-thickness residual stress measurements were obtained from the test plates through, and local to, the weld repairs using the deep hole drilling technique. Comparisons between the measurements and the finite element predictions generally showed good agreement, thus providing confidence in the method

  16. InterMap3D: predicting and visualizing co-evolving protein residues

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Roque, francisco jose sousa simôes almeida; Wernersson, Rasmus

    2009-01-01

    InterMap3D predicts co-evolving protein residues and plots them on the 3D protein structure. Starting with a single protein sequence, InterMap3D automatically finds a set of homologous sequences, generates an alignment and fetches the most similar 3D structure from the Protein Data Bank (PDB......). It can also accept a user-generated alignment. Based on the alignment, co-evolving residues are then predicted using three different methods: Row and Column Weighing of Mutual Information, Mutual Information/Entropy and Dependency. Finally, InterMap3D generates high-quality images of the protein...

  17. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.

    Science.gov (United States)

    Panwar, Bharat; Gupta, Sudheer; Raghava, Gajendra P S

    2013-02-07

    The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0

  18. Cesium residue leachate migration in the tailings management area of a mine site : predicted vs. actual

    Energy Technology Data Exchange (ETDEWEB)

    Solylo, P.; Ramsey, D. [Wardrop Engineering, Winnipeg, MB (Canada). Mining and Minerals Section

    2009-07-01

    This paper reported on a study at a cesium products facility (CPF) that manufactures a non-toxic cesium-formate drilling fluid. The facility operates adjacent to a pollucite/tantalum/spodumene mine. The CPF was developed as a closed system, with the residue tailings slurry from the CPF process discharged to doublelined containment cells. Groundwater monitoring has shown that leachate has affected near-surface porewater quality within the tailings management area (TMA). Elevated concentrations of calcium, sulphate, strontium, cesium, and rubidium were used to identify the leachate. Porewater at the base of the tailings and in the overburden beneath the tailings has not been affected. A geochemical investigation was initiated to determine how the leachate behaves in the groundwater/tailings porewater system. Over the past 7 years of residue placement in the TMA, the footprint of the residue placement area has changed, making the comparison of predicted versus actual rate of leachate migration very subjective and difficult to quantify. Based solely on the analytical data, the source of the leachate is unknown, either from the original residue pile or the 2007 residue placement area. For purposes of long term residue management, an investigation of the geochemical behaviour of residue leachate in the groundwater/tailings system of the TMA is currently underway. 5 refs., 1 tab., 2 figs.

  19. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.

    Directory of Open Access Journals (Sweden)

    Guosheng Su

    Full Text Available Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1 a simple additive genetic model (MA, 2 a model including both additive and additive by additive epistatic genetic effects (MAE, 3 a model including both additive and dominance genetic effects (MAD, and 4 a full model including all three genetic components (MAED. Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.

  20. A simulation methodology of spacer grid residual spring deflection for predictive and interpretative purposes

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, H. K.; Yoon, K. H.

    1994-01-01

    The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by spacer grid residual spring deflection. In order to predict the spacer grid residual spring deflection as a function of burnup for various spring designs, a simulation methodology of spacer grid residual spring deflection has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key parameters affecting the residual spring deflection. The simulation methodology developed in this study can be utilized as an effective tool in evaluating the capability of a newly designed spacer grid spring to prevent the fretting wear-induced damage

  1. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  2. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks

    DEFF Research Database (Denmark)

    Helles, Glennie; Fonseca, Rasmus

    2009-01-01

    residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30°×30° area of the dihedral angle space) for all amino acids in the data set compared to first order statistics. An accuracy comparable to that of secondary...... seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been...... done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles. Results: In this paper we develop an artificial neural network that uses an input-window of amino acids to predict a dihedral angle probability distribution for the middle...

  3. Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.

  4. Prediction method of seismic residual deformation of caisson quay wall in liquefied foundation

    Science.gov (United States)

    Wang, Li-Yan; Liu, Han-Long; Jiang, Peng-Ming; Chen, Xiang-Xiang

    2011-03-01

    The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.

  5. Novel images extraction model using improved delay vector variance feature extraction and multi-kernel neural network for EEG detection and prediction.

    Science.gov (United States)

    Ge, Jing; Zhang, Guoping

    2015-01-01

    Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.

  6. Demographic factors and hospital size predict patient satisfaction variance--implications for hospital value-based purchasing.

    Science.gov (United States)

    McFarland, Daniel C; Ornstein, Katherine A; Holcombe, Randall F

    2015-08-01

    Hospital Value-Based Purchasing (HVBP) incentivizes quality performance-based healthcare by linking payments directly to patient satisfaction scores obtained from Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) surveys. Lower HCAHPS scores appear to cluster in heterogeneous population-dense areas and could bias Centers for Medicare & Medicaid Services (CMS) reimbursement. Assess nonrandom variation in patient satisfaction as determined by HCAHPS. Multivariate regression modeling was performed for individual dimensions of HCAHPS and aggregate scores. Standardized partial regression coefficients assessed strengths of predictors. Weighted Individual (hospital) Patient Satisfaction Adjusted Score (WIPSAS) utilized 4 highly predictive variables, and hospitals were reranked accordingly. A total of 3907 HVBP-participating hospitals. There were 934,800 patient surveys by the most conservative estimate. A total of 3144 county demographics (US Census) and HCAHPS surveys. Hospital size and primary language (non-English speaking) most strongly predicted unfavorable HCAHPS scores, whereas education and white ethnicity most strongly predicted favorable HCAHPS scores. The average adjusted patient satisfaction scores calculated by WIPSAS approximated the national average of HCAHPS scores. However, WIPSAS changed hospital rankings by variable amounts depending on the strength of the predictive variables in the hospitals' locations. Structural and demographic characteristics that predict lower scores were accounted for by WIPSAS that also improved rankings of many safety-net hospitals and academic medical centers in diverse areas. Demographic and structural factors (eg, hospital beds) predict patient satisfaction scores even after CMS adjustments. CMS should consider WIPSAS or a similar adjustment to account for the severity of patient satisfaction inequities that hospitals could strive to correct. © 2015 Society of Hospital Medicine.

  7. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  8. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen

    International Nuclear Information System (INIS)

    Ficquet, X.; Smith, D.J.; Truman, C.E.; Kingston, E.J.; Dennis, R.J.

    2009-01-01

    This paper presents measurements and predictions of the residual stresses generated by laying a single weld bead on a flat, austenitic stainless steel plate. The residual stress field that is created is strongly three-dimensional and is considered representative of that found in a repair weld. Through-thickness measurements are made using the deep hole drilling technique, and near-surface measurements are made using incremental centre hole drilling. Measurements are compared to predictions at the same locations made using finite element analysis incorporating an advanced, non-linear kinematic hardening model. The work was conducted as part of an European round robin exercise, coordinated as part of the NeT network. Overall, there was broad agreement between measurements and predictions, but there were notable differences

  9. Finite element analysis for prediction of the residual stresses induced by shot peening II

    International Nuclear Information System (INIS)

    Kim, Cheol; Seok, Chang Sung; Yang, Won Ho; Ryu, Myung Hai

    2002-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of metal parts and welded details subjected to fatigue loading, contact fatigue, stress corrosion and other damage mechanisms. The better performance of the peened parts is mainly due to the residual stresses resulting from the plastic deformation of the surface layers of the material caused by the impact of the shot. In this paper the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of finite element analysis

  10. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    Science.gov (United States)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  11. Ensemble Architecture for Prediction of Enzyme-ligand Binding Residues Using Evolutionary Information.

    Science.gov (United States)

    Pai, Priyadarshini P; Dattatreya, Rohit Kadam; Mondal, Sukanta

    2017-11-01

    Enzyme interactions with ligands are crucial for various biochemical reactions governing life. Over many years attempts to identify these residues for biotechnological manipulations have been made using experimental and computational techniques. The computational approaches have gathered impetus with the accruing availability of sequence and structure information, broadly classified into template-based and de novo methods. One of the predominant de novo methods using sequence information involves application of biological properties for supervised machine learning. Here, we propose a support vector machines-based ensemble for prediction of protein-ligand interacting residues using one of the most important discriminative contributing properties in the interacting residue neighbourhood, i. e., evolutionary information in the form of position-specific- scoring matrix (PSSM). The study has been performed on a non-redundant dataset comprising of 9269 interacting and 91773 non-interacting residues for prediction model generation and further evaluation. Of the various PSSM-based models explored, the proposed method named ROBBY (pRediction Of Biologically relevant small molecule Binding residues on enzYmes) shows an accuracy of 84.0 %, Matthews Correlation Coefficient of 0.343 and F-measure of 39.0 % on 78 test enzymes. Further, scope of adding domain knowledge such as pocket information has also been investigated; results showed significant enhancement in method precision. Findings are hoped to boost the reliability of small-molecule ligand interaction prediction for enzyme applications and drug design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The finite element analysis for prediction of residual stresses induced by shot peening

    International Nuclear Information System (INIS)

    Kim, Cheol; Yang, Won Ho; Sung, Ki Deug; Cho, Myoung Rae; Ko, Myung Hoon

    2000-01-01

    The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modeling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis

  13. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  14. A residual life prediction model based on the generalized σ -N curved surface

    Directory of Open Access Journals (Sweden)

    Zongwen AN

    2016-06-01

    Full Text Available In order to investigate change rule of the residual life of structure under random repeated load, firstly, starting from the statistic meaning of random repeated load, the joint probability density function of maximum stress and minimum stress is derived based on the characteristics of order statistic (maximum order statistic and minimum order statistic; then, based on the equation of generalized σ -N curved surface, considering the influence of load cycles number on fatigue life, a relationship among minimum stress, maximum stress and residual life, that is the σmin(n- σmax(n-Nr(n curved surface model, is established; finally, the validity of the proposed model is demonstrated by a practical case. The result shows that the proposed model can reflect the influence of maximum stress and minimum stress on residual life of structure under random repeated load, which can provide a theoretical basis for life prediction and reliability assessment of structure.

  15. The development of techniques for determining the residual life time prediction on NPP equipment

    International Nuclear Information System (INIS)

    Antonov, Alexander V.; Dagaev, Alexander V.; Volnikov, Ivan S.

    1999-01-01

    The problem of determining the residual life prediction of NPP equipment is presently highly pressing. NPP residual life resources are 30 years, but for particular equipment it is much less. Thus, residual life resource for equipment of control and protection system of NPP unit is 5-10 years. The NPP equipment is expensive and its replacing requires much expense. Hence an urgent problem is to study residual life resources of equipment on the basis of statistic information obtained during operation. Deterministic approach of determining residual life resources for particular equipment is widely known in the literature. Physical and statistical models are also being developed for determining the residual life, e.g. the model (loading-bearing capability). The present work offers the techniques of the residual life determination reasoning from statistic information of functioning objects in the process of operation. To put the techniques into effect it is necessary to have information about the time of operation of a group of objects of the same type, the number of failures; it is desirable to know failure operating time, order of the object replacement and the reason which caused the replacement (failure or planned preventive maintenance). Metrics is based on studying the parameters for the series of failures resulted from real statistic data. Then we can proceed to distribution density of the failure working time. For this purpose the Voltarra's equation of the second order is solved f(t) = ω(t) + ∫ 0 t f(t - τ)ω(τ)dτ. Since statistics of data sampling related to failure is small due to difficulties in solution of Voltaire's equation, the authors offer moderate method of solution for the above equation. After distribution density of the failure working time is determined the calculation of equipment residual life is made by the following formula: T τ (t) 1/P(τ)∫ 0 ∞ P(t)dt. The proposed techniques are realised as the software. In the course of working

  16. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Science.gov (United States)

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  17. RANDOM FUNCTIONS AND INTERVAL METHOD FOR PREDICTING THE RESIDUAL RESOURCE OF BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Shmelev Gennadiy Dmitrievich

    2017-11-01

    Full Text Available Subject: possibility of using random functions and interval prediction method for estimating the residual life of building structures in the currently used buildings. Research objectives: coordination of ranges of values to develop predictions and random functions that characterize the processes being predicted. Materials and methods: when performing this research, the method of random functions and the method of interval prediction were used. Results: in the course of this work, the basic properties of random functions, including the properties of families of random functions, are studied. The coordination of time-varying impacts and loads on building structures is considered from the viewpoint of their influence on structures and representation of the structures’ behavior in the form of random functions. Several models of random functions are proposed for predicting individual parameters of structures. For each of the proposed models, its scope of application is defined. The article notes that the considered approach of forecasting has been used many times at various sites. In addition, the available results allowed the authors to develop a methodology for assessing the technical condition and residual life of building structures for the currently used facilities. Conclusions: we studied the possibility of using random functions and processes for the purposes of forecasting the residual service lives of structures in buildings and engineering constructions. We considered the possibility of using an interval forecasting approach to estimate changes in defining parameters of building structures and their technical condition. A comprehensive technique for forecasting the residual life of building structures using the interval approach is proposed.

  18. Prediction of welding residual distortions of large structures using a local/global approach

    International Nuclear Information System (INIS)

    Duan, Y. G.; Bergheau, J. M.; Vincent, Y.; Boitour, F.; Leblond, J. B.

    2007-01-01

    Prediction of welding residual distortions is more difficult than that of the microstructure and residual stresses. On the one hand, a fine mesh (often 3D) has to be used in the heat affected zone for the sake of the sharp variations of thermal, metallurgical and mechanical fields in this region. On the other hand, the whole structure is required to be meshed for the calculation of residual distortions. But for large structures, a 3D mesh is inconceivable caused by the costs of the calculation. Numerous methods have been developed to reduce the size of models. A local/global approach has been proposed to determine the welding residual distortions of large structures. The plastic strains and the microstructure due to welding are supposed can be determined from a local 3D model which concerns only the weld and its vicinity. They are projected as initial strains into a global 3D model which consists of the whole structure and obviously much less fine in the welded zone than the local model. The residual distortions are then calculated using a simple elastic analysis, which makes this method particularly effective in an industrial context. The aim of this article is to present the principle of the local/global approach then show the capacity of this method in an industrial context and finally study the definition of the local model

  19. An analytical model to predict and minimize the residual stress of laser cladding process

    Science.gov (United States)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  20. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction

    DEFF Research Database (Denmark)

    Teppa, Elin; Wilkins, Angela D.; Nielsen, Morten

    2012-01-01

    Background: A large panel of methods exists that aim to identify residues with critical impact on protein function based on evolutionary signals, sequence and structure information. However, it is not clear to what extent these different methods overlap, and if any of the methods have higher...... predictive potential compared to others when it comes to, in particular, the identification of catalytic residues (CR) in proteins. Using a large set of enzymatic protein families and measures based on different evolutionary signals, we sought to break up the different components of the information content......-value Evolutionary Trace (rvET) methods and conservation, another containing mutual information (MI) methods, and the last containing methods designed explicitly for the identification of specificity determining positions (SDPs): integer-value Evolutionary Trace (ivET), SDPfox, and XDET. In terms of prediction of CR...

  1. Reliability residual-life prediction method for thermal aging based on performance degradation

    International Nuclear Information System (INIS)

    Ren Shuhong; Xue Fei; Yu Weiwei; Ti Wenxin; Liu Xiaotian

    2013-01-01

    The paper makes the study of the nuclear power plant main pipeline. The residual-life of the main pipeline that failed due to thermal aging has been studied by the use of performance degradation theory and Bayesian updating methods. Firstly, the thermal aging impact property degradation process of the main pipeline austenitic stainless steel has been analyzed by the accelerated thermal aging test data. Then, the thermal aging residual-life prediction model based on the impact property degradation data is built by Bayesian updating methods. Finally, these models are applied in practical situations. It is shown that the proposed methods are feasible and the prediction accuracy meets the needs of the project. Also, it provides a foundation for the scientific management of aging management of the main pipeline. (authors)

  2. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  3. Predicting the concentration of residual methanol in industrial formalin using machine learning

    OpenAIRE

    Heidkamp, William

    2016-01-01

    In this thesis, a machine learning approach was used to develop a predictive model for residual methanol concentration in industrial formalin produced at the Akzo Nobel factory in Kristinehamn, Sweden. The MATLABTM computational environment supplemented with the Statistics and Machine LearningTM toolbox from the MathWorks were used to test various machine learning algorithms on the formalin production data from Akzo Nobel. As a result, the Gaussian Process Regression algorithm was found to pr...

  4. Predictions of the residue cross-sections for the elements Z=113 and Z=114

    OpenAIRE

    Bouriquet, Bertrand; Abe, Yasuhisa; Kosenko, Grigori

    2003-01-01

    An extremely good reproduction of experimental excitation function of the 1n reactions producing Z=110,Z=111 and Z=112 is obtained by the two-step model and the statistical decay code KEWPIE. Thus, an extension of the recipe permits us to predict reliable values of the residue cross-sections of the elements Z=113 and Z=114 which will be a useful guide for planning of experiments.

  5. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  6. Practical guidance on representing the heteroscedasticity of residual errors of hydrological predictions

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George

    2016-04-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).

  7. Variance in predicted cup size by 2-dimensional vs 3-dimensional computerized tomography-based templating in primary total hip arthroplasty.

    Science.gov (United States)

    Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M

    2017-12-01

    Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.

  8. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  9. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  10. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information

    Directory of Open Access Journals (Sweden)

    Panwar Bharat

    2013-02-01

    Full Text Available Abstract Background The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. Results In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL. It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i vitamin interacting residues (VIRs, (ii vitamin-A interacting residues (VAIRs, (iii vitamin-B interacting residues (VBIRs and (iv pyridoxal-5-phosphate (vitamin B6 interacting residues (PLPIRs have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM features of protein sequences. Finally, we selected best performing SVM modules and

  11. Effects of feather wear and temperature on prediction of food intake and residual food consumption.

    Science.gov (United States)

    Herremans, M; Decuypere, E; Siau, O

    1989-03-01

    Heat production, which accounts for 0.6 of gross energy intake, is insufficiently represented in predictions of food intake. Especially when heat production is elevated (for example by lower temperature or poor feathering) the classical predictions based on body weight, body-weight change and egg mass are inadequate. Heat production was reliably estimated as [35.5-environmental temperature (degree C)] x [Defeathering (=%IBPW) + 21]. Including this term (PHP: predicted heat production) in equations predicting food intake significantly increased accuracy of prediction, especially under suboptimal conditions. Within the range of body weights tested (from 1.6 kg in brown layers to 2.8 kg in dwarf broiler breeders), body weight as an independent variable contributed little to the prediction of food intake; especially within strains its effect was better included in the intercept. Significantly reduced absolute values of residual food consumption were obtained over a wide range of conditions by using predictions of food intake based on body-weight change, egg mass, predicted heat production (PHP) and an intercept, instead of body weight, body-weight change, egg mass and an intercept.

  12. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  13. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.

    Directory of Open Access Journals (Sweden)

    Priyadarshini P Pai

    Full Text Available Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.

  14. Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation

    Science.gov (United States)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli

    2017-11-01

    The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.

  15. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Yang

    Full Text Available Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  16. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  17. Cutoff Value of Pharyngeal Residue in Prognosis Prediction After Neuromuscular Electrical Stimulation Therapy for Dysphagia in Subacute Stroke Patients

    OpenAIRE

    Park, Jeong Mee; Yong, Sang Yeol; Kim, Ji Hyun; Jung, Hong Sun; Chang, Sei Jin; Kim, Ki Young; Kim, Hee

    2014-01-01

    Objective To determine the cutoff value of the pharyngeal residue for predicting reduction of aspiration, by measuring the residue of valleculae and pyriformis sinuses through videofluoroscopic swallowing studies (VFSS) after treatment with neuromuscular electrical stimulator (VitalStim) in stroke patients with dysphagia. Methods VFSS was conducted on first-time stroke patients before and after the VitalStim therapy. The results were analyzed for comparison of the pharyngeal residue in the im...

  18. The prediction of reliability and residual life of reactor pressure components

    International Nuclear Information System (INIS)

    Nemec, J.; Antalovsky, S.

    1978-01-01

    The paper deals with the problem of PWR pressure components reliability and residual life evaluation and prediction. A physical model of damage cumulation which serves as a theoretical basis for all considerations presents two major aspects. The first one describes the dependence of the degree of damage in the crack leading-edge in pressure components on the reactor system load-time history, i.e. on the number of transient loads. Both stages, fatigue crack initiation and growth through the wall until the critical length is reached, are investigated. The crack is supposed to initiate at the flaws in a strength weld joint or in the bimetallic weld of the base ferritic steel and the austenitic stainless overlay cladding. The growth rates of developed cracks are analysed in respect to different load-time histories. Important cyclic properties of some steels are derived from the low-cycle fatigue theory. The second aspect is the load-time history-dependent process of precipitation, deformation and radiation aging, characterized entirely by the critical crack-length value mentioned above. The fracture point, defined by the equation ''crack-length=critical value'' and hence the residual life, can be evaluated using this model and verified by in-service inspection. The physical model described is randomized by considering all the parameters of the model as random. Monte Carlo methods are applied and fatigue crack initiation and growth is simulated. This permits evaluation of the reliability and residual life of the component. The distributions of material and load-time history parameters are needed for such simulation. Both the deterministic and computer-simulated probabilistic predictions of reliability and residual life are verified by prior-to-failure sequential testing of data coming from in-service NDT periodical inspections. (author)

  19. A two-stage approach for improved prediction of residue contact maps

    Directory of Open Access Journals (Sweden)

    Pollastri Gianluca

    2006-03-01

    Full Text Available Abstract Background Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts, the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps. In order to alleviate these problems and achieve improved contact map predictions, in this paper we split the task into two stages: the prediction of a map's principal eigenvector (PE from the primary sequence; the reconstruction of the contact map from the PE and primary sequence. Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task is less complex than mapping vectors directly into two-dimensional matrices since the size of the problem is drastically reduced and so is the scale length of interactions that need to be learned. Results We develop architectures composed of ensembles of two-layered bidirectional recurrent neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor, tested on a non redundant set of 2171 proteins, achieves classification performances of up to 72.6%, 16% above a base-line statistical predictor. We design a system for the prediction of contact maps from the predicted PE. Our results show that predicting maps through the PE yields sizeable gains especially for long-range contacts which are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a non-redundant set of 327 targets is 35

  20. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    Science.gov (United States)

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  1. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  2. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  3. Study on predicting residual life of elevator links by fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Li Helin; Zhang Yi; Deng Zengjie [China National Petroleum Corp., Xi`an, Shaanxi (China). Tubular Goods Research Center; Jin Dazeng [Xi`an Jiaotong Univ., Xi`an, Shaanxi (China)

    1995-12-31

    On the basis of investigation, failure and fracture analysis of elevator links, residual life prediction of links using fracture mechanics approach is studied, and mechanical properties, fracture toughness value K{sub IC} and fatigue crack propagation rage da/dN of the steel for elevator links are determined. Using the relation between stress intensity factor K{sub I} and the strain-energy release rate, the two-dimensional conversion thickness finite element method has been used to calculate the stress intensity factors K{sub I} for dangerous sections in the ring part of links. Furthermore, the reliability of calculations of the finite element stress intensity factors K{sub I} for dangerous sections of elevator links and the residual life computation for links are verified by fatigue tests of actual links. Finally, the experimental verification of computed results by 150T link fractured at site indicates that the computed critical crack lengths and residual life tally well with those measured and meet the needs of oil drilling.

  4. Thermospheric mass density model error variance as a function of time scale

    Science.gov (United States)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  5. Prediction of beta-turns from amino acid sequences using the residue-coupled model.

    Science.gov (United States)

    Guruprasad, K; Shukla, S

    2003-04-01

    We evaluated the prediction of beta-turns from amino acid sequences using the residue-coupled model with an enlarged representative protein data set selected from the Protein Data Bank. Our results show that the probability values derived from a data set comprising 425 protein chains yielded an overall beta-turn prediction accuracy 68.74%, compared with 94.7% reported earlier on a data set of 30 proteins using the same method. However, we noted that the overall beta-turn prediction accuracy using probability values derived from the 30-protein data set reduces to 40.74% when tested on the data set comprising 425 protein chains. In contrast, using probability values derived from the 425 data set used in this analysis, the overall beta-turn prediction accuracy yielded consistent results when tested on either the 30-protein data set (64.62%) used earlier or a more recent representative data set comprising 619 protein chains (64.66%) or on a jackknife data set comprising 476 representative protein chains (63.38%). We therefore recommend the use of probability values derived from the 425 representative protein chains data set reported here, which gives more realistic and consistent predictions of beta-turns from amino acid sequences.

  6. Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer

    Directory of Open Access Journals (Sweden)

    S. Hamed Mousavi

    2018-04-01

    Full Text Available Dynamic cone penetrometer (DCP has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers (a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a 200 mm aggregate base course. In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils. Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on “undisturbed” soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide (MEPDG recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients (k1, k2 and k3 was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements, but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature. Keywords: Dynamic cone penetrometer (DCP, Resilient modulus, Mechanistic-empirical pavement design guide (MEPDG, Residual

  7. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences

    KAUST Repository

    Chen, Peng

    2013-07-23

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.

  8. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences

    KAUST Repository

    Chen, Peng; Li, Jinyan; Limsoon, Wong; Kuwahara, Hiroyuki; Huang, Jianhua Z.; Gao, Xin

    2013-01-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.

  9. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    Science.gov (United States)

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  10. Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach

    International Nuclear Information System (INIS)

    Cheng, Yujie; Lu, Chen; Li, Tieying; Tao, Laifa

    2015-01-01

    Existing methods for predicting lithium-ion (Li-ion) battery residual lifetime mostly depend on a priori knowledge on aging mechanism, the use of chemical or physical formulation and analytical battery models. This dependence is usually difficult to determine in practice, which restricts the application of these methods. In this study, we propose a new prediction method for Li-ion battery residual lifetime evaluation based on FPCA (functional principal component analysis) and Bayesian approach. The proposed method utilizes FPCA to construct a nonparametric degradation model for Li-ion battery, based on which the residual lifetime and the corresponding confidence interval can be evaluated. Furthermore, an empirical Bayes approach is utilized to achieve real-time updating of the degradation model and concurrently determine residual lifetime distribution. Based on Bayesian updating, a more accurate prediction result and a more precise confidence interval are obtained. Experiments are implemented based on data provided by the NASA Ames Prognostics Center of Excellence. Results confirm that the proposed prediction method performs well in real-time battery residual lifetime prediction. - Highlights: • Capacity is considered functional and FPCA is utilized to extract more information. • No features required which avoids drawbacks induced by feature extraction. • A good combination of both population and individual information. • Avoiding complex aging mechanism and accurate analytical models of batteries. • Easily applicable to different batteries for life prediction and RLD calculation.

  11. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  12. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  13. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    Science.gov (United States)

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  14. Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives

    Directory of Open Access Journals (Sweden)

    Alexov Emil G

    2006-11-01

    Full Text Available Abstract Background Predicting residues' contacts using primary amino acid sequence alone is an important task that can guide 3D structure modeling and can verify the quality of the predicted 3D structures. The correlated mutations (CM method serves as the most promising approach and it has been used to predict amino acids pairs that are distant in the primary sequence but form contacts in the native 3D structure of homologous proteins. Results Here we report a new implementation of the CM method with an added set of selection rules (filters. The parameters of the algorithm were optimized against fifteen high resolution crystal structures with optimization criterion that maximized the confidentiality of the predictions. The optimization resulted in a true positive ratio (TPR of 0.08 for the CM without filters and a TPR of 0.14 for the CM with filters. The protocol was further benchmarked against 65 high resolution structures that were not included in the optimization test. The benchmarking resulted in a TPR of 0.07 for the CM without filters and to a TPR of 0.09 for the CM with filters. Conclusion Thus, the inclusion of selection rules resulted to an overall improvement of 30%. In addition, the pair-wise comparison of TPR for each protein without and with filters resulted in an average improvement of 1.7. The methodology was implemented into a web server http://www.ces.clemson.edu/compbio/recon that is freely available to the public. The purpose of this implementation is to provide the 3D structure predictors with a tool that can help with ranking alternative models by satisfying the largest number of predicted contacts, as well as it can provide a confidence score for contacts in cases where structure is known.

  15. Development of Analytical Method for Predicting Residual Mechanical Properties of Corroded Steel Plates

    Directory of Open Access Journals (Sweden)

    J. M. R. S. Appuhamy

    2011-01-01

    Full Text Available Bridge infrastructure maintenance and assurance of adequate safety is of paramount importance in transportation engineering and maintenance management industry. Corrosion causes strength deterioration, leading to impairment of its operation and progressive weakening of the structure. Since the actual corroded surfaces are different from each other, only experimental approach is not enough to estimate the remaining strength of corroded members. However, in modern practices, numerical simulation is being used to replace the time-consuming and expensive experimental work and to comprehend on the lack of knowledge on mechanical behavior, stress distribution, ultimate behavior, and so on. This paper presents the nonlinear FEM analyses results of many corroded steel plates and compares them with their respective tensile coupon tests. Further, the feasibility of establishing an accurate analytical methodology to predict the residual strength capacities of a corroded steel member with lesser number of measuring points is also discussed.

  16. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In the previous two sessions, it was assumed that the measurement error variances were known quantities when the variances of the safeguards indices were calculated. These known quantities are actually estimates based on historical data and on data generated by the measurement program. Session 34 discusses how measurement error parameters are estimated for different situations. The various error types are considered. The purpose of the session is to enable participants to: (1) estimate systematic error variances from standard data; (2) estimate random error variances from data as replicate measurement data; (3) perform a simple analysis of variances to characterize the measurement error structure when biases vary over time

  17. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Science.gov (United States)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  18. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    Science.gov (United States)

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-06-15

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. In contrast to the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles and local structure conformations were incorporated. We used the k-nearest neighbors cleaning treatment for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred to as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. CT volumetry is superior to nuclear renography for prediction of residual kidney function in living donors.

    Science.gov (United States)

    Barbas, Andrew S; Li, Yanhong; Zair, Murtuza; Van, Julie A; Famure, Olusegun; Dib, Martin J; Laurence, Jerome M; Kim, S Joseph; Ghanekar, Anand

    2016-09-01

    Living kidney donor evaluation commonly includes nuclear renography to assess split kidney function and computed tomography (CT) scan to evaluate anatomy. To streamline donor workup and minimize exposure to radioisotopes, we sought to assess the feasibility of using proportional kidney volume from CT volumetry in lieu of nuclear renography. We examined the correlation between techniques and assessed their ability to predict residual postoperative kidney function following live donor nephrectomy. In a cohort of 224 live kidney donors, we compared proportional kidney volume derived by CT volumetry with split kidney function derived from nuclear renography and found only modest correlation (left kidney R(2) =26.2%, right kidney R(2) =26.7%). In a subset of 88 live kidney donors with serum creatinine measured 6 months postoperatively, we compared observed estimated glomerular filtration rate (eGFR) at 6 months with predicted eGFR from preoperative imaging. Compared to nuclear renography, CT volumetry more closely approximated actual observed postoperative eGFR for Chronic Kidney Disease Epidemiology Collaboration (J-test: P=.02, Cox-Pesaran test: P=.01) and Mayo formulas (J-test: P=.004, Cox-Pesaran test: Pvolumetry for estimation of split kidney function in healthy individuals with normal kidney function and morphology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves

    International Nuclear Information System (INIS)

    Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin

    2011-01-01

    In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress

  1. Utility of Urinary Biomarkers in Predicting Loss of Residual Renal Function: The balANZ Trial

    Science.gov (United States)

    Cho, Yeoungjee; Johnson, David W.; Vesey, David A.; Hawley, Carmel M.; Clarke, Margaret; Topley, Nicholas

    2015-01-01

    ♦ Background: The ability of urinary biomarkers to predict residual renal function (RRF) decline in peritoneal dialysis (PD) patients has not been defined. The present study aimed to explore the utility of established biomarkers from kidney injury models for predicting loss of RRF in incident PD patients, and to evaluate the impact on RRF of using neutral-pH PD solution low in glucose degradation products. ♦ Methods: The study included 50 randomly selected participants from the balANZ trial who had completed 24 months of follow-up. A change in glomerular filtration rate (GFR) was used as the primary clinical outcome measure. In a mixed-effects general linear model, baseline measurements of 18 novel urinary biomarkers and albumin were used to predict GFR change. The model was further used to evaluate the impact of biocompatible PD solution on RRF, adjusted for each biomarker. ♦ Results: Baseline albuminuria was not a useful predictor of change in RRF in PD patients (p = 0.84). Only clusterin was a significant predictor of GFR decline in the whole population (p = 0.04, adjusted for baseline GFR and albuminuria). However, the relationship was no longer apparent when albuminuria was removed from the model (p = 0.31). When the effect of the administered PD solutions was examined using a model adjusted for PD solution type, baseline albuminuria, and GFR, higher baseline urinary concentrations of trefoil factor 3 (TFF3, p = 0.02), kidney injury molecule 1 (KIM-1, p = 0.04), and interferon γ-induced protein 10 (IP-10, p = 0.03) were associated with more rapid decline of RRF in patients receiving conventional PD solution compared with biocompatible PD solution. ♦ Conclusions: Higher urinary levels of kidney injury biomarkers (TFF3, KIM-1, IP-10) at baseline predicted significantly slower RRF decline in patients receiving biocompatible PD solutions. Findings from the present investigation should help to guide future studies to validate the utility of urinary

  2. Diagnostic checking in linear processes with infinit variance

    OpenAIRE

    Krämer, Walter; Runde, Ralf

    1998-01-01

    We consider empirical autocorrelations of residuals from infinite variance autoregressive processes. Unlike the finite-variance case, it emerges that the limiting distribution, after suitable normalization, is not always more concentrated around zero when residuals rather than true innovations are employed.

  3. Prediction error variance and expected response to selection, when selection is based on the best predictor - for Gaussian and threshold characters, traits following a Poisson mixed model and survival traits

    DEFF Research Database (Denmark)

    Andersen, Anders Holst; Korsgaard, Inge Riis; Jensen, Just

    2002-01-01

    In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed...... or random effects). In the different models, expressions are given (when these can be found - otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non...... Gaussian traits are generalisations of the well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part...

  4. A simulation model for the prediction of tissue:plasma partition coefficients for drug residues in natural casings.

    NARCIS (Netherlands)

    Haritova, A.M.; Fink-Gremmels, J.

    2010-01-01

    Tissue residues arise from the exposure of animals to undesirable substances in animal feed materials and drinking water and to the therapeutic or zootechnical use of veterinary medicinal products. In the framework of this study, an advanced toxicokinetic model was developed to predict the

  5. Development of a prediction model for residual disease in newly diagnosed advanced ovarian cancer.

    Science.gov (United States)

    Janco, Jo Marie Tran; Glaser, Gretchen; Kim, Bohyun; McGree, Michaela E; Weaver, Amy L; Cliby, William A; Dowdy, Sean C; Bakkum-Gamez, Jamie N

    2015-07-01

    To construct a tool, using computed tomography (CT) imaging and preoperative clinical variables, to estimate successful primary cytoreduction for advanced epithelial ovarian cancer (EOC). Women who underwent primary cytoreductive surgery for stage IIIC/IV EOC at Mayo Clinic between 1/2/2003 and 12/30/2011 and had preoperative CT images of the abdomen and pelvis within 90days prior to their surgery available for review were included. CT images were reviewed for large-volume ascites, diffuse peritoneal thickening (DPT), omental cake, lymphadenopathy (LP), and spleen or liver involvement. Preoperative factors included age, body mass index (BMI), Eastern Cooperative Oncology Group performance status (ECOG PS), American Society of Anesthesiologists (ASA) score, albumin, CA-125, and thrombocytosis. Two prediction models were developed to estimate the probability of (i) complete and (ii) suboptimal cytoreduction (residual disease (RD) >1cm) using multivariable logistic analysis with backward and stepwise variable selection methods. Internal validation was assessed using bootstrap resampling to derive an optimism-corrected estimate of the c-index. 279 patients met inclusion criteria: 143 had complete cytoreduction, 26 had suboptimal cytoreduction (RD>1cm), and 110 had measurable RD ≤1cm. On multivariable analysis, age, absence of ascites, omental cake, and DPT on CT imaging independently predicted complete cytoreduction (c-index=0.748). Conversely, predictors of suboptimal cytoreduction were ECOG PS, DPT, and LP on preoperative CT imaging (c-index=0.685). The generated models serve as preoperative evaluation tools that may improve counseling and selection for primary surgery, but need to be externally validated. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. European Network of Excellence on NPP residual lifetime prediction methodologies (NULIFE)

    International Nuclear Information System (INIS)

    Badea, M.; Vidican, D.

    2006-01-01

    Within Europe massive investments in nuclear power have been made to meet present and future energy needs. The majority of nuclear reactors have been operating for longer than 20 years and their continuing safe operation depends crucially on effective lifetime management. Furthermore, to extend the economic return on investment and environmental benefits, it is necessary to ensure in advance the safe operation of nuclear reactors for 60 years, a period which is typically 20 years in excess of nominal design life. This depends on a clear understanding of, and predictive capability for, how safety margins may be maintained as components degrade under operational conditions. Ageing mechanisms, environment effects and complex loadings increase the likelihood of damage to safety relevant systems, structures and components. The ability to claim increased benefits from reduced conservatism via improved assessments is therefore of great value. Harmonisation and qualification are essential for industrial exploitation of approaches developed for life prediction methodology. Several European organisations and networks have been at the forefront of the development of advanced methodologies in this area. However, these efforts have largely been made at national level and their overall impact and benefit (in comparison to the situation in the USA) has been reduced by fragmentation. There is a need to restructure the networking approach in order to create a single organisational entity capable of working at European level to produce and exploit R and D in support of the safe and competitive operation of nuclear power plants. It is also critical to ensure the competitiveness of European plant life management (PLIM) services at international level, in particular with the USA and Asian countries. To the above challenges the European Network on European research in residual lifetime prediction methodologies (NULIFE) will: - Create a Europe-wide body in order to achieve scientific and

  7. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  8. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Jaech, J.L.

    1984-01-01

    The estimation of measurement error parameters in safeguards systems is discussed. Both systematic and random errors are considered. A simple analysis of variances to characterize the measurement error structure with biases varying over time is presented

  9. Elevated postvoid residual urine volume predicting recurrence of urinary tract infections in toilet-trained children.

    Science.gov (United States)

    Chang, Shang-Jen; Tsai, Li-Ping; Hsu, Chun-Kai; Yang, Stephen S

    2015-07-01

    The aim of this study was to examine whether toilet-trained children with a history of febrile urinary tract infection (fUTI) and elevated postvoid residual (PVR) urine volume according to a recently published PVR nomogram were at greater risk of UTI recurrence. One month after recovery from febrile UTI, constipation was diagnosed according to the Rome III criteria, and lower urinary tract (LUT) function was evaluated with two sets of uroflowmetry and PVR by ultrasonography. For children aged ≦ 6 and ≧ 7 years, elevated PVR is defined as >20 and >10 ml, respectively. Cox proportion hazards regression was used to evaluate the risk factors for recurrence of UTI. Between 2005 and 2011, 60 children aged 6.5 ± 2.5 years (boy:girl ratio 27:33) were enrolled for analysis. Univariate analysis showed that recurrent febrile UTI was more commonly observed in children with elevated PVR [repetitive elevated PVR: hazard ratio (HR) 5.75, 95% confidence interval (CI) 1.41-23.4; one elevated PVR: HR 4.53, 95% CI 1.01-20.2] and high-grade vesicoureteral reflux (VUR; HR 4.53, 95% CI 1.46-14.07). Multivariate analysis showed that younger age (HR 1.37, 95% CI 1.03-1.82, p UTI--but not gender, presence of high-grade VUR and constipation. Elevated PVR defined by the new PVR nomogram predicted recurrent UTI in children with history of febrile UTI. Care should be taken to manage children with elevated PVR.

  10. Prediction of retained residual stresses in laboratory fracture mechanics specimens extracted from welded components

    International Nuclear Information System (INIS)

    Hurlston, R.G.; Sherry, A.H.; James, P.; Sharples, J.K.

    2015-01-01

    The measurement of weld material fracture toughness properties is important for the structural integrity assessment of engineering components. However, welds can contain high levels of residual stress and these can be retained in fracture mechanics specimens, particularly when machined from non-stress relieved welds. Retained residual stresses can make the measurement of valid fracture toughness properties difficult. This paper describes the results of analytical work undertaken to investigate factors that can influence the magnitude and distribution of residual stresses retained in fracture mechanics specimen blanks extracted from as-welded ferritic and austenitic stainless steel plates. The results indicate that significant levels of residual stress can be retained in specimen blanks prior to notching, and that the magnitude and distribution of stress is dependent upon material properties, specimen geometry and size, and extraction location through the thickness of the weld. Finite element modelling is shown to provide a useful approach for estimating the level and distributions of retained residual stresses. A new stress partitioning approach has been developed to estimate retained stress levels and results compare favourably with FE analysis and available experimental data. The approach can help guide the selection of specimen geometry and machining strategies to minimise the level of residual stresses retained in fracture mechanics specimen blanks extracted from non stress-relieved welds and thus improve the measurement of weld fracture toughness properties. - Highlights: • A simplified method for generating realistic weld residual stresses has been developed. • It has been shown that significant levels of residual stress can be retained within laboratory fracture mechanics specimens. • The level and distribution is dependant upon material, specimen type, specimen size and extraction location. • A method has been developed to allow estimates of the

  11. Development of computer program ENMASK for prediction of residual environmental masking-noise spectra, from any three independent environmental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-S.; Liebich, R. E.; Chun, K. C.

    2000-03-31

    Residual environmental sound can mask intrusive4 (unwanted) sound. It is a factor that can affect noise impacts and must be considered both in noise-impact studies and in noise-mitigation designs. Models for quantitative prediction of sensation level (audibility) and psychological effects of intrusive noise require an input with 1/3 octave-band spectral resolution of environmental masking noise. However, the majority of published residual environmental masking-noise data are given with either octave-band frequency resolution or only single A-weighted decibel values. A model has been developed that enables estimation of 1/3 octave-band residual environmental masking-noise spectra and relates certain environmental parameters to A-weighted sound level. This model provides a correlation among three environmental conditions: measured residual A-weighted sound-pressure level, proximity to a major roadway, and population density. Cited field-study data were used to compute the most probable 1/3 octave-band sound-pressure spectrum corresponding to any selected one of these three inputs. In turn, such spectra can be used as an input to models for prediction of noise impacts. This paper discusses specific algorithms included in the newly developed computer program ENMASK. In addition, the relative audibility of the environmental masking-noise spectra at different A-weighted sound levels is discussed, which is determined by using the methodology of program ENAUDIBL.

  12. Prediction of residual stress distribution in multi-stacked thin film by curvature measurement and iterative FEA

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang; Park, Jun Hyub

    2005-01-01

    In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film

  13. Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Sonesson, Anna K; Odegård, Jørgen; Rönnegård, Lars

    2013-10-17

    Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro

  14. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  15. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Restricted Variance Interaction Effects

    DEFF Research Database (Denmark)

    Cortina, Jose M.; Köhler, Tine; Keeler, Kathleen R.

    2018-01-01

    Although interaction hypotheses are increasingly common in our field, many recent articles point out that authors often have difficulty justifying them. The purpose of this article is to describe a particular type of interaction: the restricted variance (RV) interaction. The essence of the RV int...

  17. Residual stress evaluation and fatigue life prediction in the welded joint by X-ray diffraction

    International Nuclear Information System (INIS)

    Yoo, Keun Bong; Kim, Jae Hoon

    2009-01-01

    In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or occurs the stress corrosion cracking and fatigue fracture. The residual stress of the welded part in the recently constructed power plants has been the cause of a variety of accidents. The objective of this study is measurement of the residual stress by X-ray diffraction method and to estimate the feasibility of this application for fatigue life assessment of the high-temperature pipeline. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The test results were analyzed by the distributed characteristics of residual stresses and the Full Width at Half Maximum intensity (FWHM) in x-ray diffraction intensity curve. Also, X-ray diffraction tests using specimens simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the ratio of the FWHM due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationships, it was suggested that direct expectation of the life consumption rate was feasible.

  18. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  19. Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Lim, Dong Hyuk

    2007-01-01

    A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones

  20. Prediction error variance and expected response to selection, when selection is based on the best predictor – for Gaussian and threshold characters, traits following a Poisson mixed model and survival traits

    Directory of Open Access Journals (Sweden)

    Jensen Just

    2002-05-01

    Full Text Available Abstract In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects. In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model or a generalised version of heritability plays a central role in these formulas.

  1. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  2. Temperature Field Prediction for Determining the Residual Stresses Under Heat Treatment of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available The article is devoted to non-stationary temperature field blanks from aluminum alloys during heat treatment. It consists of the introduction and two smaller paragraphs. In the introduction the author concerns the influence of residual stresses arising in the manufacturing process of details, on the strength of the whole aircraft construction and, consequently, on their technical and economic parameters, such as weight, reliability, efficiency, and cost. He also notes that the residual stresses appeared during the production of parts change their location, size and direction under the influence of the elastic deformations that occur during the exploitation of aircraft. Redistributed residual stresses may have a chaotic distribution that may cause overlap of these stresses on the stresses caused by the impact of workload of constructions and destruction or damage of aircraft components.The first paragraph is devoted to the existing methods and techniques for determining the residual stresses. The presented methods and techniques are analyzed to show the advantages and disadvantages of each of them. The conclusion is drawn that the method to determine the residual stresses is necessary, its cost is less than those of existing ones, and an error does not exceed 10%.In the second section, the author divides the problem of determining the residual stresses into two parts, and describes the solution methods of the first one. The first problem is to define the temperature field of the work piece. The author uses a Fourier equation with the definition of initial and boundary conditions to describe a mathematical model of the heat cycle of work piece cooling. He draws special attention here to the fact that it is complicated to determine the heat transfer coefficient, which characterizes the process of cooling the work piece during hardening because of its dependence on a number of factors, such as changing temperature-dependent material properties of

  3. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th; Verburg, T.G.

    2001-01-01

    The present study was undertaken to explore possibilities to judge survey quality on basis of a limited and restricted number of a-priori observations. Here, quality is defined as the ratio between survey and local variance (signal-to-noise ratio). The results indicate that the presented surveys do not permit such judgement; the discussion also suggests that the 5-fold local sampling strategies do not merit any sound judgement. As it stands, uncertainties in local determinations may largely obscure possibilities to judge survey quality. The results further imply that surveys will benefit from procedures, controls and approaches in sampling and sample handling, to assess both average, variance and the nature of the distribution of elemental concentrations in local sites. This reasoning is compatible with the idea of the site as a basic homogeneous survey unit, which is implicitly and conceptually underlying any survey performed. (author)

  4. Cutoff value of pharyngeal residue in prognosis prediction after neuromuscular electrical stimulation therapy for Dysphagia in subacute stroke patients.

    Science.gov (United States)

    Park, Jeong Mee; Yong, Sang Yeol; Kim, Ji Hyun; Jung, Hong Sun; Chang, Sei Jin; Kim, Ki Young; Kim, Hee

    2014-10-01

    To determine the cutoff value of the pharyngeal residue for predicting reduction of aspiration, by measuring the residue of valleculae and pyriformis sinuses through videofluoroscopic swallowing studies (VFSS) after treatment with neuromuscular electrical stimulator (VitalStim) in stroke patients with dysphagia. VFSS was conducted on first-time stroke patients before and after the VitalStim therapy. The results were analyzed for comparison of the pharyngeal residue in the improved group and the non-improved group. A total of 59 patients concluded the test, in which 42 patients improved well enough to change the dietary methods while 17 did not improve sufficiently. Remnant area to total area (R/T) ratios of the valleculae before treatment in the improved group were 0.120, 0.177, and 0.101 for solid, soft, and liquid foods, respectively, whereas the ratios for the non-improved group were 0.365, 0.396, and 0.281, respectively. The ratios of the pyriformis sinuses were 0.126, 0.159, and 0.121 for the improved group and 0.315, 0.338, and 0.244 for the non-improved group. The R/T ratios of valleculae and pyriformis sinus were significantly lower in the improved group than the non-improved group in all food types before treatment. The R/T ratio cutoff values were 0.267, 0.250, and 0.185 at valleculae and 0.228, 0.218, and 0.185 at pyriformis sinuses. In dysphagia after stroke, less pharyngeal residue before treatment serves as a factor for predicting greater improvement after VitalStim treatment.

  5. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.T.

    1999-01-01

    The present study deals with the (larger-scaled) biomonitoring survey and specifically focuses on the sampling site. In most surveys, the sampling site is simply selected or defined as a spot of (geographical) dimensions which is small relative to the dimensions of the total survey area. Implicitly it is assumed that the sampling site is essentially homogeneous with respect to the investigated variation in survey parameters. As such, the sampling site is mostly regarded as 'the basic unit' of the survey. As a logical consequence, the local (sampling site) variance should also be seen as a basic and important characteristic of the survey. During the study, work is carried out to gain more knowledge of the local variance. Multiple sampling is carried out at a specific site (tree bark, mosses, soils), multi-elemental analyses are carried out by NAA, and local variances are investigated by conventional statistics, factor analytical techniques, and bootstrapping. Consequences of the outcomes are discussed in the context of sampling, sample handling and survey quality. (author)

  6. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    DEFF Research Database (Denmark)

    Su, Guosheng; Christensen, Ole Fredslund; Ostersen, Tage

    2012-01-01

    of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects...

  7. Predicting Performance in Art College: How Useful Are the Entry Portfolio and Other Variables in Explaining Variance in First Year Marks?

    Science.gov (United States)

    O'Donoghue, Donal

    2009-01-01

    This article examines if and to what extent a set of pre-enrolment variables and background characteristics predict first year performance in art college. The article comes from a four-year longitudinal study that followed a cohort of tertiary art entrants in Ireland from their time of entry in 2002 to their time of exit in 2006 (or before, for…

  8. A residual life prediction model based on the generalized σ -N curved surface

    OpenAIRE

    Zongwen AN; Xuezong BAI; Jianxiong GAO

    2016-01-01

    In order to investigate change rule of the residual life of structure under random repeated load, firstly, starting from the statistic meaning of random repeated load, the joint probability density function of maximum stress and minimum stress is derived based on the characteristics of order statistic (maximum order statistic and minimum order statistic); then, based on the equation of generalized σ -N curved surface, considering the influence of load cycles number on fatigue life, a relation...

  9. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    Science.gov (United States)

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  10. Validation of consistency of Mendelian sampling variance.

    Science.gov (United States)

    Tyrisevä, A-M; Fikse, W F; Mäntysaari, E A; Jakobsen, J; Aamand, G P; Dürr, J; Lidauer, M H

    2018-03-01

    Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of the methods available today enable countries to validate their national evaluation models for heterogeneity of genetic variance. We describe a new validation method to fill this gap comprising the following steps: estimating within-year genetic variances using Mendelian sampling and its prediction error variance, fitting a weighted linear regression between the estimates and the years under study, identifying possible outliers, and defining a 95% empirical confidence interval for a possible trend in the estimates. We tested the specificity and sensitivity of the proposed validation method with simulated data using a real data structure. Moderate (M) and small (S) size populations were simulated under 3 scenarios: a control with homogeneous variance and 2 scenarios with yearly increases in phenotypic variance of 2 and 10%, respectively. Results showed that the new method was able to estimate genetic variance accurately enough to detect bias in genetic variance. Under the control scenario, the trend in genetic variance was practically zero in setting M. Testing cows with an average birth year class size of more than 43,000 in setting M showed that tolerance values are needed for both the trend and the outlier tests to detect only cases with a practical effect in larger data sets. Regardless of the magnitude (yearly increases in phenotypic variance of 2 or 10%) of the generated trend, it deviated statistically significantly from zero in all data replicates for both cows and bulls in setting M. In setting S with a mean of 27 bulls in a year class, the sampling error and thus the probability of a false-positive result clearly increased. Still, overall estimated genetic

  11. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.

    Science.gov (United States)

    Walia, Rasna R; Caragea, Cornelia; Lewis, Benjamin A; Towfic, Fadi; Terribilini, Michael; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2012-05-10

    RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naïve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM

  12. Improved prediction of residue flexibility by embedding optimized amino acid grouping into RSA-based linear models.

    Science.gov (United States)

    Zhang, Hua; Kurgan, Lukasz

    2014-12-01

    Knowledge of protein flexibility is vital for deciphering the corresponding functional mechanisms. This knowledge would help, for instance, in improving computational drug design and refinement in homology-based modeling. We propose a new predictor of the residue flexibility, which is expressed by B-factors, from protein chains that use local (in the chain) predicted (or native) relative solvent accessibility (RSA) and custom-derived amino acid (AA) alphabets. Our predictor is implemented as a two-stage linear regression model that uses RSA-based space in a local sequence window in the first stage and a reduced AA pair-based space in the second stage as the inputs. This method is easy to comprehend explicit linear form in both stages. Particle swarm optimization was used to find an optimal reduced AA alphabet to simplify the input space and improve the prediction performance. The average correlation coefficients between the native and predicted B-factors measured on a large benchmark dataset are improved from 0.65 to 0.67 when using the native RSA values and from 0.55 to 0.57 when using the predicted RSA values. Blind tests that were performed on two independent datasets show consistent improvements in the average correlation coefficients by a modest value of 0.02 for both native and predicted RSA-based predictions.

  13. Spectral Ambiguity of Allan Variance

    Science.gov (United States)

    Greenhall, C. A.

    1996-01-01

    We study the extent to which knowledge of Allan variance and other finite-difference variances determines the spectrum of a random process. The variance of first differences is known to determine the spectrum. We show that, in general, the Allan variance does not. A complete description of the ambiguity is given.

  14. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    University Press, 2009, pp. 820–824. [30] S. Kou, Welding Metallurgy , 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003. [31] M. N.James et al...around welds in aluminum ship structures both in the laboratory and in the field. Tensile residual stresses are often generated during welding and, in...mitigate and even reverse these tensile residual stresses. This research uses x-ray diffraction to measure residual stresses around welds in AA5456 before

  15. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model

    Directory of Open Access Journals (Sweden)

    Tekpinar Mustafa

    2009-07-01

    Full Text Available Abstract Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.

  16. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  17. A proposal of parameter determination method in the residual strength degradation model for the prediction of fatigue life (I)

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Jang, Seong Soo

    2001-01-01

    The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique

  18. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  19. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Science.gov (United States)

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  20. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Samandari, Nasim; Mirza, Aashiq H; Nielsen, Lotte B

    2017-01-01

    AIMS/HYPOTHESIS: We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS: Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children......RNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION: The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes...... from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control...

  1. COPRED: prediction of fold, GO molecular function and functional residues at the domain level.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2013-07-15

    Only recently the first resources devoted to the functional annotation of proteins at the domain level started to appear. The next step is to develop specific methodologies for predicting function at the domain level based on these resources, and to implement them in web servers to be used by the community. In this work, we present COPRED, a web server for the concomitant prediction of fold, molecular function and functional sites at the domain level, based on a methodology for domain molecular function prediction and a resource of domain functional annotations previously developed and benchmarked. COPRED can be freely accessed at http://csbg.cnb.csic.es/copred. The interface works in all standard web browsers. WebGL (natively supported by most browsers) is required for the in-line preview and manipulation of protein 3D structures. The website includes a detailed help section and usage examples. pazos@cnb.csic.es.

  2. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  3. Introduction to variance estimation

    CERN Document Server

    Wolter, Kirk M

    2007-01-01

    We live in the information age. Statistical surveys are used every day to determine or evaluate public policy and to make important business decisions. Correct methods for computing the precision of the survey data and for making inferences to the target population are absolutely essential to sound decision making. Now in its second edition, Introduction to Variance Estimation has for more than twenty years provided the definitive account of the theory and methods for correct precision calculations and inference, including examples of modern, complex surveys in which the methods have been used successfully. The book provides instruction on the methods that are vital to data-driven decision making in business, government, and academe. It will appeal to survey statisticians and other scientists engaged in the planning and conduct of survey research, and to those analyzing survey data and charged with extracting compelling information from such data. It will appeal to graduate students and university faculty who...

  4. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    to their accuracy in predicting process induced strain and stress development in thick section laminates during curing, and more precisely regarding the evolution of the composite thermoset polymer matrix mechanical behaviour during the phase transitions experienced during curing. The different constitutive...

  5. Predicting HLA class I non-permissive amino acid residues substitutions.

    Directory of Open Access Journals (Sweden)

    T Andrew Binkowski

    Full Text Available Prediction of peptide binding to human leukocyte antigen (HLA molecules is essential to a wide range of clinical entities from vaccine design to stem cell transplant compatibility. Here we present a new structure-based methodology that applies robust computational tools to model peptide-HLA (p-HLA binding interactions. The method leverages the structural conservation observed in p-HLA complexes to significantly reduce the search space and calculate the system's binding free energy. This approach is benchmarked against existing p-HLA complexes and the prediction performance is measured against a library of experimentally validated peptides. The effect on binding activity across a large set of high-affinity peptides is used to investigate amino acid mismatches reported as high-risk factors in hematopoietic stem cell transplantation.

  6. Predictions of the residue cross-sections for the elements Z=113 and Z=114

    Energy Technology Data Exchange (ETDEWEB)

    Bouriquet, B.; Abe, Y. [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Kosenko, G. [University of Omsk, Department of Physics, Omsk (Russian Federation)

    2004-10-01

    A good reproduction of experimental excitation functions is obtained for the 1nreactions producing the elements with Z=108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z=113 and Z=114 which will be a useful guide for plannings of experiments. (orig.)

  7. Predictions of the residue cross-sections for the elements Z = 113 and Z = 114

    Science.gov (United States)

    Bouriquet, B.; Abe, Y.; Kosenko, G.

    2004-10-01

    A good reproduction of experimental excitation functions is obtained for the 1 n reactions producing the elements with Z = 108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z = 113 and Z = 114 which will be a useful guide for plannings of experiments.

  8. Predictions of the residue cross-sections for the elements Z=113 and Z=114

    International Nuclear Information System (INIS)

    Bouriquet, B.; Abe, Y.; Kosenko, G.

    2004-01-01

    A good reproduction of experimental excitation functions is obtained for the 1nreactions producing the elements with Z=108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z=113 and Z=114 which will be a useful guide for plannings of experiments. (orig.)

  9. FE-simulation of hot forging with an integrated heat treatment with the objective of residual stress prediction

    Science.gov (United States)

    Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander

    2018-05-01

    Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.

  10. Thermo-mechanical characterization of a thermoplastic composite and prediction of the residual stresses and lamina curvature during cooling

    Science.gov (United States)

    Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas

    2017-10-01

    The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.

  11. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Labeas, G.N.

    2009-01-01

    A two-level three-dimensional Finite Element (FE) model has been developed to predict keyhole formation and thermo-mechanical response during Laser Beam Welding (LBW) of steel and aluminium pressure vessel or pipe butt-joints. A very detailed and localized (level-1) non-linear three-dimensional transient thermal model is initially developed, which simulates the mechanisms of keyhole formation, calculates the temperature distribution in the local weld area and predicts the keyhole size and shape. Subsequently, using a laser beam heat source model based on keyhole assumptions, a global (level-2) thermo-mechanical analysis of the LBW butt-joint is performed, from which the joint residual stresses and distortions are calculated. All the major physical phenomena associated to LBW, such as laser heat input via radiation, heat losses through convection and radiation, as well as latent heat are accounted for in the numerical model. Material properties and particularly enthalpy, which is very important due to significant material phase changes, are introduced as temperature-dependent functions. The main advantages of the developed model are its efficiency, flexibility and applicability to a wide range of LBW problems (e.g. welding for pressure vessel or pipework construction, welding of automotive, marine or aircraft components, etc). The model efficiency arises from the two-scale approach applied. Minimal or no experimental data are required for the keyhole size and shape computation by the level-1 model, while the thermo-mechanical response calculation by the level-2 model requires only process and material data. Therefore, it becomes possible to efficiently apply the developed simulation model to different material types and varying welding parameters (i.e. welding speed, heat source power, joint geometry, etc.) in order to control residual stresses and distortions within the welded structure

  12. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  13. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  14. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study

  15. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  16. Variance swap payoffs, risk premia and extreme market conditions

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars; Violante, Francesco

    This paper estimates the Variance Risk Premium (VRP) directly from synthetic variance swap payoffs. Since variance swap payoffs are highly volatile, we extract the VRP by using signal extraction techniques based on a state-space representation of our model in combination with a simple economic....... The latter variables and the VRP generate different return predictability on the major US indices. A factor model is proposed to extract a market VRP which turns out to be priced when considering Fama and French portfolios....

  17. Angiographically demonstrated coronary collaterals predict residual viable myocardium in patients with chronic myocardial infarction. A regional metabolic study

    International Nuclear Information System (INIS)

    Fukai, Masumi; Ii, Masaaki; Nakakoji, Takahiro

    2000-01-01

    Angiographical demonstration of coronary collateral circulation may suggest the presence of residual viable myocardium. The development of coronary collaterals was judged according to Rentrop's classification in 37 patients with old anteroseptal myocardial infarction and 13 control patients with chest pain syndrome. The subjects with myocardial infarction were divided into 2 groups: 17 patients with the main branch of the left coronary artery clearly identified by collateral blood flow from the contralateral coronary artery [Coll (+) group, male/female 10/7, mean age 56.6 years] and 20 patients with obscure coronary trunk [Coll (-) group, male/female 16/4, mean age 54.9 years]. Thallium-201 myocardial scintigraphy and examination of local myocardial metabolism were carried out by measuring the flux of lactic acid under dipyridamole infusion load. Coronary stenosis of 99% or total occlusion was found in only 5 of 20 patients (25%) in the Coll (-) group but in 16 of 17 patients (94%) in the Coll (+) group (p<0.001). Redistribution of myocardial scintigraphy was found in 11 of 15 patients (73%) in the Coll (+) group, but only 3 of 18 patients (17%) in the Coll (-) group (p<0.01). The myocardial lactic acid extraction rate was -13.2±17.0% in the Coll (+) group, but 9.1±13.2% in the Coll (-) group (p<0.001). These results suggest that coronary collateral may contribute to minimizing the infarct area and to prediction of the presence of viable myocardium. (author)

  18. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  19. The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model

    Directory of Open Access Journals (Sweden)

    Sergio Fucile

    2017-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are cation-selective ligand-gated ion channels exhibiting variable Ca2+ permeability depending on their subunit composition. The Ca2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca2+-dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca2+ permeability of nAChRs is lacking. In the last years the Ca2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca2+ current (Pf, i.e., the percentage of the total current carried by Ca2+ ions. In the present study, the available Pf-values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca2+ influx. This model allows to predict the currently unknown Pf-values of existing nAChRs, as well as the hypothetical Ca2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf-values ranging from 3.6% (4:1 ratio to 0.1% (1:4 ratio, much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.

  20. Residual tumor size and IGCCCG risk classification predict additional vascular procedures in patients with germ cell tumors and residual tumor resection: a multicenter analysis of the German Testicular Cancer Study Group.

    Science.gov (United States)

    Winter, Christian; Pfister, David; Busch, Jonas; Bingöl, Cigdem; Ranft, Ulrich; Schrader, Mark; Dieckmann, Klaus-Peter; Heidenreich, Axel; Albers, Peter

    2012-02-01

    Residual tumor resection (RTR) after chemotherapy in patients with advanced germ cell tumors (GCT) is an important part of the multimodal treatment. To provide a complete resection of residual tumor, additional surgical procedures are sometimes necessary. In particular, additional vascular interventions are high-risk procedures that require multidisciplinary planning and adequate resources to optimize outcome. The aim was to identify parameters that predict additional vascular procedures during RTR in GCT patients. A retrospective analysis was performed in 402 GCT patients who underwent 414 RTRs in 9 German Testicular Cancer Study Group (GTCSG) centers. Overall, 339 of 414 RTRs were evaluable with complete perioperative data sets. The RTR database was queried for additional vascular procedures (inferior vena cava [IVC] interventions, aortic prosthesis) and correlated to International Germ Cell Cancer Collaborative Group (IGCCCG) classification and residual tumor volume. In 40 RTRs, major vascular procedures (23 IVC resections with or without prosthesis, 11 partial IVC resections, and 6 aortic prostheses) were performed. In univariate analysis, the necessity of IVC intervention was significantly correlated with IGCCCG (14.1% intermediate/poor vs 4.8% good; p=0.0047) and residual tumor size (3.7% size risk features must initially be identified as high-risk patients for vascular procedures and therefore should be referred to specialized surgical centers with the ad hoc possibility of vascular interventions. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  2. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  3. Means and Variances without Calculus

    Science.gov (United States)

    Kinney, John J.

    2005-01-01

    This article gives a method of finding discrete approximations to continuous probability density functions and shows examples of its use, allowing students without calculus access to the calculation of means and variances.

  4. Seeing the signs: Using the course of residual depressive symptomatology to predict patterns of relapse and recurrence of major depressive disorder.

    Science.gov (United States)

    Verhoeven, Floor E A; Wardenaar, Klaas J; Ruhé, Henricus G Eric; Conradi, Henk Jan; de Jonge, Peter

    2018-02-01

    Major depressive disorder (MDD) is characterized by high relapse/recurrence rates. Predicting individual patients' relapse/recurrence risk has proven hard, possibly due to course heterogeneity among patients. This study aimed to (1) identify homogeneous data-driven subgroups with different patterns of relapse/recurrence and (2) identify associated predictors. For a year, we collected weekly depressive symptom ratings in 213 primary care MDD patients. Latent class growth analyses (LCGA), based on symptom-severity during the 24 weeks after no longer fulfilling criteria for the initial major depressive episode (MDE), were used to identify groups with different patterns of relapse/recurrence. Associations of baseline predictors with these groups were investigated, as were the groups' associations with 3- and 11-year follow-up depression outcomes. LCGA showed that heterogeneity in relapse/recurrence after no longer fulfilling criteria for the initial MDE was best described by four classes: "quick symptom decline" (14.0%), "slow symptom decline" (23.3%), "steady residual symptoms" (38.7%), and "high residual symptoms" (24.1%). The latter two classes showed lower self-esteem at baseline, and more recurrences and higher severity at 3-year follow-up than the first two classes. Moreover, the high residual symptom class scored higher on neuroticism and lower on extraversion and self-esteem at baseline. Interestingly, the steady residual symptoms and high residual symptoms classes still showed higher severity of depressive symptoms after 11 years. Some measures were associated with specific patterns of relapse/recurrence. Moreover, the data-driven relapse/recurrence groups were predictive of long-term outcomes, suggesting that patterns of residual symptoms could be of prognostic value in clinical practice. © 2017 Wiley Periodicals, Inc.

  5. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2016-07-01

    Full Text Available For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based structure prediction. Such models can be used in structure solution by molecular replacement (MR where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (`decoys', is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  6. Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq.

    Science.gov (United States)

    Weber, Kristina L; Welly, Bryan T; Van Eenennaam, Alison L; Young, Amy E; Porto-Neto, Laercio R; Reverter, Antonio; Rincon, Gonzalo

    2016-01-01

    Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other

  7. Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq.

    Directory of Open Access Journals (Sweden)

    Kristina L Weber

    Full Text Available Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI. Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg. Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT, including differentially expressed (DE genes, tissue specific (TS genes, transcription factors (TF, and genes associated with RFI from a genome-wide association study (GWAS. Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05, -1.08 finishing period feed conversion ratio (P = 0.01, +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04, +28.8 kg final body weight (P = 0.01, -12.9 feed bunk visits per day (P = 0.02 with +0.60 min/visit duration (P = 0.01, and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03. RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other

  8. Revision: Variance Inflation in Regression

    Directory of Open Access Journals (Sweden)

    D. R. Jensen

    2013-01-01

    the intercept; and (iv variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.

  9. An analytical method to assess the damage and predict the residual strength of a ship in a shoal grounding accident scenario

    Directory of Open Access Journals (Sweden)

    Sun Bin

    2016-04-01

    Full Text Available In this paper, a simplified analytical method used to predict the residual ultimate strength of a ship hull after a shoal grounding accident is proposed. Shoal grounding accidents always lead to severe denting, though not tearing, of the ship bottom structure, which may threaten the global hull girder resistance and result in even worse consequences, such as hull collapse. Here, the degree of damage of the bottom structure is predicted by a series of analytical methods based on the plastic-elastic deformation mechanism. The energy dissipation of a ship bottom structure is obtained from individual components to determine the sliding distance of the seabed obstruction. Then, a new approach to assess the residual strength of the damaged ship subjected to shoal grounding is proposed based on the improved Smith's method. This analytical method is verified by comparing the results of the proposed method and those generated by numerical simulation using the software ABAQUS. The proposed analytical method can be used to assess the safety of a ship with a double bottom during its design phase and predict the residual ultimate strength of a ship after a shoal grounding accident occurs.

  10. Modelling volatility by variance decomposition

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the condit...

  11. Gini estimation under infinite variance

    NARCIS (Netherlands)

    A. Fontanari (Andrea); N.N. Taleb (Nassim Nicholas); P. Cirillo (Pasquale)

    2018-01-01

    textabstractWe study the problems related to the estimation of the Gini index in presence of a fat-tailed data generating process, i.e. one in the stable distribution class with finite mean but infinite variance (i.e. with tail index α∈(1,2)). We show that, in such a case, the Gini coefficient

  12. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    We study equity (EVRP) and Treasury variance risk premia (TVRP) jointly and document a number of findings: First, relative to their volatility, TVRP are comparable in magnitude to EVRP. Second, while there is mild positive co-movement between EVRP and TVRP unconditionally, time series estimates...... equity returns for horizons up to 6-months, long maturity TVRP contain robust information for long run equity returns. Finally, exploiting the dynamics of real and nominal Treasuries we document that short maturity break-even rates are a power determinant of the joint dynamics of EVRP, TVRP and their co-movement...... of correlation display distinct spikes in both directions and have been notably volatile since the financial crisis. Third $(i)$ short maturity TVRP predict excess returns on short maturity bonds; $(ii)$ long maturity TVRP and EVRP predict excess returns on long maturity bonds; and $(iii)$ while EVRP predict...

  13. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle.

    Science.gov (United States)

    Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A

    2013-09-01

    Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also

  14. Analysis of Margin Index as a Method for Predicting Residual Disease After Breast-Conserving Surgery in a European Cancer Center.

    LENUS (Irish Health Repository)

    Bolger, Jarlath C

    2011-06-03

    INTRODUCTION: Breast-conserving surgery (BCS), followed by appropriate adjuvant therapies is established as a standard treatment option for women with early-stage invasive breast cancers. A number of factors have been shown to correlate with local and regional disease recurrence. Although margin status is a strong predictor of disease recurrence, consensus is yet to be established on the optimum margin necessary. Margenthaler et al. recently proposed the use of a "margin index," combining tumor size and margin status as a predictor of residual disease after BCS. We applied this new predictive tool to a population of patients with primary breast cancer who presented to a symptomatic breast unit to determine its suitability in predicting those who require reexcision surgery. METHODS: Retrospective analysis of our breast cancer database from January 1, 2000 to June 30, 2010 was performed, including all patients who underwent BCS. Of 531 patients who underwent BCS, 27.1% (144\\/531) required further reexcision procedures, and 55 were eligible for inclusion in the study. Margin index was calculated as: margin index = closest margin (mm)\\/tumor size (mm) × 100, with index >5 considered optimum. RESULTS: Of the 55 patients included, 31% (17\\/55) had residual disease. Fisher\\'s exact test showed margin index not to be a significant predictor of residual disease on reexcision specimen (P = 0.57). Of note, a significantly higher proportion of our patients presented with T2\\/3 tumors (60% vs. 38%). CONCLUSIONS: Although an apparently elegant tool for predicting residual disease after BCS, we have shown that it is not applicable to a symptomatic breast unit in Ireland.

  15. Analysis of margin index as a method for predicting residual disease after breast-conserving surgery in a European cancer center.

    LENUS (Irish Health Repository)

    Bolger, Jarlath C

    2012-02-01

    INTRODUCTION: Breast-conserving surgery (BCS), followed by appropriate adjuvant therapies is established as a standard treatment option for women with early-stage invasive breast cancers. A number of factors have been shown to correlate with local and regional disease recurrence. Although margin status is a strong predictor of disease recurrence, consensus is yet to be established on the optimum margin necessary. Margenthaler et al. recently proposed the use of a "margin index," combining tumor size and margin status as a predictor of residual disease after BCS. We applied this new predictive tool to a population of patients with primary breast cancer who presented to a symptomatic breast unit to determine its suitability in predicting those who require reexcision surgery. METHODS: Retrospective analysis of our breast cancer database from January 1, 2000 to June 30, 2010 was performed, including all patients who underwent BCS. Of 531 patients who underwent BCS, 27.1% (144\\/531) required further reexcision procedures, and 55 were eligible for inclusion in the study. Margin index was calculated as: margin index = closest margin (mm)\\/tumor size (mm) x 100, with index >5 considered optimum. RESULTS: Of the 55 patients included, 31% (17\\/55) had residual disease. Fisher\\'s exact test showed margin index not to be a significant predictor of residual disease on reexcision specimen (P = 0.57). Of note, a significantly higher proportion of our patients presented with T2\\/3 tumors (60% vs. 38%). CONCLUSIONS: Although an apparently elegant tool for predicting residual disease after BCS, we have shown that it is not applicable to a symptomatic breast unit in Ireland.

  16. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  17. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  18. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  19. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  20. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  1. On Mean-Variance Analysis

    OpenAIRE

    Li, Yang; Pirvu, Traian A

    2011-01-01

    This paper considers the mean variance portfolio management problem. We examine portfolios which contain both primary and derivative securities. The challenge in this context is due to portfolio's nonlinearities. The delta-gamma approximation is employed to overcome it. Thus, the optimization problem is reduced to a well posed quadratic program. The methodology developed in this paper can be also applied to pricing and hedging in incomplete markets.

  2. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS.

    Science.gov (United States)

    Tarazona, José L; Guerrero, Jáder; Cabanzo, Rafael; Mejía-Ospino, E

    2012-03-01

    A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here. © 2012 Optical Society of America

  3. Beyond the Mean: Sensitivities of the Variance of Population Growth.

    Science.gov (United States)

    Trotter, Meredith V; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad

    2013-03-01

    Populations in variable environments are described by both a mean growth rate and a variance of stochastic population growth. Increasing variance will increase the width of confidence bounds around estimates of population size, growth, probability of and time to quasi-extinction. However, traditional sensitivity analyses of stochastic matrix models only consider the sensitivity of the mean growth rate. We derive an exact method for calculating the sensitivity of the variance in population growth to changes in demographic parameters. Sensitivities of the variance also allow a new sensitivity calculation for the cumulative probability of quasi-extinction. We apply this new analysis tool to an empirical dataset on at-risk polar bears to demonstrate its utility in conservation biology We find that in many cases a change in life history parameters will increase both the mean and variance of population growth of polar bears. This counterintuitive behaviour of the variance complicates predictions about overall population impacts of management interventions. Sensitivity calculations for cumulative extinction risk factor in changes to both mean and variance, providing a highly useful quantitative tool for conservation management. The mean stochastic growth rate and its sensitivities do not fully describe the dynamics of population growth. The use of variance sensitivities gives a more complete understanding of population dynamics and facilitates the calculation of new sensitivities for extinction processes.

  4. Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity

    International Nuclear Information System (INIS)

    Frija, M.; Hassine, T.; Fathallah, R.; Bouraoui, C.; Dogui, A.

    2006-01-01

    This paper presents a numerical simulation of the shot peening process using finite element method. The majority of the controlling parameters of the process have been taken into account. The shot peening loading has been characterised by using energy equivalence between the dynamic impact and a static indentation of a peening shot in the treated surface. The behaviour of the subjected material is supposed to be elastic plastic with damage. An integrated law of the damage proposed by Lemaitre and Chaboche has been used. The proposed model leads to obtain the residual stress, the plastic deformation profiles and the surface damage. An application on a shot peened Ni-based super alloy Waspaloy has been carried out. The comparison of the residual stresses, obtained by X-ray diffraction method and by finite element calculation, shows a good correlation. The in-depth profile of the plastic deformations and the superficial damage values are in good agreement with the experimental observations

  5. Impact of Damping Uncertainty on SEA Model Response Variance

    Science.gov (United States)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  6. Variance computations for functional of absolute risk estimates.

    Science.gov (United States)

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  7. Diverse effects of distance cutoff and residue interval on the performance of distance-dependent atom-pair potential in protein structure prediction.

    Science.gov (United States)

    Yao, Yuangen; Gui, Rong; Liu, Quan; Yi, Ming; Deng, Haiyou

    2017-12-08

    As one of the most successful knowledge-based energy functions, the distance-dependent atom-pair potential is widely used in all aspects of protein structure prediction, including conformational search, model refinement, and model assessment. During the last two decades, great efforts have been made to improve the reference state of the potential, while other factors that also strongly affect the performance of the potential have been relatively less investigated. Based on different distance cutoffs (from 5 to 22 Å) and residue intervals (from 0 to 15) as well as six different reference states, we constructed a series of distance-dependent atom-pair potentials and tested them on several groups of structural decoy sets collected from diverse sources. A comprehensive investigation has been performed to clarify the effects of distance cutoff and residue interval on the potential's performance. Our results provide a new perspective as well as a practical guidance for optimizing distance-dependent statistical potentials. The optimal distance cutoff and residue interval are highly related with the reference state that the potential is based on, the measurements of the potential's performance, and the decoy sets that the potential is applied to. The performance of distance-dependent statistical potential can be significantly improved when the best statistical parameters for the specific application environment are adopted.

  8. Efficient Scores, Variance Decompositions and Monte Carlo Swindles.

    Science.gov (United States)

    1984-08-28

    to ;r Then a version .of Pythagoras ’ theorem gives the variance decomposition (6.1) varT var S var o(T-S) P P0 0 0 One way to see this is to note...complete sufficient statistics for (B, a) , and that the standard- ized residuals a(y - XB) 6 are ancillary. Basu’s sufficiency- ancillarity theorem

  9. The pricing of long and short run variance and correlation risk in stock returns

    NARCIS (Netherlands)

    Cosemans, M.

    2011-01-01

    This paper studies the pricing of long and short run variance and correlation risk. The predictive power of the market variance risk premium for returns is driven by the correlation risk premium and the systematic part of individual variance premia. Furthermore, I find that aggregate volatility risk

  10. RBscore&NBench: a high-level web server for nucleic acid binding residues prediction with a large-scale benchmarking database.

    Science.gov (United States)

    Miao, Zhichao; Westhof, Eric

    2016-07-08

    RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX

    Science.gov (United States)

    Fischer, Axel W.; Bordignon, Enrica; Bleicken, Stephanie; García-Sáez, Ana J.; Jeschke, Gunnar; Meiler, Jens

    2016-01-01

    Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9 Å to 3.9 Å and from 5.7 Å to 3.3 Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively. PMID:27129417

  12. Semi-supervised learning for genomic prediction of novel traits with small reference populations: an application to residual feed intake in dairy cattle.

    Science.gov (United States)

    Yao, Chen; Zhu, Xiaojin; Weigel, Kent A

    2016-11-07

    Genomic prediction for novel traits, which can be costly and labor-intensive to measure, is often hampered by low accuracy due to the limited size of the reference population. As an option to improve prediction accuracy, we introduced a semi-supervised learning strategy known as the self-training model, and applied this method to genomic prediction of residual feed intake (RFI) in dairy cattle. We describe a self-training model that is wrapped around a support vector machine (SVM) algorithm, which enables it to use data from animals with and without measured phenotypes. Initially, a SVM model was trained using data from 792 animals with measured RFI phenotypes. Then, the resulting SVM was used to generate self-trained phenotypes for 3000 animals for which RFI measurements were not available. Finally, the SVM model was re-trained using data from up to 3792 animals, including those with measured and self-trained RFI phenotypes. Incorporation of additional animals with self-trained phenotypes enhanced the accuracy of genomic predictions compared to that of predictions that were derived from the subset of animals with measured phenotypes. The optimal ratio of animals with self-trained phenotypes to animals with measured phenotypes (2.5, 2.0, and 1.8) and the maximum increase achieved in prediction accuracy measured as the correlation between predicted and actual RFI phenotypes (5.9, 4.1, and 2.4%) decreased as the size of the initial training set (300, 400, and 500 animals with measured phenotypes) increased. The optimal number of animals with self-trained phenotypes may be smaller when prediction accuracy is measured as the mean squared error rather than the correlation between predicted and actual RFI phenotypes. Our results demonstrate that semi-supervised learning models that incorporate self-trained phenotypes can achieve genomic prediction accuracies that are comparable to those obtained with models using larger training sets that include only animals with

  13. Variance in exposed perturbations impairs retention of visuomotor adaptation.

    Science.gov (United States)

    Canaveral, Cesar Augusto; Danion, Frédéric; Berrigan, Félix; Bernier, Pierre-Michel

    2017-11-01

    Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay. NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of

  14. Variance components for body weight in Japanese quails (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    RO Resende

    2005-03-01

    Full Text Available The objective of this study was to estimate the variance components for body weight in Japanese quails by Bayesian procedures. The body weight at hatch (BWH and at 7 (BW07, 14 (BW14, 21 (BW21 and 28 days of age (BW28 of 3,520 quails was recorded from August 2001 to June 2002. A multiple-trait animal model with additive genetic, maternal environment and residual effects was implemented by Gibbs sampling methodology. A single Gibbs sampling with 80,000 rounds was generated by the program MTGSAM (Multiple Trait Gibbs Sampling in Animal Model. Normal and inverted Wishart distributions were used as prior distributions for the random effects and the variance components, respectively. Variance components were estimated based on the 500 samples that were left after elimination of 30,000 rounds in the burn-in period and 100 rounds of each thinning interval. The posterior means of additive genetic variance components were 0.15; 4.18; 14.62; 27.18 and 32.68; the posterior means of maternal environment variance components were 0.23; 1.29; 2.76; 4.12 and 5.16; and the posterior means of residual variance components were 0.084; 6.43; 22.66; 31.21 and 30.85, at hatch, 7, 14, 21 and 28 days old, respectively. The posterior means of heritability were 0.33; 0.35; 0.36; 0.43 and 0.47 at hatch, 7, 14, 21 and 28 days old, respectively. These results indicate that heritability increased with age. On the other hand, after hatch there was a marked reduction in the maternal environment variance proportion of the phenotypic variance, whose estimates were 0.50; 0.11; 0.07; 0.07 and 0.08 for BWH, BW07, BW14, BW21 and BW28, respectively. The genetic correlation between weights at different ages was high, except for those estimates between BWH and weight at other ages. Changes in body weight of quails can be efficiently achieved by selection.

  15. Creep deformation, creep damage accumulation and residual life prediction for three low alloyed CrMo-steels

    International Nuclear Information System (INIS)

    Kondyr, A.; Sandstroem, R.; Samuelsson, A.

    1979-02-01

    A detailed analysis of creep strain results for three low alloyed steels of type 0.5 Mo, 1 Cr-0.5 Mo and 2.25 Cr-1 Mo has been undertaken. The results show that, excluding the primary stage, the true strain rate can be described by a simple analytical expression dE/dt = Aexp(B.E) where A and B are constants at constant stress and temperature. A is approximately equal to the minimum strain rate and B inversly proportional to the fracture strain. Furthermore, 1/AB equals the time t sub(r) to rupture. The residual life fraction in creep can be expressed as exp(-B.E) = 1-t/t sub(r) and a creep damage function μ is introduced as μ = 1-ABt. The expressions for strain rate and damage are shown to be a special case of the Rabotnov-Kachanov equations. The analysis has been generalized to account for multiaxial stress states, and as an example creep in a tube with internal pressure is considered. (author)

  16. Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia.

    Science.gov (United States)

    Lovisa, Federica; Zecca, Marco; Rossi, Bartolomeo; Campeggio, Mimma; Magrin, Elisa; Giarin, Emanuela; Buldini, Barbara; Songia, Simona; Cazzaniga, Giovanni; Mina, Tommaso; Acquafredda, Gloria; Quarello, Paola; Locatelli, Franco; Fagioli, Franca; Basso, Giuseppe

    2018-03-01

    Relapse remains the leading cause of treatment failure in children with acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem cell transplantation (HSCT). We retrospectively investigated the prognostic role of minimal residual disease (MRD) before and after HSCT in 119 children transplanted in complete remission (CR). MRD was measured by polymerase chain reaction in bone marrow samples collected pre-HSCT and during the first and third trimesters after HSCT (post-HSCT1 and post-HSCT3). The overall event-free survival (EFS) was 50%. The cumulative incidence of relapse and non-relapse mortality was 41% and 9%. Any degree of detectable pre-HSCT MRD was associated with poor outcome: EFS was 39% and 18% in patients with MRD positivity <1 × 10 -3 and ≥1 × 10 -3 , respectively, versus 73% in MRD-negative patients (P < 0·001). This effect was maintained in different disease remissions, but low-level MRD had a very strong negative impact only in patients transplanted in second or further CR. Also, MRD after HSCT enabled patients to be stratified, with increasing MRD between post-HSCT1 and post-HSCT3 clearly defining cohorts with a different outcome. MRD is an important prognostic factor both before and after transplantation. Given that MRD persistence after HSCT is associated with dismal outcome, these patients could benefit from early discontinuation of immunosuppression, or pre-emptive immuno-therapy. © 2018 John Wiley & Sons Ltd.

  17. Speed Variance and Its Influence on Accidents.

    Science.gov (United States)

    Garber, Nicholas J.; Gadirau, Ravi

    A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…

  18. Variance function estimation for immunoassays

    International Nuclear Information System (INIS)

    Raab, G.M.; Thompson, R.; McKenzie, I.

    1980-01-01

    A computer program is described which implements a recently described, modified likelihood method of determining an appropriate weighting function to use when fitting immunoassay dose-response curves. The relationship between the variance of the response and its mean value is assumed to have an exponential form, and the best fit to this model is determined from the within-set variability of many small sets of repeated measurements. The program estimates the parameter of the exponential function with its estimated standard error, and tests the fit of the experimental data to the proposed model. Output options include a list of the actual and fitted standard deviation of the set of responses, a plot of actual and fitted standard deviation against the mean response, and an ordered list of the 10 sets of data with the largest ratios of actual to fitted standard deviation. The program has been designed for a laboratory user without computing or statistical expertise. The test-of-fit has proved valuable for identifying outlying responses, which may be excluded from further analysis by being set to negative values in the input file. (Auth.)

  19. High Residual Collagen-Induced Platelet Reactivity Predicts Development of Restenosis in the Superficial Femoral Artery After Percutaneous Transluminal Angioplasty in Claudicant Patients

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Thomas, E-mail: thomas.gary@medunigraz.at [Medical University of Graz, Division of Angiology, Department of Internal Medicine (Austria); Prüller, Florian, E-mail: florian.prueller@klinikum-graz.at; Raggam, Reinhard, E-mail: reinhard.raggam@klinikum-graz.at [Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics (Austria); Mahla, Elisabeth, E-mail: elisabeth.mahla@medunigraz.at [Medical University of Graz, Department of Anesthesiology and Intensive Care Medicine (Austria); Eller, Philipp, E-mail: philipp.eller@medunigraz.at; Hafner, Franz, E-mail: franz.hafner@klinikum-graz.at; Brodmann, Marianne, E-mail: marianne.brodmann@medunigraz.at [Medical University of Graz, Division of Angiology, Department of Internal Medicine (Austria)

    2016-02-15

    PurposeAlthough platelet reactivity is routinely inhibited with aspirin after percutaneous angioplasty (PTA) in peripheral arteries, the restenosis rate in the superficial femoral artery (SFA) is high. Interaction of activated platelets and the endothelium in the region of intervention could be one reason for this as collagen in the subendothelium activates platelets.Materials and MethodsA prospective study evaluating on-site platelet reactivity during PTA and its influence on the development of restenosis with a total of 30 patients scheduled for PTA of the SFA. Arterial blood was taken from the PTA site after SFA; platelet function was evaluated with light transmission aggregometry. After 3, 6, 12, and 24 months, duplex sonography was performed and the restenosis rate evaluated.ResultsEight out of 30 patients developed a hemodynamically relevant restenosis (>50 % lumen narrowing) in the PTA region during the 24-month follow-up period. High residual collagen-induced platelet reactivity defined as AUC >30 was a significant predictor for the development of restenosis [adjusted odds ratio 11.8 (9.4, 14.2); P = .04].ConclusionsHigh residual collagen-induced platelet reactivity at the interventional site predicts development of restenosis after PTA of the SFA. Platelet function testing may be useful for identifying patients at risk.

  20. A versatile omnibus test for detecting mean and variance heterogeneity.

    Science.gov (United States)

    Cao, Ying; Wei, Peng; Bailey, Matthew; Kauwe, John S K; Maxwell, Taylor J

    2014-01-01

    Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant, we demonstrate how LD can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D', and relatively low r² values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance-only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.

  1. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  2. The VIX, the Variance Premium, and Expected Returns

    DEFF Research Database (Denmark)

    Osterrieder, Daniela Maria; Ventosa-Santaulària, Daniel; Vera-Valdés, Eduardo

    2018-01-01

    . These problems are eliminated if risk is captured by the variance premium (VP) instead; it is unobservable, however. We propose a 2SLS estimator that produces consistent estimates without observing the VP. Using this method, we find a positive risk–return trade-off and long-run return predictability. Our...

  3. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  4. Gravity interpretation of dipping faults using the variance analysis method

    International Nuclear Information System (INIS)

    Essa, Khalid S

    2013-01-01

    A new algorithm is developed to estimate simultaneously the depth and the dip angle of a buried fault from the normalized gravity gradient data. This algorithm utilizes numerical first horizontal derivatives computed from the observed gravity anomaly, using filters of successive window lengths to estimate the depth and the dip angle of a buried dipping fault structure. For a fixed window length, the depth is estimated using a least-squares sense for each dip angle. The method is based on computing the variance of the depths determined from all horizontal gradient anomaly profiles using the least-squares method for each dip angle. The minimum variance is used as a criterion for determining the correct dip angle and depth of the buried structure. When the correct dip angle is used, the variance of the depths is always less than the variances computed using wrong dip angles. The technique can be applied not only to the true residuals, but also to the measured Bouguer gravity data. The method is applied to synthetic data with and without random errors and two field examples from Egypt and Scotland. In all cases examined, the estimated depths and other model parameters are found to be in good agreement with the actual values. (paper)

  5. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  6. Prediction of residual lung function after lung surgery, and examination of blood perfusion in the pre- and postoperative lung using three-dimensional SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Shimatani, Shinji [Toho Univ., Tokyo (Japan). School of Medicine

    2001-01-01

    side residual lung. Our findings indicate that 3-D imaging volume, as determined by the volume rendering method at the blood perfusion threshold with {sup 99m}Tc-MAA lung perfusion SPECT, is useful in both the prediction of pulmonary function after lung surgery and the examination of changes in blood perfusion. (author)

  7. Influence of Family Structure on Variance Decomposition

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Sarup, Pernille Merete; Sørensen, Peter

    Partitioning genetic variance by sets of randomly sampled genes for complex traits in D. melanogaster and B. taurus, has revealed that population structure can affect variance decomposition. In fruit flies, we found that a high likelihood ratio is correlated with a high proportion of explained ge...... capturing pure noise. Therefore it is necessary to use both criteria, high likelihood ratio in favor of a more complex genetic model and proportion of genetic variance explained, to identify biologically important gene groups...

  8. Efficient Cardinality/Mean-Variance Portfolios

    OpenAIRE

    Brito, R. Pedro; Vicente, Luís Nunes

    2014-01-01

    International audience; We propose a novel approach to handle cardinality in portfolio selection, by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allow us to robustly compute (in-sample) the whole cardinality/mean-variance efficient frontier, for a variety of data sets and mean-variance models. Our results s...

  9. The phenotypic variance gradient - a novel concept.

    Science.gov (United States)

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  10. Residue analysis of a CTL epitope of SARS-CoV spike protein by IFN-gamma production and bioinformatics prediction

    Directory of Open Access Journals (Sweden)

    Huang Jun

    2012-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is an emerging infectious disease caused by the novel coronavirus SARS-CoV. The T cell epitopes of the SARS CoV spike protein are well known, but no systematic evaluation of the functional and structural roles of each residue has been reported for these antigenic epitopes. Analysis of the functional importance of side-chains by mutational study may exaggerate the effect by imposing a structural disturbance or an unusual steric, electrostatic or hydrophobic interaction. Results We demonstrated that N50 could induce significant IFN-gamma response from SARS-CoV S DNA immunized mice splenocytes by the means of ELISA, ELISPOT and FACS. Moreover, S366-374 was predicted to be an optimal epitope by bioinformatics tools: ANN, SMM, ARB and BIMAS, and confirmed by IFN-gamma response induced by a series of S358-374-derived peptides. Furthermore, each of S366-374 was replaced by alanine (A, lysine (K or aspartic acid (D, respectively. ANN was used to estimate the binding affinity of single S366-374 mutants to H-2 Kd. Y367 and L374 were predicated to possess the most important role in peptide binding. Additionally, these one residue mutated peptides were synthesized, and IFN-gamma production induced by G368, V369, A371, T372 and K373 mutated S366-374 were decreased obviously. Conclusions We demonstrated that S366-374 is an optimal H-2 Kd CTL epitope in the SARS CoV S protein. Moreover, Y367, S370, and L374 are anchors in the epitope, while C366, G368, V369, A371, T372, and K373 may directly interact with TCR on the surface of CD8-T cells.

  11. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  12. How does variance in fertility change over the demographic transition?

    Science.gov (United States)

    Hruschka, Daniel J; Burger, Oskar

    2016-04-19

    Most work on the human fertility transition has focused on declines in mean fertility. However, understanding changes in the variance of reproductive outcomes can be equally important for evolutionary questions about the heritability of fertility, individual determinants of fertility and changing patterns of reproductive skew. Here, we document how variance in completed fertility among women (45-49 years) differs across 200 surveys in 72 low- to middle-income countries where fertility transitions are currently in progress at various stages. Nearly all (91%) of samples exhibit variance consistent with a Poisson process of fertility, which places systematic, and often severe, theoretical upper bounds on the proportion of variance that can be attributed to individual differences. In contrast to the pattern of total variance, these upper bounds increase from high- to mid-fertility samples, then decline again as samples move from mid to low fertility. Notably, the lowest fertility samples often deviate from a Poisson process. This suggests that as populations move to low fertility their reproduction shifts from a rate-based process to a focus on an ideal number of children. We discuss the implications of these findings for predicting completed fertility from individual-level variables. © 2016 The Author(s).

  13. WALS Prediction

    NARCIS (Netherlands)

    Magnus, J.R.; Wang, W.; Zhang, Xinyu

    2012-01-01

    Abstract: Prediction under model uncertainty is an important and difficult issue. Traditional prediction methods (such as pretesting) are based on model selection followed by prediction in the selected model, but the reported prediction and the reported prediction variance ignore the uncertainty

  14. The Achilles Heel of Normal Determinations via Minimum Variance Techniques: Worldline Dependencies

    Science.gov (United States)

    Ma, Z.; Scudder, J. D.; Omidi, N.

    2002-12-01

    Time series of data collected across current layers are usually organized by divining coordinate transformations (as from minimum variance) that permits a geometrical interpretation for the data collected. Almost without exception the current layer geometry is inferred by supposing that the current carrying layer is locally planar. Only after this geometry is ``determined'' can the various quantities predicted by theory calculated. The precision of reconnection rated ``measured'' and the quantitative support for or against component reconnection be evaluated. This paper defines worldline traversals across fully resolved Hall two fluid models of reconnecting current sheets (with varying sizes of guide fields) and across a 2-D hybrid solution of a super critical shock layer. Along each worldline various variance techniques are used to infer current sheet normals based on the data observed along this worldline alone. We then contrast these inferred normals with those known from the overview of the fully resolved spatial pictures of the layer. Absolute errors of 20 degrees in the normal are quite commonplace, but errors of 40-90 deg are also implied, especially for worldlines that make more and more oblique angles to the true current sheet normal. These mistaken ``inferences'' are traceable to the degree that the data collected sample 2-D variations within these layers or not. While it is not surprising that these variance techniques give incorrect errors in the presence of layers that possess 2-D variations, it is illuminating that such large errors need not be signalled by the traditional error formulae for the error cones on normals that have been previously used to estimate the errors of normal choices. Frequently the absolute errors that depend on worldline path can be 10 times the random error that formulae would predict based on eigenvalues of the covariance matrix. A given time series cannot be associated in any a priori way with a specific worldline

  15. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  16. Least-squares variance component estimation

    NARCIS (Netherlands)

    Teunissen, P.J.G.; Amiri-Simkooei, A.R.

    2007-01-01

    Least-squares variance component estimation (LS-VCE) is a simple, flexible and attractive method for the estimation of unknown variance and covariance components. LS-VCE is simple because it is based on the well-known principle of LS; it is flexible because it works with a user-defined weight

  17. Expected Stock Returns and Variance Risk Premia

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Zhou, Hao

    risk premium with the P/E ratio results in an R2 for the quarterly returns of more than twenty-five percent. The results depend crucially on the use of "model-free", as opposed to standard Black-Scholes, implied variances, and realized variances constructed from high-frequency intraday, as opposed...

  18. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  19. Variance estimation for generalized Cavalieri estimators

    OpenAIRE

    Johanna Ziegel; Eva B. Vedel Jensen; Karl-Anton Dorph-Petersen

    2011-01-01

    The precision of stereological estimators based on systematic sampling is of great practical importance. This paper presents methods of data-based variance estimation for generalized Cavalieri estimators where errors in sampling positions may occur. Variance estimators are derived under perturbed systematic sampling, systematic sampling with cumulative errors and systematic sampling with random dropouts. Copyright 2011, Oxford University Press.

  20. Portfolio optimization with mean-variance model

    Science.gov (United States)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  1. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    Science.gov (United States)

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  2. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  3. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  4. Grammatical and lexical variance in English

    CERN Document Server

    Quirk, Randolph

    2014-01-01

    Written by one of Britain's most distinguished linguists, this book is concerned with the phenomenon of variance in English grammar and vocabulary across regional, social, stylistic and temporal space.

  5. A Mean variance analysis of arbitrage portfolios

    Science.gov (United States)

    Fang, Shuhong

    2007-03-01

    Based on the careful analysis of the definition of arbitrage portfolio and its return, the author presents a mean-variance analysis of the return of arbitrage portfolios, which implies that Korkie and Turtle's results ( B. Korkie, H.J. Turtle, A mean-variance analysis of self-financing portfolios, Manage. Sci. 48 (2002) 427-443) are misleading. A practical example is given to show the difference between the arbitrage portfolio frontier and the usual portfolio frontier.

  6. Dynamic Mean-Variance Asset Allocation

    OpenAIRE

    Basak, Suleyman; Chabakauri, Georgy

    2009-01-01

    Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in ...

  7. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  8. The Variance Composition of Firm Growth Rates

    Directory of Open Access Journals (Sweden)

    Luiz Artur Ledur Brito

    2009-04-01

    Full Text Available Firms exhibit a wide variability in growth rates. This can be seen as another manifestation of the fact that firms are different from one another in several respects. This study investigated this variability using the variance components technique previously used to decompose the variance of financial performance. The main source of variation in growth rates, responsible for more than 40% of total variance, corresponds to individual, idiosyncratic firm aspects and not to industry, country, or macroeconomic conditions prevailing in specific years. Firm growth, similar to financial performance, is mostly unique to specific firms and not an industry or country related phenomenon. This finding also justifies using growth as an alternative outcome of superior firm resources and as a complementary dimension of competitive advantage. This also links this research with the resource-based view of strategy. Country was the second source of variation with around 10% of total variance. The analysis was done using the Compustat Global database with 80,320 observations, comprising 13,221 companies in 47 countries, covering the years of 1994 to 2002. It also compared the variance structure of growth to the variance structure of financial performance in the same sample.

  9. Technical note: Equivalent genomic models with a residual polygenic effect.

    Science.gov (United States)

    Liu, Z; Goddard, M E; Hayes, B J; Reinhardt, F; Reents, R

    2016-03-01

    Routine genomic evaluations in animal breeding are usually based on either a BLUP with genomic relationship matrix (GBLUP) or single nucleotide polymorphism (SNP) BLUP model. For a multi-step genomic evaluation, these 2 alternative genomic models were proven to give equivalent predictions for genomic reference animals. The model equivalence was verified also for young genotyped animals without phenotypes. Due to incomplete linkage disequilibrium of SNP markers to genes or causal mutations responsible for genetic inheritance of quantitative traits, SNP markers cannot explain all the genetic variance. A residual polygenic effect is normally fitted in the genomic model to account for the incomplete linkage disequilibrium. In this study, we start by showing the proof that the multi-step GBLUP and SNP BLUP models are equivalent for the reference animals, when they have a residual polygenic effect included. Second, the equivalence of both multi-step genomic models with a residual polygenic effect was also verified for young genotyped animals without phenotypes. Additionally, we derived formulas to convert genomic estimated breeding values of the GBLUP model to its components, direct genomic values and residual polygenic effect. Third, we made a proof that the equivalence of these 2 genomic models with a residual polygenic effect holds also for single-step genomic evaluation. Both the single-step GBLUP and SNP BLUP models lead to equal prediction for genotyped animals with phenotypes (e.g., reference animals), as well as for (young) genotyped animals without phenotypes. Finally, these 2 single-step genomic models with a residual polygenic effect were proven to be equivalent for estimation of SNP effects, too. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments.

    Science.gov (United States)

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena

    2006-10-01

    Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.

  11. Minimal Residual Disease at First Achievement of Complete Remission Predicts Outcome in Adult Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia.

    Directory of Open Access Journals (Sweden)

    Mingming Zhang

    Full Text Available We evaluated the prognostic effect of minimal residual disease at first achievement of complete remission (MRD at CR1 in adult patients with Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL. A total of 97 patients received treatment in our center between 2007 and 2012 were retrospectively reviewed in this study. Patients were divided into two arms according to the post-remission therapy (chemotherapy alone or allogeneic hematopoietic stem cell transplantation (allo-HSCT they received. MRD was detected by four-color flow cytometry. We chose 0.02% and 0.2% as the cut-off points of MRD at CR1 for risk stratification using receiver operating characteristic analysis. The 3-year overall survival (OS and leukemia free survival (LFS rates for the whole cohort were 46.2% and 40.5%. MRD at CR1 had a significantly negative correlation with survival in both arms. Three-year OS rates in the chemotherapy arm were 70.0%, 25.2%, 0% (P = 0.003 for low, intermediate, and high levels of MRD at CR1, respectively. Three-year OS rates in the transplant arm were 81.8%, 64.3%, 27.3% (P = 0.005 for low, intermediate, and high levels of MRD at CR1, respectively. Multivariate analysis confirmed that higher level of MRD at CR1 was a significant adverse factor for OS and LFS. Compared with chemotherapy alone, allo-HSCT significantly improved LFS rates in patients with intermediate (P = 0.005 and high (P = 0.022 levels of MRD at CR1, but not patients with low level of MRD at CR1 (P = 0.851. These results suggested that MRD at CR1 could strongly predict the outcome of adult ALL. Patients with intermediate and high levels of MRD at CR1 would benefit from allo-HSCT.

  12. A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models

    DEFF Research Database (Denmark)

    Lowes, F.J.; Olsen, Nils

    2004-01-01

    Most modern spherical harmonic geomagnetic models based on satellite data include estimates of the variances of the spherical harmonic coefficients of the model; these estimates are based on the geometry of the data and the fitting functions, and on the magnitude of the residuals. However...

  13. Selection for uniformity in livestock by exploiting genetic heterogeneity of environmental variance

    NARCIS (Netherlands)

    Mulder, H.A.; Bijma, P.; Hill, W.G.

    2008-01-01

    In some situations, it is worthwhile to change not only the mean, but also the variability of traits by selection. Genetic variation in residual variance may be utilised to improve uniformity in livestock populations by selection. The objective was to investigate the effects of genetic parameters,

  14. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  15. The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics.

    Science.gov (United States)

    Campbell, Ruairidh D; Nouvellet, Pierre; Newman, Chris; Macdonald, David W; Rosell, Frank

    2012-09-01

    Ecologists are increasingly aware of the importance of environmental variability in natural systems. Climate change is affecting both the mean and the variability in weather and, in particular, the effect of changes in variability is poorly understood. Organisms are subject to selection imposed by both the mean and the range of environmental variation experienced by their ancestors. Changes in the variability in a critical environmental factor may therefore have consequences for vital rates and population dynamics. Here, we examine ≥90-year trends in different components of climate (precipitation mean and coefficient of variation (CV); temperature mean, seasonal amplitude and residual variance) and consider the effects of these components on survival and recruitment in a population of Eurasian beavers (n = 242) over 13 recent years. Within climatic data, no trends in precipitation were detected, but trends in all components of temperature were observed, with mean and residual variance increasing and seasonal amplitude decreasing over time. A higher survival rate was linked (in order of influence based on Akaike weights) to lower precipitation CV (kits, juveniles and dominant adults), lower residual variance of temperature (dominant adults) and lower mean precipitation (kits and juveniles). No significant effects were found on the survival of nondominant adults, although the sample size for this category was low. Greater recruitment was linked (in order of influence) to higher seasonal amplitude of temperature, lower mean precipitation, lower residual variance in temperature and higher precipitation CV. Both climate means and variance, thus proved significant to population dynamics; although, overall, components describing variance were more influential than those describing mean values. That environmental variation proves significant to a generalist, wide-ranging species, at the slow end of the slow-fast continuum of life histories, has broad implications for

  16. Simulation study on heterogeneous variance adjustment for observations with different measurement error variance

    DEFF Research Database (Denmark)

    Pitkänen, Timo; Mäntysaari, Esa A; Nielsen, Ulrik Sander

    2013-01-01

    of variance correction is developed for the same observations. As automated milking systems are becoming more popular the current evaluation model needs to be enhanced to account for the different measurement error variances of observations from automated milking systems. In this simulation study different...... models and different approaches to account for heterogeneous variance when observations have different measurement error variances were investigated. Based on the results we propose to upgrade the currently applied models and to calibrate the heterogeneous variance adjustment method to yield same genetic......The Nordic Holstein yield evaluation model describes all available milk, protein and fat test-day yields from Denmark, Finland and Sweden. In its current form all variance components are estimated from observations recorded under conventional milking systems. Also the model for heterogeneity...

  17. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

    NARCIS (Netherlands)

    Schoups, G.; Vrugt, J.A.

    2010-01-01

    Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.

  18. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  19. Integrating Variances into an Analytical Database

    Science.gov (United States)

    Sanchez, Carlos

    2010-01-01

    For this project, I enrolled in numerous SATERN courses that taught the basics of database programming. These include: Basic Access 2007 Forms, Introduction to Database Systems, Overview of Database Design, and others. My main job was to create an analytical database that can handle many stored forms and make it easy to interpret and organize. Additionally, I helped improve an existing database and populate it with information. These databases were designed to be used with data from Safety Variances and DCR forms. The research consisted of analyzing the database and comparing the data to find out which entries were repeated the most. If an entry happened to be repeated several times in the database, that would mean that the rule or requirement targeted by that variance has been bypassed many times already and so the requirement may not really be needed, but rather should be changed to allow the variance's conditions permanently. This project did not only restrict itself to the design and development of the database system, but also worked on exporting the data from the database to a different format (e.g. Excel or Word) so it could be analyzed in a simpler fashion. Thanks to the change in format, the data was organized in a spreadsheet that made it possible to sort the data by categories or types and helped speed up searches. Once my work with the database was done, the records of variances could be arranged so that they were displayed in numerical order, or one could search for a specific document targeted by the variances and restrict the search to only include variances that modified a specific requirement. A great part that contributed to my learning was SATERN, NASA's resource for education. Thanks to the SATERN online courses I took over the summer, I was able to learn many new things about computers and databases and also go more in depth into topics I already knew about.

  20. Decomposition of Variance for Spatial Cox Processes.

    Science.gov (United States)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-03-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive or log linear random intensity functions. We moreover consider a new and flexible class of pair correlation function models given in terms of normal variance mixture covariance functions. The proposed methodology is applied to point pattern data sets of locations of tropical rain forest trees.

  1. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  2. Estimating quadratic variation using realized variance

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    with a rather general SV model - which is a special case of the semimartingale model. Then QV is integrated variance and we can derive the asymptotic distribution of the RV and its rate of convergence. These results do not require us to specify a model for either the drift or volatility functions, although we...... have to impose some weak regularity assumptions. We illustrate the use of the limit theory on some exchange rate data and some stock data. We show that even with large values of M the RV is sometimes a quite noisy estimator of integrated variance. Copyright © 2002 John Wiley & Sons, Ltd....

  3. 29 CFR 1920.2 - Variances.

    Science.gov (United States)

    2010-07-01

    ...) PROCEDURE FOR VARIATIONS FROM SAFETY AND HEALTH REGULATIONS UNDER THE LONGSHOREMEN'S AND HARBOR WORKERS...) or 6(d) of the Williams-Steiger Occupational Safety and Health Act of 1970 (29 U.S.C. 655). The... under the Williams-Steiger Occupational Safety and Health Act of 1970, and any variance from §§ 1910.13...

  4. 78 FR 14122 - Revocation of Permanent Variances

    Science.gov (United States)

    2013-03-04

    ... Douglas Fir planking had to have at least a 1,900 fiber stress and 1,900,000 modulus of elasticity, while the Yellow Pine planking had to have at least 2,500 fiber stress and 2,000,000 modulus of elasticity... the permanent variances, and affected employees, to submit written data, views, and arguments...

  5. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    Investors in fixed income markets are willing to pay a very large premium to be hedged against shocks in expected volatility and the size of this premium can be studied through variance swaps. Using thirty years of option and high-frequency data, we document the following novel stylized facts...

  6. Biological Variance in Agricultural Products. Theoretical Considerations

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Konopacki, P.

    2003-01-01

    The food that we eat is uniform neither in shape or appearance nor in internal composition or content. Since technology became increasingly important, the presence of biological variance in our food became more and more of a nuisance. Techniques and procedures (statistical, technical) were

  7. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  8. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  9. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introducea general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive...

  10. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  11. Zero-intelligence realized variance estimation

    NARCIS (Netherlands)

    Gatheral, J.; Oomen, R.C.A.

    2010-01-01

    Given a time series of intra-day tick-by-tick price data, how can realized variance be estimated? The obvious estimator—the sum of squared returns between trades—is biased by microstructure effects such as bid-ask bounce and so in the past, practitioners were advised to drop most of the data and

  12. Variance Reduction Techniques in Monte Carlo Methods

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.

    2010-01-01

    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the

  13. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  14. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.

  15. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Steenbergen, E. J.; Verhagen, O. J.; van Leeuwen, E. F.; van den Berg, H.; Behrendt, H.; Slater, R. M.; von dem Borne, A. E.; van der Schoot, C. E.

    1995-01-01

    The follow up of minimal residual disease (MRD) in childhood B-precursor ALL by polymerase chain reaction (PCR) may be of help for further stratification of treatment protocols, to improve outcome. However, the clinical relevance of this approach has yet to be defined. We report the retrospective

  16. R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization.

    Science.gov (United States)

    Dazard, Jean-Eudes; Xu, Hua; Rao, J Sunil

    2011-01-01

    We present an implementation in the R language for statistical computing of our recent non-parametric joint adaptive mean-variance regularization and variance stabilization procedure. The method is specifically suited for handling difficult problems posed by high-dimensional multivariate datasets ( p ≫ n paradigm), such as in 'omics'-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. The implementation offers a complete set of features including: (i) normalization and/or variance stabilization function, (ii) computation of mean-variance-regularized t and F statistics, (iii) generation of diverse diagnostic plots, (iv) synthetic and real 'omics' test datasets, (v) computationally efficient implementation, using C interfacing, and an option for parallel computing, (vi) manual and documentation on how to setup a cluster. To make each feature as user-friendly as possible, only one subroutine per functionality is to be handled by the end-user. It is available as an R package, called MVR ('Mean-Variance Regularization'), downloadable from the CRAN.

  17. Realized Variance and Market Microstructure Noise

    DEFF Research Database (Denmark)

    Hansen, Peter R.; Lunde, Asger

    2006-01-01

    We study market microstructure noise in high-frequency data and analyze its implications for the realized variance (RV) under a general specification for the noise. We show that kernel-based estimators can unearth important characteristics of market microstructure noise and that a simple kernel......-based estimator dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones Industrial Average stocks reveals that market microstructure noise its time-dependent and correlated with increments in the efficient price. This has important implications for volatility...... estimation based on high-frequency data. Finally, we apply cointegration techniques to decompose transaction prices and bid-ask quotes into an estimate of the efficient price and noise. This framework enables us to study the dynamic effects on transaction prices and quotes caused by changes in the efficient...

  18. The Theory of Variances in Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-01

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature

  19. Fundamentals of exploratory analysis of variance

    CERN Document Server

    Hoaglin, David C; Tukey, John W

    2009-01-01

    The analysis of variance is presented as an exploratory component of data analysis, while retaining the customary least squares fitting methods. Balanced data layouts are used to reveal key ideas and techniques for exploration. The approach emphasizes both the individual observations and the separate parts that the analysis produces. Most chapters include exercises and the appendices give selected percentage points of the Gaussian, t, F chi-squared and studentized range distributions.

  20. Variance analysis refines overhead cost control.

    Science.gov (United States)

    Cooper, J C; Suver, J D

    1992-02-01

    Many healthcare organizations may not fully realize the benefits of standard cost accounting techniques because they fail to routinely report volume variances in their internal reports. If overhead allocation is routinely reported on internal reports, managers can determine whether billing remains current or lost charges occur. Healthcare organizations' use of standard costing techniques can lead to more realistic performance measurements and information system improvements that alert management to losses from unrecovered overhead in time for corrective action.

  1. The Genealogical Consequences of Fecundity Variance Polymorphism

    Science.gov (United States)

    Taylor, Jesse E.

    2009-01-01

    The genealogical consequences of within-generation fecundity variance polymorphism are studied using coalescent processes structured by genetic backgrounds. I show that these processes have three distinctive features. The first is that the coalescent rates within backgrounds are not jointly proportional to the infinitesimal variance, but instead depend only on the frequencies and traits of genotypes containing each allele. Second, the coalescent processes at unlinked loci are correlated with the genealogy at the selected locus; i.e., fecundity variance polymorphism has a genomewide impact on genealogies. Third, in diploid models, there are infinitely many combinations of fecundity distributions that have the same diffusion approximation but distinct coalescent processes; i.e., in this class of models, ancestral processes and allele frequency dynamics are not in one-to-one correspondence. Similar properties are expected to hold in models that allow for heritable variation in other traits that affect the coalescent effective population size, such as sex ratio or fecundity and survival schedules. PMID:19433628

  2. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  3. Validity of a Residualized Dependent Variable after Pretest Covariance Adjustments: Still the Same Variable?

    Science.gov (United States)

    Nimon, Kim; Henson, Robin K.

    2015-01-01

    The authors empirically examined whether the validity of a residualized dependent variable after covariance adjustment is comparable to that of the original variable of interest. When variance of a dependent variable is removed as a result of one or more covariates, the residual variance may not reflect the same meaning. Using the pretest-posttest…

  4. An elementary components of variance analysis for multi-center quality control

    International Nuclear Information System (INIS)

    Munson, P.J.; Rodbard, D.

    1977-01-01

    The serious variability of RIA results from different laboratories indicates the need for multi-laboratory collaborative quality control (QC) studies. Statistical analysis methods for such studies using an 'analysis of variance with components of variance estimation' are discussed. This technique allocates the total variance into components corresponding to between-laboratory, between-assay, and residual or within-assay variability. Components of variance analysis also provides an intelligent way to combine the results of several QC samples run at different evels, from which we may decide if any component varies systematically with dose level; if not, pooling of estimates becomes possible. We consider several possible relationships of standard deviation to the laboratory mean. Each relationship corresponds to an underlying statistical model, and an appropriate analysis technique. Tests for homogeneity of variance may be used to determine if an appropriate model has been chosen, although the exact functional relationship of standard deviation to lab mean may be difficult to establish. Appropriate graphical display of the data aids in visual understanding of the data. A plot of the ranked standard deviation vs. ranked laboratory mean is a convenient way to summarize a QC study. This plot also allows determination of the rank correlation, which indicates a net relationship of variance to laboratory mean. (orig.) [de

  5. A formal statistical approach to representing uncertainty in rainfall-runoff modelling with focus on residual analysis and probabilistic output evaluation - Distinguishing simulation and prediction

    DEFF Research Database (Denmark)

    Breinholt, Anders; Møller, Jan Kloppenborg; Madsen, Henrik

    2012-01-01

    While there seems to be consensus that hydrological model outputs should be accompanied with an uncertainty estimate the appropriate method for uncertainty estimation is not agreed upon and a debate is ongoing between advocators of formal statistical methods who consider errors as stochastic...... and GLUE advocators who consider errors as epistemic, arguing that the basis of formal statistical approaches that requires the residuals to be stationary and conform to a statistical distribution is unrealistic. In this paper we take a formal frequentist approach to parameter estimation and uncertainty...... necessary but the statistical assumptions were nevertheless not 100% justified. The residual analysis showed that significant autocorrelation was present for all simulation models. We believe users of formal approaches to uncertainty evaluation within hydrology and within environmental modelling in general...

  6. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    Science.gov (United States)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  7. Visual SLAM Using Variance Grid Maps

    Science.gov (United States)

    Howard, Andrew B.; Marks, Tim K.

    2011-01-01

    An algorithm denoted Gamma-SLAM performs further processing, in real time, of preprocessed digitized images acquired by a stereoscopic pair of electronic cameras aboard an off-road robotic ground vehicle to build accurate maps of the terrain and determine the location of the vehicle with respect to the maps. Part of the name of the algorithm reflects the fact that the process of building the maps and determining the location with respect to them is denoted simultaneous localization and mapping (SLAM). Most prior real-time SLAM algorithms have been limited in applicability to (1) systems equipped with scanning laser range finders as the primary sensors in (2) indoor environments (or relatively simply structured outdoor environments). The few prior vision-based SLAM algorithms have been feature-based and not suitable for real-time applications and, hence, not suitable for autonomous navigation on irregularly structured terrain. The Gamma-SLAM algorithm incorporates two key innovations: Visual odometry (in contradistinction to wheel odometry) is used to estimate the motion of the vehicle. An elevation variance map (in contradistinction to an occupancy or an elevation map) is used to represent the terrain. The Gamma-SLAM algorithm makes use of a Rao-Blackwellized particle filter (RBPF) from Bayesian estimation theory for maintaining a distribution over poses and maps. The core idea of the RBPF approach is that the SLAM problem can be factored into two parts: (1) finding the distribution over robot trajectories, and (2) finding the map conditioned on any given trajectory. The factorization involves the use of a particle filter in which each particle encodes both a possible trajectory and a map conditioned on that trajectory. The base estimate of the trajectory is derived from visual odometry, and the map conditioned on that trajectory is a Cartesian grid of elevation variances. In comparison with traditional occupancy or elevation grid maps, the grid elevation variance

  8. Markov bridges, bisection and variance reduction

    DEFF Research Database (Denmark)

    Asmussen, Søren; Hobolth, Asger

    . In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...

  9. The value of travel time variance

    OpenAIRE

    Fosgerau, Mogens; Engelson, Leonid

    2010-01-01

    This paper considers the value of travel time variability under scheduling preferences that are de�fined in terms of linearly time-varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can free...

  10. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  11. Variance-based Salt Body Reconstruction

    KAUST Repository

    Ovcharenko, Oleg

    2017-05-26

    Seismic inversions of salt bodies are challenging when updating velocity models based on Born approximation- inspired gradient methods. We propose a variance-based method for velocity model reconstruction in regions complicated by massive salt bodies. The novel idea lies in retrieving useful information from simultaneous updates corresponding to different single frequencies. Instead of the commonly used averaging of single-iteration monofrequency gradients, our algorithm iteratively reconstructs salt bodies in an outer loop based on updates from a set of multiple frequencies after a few iterations of full-waveform inversion. The variance among these updates is used to identify areas where considerable cycle-skipping occurs. In such areas, we update velocities by interpolating maximum velocities within a certain region. The result of several recursive interpolations is later used as a new starting model to improve results of conventional full-waveform inversion. An application on part of the BP 2004 model highlights the evolution of the proposed approach and demonstrates its effectiveness.

  12. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2017-02-01

    Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the

  13. Prediction of residual stresses induced by TIG welding of a martensitic steel (X10CrMoVNb9-1)

    International Nuclear Information System (INIS)

    Roux, G.M.

    2007-11-01

    Within the frame of the development of very high temperature nuclear reactors (VHTR) with gas as heat transfer fluid, some technological challenges are to be faced because of these high temperatures, notably the selection of the material used for the reactor vessel and its welding process. This research thesis aims at developing and validating numerical tools and behaviour models for the thermal-metallurgical-mechanical simulation of the multi-pass TIG welding process. The first part describes the development of simple welding tests (Disk-Spot and Disk-Cycle), the use of temperature and displacement measurement during these tests, and deep residual stress measurements, as well as the identification of the thermal limit conditions for the Disk-Spot test. It then discusses the choice and the identification of the thermal-metallurgical-mechanical behaviour model, with a particular attention to phase transformations and to their coupling with thermal and mechanical aspects. Experimental and simulation results are compared, notably in terms of residual stresses. The numerical implementation of the behaviour model and its integration into the CAST3M finite element software are also described

  14. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, S.; Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  15. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    International Nuclear Information System (INIS)

    Christoforou, S.; Hoogenboom, J. E.

    2006-01-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  16. Use of genomic models to study genetic control of environmental variance

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    . The genomic model commonly found in the literature, with marker effects affecting mean only, is extended to investigate putative effects at the level of the environmental variance. Two classes of models are proposed and their behaviour, studied using simulated data, indicates that they are capable...... of detecting genetic variation at the level of mean and variance. Implementation is via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a measure of global fit, in their ability to detect QTL effects and in terms of their predictive power. The models are subsequently fitted...... to back fat thickness data in pigs. The analysis of back fat thickness shows that the data support genomic models with effects on the mean but not on the variance. The relative sizes of experiment necessary to detect effects on mean and variance is discussed and an extension of the McMC algorithm...

  17. Power Estimation in Multivariate Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Jean François Allaire

    2007-09-01

    Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.

  18. Analysis of Variance in Statistical Image Processing

    Science.gov (United States)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  19. The value of travel time variance

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Engelson, Leonid

    2011-01-01

    This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability...... that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending...... on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time....

  20. Measurement and prediction of soil biological processes resulting in denitrification. Part of a coordinated programme on isotopic tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Rolston, D.E.

    1982-08-01

    The water soluble carbon from soil extracts was taken from a two hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37m. The variogram indicated little or no dependence at this spacing. This document is out of INIS subject scope and is included because it is published by the IAEA

  1. Hybrid biasing approaches for global variance reduction

    International Nuclear Information System (INIS)

    Wu, Zeyun; Abdel-Khalik, Hany S.

    2013-01-01

    A new variant of Monte Carlo—deterministic (DT) hybrid variance reduction approach based on Gaussian process theory is presented for accelerating convergence of Monte Carlo simulation and compared with Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) approach implemented in the SCALE package from Oak Ridge National Laboratory. The new approach, denoted the Gaussian process approach, treats the responses of interest as normally distributed random processes. The Gaussian process approach improves the selection of the weight windows of simulated particles by identifying a subspace that captures the dominant sources of statistical response variations. Like the FW-CADIS approach, the Gaussian process approach utilizes particle importance maps obtained from deterministic adjoint models to derive weight window biasing. In contrast to the FW-CADIS approach, the Gaussian process approach identifies the response correlations (via a covariance matrix) and employs them to reduce the computational overhead required for global variance reduction (GVR) purpose. The effective rank of the covariance matrix identifies the minimum number of uncorrelated pseudo responses, which are employed to bias simulated particles. Numerical experiments, serving as a proof of principle, are presented to compare the Gaussian process and FW-CADIS approaches in terms of the global reduction in standard deviation of the estimated responses. - Highlights: ► Hybrid Monte Carlo Deterministic Method based on Gaussian Process Model is introduced. ► Method employs deterministic model to calculate responses correlations. ► Method employs correlations to bias Monte Carlo transport. ► Method compared to FW-CADIS methodology in SCALE code. ► An order of magnitude speed up is achieved for a PWR core model.

  2. An elementary components of variance analysis for multi-centre quality control

    International Nuclear Information System (INIS)

    Munson, P.J.; Rodbard, D.

    1978-01-01

    The serious variability of RIA results from different laboratories indicates the need for multi-laboratory collaborative quality-control (QC) studies. Simple graphical display of data in the form of histograms is useful but insufficient. The paper discusses statistical analysis methods for such studies using an ''analysis of variance with components of variance estimation''. This technique allocates the total variance into components corresponding to between-laboratory, between-assay, and residual or within-assay variability. Problems with RIA data, e.g. severe non-uniformity of variance and/or departure from a normal distribution violate some of the usual assumptions underlying analysis of variance. In order to correct these problems, it is often necessary to transform the data before analysis by using a logarithmic, square-root, percentile, ranking, RIDIT, ''Studentizing'' or other transformation. Ametric transformations such as ranks or percentiles protect against the undue influence of outlying observations, but discard much intrinsic information. Several possible relationships of standard deviation to the laboratory mean are considered. Each relationship corresponds to an underlying statistical model and an appropriate analysis technique. Tests for homogeneity of variance may be used to determine whether an appropriate model has been chosen, although the exact functional relationship of standard deviation to laboratory mean may be difficult to establish. Appropriate graphical display aids visual understanding of the data. A plot of the ranked standard deviation versus ranked laboratory mean is a convenient way to summarize a QC study. This plot also allows determination of the rank correlation, which indicates a net relationship of variance to laboratory mean

  3. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    Science.gov (United States)

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  4. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Science.gov (United States)

    2011-12-19

    ... Administration (``OSHA'' or ``the Agency'') granted permanent variances to 24 companies engaged in the... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0054] Proposed Revocation of Permanent Variances AGENCY: Occupational Safety and Health Administration (OSHA...

  5. variance components and genetic parameters for live weight

    African Journals Online (AJOL)

    admin

    Against this background the present study estimated the (co)variance .... Starting values for the (co)variance components of two-trait models were ..... Estimates of genetic parameters for weaning weight of beef accounting for direct-maternal.

  6. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  7. The Distribution of the Sample Minimum-Variance Frontier

    OpenAIRE

    Raymond Kan; Daniel R. Smith

    2008-01-01

    In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us t...

  8. Analysis of covariance with pre-treatment measurements in randomized trials under the cases that covariances and post-treatment variances differ between groups.

    Science.gov (United States)

    Funatogawa, Takashi; Funatogawa, Ikuko; Shyr, Yu

    2011-05-01

    When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Numerical experiment on variance biases and Monte Carlo neutronics analysis with thermal hydraulic feedback

    International Nuclear Information System (INIS)

    Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim

    2003-01-01

    Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)

  10. Origin and consequences of the relationship between protein mean and variance.

    Science.gov (United States)

    Vallania, Francesco Luigi Massimo; Sherman, Marc; Goodwin, Zane; Mogno, Ilaria; Cohen, Barak Alon; Mitra, Robi David

    2014-01-01

    Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control noise. This task is complicated by the strong dependence of a protein's cell-to-cell variance on its mean expression level through a power-law like relationship (σ2∝μ1.69). Here, we dissect the nature of this relationship using a stochastic model parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship (σ2∝μ1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast, variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape stochastic variation across the genome.

  11. Male size composition affects male reproductive variance in Atlantic cod Gadus morhua L. spawning aggregations

    DEFF Research Database (Denmark)

    Bekkevold, Dorte

    2006-01-01

    Estimates of Atlantic cod Gadus morhua reproductive success, determined using experimental spawning groups and genetic paternity assignment of offspring, showed that within-group variance in male size correlated positively with the degree of male mating skew, predicting a decrease in male reprodu...

  12. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.

    Science.gov (United States)

    Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F

    2016-04-01

    Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that

  13. A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Louis A; Mason, John J.

    2018-04-01

    We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, the problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.

  14. A log-sinh transformation for data normalization and variance stabilization

    Science.gov (United States)

    Wang, Q. J.; Shrestha, D. L.; Robertson, D. E.; Pokhrel, P.

    2012-05-01

    When quantifying model prediction uncertainty, it is statistically convenient to represent model errors that are normally distributed with a constant variance. The Box-Cox transformation is the most widely used technique to normalize data and stabilize variance, but it is not without limitations. In this paper, a log-sinh transformation is derived based on a pattern of errors commonly seen in hydrological model predictions. It is suited to applications where prediction variables are positively skewed and the spread of errors is seen to first increase rapidly, then slowly, and eventually approach a constant as the prediction variable becomes greater. The log-sinh transformation is applied in two case studies, and the results are compared with one- and two-parameter Box-Cox transformations.

  15. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  16. Right on Target, or Is it? The Role of Distributional Shape in Variance Targeting

    Directory of Open Access Journals (Sweden)

    Stanislav Anatolyev

    2015-08-01

    Full Text Available Estimation of GARCH models can be simplified by augmenting quasi-maximum likelihood (QML estimation with variance targeting, which reduces the degree of parameterization and facilitates estimation. We compare the two approaches and investigate, via simulations, how non-normality features of the return distribution affect the quality of estimation of the volatility equation and corresponding value-at-risk predictions. We find that most GARCH coefficients and associated predictions are more precisely estimated when no variance targeting is employed. Bias properties are exacerbated for a heavier-tailed distribution of standardized returns, while the distributional asymmetry has little or moderate impact, these phenomena tending to be more pronounced under variance targeting. Some effects further intensify if one uses ML based on a leptokurtic distribution in place of normal QML. The sample size has also a more favorable effect on estimation precision when no variance targeting is used. Thus, if computational costs are not prohibitive, variance targeting should probably be avoided.

  17. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  18. Expected Stock Returns and Variance Risk Premia

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Tauchen, George; Zhou, Hao

    constructed from high-frequency intraday, as opposed to daily, data. The magnitude of the predictability is particularly strong at the intermediate quarterly return horizon, where it dominates that afforded by other popular predictor variables, like the P/E ratio, the default spread, and the consumption...

  19. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses

    Science.gov (United States)

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-06-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains.

  20. Residual {sup 18}F-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    Energy Technology Data Exchange (ETDEWEB)

    Bollineni, Vikram Rao, E-mail: v.r.bollineni@umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Widder, Joachim [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Pruim, Jan [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A.; Wiegman, Erwin M. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-07-15

    Purpose: To investigate the prognostic value of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically inoperable patients with proven Stage I NSCLC or FDG-PET-positive primary lung tumors were analyzed retrospectively. SABR consisted of 60 Gy delivered in 3 to 8 fractions. Maximum standardized uptake value (SUV{sub max}) of the treated lesion was assessed 12 weeks after SABR, using FDG-PET. Patients were subsequently followed at regular intervals using computed tomography (CT) scans. Association between post-SABR SUV{sub max} and local control (LC), mediastinal failure, distant failure, overall survival (OS), and disease-specific survival (DSS) was examined. Results: Median follow-up time was 17 months (range, 3-40 months). Median lesion size was 25 mm (range, 9-70 mm). There were 6 local failures: 15 mediastinal failures, 15 distant failures, 13 disease-related deaths, and 16 deaths from intercurrent diseases. Glucose corrected post-SABR median SUV{sub max} was 3.0 (range, 0.55-14.50). Using SUV{sub max} 5.0 as a cutoff, the 2-year LC was 80% versus 97.7% for high versus low SUV{sub max}, yielding an adjusted subhazard ratio (SHR) for high post-SABR SUV{sub max} of 7.3 (95% confidence interval [CI], 1.4-38.5; p = 0.019). Two-year DSS rates were 74% versus 91%, respectively, for high and low SUV{sub max} values (SHR, 2.2; 95% CI, 0.8-6.3; p = 0.113). Two-year OS was 62% versus 81% (hazard ratio [HR], 1.6; 95% CI, 0.7-3.7; p = 0.268). Conclusions: Residual FDG uptake (SUV{sub max} {>=}5.0) 12 weeks after SABR signifies increased risk of local failure. A single FDG-PET scan at 12 weeks could be used to tailor further follow-up according to the risk of failure, especially in patients potentially eligible for salvage surgery.

  1. For patients with primary achalasia the clinical success of pneumatic balloon dilatation can be predicted from the residual fraction of radionuclide during esophageal transit scintigraphy.

    Science.gov (United States)

    Jeon, Han Ho; Youn, Young Hoon; Rhee, Kwangwon; Kim, Jie-Hyun; Park, Hyojin; Conklin, Jeffrey L

    2014-02-01

    Esophageal transit scintigraphy (ETS) and esophagography have long been used to evaluate patients with achalasia. The objectives of our study were to evaluate the efficacy of endoscopic pneumatic dilatation (EPD) as treatment for Koreans with achalasia and to determine which findings from ETS and esophagography predict successful treatment of achalasia. Patients with achalasia who were treated by EPD between April 2002 and January 2012 were recruited. We defined the success of EPD as 6 months or more of clinical remission without symptoms or a decrease in the Eckardt scores by at least two points and a total Eckardt score not exceeding 3. We reviewed the percentage of maximum scintigraphic activity retained in the esophagus at 30 s (R 30) and the post-PD rate of reduction of R 30 ((Pre R 30 - Post R 30)/Pre R 30 × 100) by ETS. Possible predictive factors determined by ETS and esophagography were analyzed. Our study included 53 eligible patients. The median symptom score (Eckardt score) was 5 (4-8). R 30 and T 1/2 were, respectively, 61.8 % and 38.5 min before EPD and 20 % and 4.19 min after EPD. Successful EPD was achieved for 40 of 53 (75.47 %) patients. Age (≥40, p = 0.027) and post-PD rate of reduction of R 30 (>20 %, p = 0.003) were best prognostic indicators of clinical success. There were no perforations related to EPD. Older age and a post-PD rate of reduction of R 30 were strongly associated with better outcomes. Examination with ETS before and after EPD can be used to objectively assess a patient's short-term response to EPD.

  2. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  3. Regional sensitivity analysis using revised mean and variance ratio functions

    International Nuclear Information System (INIS)

    Wei, Pengfei; Lu, Zhenzhou; Ruan, Wenbin; Song, Jingwen

    2014-01-01

    The variance ratio function, derived from the contribution to sample variance (CSV) plot, is a regional sensitivity index for studying how much the output deviates from the original mean of model output when the distribution range of one input is reduced and to measure the contribution of different distribution ranges of each input to the variance of model output. In this paper, the revised mean and variance ratio functions are developed for quantifying the actual change of the model output mean and variance, respectively, when one reduces the range of one input. The connection between the revised variance ratio function and the original one is derived and discussed. It is shown that compared with the classical variance ratio function, the revised one is more suitable to the evaluation of model output variance due to reduced ranges of model inputs. A Monte Carlo procedure, which needs only a set of samples for implementing it, is developed for efficiently computing the revised mean and variance ratio functions. The revised mean and variance ratio functions are compared with the classical ones by using the Ishigami function. At last, they are applied to a planar 10-bar structure

  4. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  5. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  6. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.

    Science.gov (United States)

    Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L

    2012-12-01

    The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).

  7. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness.

    Science.gov (United States)

    Bozinovic, Francisco; Bastías, Daniel A; Boher, Francisca; Clavijo-Baquet, Sabrina; Estay, Sergio A; Angilletta, Michael J

    2011-01-01

    Global climate change poses one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the combined effects of the mean and variance of temperature on thermal tolerances, organismal survival, and population growth in Drosophila melanogaster. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that responses to thermal variation (±0° or ±5°C) would depend on the mean temperature (17° or 24°C). Consistent with our prediction, thermal variation enhanced the rate of population growth (r(max)) at a low mean temperature but depressed this rate at a high mean temperature. The interactive effect on fitness occurred despite the fact that flies improved their heat and cold tolerances through acclimation to thermal conditions. Flies exposed to a high mean and a high variance of temperature recovered from heat coma faster and survived heat exposure better than did flies that developed at other conditions. Relatively high survival following heat exposure was associated with low survival following cold exposure. Recovery from chill coma was affected primarily by the mean temperature; flies acclimated to a low mean temperature recovered much faster than did flies acclimated to a high mean temperature. To develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean environmental temperature and the variance of environmental temperature.

  8. Estimating the encounter rate variance in distance sampling

    Science.gov (United States)

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  9. Genetic selection for increased mean and reduced variance of twinning rate in Belclare ewes.

    Science.gov (United States)

    Cottle, D J; Gilmour, A R; Pabiou, T; Amer, P R; Fahey, A G

    2016-04-01

    It is sometimes possible to breed for more uniform individuals by selecting animals with a greater tendency to be less variable, that is, those with a smaller environmental variance. This approach has been applied to reproduction traits in various animal species. We have evaluated fecundity in the Irish Belclare sheep breed by analyses of flocks with differing average litter size (number of lambs per ewe per year, NLB) and have estimated the genetic variance in environmental variance of lambing traits using double hierarchical generalized linear models (DHGLM). The data set comprised of 9470 litter size records from 4407 ewes collected in 56 flocks. The percentage of pedigreed lambing ewes with singles, twins and triplets was 30, 54 and 14%, respectively, in 2013 and has been relatively constant for the last 15 years. The variance of NLB increases with the mean in this data; the correlation of mean and standard deviation across sires is 0.50. The breeding goal is to increase the mean NLB without unduly increasing the incidence of triplets and higher litter sizes. The heritability estimates for lambing traits were NLB, 0.09; triplet occurrence (TRI) 0.07; and twin occurrence (TWN), 0.02. The highest and lowest twinning flocks differed by 23% (75% versus 52%) in the proportion of ewes lambing twins. Fitting bivariate sire models to NLB and the residual from the NLB model using a double hierarchical generalized linear model (DHGLM) model found a strong genetic correlation (0.88 ± 0.07) between the sire effect for the magnitude of the residual (VE ) and sire effects for NLB, confirming the general observation that increased average litter size is associated with increased variability in litter size. We propose a threshold model that may help breeders with low litter size increase the percentage of twin bearers without unduly increasing the percentage of ewes bearing triplets in Belclare sheep. © 2015 Blackwell Verlag GmbH.

  10. Towards a mathematical foundation of minimum-variance theory

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom); Zhang Kewei [SMS, Sussex University, Brighton (United Kingdom); Wei Gang [Mathematical Department, Baptist University, Hong Kong (China)

    2002-08-30

    The minimum-variance theory which accounts for arm and eye movements with noise signal inputs was proposed by Harris and Wolpert (1998 Nature 394 780-4). Here we present a detailed theoretical analysis of the theory and analytical solutions of the theory are obtained. Furthermore, we propose a new version of the minimum-variance theory, which is more realistic for a biological system. For the new version we show numerically that the variance is considerably reduced. (author)

  11. Identifying misbehaving models using baseline climate variance

    Science.gov (United States)

    Schultz, Colin

    2011-06-01

    The majority of projections made using general circulation models (GCMs) are conducted to help tease out the effects on a region, or on the climate system as a whole, of changing climate dynamics. Sun et al., however, used model runs from 20 different coupled atmosphere-ocean GCMs to try to understand a different aspect of climate projections: how bias correction, model selection, and other statistical techniques might affect the estimated outcomes. As a case study, the authors focused on predicting the potential change in precipitation for the Murray-Darling Basin (MDB), a 1-million- square- kilometer area in southeastern Australia that suffered a recent decade of drought that left many wondering about the potential impacts of climate change on this important agricultural region. The authors first compared the precipitation predictions made by the models with 107 years of observations, and they then made bias corrections to adjust the model projections to have the same statistical properties as the observations. They found that while the spread of the projected values was reduced, the average precipitation projection for the end of the 21st century barely changed. Further, the authors determined that interannual variations in precipitation for the MDB could be explained by random chance, where the precipitation in a given year was independent of that in previous years.

  12. RR-Interval variance of electrocardiogram for atrial fibrillation detection

    Science.gov (United States)

    Nuryani, N.; Solikhah, M.; Nugoho, A. S.; Afdala, A.; Anzihory, E.

    2016-11-01

    Atrial fibrillation is a serious heart problem originated from the upper chamber of the heart. The common indication of atrial fibrillation is irregularity of R peak-to-R-peak time interval, which is shortly called RR interval. The irregularity could be represented using variance or spread of RR interval. This article presents a system to detect atrial fibrillation using variances. Using clinical data of patients with atrial fibrillation attack, it is shown that the variance of electrocardiographic RR interval are higher during atrial fibrillation, compared to the normal one. Utilizing a simple detection technique and variances of RR intervals, we find a good performance of atrial fibrillation detection.

  13. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Ankirchner, Stefan, E-mail: ankirchner@hcm.uni-bonn.de [Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Angewandte Mathematik, Hausdorff Center for Mathematics (Germany); Dermoune, Azzouz, E-mail: Azzouz.Dermoune@math.univ-lille1.fr [Universite des Sciences et Technologies de Lille, Laboratoire Paul Painleve UMR CNRS 8524 (France)

    2011-08-15

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  14. Network Structure and Biased Variance Estimation in Respondent Driven Sampling.

    Science.gov (United States)

    Verdery, Ashton M; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.

  15. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    International Nuclear Information System (INIS)

    Ankirchner, Stefan; Dermoune, Azzouz

    2011-01-01

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  16. Discrete and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  17. Discrete time and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  18. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    and that these variants are enriched for genes that are connected in biological pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes on the basis of SNP......-data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that evaluate the collective...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  19. Allowing variance may enlarge the safe operating space for exploited ecosystems.

    Science.gov (United States)

    Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten

    2015-11-17

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.

  20. The efficiency of the crude oil markets: Evidence from variance ratio tests

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Amelie, E-mail: acharles@audencia.co [Audencia Nantes, School of Management, 8 route de la Joneliere, 44312 Nantes (France); Darne, Olivier, E-mail: olivier.darne@univ-nantes.f [LEMNA, University of Nantes, IEMN-IAE, Chemin de la Censive du Tertre, 44322 Nantes (France)

    2009-11-15

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable.

  1. The efficiency of the crude oil markets. Evidence from variance ratio tests

    International Nuclear Information System (INIS)

    Charles, Amelie; Darne, Olivier

    2009-01-01

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable. (author)

  2. The efficiency of the crude oil markets. Evidence from variance ratio tests

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Amelie [Audencia Nantes, School of Management, 8 route de la Joneliere, 44312 Nantes (France); Darne, Olivier [LEMNA, University of Nantes, IEMN-IAE, Chemin de la Censive du Tertre, 44322 Nantes (France)

    2009-11-15

    This study examines the random walk hypothesis for the crude oil markets, using daily data over the period 1982-2008. The weak-form efficient market hypothesis for two crude oil markets (UK Brent and US West Texas Intermediate) is tested with non-parametric variance ratio tests developed by [Wright J.H., 2000. Alternative variance-ratio tests using ranks and signs. Journal of Business and Economic Statistics, 18, 1-9] and [Belaire-Franch J. and Contreras D., 2004. Ranks and signs-based multiple variance ratio tests. Working paper, Department of Economic Analysis, University of Valencia] as well as the wild-bootstrap variance ratio tests suggested by [Kim, J.H., 2006. Wild bootstrapping variance ratio tests. Economics Letters, 92, 38-43]. We find that the Brent crude oil market is weak-form efficiency while the WTI crude oil market seems to be inefficiency on the 1994-2008 sub-period, suggesting that the deregulation have not improved the efficiency on the WTI crude oil market in the sense of making returns less predictable. (author)

  3. Body Composition Explains Greater Variance in Weight-for-Length Z-scores than Mid-Upper Arm Circumference during Infancy - A Secondary Data Analysis

    International Nuclear Information System (INIS)

    Grijalva-Eternod, Carlos; Andersen, Gregers Stig; Girma, Tsinuel; Admassu, Bitiya; Kæstel, Pernille; Michaelsen, Kim F; Friis, Henrik; Wells, Jonathan CK

    2014-01-01

    with length at all ages (correlation values range 0.42 to 0.61) compared to WLZ which correlated negatively with length only between birth and 2.5 months (range -12 to -15). Both MUAC and WLZ were strongly and positively correlated with LM and FM standardised residuals with correlation values being systematically greater for WLZ (range 0.53 – 0.82 and 0.54 – 0.77, for LM and FM respectively) than for MUAC (range 0.28 – 0.42 and 0.45 – 0.63, respectively). Together LM and FM standardised residuals (controlled for sex) explained over 93% of WLZ variance at all ages (see table 1). In contrast, LM and FM residuals explained between 37 – 52% MUAC variance. Conclusions: LM and FM values have stronger associations with WLZ and together they explain almost all the variance of this anthropometric indicator compared to MUAC in children aged 0-6 months. Given these findings, it is unlikely that any greater capacity of MUAC to predict mortality among infants can be explained by the overall variability in body composition. (author)

  4. Waste Isolation Pilot Plant No-Migration Variance Petition

    International Nuclear Information System (INIS)

    1990-03-01

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA section 3004(d) and 40 CFR section 268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA's NOD and met with the EPA's reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0

  5. Scale dependence in species turnover reflects variance in species occupancy.

    Science.gov (United States)

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  6. ANALISIS PORTOFOLIO RESAMPLED EFFICIENT FRONTIER BERDASARKAN OPTIMASI MEAN-VARIANCE

    OpenAIRE

    Abdurakhman, Abdurakhman

    2008-01-01

    Keputusan alokasi asset yang tepat pada investasi portofolio dapat memaksimalkan keuntungan dan atau meminimalkan risiko. Metode yang sering dipakai dalam optimasi portofolio adalah metode Mean-Variance Markowitz. Dalam prakteknya, metode ini mempunyai kelemahan tidak terlalu stabil. Sedikit perubahan dalam estimasi parameter input menyebabkan perubahan besar pada komposisi portofolio. Untuk itu dikembangkan metode optimasi portofolio yang dapat mengatasi ketidakstabilan metode Mean-Variance ...

  7. Capturing option anomalies with a variance-dependent pricing kernel

    NARCIS (Netherlands)

    Christoffersen, P.; Heston, S.; Jacobs, K.

    2013-01-01

    We develop a GARCH option model with a variance premium by combining the Heston-Nandi (2000) dynamic with a new pricing kernel that nests Rubinstein (1976) and Brennan (1979). While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is

  8. Realized range-based estimation of integrated variance

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    2007-01-01

    We provide a set of probabilistic laws for estimating the quadratic variation of continuous semimartingales with the realized range-based variance-a statistic that replaces every squared return of the realized variance with a normalized squared range. If the entire sample path of the process is a...

  9. Evaluation of Mean and Variance Integrals without Integration

    Science.gov (United States)

    Joarder, A. H.; Omar, M. H.

    2007-01-01

    The mean and variance of some continuous distributions, in particular the exponentially decreasing probability distribution and the normal distribution, are considered. Since they involve integration by parts, many students do not feel comfortable. In this note, a technique is demonstrated for deriving mean and variance through differential…

  10. Adjustment of heterogenous variances and a calving year effect in ...

    African Journals Online (AJOL)

    Data at the beginning and at the end of lactation period, have higher variances than tests in the middle of the lactation. Furthermore, first lactations have lower mean and variances compared to second and third lactations. This is a deviation from the basic assumptions required for the application of repeatability models.

  11. Direct encoding of orientation variance in the visual system.

    Science.gov (United States)

    Norman, Liam J; Heywood, Charles A; Kentridge, Robert W

    2015-01-01

    Our perception of regional irregularity, an example of which is orientation variance, seems effortless when we view two patches of texture that differ in this attribute. Little is understood, however, of how the visual system encodes a regional statistic like orientation variance, but there is some evidence to suggest that it is directly encoded by populations of neurons tuned broadly to high or low levels. The present study shows that selective adaptation to low or high levels of variance results in a perceptual aftereffect that shifts the perceived level of variance of a subsequently viewed texture in the direction away from that of the adapting stimulus (Experiments 1 and 2). Importantly, the effect is durable across changes in mean orientation, suggesting that the encoding of orientation variance is independent of global first moment orientation statistics (i.e., mean orientation). In Experiment 3 it was shown that the variance-specific aftereffect did not show signs of being encoded in a spatiotopic reference frame, similar to the equivalent aftereffect of adaptation to the first moment orientation statistic (the tilt aftereffect), which is represented in the primary visual cortex and exists only in retinotopic coordinates. Experiment 4 shows that a neuropsychological patient with damage to ventral areas of the cortex but spared intact early areas retains sensitivity to orientation variance. Together these results suggest that orientation variance is encoded directly by the visual system and possibly at an early cortical stage.

  12. Genotypic-specific variance in Caenorhabditis elegans lifetime fecundity.

    Science.gov (United States)

    Diaz, S Anaid; Viney, Mark

    2014-06-01

    Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently-wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet-hedging strategy used by this species.

  13. On the Endogeneity of the Mean-Variance Efficient Frontier.

    Science.gov (United States)

    Somerville, R. A.; O'Connell, Paul G. J.

    2002-01-01

    Explains that the endogeneity of the efficient frontier in the mean-variance model of portfolio selection is commonly obscured in portfolio selection literature and in widely used textbooks. Demonstrates endogeneity and discusses the impact of parameter changes on the mean-variance efficient frontier and on the beta coefficients of individual…

  14. 42 CFR 456.522 - Content of request for variance.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Content of request for variance. 456.522 Section 456.522 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... perform UR within the time requirements for which the variance is requested and its good faith efforts to...

  15. 29 CFR 1905.5 - Effect of variances.

    Science.gov (United States)

    2010-07-01

    ...-STEIGER OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1905.5 Effect of variances. All variances... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... concerning a proposed penalty or period of abatement is pending before the Occupational Safety and Health...

  16. 29 CFR 1904.38 - Variances from the recordkeeping rule.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Other OSHA Injury and Illness... he or she finds appropriate. (iv) If the Assistant Secretary grants your variance petition, OSHA will... Secretary is reviewing your variance petition. (4) If I have already been cited by OSHA for not following...

  17. Gender Variance and Educational Psychology: Implications for Practice

    Science.gov (United States)

    Yavuz, Carrie

    2016-01-01

    The area of gender variance appears to be more visible in both the media and everyday life. Within educational psychology literature gender variance remains underrepresented. The positioning of educational psychologists working across the three levels of child and family, school or establishment and education authority/council, means that they are…

  18. Relative variance of the mean-squared pressure in multimode media: rehabilitating former approaches.

    Science.gov (United States)

    Monsef, Florian; Cozza, Andrea; Rodrigues, Dominique; Cellard, Patrick; Durocher, Jean-Noel

    2014-11-01

    The commonly accepted model for the relative variance of transmission functions in room acoustics, derived by Weaver, aims at including the effects of correlation between eigenfrequencies. This model is based on an analytical expression of the relative variance derived by means of an approximated correlation function. The relevance of the approximation used for modeling such correlation is questioned here. Weaver's model was motivated by the fact that earlier models derived by Davy and Lyon assumed independent eigenfrequencies and led to an overestimation with respect to relative variances found in practice. It is shown here that this overestimation is due to an inadequate truncation of the modal expansion, and to an improper choice of the frequency range over which ensemble averages of the eigenfrequencies is defined. An alternative definition is proposed, settling the inconsistency; predicted relative variances are found to be in good agreement with experimental data. These results rehabilitate former approaches that were based on independence assumptions between eigenfrequencies. Some former studies showed that simpler correlation models could be used to predict the statistics of some field-related physical quantity at low modal overlap. The present work confirms that this is also the case when dealing with transmission functions.

  19. Minimum Variance Portfolios in the Brazilian Equity Market

    Directory of Open Access Journals (Sweden)

    Alexandre Rubesam

    2013-03-01

    Full Text Available We investigate minimum variance portfolios in the Brazilian equity market using different methods to estimate the covariance matrix, from the simple model of using the sample covariance to multivariate GARCH models. We compare the performance of the minimum variance portfolios to those of the following benchmarks: (i the IBOVESPA equity index, (ii an equally-weighted portfolio, (iii the maximum Sharpe ratio portfolio and (iv the maximum growth portfolio. Our results show that the minimum variance portfolio has higher returns with lower risk compared to the benchmarks. We also consider long-short 130/30 minimum variance portfolios and obtain similar results. The minimum variance portfolio invests in relatively few stocks with low βs measured with respect to the IBOVESPA index, being easily replicable by individual and institutional investors alike.

  20. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    Science.gov (United States)

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  1. Neuroticism explains unwanted variance in Implicit Association Tests of personality: Possible evidence for an affective valence confound

    Directory of Open Access Journals (Sweden)

    Monika eFleischhauer

    2013-09-01

    Full Text Available Meta-analytic data highlight the value of the Implicit Association Test (IAT as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling, latent Big-Five personality factors (based on self- and peer-report were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign, biases that might result, for example, from the IAT’s stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis. However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis, a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to

  2. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  3. Decomposing variation in male reproductive success: age-specific variances and covariances through extra-pair and within-pair reproduction.

    Science.gov (United States)

    Lebigre, Christophe; Arcese, Peter; Reid, Jane M

    2013-07-01

    Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased

  4. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  5. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evolution of sociality by natural selection on variances in reproductive fitness: evidence from a social bee

    OpenAIRE

    Stevens, Mark I; Hogendoorn, Katja; Schwarz, Michael P

    2007-01-01

    Abstract Background The Central Limit Theorem (CLT) is a statistical principle that states that as the number of repeated samples from any population increase, the variance among sample means will decrease and means will become more normally distributed. It has been conjectured that the CLT has the potential to provide benefits for group living in some animals via greater predictability in food acquisition, if the number of foraging bouts increases with group size. The potential existence of ...

  7. APLICAÇÃO DA METODOLOGIA DE MODELOS MISTOS (REML/BLUP NA ESTIMAÇÃO DE COMPONENTES DE VARIÂNCIA E PREDIÇÃO DE VALORES GENÉTICOS EM PUPUNHEIRA (Bactris gasipaes APLICATION OF THE MIXED MODEL METHODOLOGY (REML/BLUP IN VARIANCE COMPONENTS ESTIMATION AND PREDICTION OF GENETIC VALUES IN PEACH PALM (Bactris gasipaes

    Directory of Open Access Journals (Sweden)

    JOÃO TOMÉ DE FARIAS NETO

    2001-08-01

    ,70%, PRB (6,15%. Os ganhos genéticos preditos em relação à média da população para PP foram de 7,18% na situação de LP e 8,40% para CP, com tamanho efetivo de 30,38 e 19,00, respectivamente.The peach palm is a very useful plant for feeding Brazilians as fruit or palm heart producer. The interest for the peach palm besides being a perennial culture is: growth in full sun, precocity, rusticity, capacity to shoot, flavor and non-darkening of the palm heart after the cut. Estimates of genetic parameters in peach palm are scarce and constitute the most important tool to guide the improvement programs. The objective of this work was to study the genetic variability and estimate the individual genetic value as selection criterion, using the BLUP/REML procedure (Best linear unbiased prediction/restricted maximum likelihood. Two selection strategies for the palm heart production trait were adopted: a short term (CP - selection of the 9 families with 31 individuals of bigger genetic value and a long term (LP - selection of the 15 families with 53 individuals. The progenies were evaluated in randomized block design with three replications, the plots were composed by rows of five plants, spaced in 2.0 m x 1.0 m and with a row around the experiment in the Experimental Field of Matapi, Porto Grande municipality, Amapa State, Brazil. The evaluation was accomplished to the 26 months after planting (2nd evaluation being collected data of plant height (AP, diameter of the plant to the lap height (DPC, palm heart size (TP, palm heart diameter (DP, residual apical weight (PRA, basal weight (PRB and of the liquid palm heart (PP (exportation type. The data of AP, DPC, TP and DP corresponded to the clump of roots averages that presented more than a stem. However for the characters PA, PRB and PP corresponded the sum of the stems in the clump of roots. In general, the population presented low genetic variability. The narrow sense heritability at the individuals level was: AP (18.44%, DPC

  8. Estimating High-Frequency Based (Co-) Variances: A Unified Approach

    DEFF Research Database (Denmark)

    Voev, Valeri; Nolte, Ingmar

    We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform, in terms of the root mean squared error criterion, the most recent...... and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Aït-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling...

  9. Meta-analysis of SNPs involved in variance heterogeneity using Levene's test for equal variances

    Science.gov (United States)

    Deng, Wei Q; Asma, Senay; Paré, Guillaume

    2014-01-01

    Meta-analysis is a commonly used approach to increase the sample size for genome-wide association searches when individual studies are otherwise underpowered. Here, we present a meta-analysis procedure to estimate the heterogeneity of the quantitative trait variance attributable to genetic variants using Levene's test without needing to exchange individual-level data. The meta-analysis of Levene's test offers the opportunity to combine the considerable sample size of a genome-wide meta-analysis to identify the genetic basis of phenotypic variability and to prioritize single-nucleotide polymorphisms (SNPs) for gene–gene and gene–environment interactions. The use of Levene's test has several advantages, including robustness to departure from the normality assumption, freedom from the influence of the main effects of SNPs, and no assumption of an additive genetic model. We conducted a meta-analysis of the log-transformed body mass index of 5892 individuals and identified a variant with a highly suggestive Levene's test P-value of 4.28E-06 near the NEGR1 locus known to be associated with extreme obesity. PMID:23921533

  10. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  11. New applications of partial residual methodology

    International Nuclear Information System (INIS)

    Uslu, V.R.

    1999-12-01

    The formulation of a problem of interest in the framework of a statistical analysis starts with collecting the data, choosing a model, making certain assumptions as described in the basic paradigm by Box (1980). This stage is is called model building. Then the estimation stage is in order by pretending as if the formulation of the problem was true to obtain estimates, to make tests and inferences. In the final stage, called diagnostic checking, checking of whether there are some disagreements between the data and the model fitted is done by using diagnostic measures and diagnostic plots. It is well known that statistical methods perform best under the condition that all assumptions related to the methods are satisfied. However it is true that having the ideal case in practice is very difficult. Diagnostics are therefore becoming important so are diagnostic plots because they provide a immediate assessment. Partial residual plots that are the main interest of the present study are playing the major role among the diagnostic plots in multiple regression analysis. In statistical literature it is admitted that partial residual plots are more useful than ordinary residual plots in detecting outliers, nonconstant variance, and especially discovering curvatures. In this study we consider the partial residual methodology in statistical methods rather than multiple regression. We have shown that for the same purpose as in the multiple regression the use of partial residual plots is possible particularly in autoregressive time series models, transfer function models, linear mixed models and ridge regression. (author)

  12. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  13. Residual stresses in Inconel 718 engine disks

    Directory of Open Access Journals (Sweden)

    Dahan Yoann

    2014-01-01

    Full Text Available Aubert&Duval has developed a methodology to establish a residual stress model for Inconel 718 engine discs. To validate the thermal, mechanical and metallurgical parts of the model, trials on lab specimens with specific geometry were carried out. These trials allow a better understanding of the residual stress distribution and evolution during different processes (quenching, ageing, machining. A comparison between experimental and numerical results reveals the residual stresses model accuracy. Aubert&Duval has also developed a mechanical properties prediction model. Coupled with the residual stress prediction model, Aubert&Duval can now propose improvements to the process of manufacturing in Inconel 718 engine disks. This model enables Aubert&Duval customers and subcontractors to anticipate distortions issues during machining. It could also be usedt to optimise the engine disk life.

  14. Comparison of variance estimators for metaanalysis of instrumental variable estimates

    NARCIS (Netherlands)

    Schmidt, A. F.; Hingorani, A. D.; Jefferis, B. J.; White, J.; Groenwold, R. H H; Dudbridge, F.; Ben-Shlomo, Y.; Chaturvedi, N.; Engmann, J.; Hughes, A.; Humphries, S.; Hypponen, E.; Kivimaki, M.; Kuh, D.; Kumari, M.; Menon, U.; Morris, R.; Power, C.; Price, J.; Wannamethee, G.; Whincup, P.

    2016-01-01

    Background: Mendelian randomization studies perform instrumental variable (IV) analysis using genetic IVs. Results of individual Mendelian randomization studies can be pooled through meta-analysis. We explored how different variance estimators influence the meta-analysed IV estimate. Methods: Two

  15. Capturing Option Anomalies with a Variance-Dependent Pricing Kernel

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Heston, Steven; Jacobs, Kris

    2013-01-01

    We develop a GARCH option model with a new pricing kernel allowing for a variance premium. While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is nonmonotonic. A negative variance premium makes it U shaped. We present new semiparametric...... evidence to confirm this U-shaped relationship between the risk-neutral and physical probability densities. The new pricing kernel substantially improves our ability to reconcile the time-series properties of stock returns with the cross-section of option prices. It provides a unified explanation...... for the implied volatility puzzle, the overreaction of long-term options to changes in short-term variance, and the fat tails of the risk-neutral return distribution relative to the physical distribution....

  16. Phenotypic variance explained by local ancestry in admixed African Americans.

    Science.gov (United States)

    Shriner, Daniel; Bentley, Amy R; Doumatey, Ayo P; Chen, Guanjie; Zhou, Jie; Adeyemo, Adebowale; Rotimi, Charles N

    2015-01-01

    We surveyed 26 quantitative traits and disease outcomes to understand the proportion of phenotypic variance explained by local ancestry in admixed African Americans. After inferring local ancestry as the number of African-ancestry chromosomes at hundreds of thousands of genotyped loci across all autosomes, we used a linear mixed effects model to estimate the variance explained by local ancestry in two large independent samples of unrelated African Americans. We found that local ancestry at major and polygenic effect genes can explain up to 20 and 8% of phenotypic variance, respectively. These findings provide evidence that most but not all additive genetic variance is explained by genetic markers undifferentiated by ancestry. These results also inform the proportion of health disparities due to genetic risk factors and the magnitude of error in association studies not controlling for local ancestry.

  17. Allowable variance set on left ventricular function parameter

    International Nuclear Information System (INIS)

    Zhou Li'na; Qi Zhongzhi; Zeng Yu; Ou Xiaohong; Li Lin

    2010-01-01

    Purpose: To evaluate the influence of allowable Variance settings on left ventricular function parameter of the arrhythmia patients during gated myocardial perfusion imaging. Method: 42 patients with evident arrhythmia underwent myocardial perfusion SPECT, 3 different allowable variance with 20%, 60%, 100% would be set before acquisition for every patients,and they will be acquired simultaneously. After reconstruction by Astonish, end-diastole volume(EDV) and end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) would be computed with Quantitative Gated SPECT(QGS). Using SPSS software EDV, ESV, EF values of analysis of variance. Result: there is no statistical difference between three groups. Conclusion: arrhythmia patients undergo Gated myocardial perfusion imaging, Allowable Variance settings on EDV, ESV, EF value does not have a statistical meaning. (authors)

  18. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  19. Minimum variance Monte Carlo importance sampling with parametric dependence

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Halton, J.; Maynard, C.W.

    1981-01-01

    An approach for Monte Carlo Importance Sampling with parametric dependence is proposed. It depends upon obtaining by proper weighting over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adapted and other results rejected. Numerical calculation for the estimation of intergrals are compared to Crude Monte Carlo. Results explain the occurrences of the effective biases (even though the theoretical bias is zero) and infinite variances which arise in calculations involving severe biasing and a moderate number of historis. Extension to particle transport applications is briefly discussed. The approach constitutes an extension of a theory on the application of Monte Carlo for the calculation of functional dependences introduced by Frolov and Chentsov to biasing, or importance sample calculations; and is a generalization which avoids nonconvergence to the optimal values in some cases of a multistage method for variance reduction introduced by Spanier. (orig.) [de

  20. Advanced methods of analysis variance on scenarios of nuclear prospective

    International Nuclear Information System (INIS)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-01-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  1. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  2. Heritability, variance components and genetic advance of some ...

    African Journals Online (AJOL)

    Heritability, variance components and genetic advance of some yield and yield related traits in Ethiopian ... African Journal of Biotechnology ... randomized complete block design at Adet Agricultural Research Station in 2008 cropping season.

  3. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  4. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong; Ma, Yanyuan; Carroll, Raymond J.

    2009-01-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing

  5. Volatility and variance swaps : A comparison of quantitative models to calculate the fair volatility and variance strike

    OpenAIRE

    Röring, Johan

    2017-01-01

    Volatility is a common risk measure in the field of finance that describes the magnitude of an asset’s up and down movement. From only being a risk measure, volatility has become an asset class of its own and volatility derivatives enable traders to get an isolated exposure to an asset’s volatility. Two kinds of volatility derivatives are volatility swaps and variance swaps. The problem with volatility swaps and variance swaps is that they require estimations of the future variance and volati...

  6. ASYMMETRY OF MARKET RETURNS AND THE MEAN VARIANCE FRONTIER

    OpenAIRE

    SENGUPTA, Jati K.; PARK, Hyung S.

    1994-01-01

    The hypothesis that the skewness and asymmetry have no significant impact on the mean variance frontier is found to be strongly violated by monthly U.S. data over the period January 1965 through December 1974. This result raises serious doubts whether the common market portifolios such as SP 500, value weighted and equal weighted returns can serve as suitable proxies for meanvariance efficient portfolios in the CAPM framework. A new test for assessing the impact of skewness on the variance fr...

  7. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  8. Problems of variance reduction in the simulation of random variables

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    The definition of the uniform linear generator is given and some of the mostly used tests to evaluate the uniformity and the independence of the obtained determinations are listed. The problem of calculating, through simulation, some moment W of a random variable function is taken into account. The Monte Carlo method enables the moment W to be estimated and the estimator variance to be obtained. Some techniques for the construction of other estimators of W with a reduced variance are introduced

  9. Cumulative prospect theory and mean variance analysis. A rigorous comparison

    OpenAIRE

    Hens, Thorsten; Mayer, Janos

    2012-01-01

    We compare asset allocations derived for cumulative prospect theory(CPT) based on two different methods: Maximizing CPT along the mean–variance efficient frontier and maximizing it without that restriction. We find that with normally distributed returns the difference is negligible. However, using standard asset allocation data of pension funds the difference is considerable. Moreover, with derivatives like call options the restriction to the mean-variance efficient frontier results in a siza...

  10. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    Science.gov (United States)

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  11. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  12. Mean-Variance Optimization in Markov Decision Processes

    OpenAIRE

    Mannor, Shie; Tsitsiklis, John N.

    2011-01-01

    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudo-polynomial exact and approximation algorithms.

  13. The asymptotic variance of departures in critically loaded queues

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.

    2011-01-01

    We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +

  14. Partitioning of the variance in the growth parameters of Erwinia carotovora on vegetable products.

    Science.gov (United States)

    Shorten, P R; Membré, J-M; Pleasants, A B; Kubaczka, M; Soboleva, T K

    2004-06-01

    The objective of this paper was to estimate and partition the variability in the microbial growth model parameters describing the growth of Erwinia carotovora on pasteurised and non-pasteurised vegetable juice from laboratory experiments performed under different temperature-varying conditions. We partitioned the model parameter variance and covariance components into effects due to temperature profile and replicate using a maximum likelihood technique. Temperature profile and replicate were treated as random effects and the food substrate was treated as a fixed effect. The replicate variance component was small indicating a high level of control in this experiment. Our analysis of the combined E. carotovora growth data sets used the Baranyi primary microbial growth model along with the Ratkowsky secondary growth model. The variability in the microbial growth parameters estimated from these microbial growth experiments is essential for predicting the mean and variance through time of the E. carotovora population size in a product supply chain and is the basis for microbiological risk assessment and food product shelf-life estimation. The variance partitioning made here also assists in the management of optimal product distribution networks by identifying elements of the supply chain contributing most to product variability. Copyright 2003 Elsevier B.V.

  15. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    Science.gov (United States)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  16. Energy and variance budgets of a diffusive staircase with implications for heat flux scaling

    Science.gov (United States)

    Hieronymus, M.; Carpenter, J. R.

    2016-02-01

    Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.

  17. Quantitative genetic variance and multivariate clines in the Ivyleaf morning glory, Ipomoea hederacea.

    Science.gov (United States)

    Stock, Amanda J; Campitelli, Brandon E; Stinchcombe, John R

    2014-08-19

    Clinal variation is commonly interpreted as evidence of adaptive differentiation, although clines can also be produced by stochastic forces. Understanding whether clines are adaptive therefore requires comparing clinal variation to background patterns of genetic differentiation at presumably neutral markers. Although this approach has frequently been applied to single traits at a time, we have comparatively fewer examples of how multiple correlated traits vary clinally. Here, we characterize multivariate clines in the Ivyleaf morning glory, examining how suites of traits vary with latitude, with the goal of testing for divergence in trait means that would indicate past evolutionary responses. We couple this with analysis of genetic variance in clinally varying traits in 20 populations to test whether past evolutionary responses have depleted genetic variance, or whether genetic variance declines approaching the range margin. We find evidence of clinal differentiation in five quantitative traits, with little evidence of isolation by distance at neutral loci that would suggest non-adaptive or stochastic mechanisms. Within and across populations, the traits that contribute most to population differentiation and clinal trends in the multivariate phenotype are genetically variable as well, suggesting that a lack of genetic variance will not cause absolute evolutionary constraints. Our data are broadly consistent theoretical predictions of polygenic clines in response to shallow environmental gradients. Ecologically, our results are consistent with past findings of natural selection on flowering phenology, presumably due to season-length variation across the range. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-07-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  19. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong

    2009-04-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing to the small number of replications. Various methods have been proposed in the literature to overcome this lack of degrees of freedom problem. In this context, it is commonly observed that the variance increases proportionally with the intensity level, which has led many researchers to assume that the variance is a function of the mean. Here we concentrate on estimation of the variance as a function of an unknown mean in two models: the constant coefficient of variation model and the quadratic variance-mean model. Because the means are unknown and estimated with few degrees of freedom, naive methods that use the sample mean in place of the true mean are generally biased because of the errors-in-variables phenomenon. We propose three methods for overcoming this bias. The first two are variations on the theme of the so-called heteroscedastic simulation-extrapolation estimator, modified to estimate the variance function consistently. The third class of estimators is entirely different, being based on semiparametric information calculations. Simulations show the power of our methods and their lack of bias compared with the naive method that ignores the measurement error. The methodology is illustrated by using microarray data from leukaemia patients.

  20. Why risk is not variance: an expository note.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2008-08-01

    Variance (or standard deviation) of return is widely used as a measure of risk in financial investment risk analysis applications, where mean-variance analysis is applied to calculate efficient frontiers and undominated portfolios. Why, then, do health, safety, and environmental (HS&E) and reliability engineering risk analysts insist on defining risk more flexibly, as being determined by probabilities and consequences, rather than simply by variances? This note suggests an answer by providing a simple proof that mean-variance decision making violates the principle that a rational decisionmaker should prefer higher to lower probabilities of receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a continuous increasing indifference curve for mean-variance combinations at the origin is enough to imply that a decisionmaker must find unacceptable some prospects that offer a positive probability of gain and zero probability of loss. Unlike some previous analyses of limitations of variance as a risk metric, this expository note uses only simple mathematics and does not require the additional framework of von Neumann Morgenstern utility theory.

  1. Approximate zero-variance Monte Carlo estimation of Markovian unreliability

    International Nuclear Information System (INIS)

    Delcoux, J.L.; Labeau, P.E.; Devooght, J.

    1997-01-01

    Monte Carlo simulation has become an important tool for the estimation of reliability characteristics, since conventional numerical methods are no more efficient when the size of the system to solve increases. However, evaluating by a simulation the probability of occurrence of very rare events means playing a very large number of histories of the system, which leads to unacceptable computation times. Acceleration and variance reduction techniques have to be worked out. We show in this paper how to write the equations of Markovian reliability as a transport problem, and how the well known zero-variance scheme can be adapted to this application. But such a method is always specific to the estimation of one quality, while a Monte Carlo simulation allows to perform simultaneously estimations of diverse quantities. Therefore, the estimation of one of them could be made more accurate while degrading at the same time the variance of other estimations. We propound here a method to reduce simultaneously the variance for several quantities, by using probability laws that would lead to zero-variance in the estimation of a mean of these quantities. Just like the zero-variance one, the method we propound is impossible to perform exactly. However, we show that simple approximations of it may be very efficient. (author)

  2. Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-01-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  3. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  4. Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Hu Jun; Liu Fei; Cheng Guangxu; Zhang Zaoxiao

    2011-01-01

    Highlights: → A life prediction model for SG tubing was proposed. → The initial crack length for SCC was determined. → Two failure modes called rupture mode and leak mode were considered. → A probabilistic life prediction code based on Monte Carlo method was developed. - Abstract: The failure of steam generator tubing is one of the main accidents that seriously affects the availability and safety of a nuclear power plant. In order to estimate the probability of the failure, a probabilistic model was established to predict the whole life-span and residual life of steam generator (SG) tubing. The failure investigated was stress corrosion cracking (SCC) after the generation of one through-wall axial crack. Two failure modes called rupture mode and leak mode based on probabilistic fracture mechanics were considered in this proposed model. It took into account the variance in tube geometry and material properties, and the variance in residual stresses and operating conditions, all of which govern the propagations of cracks. The proposed model was numerically calculated by using Monte Carlo Simulation (MCS). The plugging criteria were first verified and then the whole life-span and residual life of the SG tubing were obtained. Finally, important sensitivity analysis was also carried out to identify the most important parameters affecting the life of SG tubing. The results will be useful in developing optimum strategies for life-cycle management of the feedwater system in nuclear power plants.

  5. Genetic Variance in Homophobia: Evidence from Self- and Peer Reports.

    Science.gov (United States)

    Zapko-Willmes, Alexandra; Kandler, Christian

    2018-01-01

    The present twin study combined self- and peer assessments of twins' general homophobia targeting gay men in order to replicate previous behavior genetic findings across different rater perspectives and to disentangle self-rater-specific variance from common variance in self- and peer-reported homophobia (i.e., rater-consistent variance). We hypothesized rater-consistent variance in homophobia to be attributable to genetic and nonshared environmental effects, and self-rater-specific variance to be partially accounted for by genetic influences. A sample of 869 twins and 1329 peer raters completed a seven item scale containing cognitive, affective, and discriminatory homophobic tendencies. After correction for age and sex differences, we found most of the genetic contributions (62%) and significant nonshared environmental contributions (16%) to individual differences in self-reports on homophobia to be also reflected in peer-reported homophobia. A significant genetic component, however, was self-report-specific (38%), suggesting that self-assessments alone produce inflated heritability estimates to some degree. Different explanations are discussed.

  6. Variance-based selection may explain general mating patterns in social insects.

    Science.gov (United States)

    Rueppell, Olav; Johnson, Nels; Rychtár, Jan

    2008-06-23

    Female mating frequency is one of the key parameters of social insect evolution. Several hypotheses have been suggested to explain multiple mating and considerable empirical research has led to conflicting results. Building on several earlier analyses, we present a simple general model that links the number of queen matings to variance in colony performance and this variance to average colony fitness. The model predicts selection for multiple mating if the average colony succeeds in a focal task, and selection for single mating if the average colony fails, irrespective of the proximate mechanism that links genetic diversity to colony fitness. Empirical support comes from interspecific comparisons, e.g. between the bee genera Apis and Bombus, and from data on several ant species, but more comprehensive empirical tests are needed.

  7. Genetic and environmental variance in content dimensions of the MMPI.

    Science.gov (United States)

    Rose, R J

    1988-08-01

    To evaluate genetic and environmental variance in the Minnesota Multiphasic Personality Inventory (MMPI), I studied nine factor scales identified in the first item factor analysis of normal adult MMPIs in a sample of 820 adolescent and young adult co-twins. Conventional twin comparisons documented heritable variance in six of the nine MMPI factors (Neuroticism, Psychoticism, Extraversion, Somatic Complaints, Inadequacy, and Cynicism), whereas significant influence from shared environmental experience was found for four factors (Masculinity versus Femininity, Extraversion, Religious Orthodoxy, and Intellectual Interests). Genetic variance in the nine factors was more evident in results from twin sisters than those of twin brothers, and a developmental-genetic analysis, using hierarchical multiple regressions of double-entry matrixes of the twins' raw data, revealed that in four MMPI factor scales, genetic effects were significantly modulated by age or gender or their interaction during the developmental period from early adolescence to early adulthood.

  8. A new variance stabilizing transformation for gene expression data analysis.

    Science.gov (United States)

    Kelmansky, Diana M; Martínez, Elena J; Leiva, Víctor

    2013-12-01

    In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.

  9. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  10. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  11. The mean and variance of phylogenetic diversity under rarefaction.

    Science.gov (United States)

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  12. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  13. Variance estimation for sensitivity analysis of poverty and inequality measures

    Directory of Open Access Journals (Sweden)

    Christian Dudel

    2017-04-01

    Full Text Available Estimates of poverty and inequality are often based on application of a single equivalence scale, despite the fact that a large number of different equivalence scales can be found in the literature. This paper describes a framework for sensitivity analysis which can be used to account for the variability of equivalence scales and allows to derive variance estimates of results of sensitivity analysis. Simulations show that this method yields reliable estimates. An empirical application reveals that accounting for both variability of equivalence scales and sampling variance leads to confidence intervals which are wide.

  14. Studying Variance in the Galactic Ultra-compact Binary Population

    Science.gov (United States)

    Larson, Shane; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  15. Variance of a product with application to uranium estimation

    International Nuclear Information System (INIS)

    Lowe, V.W.; Waterman, M.S.

    1976-01-01

    The U in a container can either be determined directly by NDA or by estimating the weight of material in the container and the concentration of U in this material. It is important to examine the statistical properties of estimating the amount of U by multiplying the estimates of weight and concentration. The variance of the product determines the accuracy of the estimate of the amount of uranium. This paper examines the properties of estimates of the variance of the product of two random variables

  16. Levine's guide to SPSS for analysis of variance

    CERN Document Server

    Braver, Sanford L; Page, Melanie

    2003-01-01

    A greatly expanded and heavily revised second edition, this popular guide provides instructions and clear examples for running analyses of variance (ANOVA) and several other related statistical tests of significance with SPSS. No other guide offers the program statements required for the more advanced tests in analysis of variance. All of the programs in the book can be run using any version of SPSS, including versions 11 and 11.5. A table at the end of the preface indicates where each type of analysis (e.g., simple comparisons) can be found for each type of design (e.g., mixed two-factor desi

  17. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  18. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  19. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  20. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  1. Surgical treatment for residual or recurrent strabismus

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2014-12-01

    Full Text Available Although the surgical treatment is a relatively effective and predictable method for correcting residual or recurrent strabismus, such as posterior fixation sutures, medial rectus marginal myotomy, unilateral or bilateral rectus re-recession and resection, unilateral lateral rectus recession and adjustable suture, no standard protocol is established for the surgical style. Different surgical approaches have been recommended for correcting residual or recurrent strabismus. The choice of the surgical procedure depends on the former operation pattern and the surgical dosages applied on the patients, residual or recurrent angle of deviation and the operator''s preference and experience. This review attempts to outline recent publications and current opinion in the management of residual or recurrent esotropia and exotropia.

  2. Variance components estimation for farrowing traits of three purebred pigs in Korea

    Directory of Open Access Journals (Sweden)

    Bryan Irvine Lopez

    2017-09-01

    Full Text Available Objective This study was conducted to estimate breed-specific variance components for total number born (TNB, number born alive (NBA and mortality rate from birth through weaning including stillbirths (MORT of three main swine breeds in Korea. In addition, the importance of including maternal genetic and service sire effects in estimation models was evaluated. Methods Records of farrowing traits from 6,412 Duroc, 18,020 Landrace, and 54,254 Yorkshire sows collected from January 2001 to September 2016 from different farms in Korea were used in the analysis. Animal models and the restricted maximum likelihood method were used to estimate variances in animal genetic, permanent environmental, maternal genetic, service sire and residuals. Results The heritability estimates ranged from 0.072 to 0.102, 0.090 to 0.099, and 0.109 to 0.121 for TNB; 0.087 to 0.110, 0.088 to 0.100, and 0.099 to 0.107 for NBA; and 0.027 to 0.031, 0.050 to 0.053, and 0.073 to 0.081 for MORT in the Duroc, Landrace and Yorkshire breeds, respectively. The proportion of the total variation due to permanent environmental effects, maternal genetic effects, and service sire effects ranged from 0.042 to 0.088, 0.001 to 0.031, and 0.001 to 0.021, respectively. Spearman rank correlations among models ranged from 0.98 to 0.99, demonstrating that the maternal genetic and service sire effects have small effects on the precision of the breeding value. Conclusion Models that include additive genetic and permanent environmental effects are suitable for farrowing traits in Duroc, Landrace, and Yorkshire populations in Korea. This breed-specific variance components estimates for litter traits can be utilized for pig improvement programs in Korea.

  3. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon

    2017-09-26

    Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.

  4. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros, E-mail: stavros.christoforou@gmail.com [Kirinthou 17, 34100, Chalkida (Greece); Hoogenboom, J. Eduard, E-mail: j.e.hoogenboom@tudelft.nl [Department of Applied Sciences, Delft University of Technology (Netherlands)

    2011-07-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k{sub eff} estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  5. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    International Nuclear Information System (INIS)

    Christoforou, Stavros; Hoogenboom, J. Eduard

    2011-01-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k_e_f_f estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  6. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed like- lihood function, or estimating function, corresponding...

  7. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2014-01-01

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By definition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modified likelihood function, or estimating function, corresponding...

  8. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed likelihood function, or estimating function, corresponding...

  9. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    Science.gov (United States)

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  10. Cumulative Prospect Theory, Option Returns, and the Variance Premium

    NARCIS (Netherlands)

    Baele, Lieven; Driessen, Joost; Ebert, Sebastian; Londono Yarce, J.M.; Spalt, Oliver

    The variance premium and the pricing of out-of-the-money (OTM) equity index options are major challenges to standard asset pricing models. We develop a tractable equilibrium model with Cumulative Prospect Theory (CPT) preferences that can overcome both challenges. The key insight is that the

  11. Hydrograph variances over different timescales in hydropower production networks

    Science.gov (United States)

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of white noise) as a result of current production objectives.

  12. Bounds for Tail Probabilities of the Sample Variance

    Directory of Open Access Journals (Sweden)

    Van Zuijlen M

    2009-01-01

    Full Text Available We provide bounds for tail probabilities of the sample variance. The bounds are expressed in terms of Hoeffding functions and are the sharpest known. They are designed having in mind applications in auditing as well as in processing data related to environment.

  13. Robust estimation of the noise variance from background MR data

    NARCIS (Netherlands)

    Sijbers, J.; Den Dekker, A.J.; Poot, D.; Bos, R.; Verhoye, M.; Van Camp, N.; Van der Linden, A.

    2006-01-01

    In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance (MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is revisited and a new, robust, and easy to use method is presented based on maximum

  14. Stable limits for sums of dependent infinite variance random variables

    DEFF Research Database (Denmark)

    Bartkiewicz, Katarzyna; Jakubowski, Adam; Mikosch, Thomas

    2011-01-01

    The aim of this paper is to provide conditions which ensure that the affinely transformed partial sums of a strictly stationary process converge in distribution to an infinite variance stable distribution. Conditions for this convergence to hold are known in the literature. However, most of these...

  15. Computing the Expected Value and Variance of Geometric Measures

    DEFF Research Database (Denmark)

    Staals, Frank; Tsirogiannis, Constantinos

    2017-01-01

    distance (MPD), the squared Euclidean distance from the centroid, and the diameter of the minimum enclosing disk. We also describe an efficient (1-e)-approximation algorithm for computing the mean and variance of the mean pairwise distance. We implemented three of our algorithms and we show that our...

  16. Estimation of the additive and dominance variances in South African ...

    African Journals Online (AJOL)

    The objective of this study was to estimate dominance variance for number born alive (NBA), 21- day litter weight (LWT21) and interval between parities (FI) in South African Landrace pigs. A total of 26223 NBA, 21335 LWT21 and 16370 FI records were analysed. Bayesian analysis via Gibbs sampling was used to estimate ...

  17. A note on minimum-variance theory and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, Sussex University, Brighton, BN1 9QH (United Kingdom); Tartaglia, Giangaetano [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy); Tirozzi, Brunello [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy)

    2004-04-30

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons.

  18. A Visual Model for the Variance and Standard Deviation

    Science.gov (United States)

    Orris, J. B.

    2011-01-01

    This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.

  19. Multidimensional adaptive testing with a minimum error-variance criterion

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1997-01-01

    The case of adaptive testing under a multidimensional logistic response model is addressed. An adaptive algorithm is proposed that minimizes the (asymptotic) variance of the maximum-likelihood (ML) estimator of a linear combination of abilities of interest. The item selection criterion is a simple

  20. Asymptotics of variance of the lattice point count

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří

    2008-01-01

    Roč. 58, č. 3 (2008), s. 751-758 ISSN 0011-4642 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : point lattice * variance Subject RIV: BA - General Mathematics Impact factor: 0.210, year: 2008

  1. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind v...

  2. Estimates of variance components for postweaning feed intake and ...

    African Journals Online (AJOL)

    Mike

    2013-03-09

    Mar 9, 2013 ... transformation of RFIp and RDGp to z-scores (mean = 0.0, variance = 1.0) and then ... generation pedigree (n = 9 653) used for this analysis. ..... Nkrumah, J.D., Basarab, J.A., Wang, Z., Li, C., Price, M.A., Okine, E.K., Crews Jr., ...

  3. An entropy approach to size and variance heterogeneity

    NARCIS (Netherlands)

    Balasubramanyan, L.; Stefanou, S.E.; Stokes, J.R.

    2012-01-01

    In this paper, we investigate the effect of bank size differences on cost efficiency heterogeneity using a heteroskedastic stochastic frontier model. This model is implemented by using an information theoretic maximum entropy approach. We explicitly model both bank size and variance heterogeneity

  4. The Threat of Common Method Variance Bias to Theory Building

    Science.gov (United States)

    Reio, Thomas G., Jr.

    2010-01-01

    The need for more theory building scholarship remains one of the pressing issues in the field of HRD. Researchers can employ quantitative, qualitative, and/or mixed methods to support vital theory-building efforts, understanding however that each approach has its limitations. The purpose of this article is to explore common method variance bias as…

  5. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  6. 40 CFR 268.44 - Variance from a treatment standard.

    Science.gov (United States)

    2010-07-01

    ... complete petition may be requested as needed to send to affected states and Regional Offices. (e) The... provide an opportunity for public comment. The final decision on a variance from a treatment standard will... than) the concentrations necessary to minimize short- and long-term threats to human health and the...

  7. Application of effective variance method for contamination monitor calibration

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  8. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  9. Variance-optimal hedging for processes with stationary independent increments

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Kallsen, J.; Krawczyk, L.

    We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we...

  10. Adaptive Nonparametric Variance Estimation for a Ratio Estimator ...

    African Journals Online (AJOL)

    Kernel estimators for smooth curves require modifications when estimating near end points of the support, both for practical and asymptotic reasons. The construction of such boundary kernels as solutions of variational problem is a difficult exercise. For estimating the error variance of a ratio estimator, we suggest an ...

  11. A note on minimum-variance theory and beyond

    International Nuclear Information System (INIS)

    Feng Jianfeng; Tartaglia, Giangaetano; Tirozzi, Brunello

    2004-01-01

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons

  12. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    Science.gov (United States)

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  13. Molecular variance of the Tunisian almond germplasm assessed by ...

    African Journals Online (AJOL)

    The genetic variance analysis of 82 almond (Prunus dulcis Mill.) genotypes was performed using ten genomic simple sequence repeats (SSRs). A total of 50 genotypes from Tunisia including local landraces identified while prospecting the different sites of Bizerte and Sidi Bouzid (Northern and central parts) which are the ...

  14. Starting design for use in variance exchange algorithms | Iwundu ...

    African Journals Online (AJOL)

    A new method of constructing the initial design for use in variance exchange algorithms is presented. The method chooses support points to go into the design as measures of distances of the support points from the centre of the geometric region and of permutation-invariant sets. The initial design is as close as possible to ...

  15. Decomposition of variance in terms of conditional means

    Directory of Open Access Journals (Sweden)

    Alessandro Figà Talamanca

    2013-05-01

    Full Text Available Two different sets of data are used to test an apparently new approach to the analysis of the variance of a numerical variable which depends on qualitative variables. We suggest that this approach be used to complement other existing techniques to study the interdependence of the variables involved. According to our method, the variance is expressed as a sum of orthogonal components, obtained as differences of conditional means, with respect to the qualitative characters. The resulting expression for the variance depends on the ordering in which the characters are considered. We suggest an algorithm which leads to an ordering which is deemed natural. The first set of data concerns the score achieved by a population of students on an entrance examination based on a multiple choice test with 30 questions. In this case the qualitative characters are dyadic and correspond to correct or incorrect answer to each question. The second set of data concerns the delay to obtain the degree for a population of graduates of Italian universities. The variance in this case is analyzed with respect to a set of seven specific qualitative characters of the population studied (gender, previous education, working condition, parent's educational level, field of study, etc..

  16. A Hold-out method to correct PCA variance inflation

    DEFF Research Database (Denmark)

    Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Hansen, Lars Kai

    2012-01-01

    In this paper we analyze the problem of variance inflation experienced by the PCA algorithm when working in an ill-posed scenario where the dimensionality of the training set is larger than its sample size. In an earlier article a correction method based on a Leave-One-Out (LOO) procedure...

  17. Heterogeneity of variance and its implications on dairy cattle breeding

    African Journals Online (AJOL)

    Milk yield data (n = 12307) from 116 Holstein-Friesian herds were grouped into three production environments based on mean and standard deviation of herd 305-day milk yield and evaluated for within herd variation using univariate animal model procedures. Variance components were estimated by derivative free REML ...

  18. Effects of Diversification of Assets on Mean and Variance | Jayeola ...

    African Journals Online (AJOL)

    Diversification is a means of minimizing risk and maximizing returns by investing in a variety of assets of the portfolio. This paper is written to determine the effects of diversification of three types of Assets; uncorrelated, perfectly correlated and perfectly negatively correlated assets on mean and variance. To go about this, ...

  19. Perspective projection for variance pose face recognition from camera calibration

    Science.gov (United States)

    Fakhir, M. M.; Woo, W. L.; Chambers, J. A.; Dlay, S. S.

    2016-04-01

    Variance pose is an important research topic in face recognition. The alteration of distance parameters across variance pose face features is a challenging. We provide a solution for this problem using perspective projection for variance pose face recognition. Our method infers intrinsic camera parameters of the image which enable the projection of the image plane into 3D. After this, face box tracking and centre of eyes detection can be identified using our novel technique to verify the virtual face feature measurements. The coordinate system of the perspective projection for face tracking allows the holistic dimensions for the face to be fixed in different orientations. The training of frontal images and the rest of the poses on FERET database determine the distance from the centre of eyes to the corner of box face. The recognition system compares the gallery of images against different poses. The system initially utilises information on position of both eyes then focuses principally on closest eye in order to gather data with greater reliability. Differentiation between the distances and position of the right and left eyes is a unique feature of our work with our algorithm outperforming other state of the art algorithms thus enabling stable measurement in variance pose for each individual.

  20. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game